
The RESOLVE Compiler

Gregory Kulczycki
Virginia Tech

gregwk@vt.edu

John Hunt
Clemson University

hunt2@cs.clemson.edu

Murali Sitaraman
Clemson University

murali@cs.clemson.edu

1. ABSTRACT
Resolve is a unique specification-implementation language
combination designed to promote a modular style of soft-
ware development. The intent is to allow design and de-
ployment of components that are correct and efficient, easy
for clients to understand and reuse, and easy for implemen-
tation developers to adapt and maintain. Furthermore, al-
ternative component implementations of the same specifica-
tion of functionality must be available to provide component
users performance trade-offs, and their performance speci-
fications must be documented. To achieve these ambitious
goals, Resolve design is not constrained by popular program-
ming language practices or paradigms. For the promise of
automated modular verification, Resolve requires contract
specifications for components, and internal implementation
assertions such as loop invariants, representation invariants,
and abstraction relations. To eliminate routine aliasing com-
plexity and permit direct reasoning of implementations, Re-
solve requires the use of a constant-time swap operator in
component implementations instead of assignments. While
new principles for specification and development have to be
learned to use Resolve effectively, they should not be an
impediment to competent programmers or students.

A current version of the Resolve compiler may be found
at www.cs.clemson.edu/~resolve. The project vision is to
have a verifier for functional and performance correctness of
component-based systems.

2. REFERENCES
[1] D. E. Harms and B. W. Weide. Copying and swapping:

Influences on the design of reusable software
components. IEEE Transactions on Software
Engineering, 17(5):424–435, May 1991.

[2] J. Krone, W. F. Ogden, and M. Sitaraman. Profiles: A
compositional mechanism for performance specification.
Technical report, Department of Computer Science,
Clemson University, 2004. Available at

http://www.cs.clemson.edu/~resolve as Technical
Report RSRG-04-03.

[3] G. Kulczycki. Direct Reasoning. PhD thesis, Clemson
University, 2004.

[4] M. Sitaraman, S. Atkinson, G. Kulczycki, B. W. Weide,
T. J. Long, P. Bucci, W. Heym, S. Pike, and J. E.
Hollingsworth. Reasoning about software-component
behavior. In Procs. Sixth Int. Conf. on Software Reuse,
pages 266–283. Springer-Verlag, 2000.

[5] M. Sitaraman, T. J. Long, B. W. Weide, E. J. Harner,
and L. Wang. A formal approach to component-based
software engineering: education and evaluation. In
Proceedings of the 23rd international conference on
Software engineering, pages 601–609. IEEE Computer
Society, 2001.

[6] M. Sitaraman and B. W. Weide. Component-based
software using RESOLVE. ACM Software Engineering
Notes, 19(4):21–67, 1994.


