
ACOEL on CORAL
A COmponent R equirement and A bstraction L anguage

An Extended Abstract

Vugranam C. Sreedhar
IBM TJ Watson Research Center

Hawthorne, NY 10532
sreedhar@watson.ibm.com

ABSTRACT
CORAL is a language for specifying properties of ACOEL,
a component-oriented extensional language. The design
of CORAL is based on input/output automata and type
state. The properties of ACOEL components that need to
be verified are specified using CORAL. A verification en-
gine will then crawl through CORAL and verify whether
ACOEL can be safely executed or not. In this paper we
focus on CORAL, and show how to specify properties of
ACOEL. We will also briefly discuss the concurrent mod-
ification problem that is commonly encountered in the
iterator design pattern.

1. INTRODUCTION
The Internet has revolutionized the kinds of software

applications that are currently being developed. These
days people are talking about applications as services
just as electricity and telephone services. When software
are treated as services, it is important to ensure that they
are properly packaged as components that can be eas-
ily connected to other software components, and it is
even more important that (1) software components be
certified that it will not do any harm to other compo-
nents or the environment in which it is deployed, and (2)
the clients will properly use the components. ACOEL is
a component-oriented extensional language for creating
and plugging components together [22, 23].1 In ACOEL,
a component developer can specify and abstract prop-
erties and requirements of components using CORAL (a
COmponent Requirement and Abstraction Language).
Depending on the context in which a component is used,
a certification tool will try to certify that the component
is well-behaved and is safe for plugging into the system.

1ACOEL was initially called as York.

Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

In this paper we will mostly focus on CORAL.
There are two aspects to CORAL: abstraction and re-

quirements. Abstraction essentially suppresses the ir-
relevant details of a component so that one can focus
just on those properties that we wish to verify. There
is definitely a compromise between abstraction and the
level of details that one is interested in verifying. Re-
quirements are constraints that are necessary for proper
functioning of components. There are many different
kinds of requirements that a component will want to en-
force. For instance, a square root function sqrt(x) will
require that x is not a negative number. For proper
functioning of a FTP component, it is required that a
client first connects to a file server before getting files
from the server. Some of the popular modeling and
specification languages and tools in the literature in-
clude UML/OCL (Unified Modeling Language/Object
Constraint Language) [10], JML (Java Modeling Lan-
guage) [15], Larch [12], SMV [17], etc. Once the re-
quirements of a component are specified using one of
these languages, the underlying system will then encode
the specification into a mathematical structure and then
prove the required properties.

To ensure usability of an abstraction and specifi-
cation language, it is important to maintain a close
correspondence between the component concrete lan-
guage and the language used for specifying abstrac-
tion/requirement of components. JML, for instance, is
tailored to Java [15]. CORAL is a requirement and an
abstraction language for expressing and proving proper-
ties of ACOEL components. A component in ACOEL con-
sists of a set of typed input ports and output ports. The
input ports of a component consists of all the services
that the component will provide, while the output ports
are all the services that the component require for cor-
rect functioning. A port type can be either an interface
type or a delegate type. An interface type consists of a
set of methods and named constants, whereas a delegate
type is an encapsulated signature of a method. The in-
ternal implementation of a component in ACOEL is com-
pletely hidden from the clients (i.e., a black-box compo-
nent). In CORAL, the set of input ports of a component
are abstracted as a set of input actions, the set of output
ports of a component are abstracted as a set of output ac-
tions and the internal implementations of a component

1

are abstracted as a set of internal actions. The states of a
component, and of the environment are encoded using
state variables and data types. The above actions when
performed on a state will transform the state to another
state. In CORAL such state transitions are expressed us-
ing a state transition relations. The CORAL model of an
ACOEL component is very to close to an input/output au-
tomaton (IOA) [13].

The rest of the paper is organized as follows: Section 2
gives a brief introduction to ACOEL. Section 3 discusses
IOA modeling of CORAL. Section 4 introduces CORAL
using a simple example called the concurrent modifica-
tion problem. Section 5 discusses some of the related
work. Finally, Section 6 gives our conclusion and also
projects some of the future research direction.

2. ACOEL
The design of ACOEL was motivated by the following

component design principles.

� Pluggable Units A component is a unit of abstrac-
tion with clearly defined external contracts and the
internal implementation should be encapsulated.
The external contract should consist of both the
services it provides and the requirements it needs
when it is plugged or (re-)used in a system.

� Late and Explicit Composition. For a component to
be composable by a third-party with other compo-
nents, it must support late or dynamic composition.
During the development phase, requirements of a
component should only be constrained by some
external contract. Then, at runtime, an explicit con-
nection is made with other “compatible” compo-
nents (i.e., one that satisfy the constraints) to effect
late composition.

� Types for Composition. Typing essentially restricts
the kinds of services (i.e., operations or messages)
that can be requested from a component.

� Restricted Inheritance. In OO programming, it is
well-known that one cannot achieve both true en-
capsulation and unrestricted class inheritance with
overriding capabilities [21]. In ACOEL, classes
(which support inheritance) are second-class citi-
zens, and are not visible to the external clients.

� No Global State. In ACOEL, there are no global vari-
ables and public methods that are visible to the en-
tire system.

Let us briefly illustrate ACOEL by implementing the
Iterator design pattern [11]. An Iterator pattern consists
of an aggregate (e.g., set, list, array, etc.) and an itera-
tor that traverses the aggregate. The main construct in
ACOEL is component . A component consists of a set of
typed input ports and output ports. A List component,
defined below, consists of two input ports: one port is
used by the client code to add/get/remove list elements
and for creating an iterator, and the other port is used by
the iterator to add/remove/get list elements. A client
uses the following type to access services from the List
component.

interface CLIntf {
void add(int index, Elem e) ;
void remove(int index, Elem e) ;
Elem get(int index) ;
ListIter iterator() ;

}

An iterator component interacts with the List com-
ponent using the following interface.

interface ILIntf {
void remove(int index, Elem e) ;
Elem get(int index) ;
void start() ; // start of the iterator
void end() ; // end of the iterator.

}

The start() method and end() are basically used to
start and end an iteration, and iterator() is a factory
method that returns an iterator component.

Next we define the List component.

component List {
in CLIntf clin ;
in ILIntf ilin ;
ListNode head = null ;
int count = 0 ;
List(){head = null ; count =0 ;}
class ListNode {

Elem e ;
ListNode n ;
ListNode(){} ;

}
class CLCls implements CLIntf, ILIntf {

void add(int index, Elem e) { ...};
void remove(int index, Elem e) {...};
Elem get(int index) {...} ;
int count(){return count ;}
ListIter iterator() {

return new ListIter(This) ;
}
void start() { ...}
void end() { ...}

}
attach clin to CLCls ;
attach ilin to CLCls ;

}

The attach statement essentially attaches an input port
to a particular implementation class inside the compo-
nent. Any messages that arrive at an input port is for-
warded to the instance of the class that is attached to
the input port. The class instance will either process the
message or it will delegate to another class instance in-
side the component.

Next we define the ListIter component. It consists
of one input port and one output port. The output port
ilout is used to connect to the input port ilin of List .
A client component uses the input port clin for access-
ing services of the ListIter . First let us define the type
CIIntf of input port clin .

2

clin

ilin

ciout

clout

Client
List

Iterator

ilout

ciin

Figure 1: Various components in Iterator pattern

interface CIIntf {
Elem next() ;
Elem start() ;
boolean hasNext() ;
void remove() ;

}

A client component uses the start() method to start
a new iteration. Here is the ListIter component for
iterating over the elements of a list.

component ListIter {
in CIIntf clin ;
out ILIntf ilout ;
ListIter(List l) {

connect ilout to l.ilin ;
pos = 0 ;

}
int pos = 0 ;
class ILCls implements ILIntf {

Elem next() {
Elem e = ilout.get(pos) ;
pos++ ;
return e ;

} ;
Elem start(){

ilout.start() ;
pos = 0 ;

}
boolean hasNext() {

if (pos < ilout.count())
return true ;

ilout.end() ;
return false ;

} ;
void remove() {...} ;

}
attach clin to ILCls ;

A client component has to first explicitly connect to
a component before obtaining the services. Notice that
ListIterator can invoke services of List component

via its own output port ilout , and this output port is
connected to input port ilin of List component in-
stance.

Finally, here is a client code that wants to access the
List component and the ListIterator component.

component Client {
out CIIntf ciout ;
out CLIntf clout ;
main() {

List l = new List() ;
connect clout to l.clin ;
// add a bunch of elements ...
ListIterator li = l.iterator() ;
connect ciout to li.ciin ;
ciout.start() ;
while(ciout.hasNext() {

Elem e = ciout.next() ;
}

}

Figure 2 shows the overall structure of the iterator pat-
tern. There can be more than one iterator that is simul-
taneously active. A client will typically use the itera-
tor created by the list component (through the factory
method iterator()). The list component can ensure
that it will only interact with iterators that it created for
a client. Whenever there are multiple simultaneous iter-
ators, there is a potential for concurrent modification of
the list by multiple iterators (which will lead to incon-
sistent states). We will discuss this problem later in the
paper.

3. MODELING COMPONENTS
A component in ACOEL consists of (1) an external con-

tract made of typed input and output ports, and (2) an
internal implementation consisting of classes, methods,
and data fields. A client can only see the external con-
tract and the internal implementation is completely en-
capsulated. A component provides services via its input
ports, and specifies the services its requires via its out-
put ports. In ACOEL, a connect statement makes an ex-
plicit connection between an output port of a component
to a “compatible” input port of another component. Let
connect �c1 hpoi to �c2 hqii be a connect statement. For this
connection to be compatible, it is necessary that qi <: po.
The sub-type relation ensures that any message sent over
the connection by �c1 can be processed by �c2. But the sub-
type relation is not sufficient to ensure port compatibil-
ity. In ACOEL, we enforce other kinds of constraints us-
ing CORAL.

We use a framework that is similar to input/output
automaton (IOA) to model ACOEL components. Ab-
stractly, a component automaton (CA) consists of a set
of actions, a set of state, and a set of transitions. The
set of actions are classified as either input actions in(A)
(corresponding to messages arriving at input ports), out-
put actions out(A) (corresponding to the requirements at
output ports), and internal actions int(A) (corresponding
to internal calls). Let acts(A) = in(A)[out(A)[int(A).

Similar to IOA, a CA A consists of the following four
components:

3

� sig(A), a signature

� states(A), a set of states (not necessarily finite)

� start(A) � states(A), a set of start or initial states

� trans(A) � states(A)� acts(sig(A))� states(A),
a state-transition relation, such that for every state
s and every input action �, (s; �; s0) 2 trans(A).

An action � is enabled in a state s if (s; �; s0) 2
trans(A). Input actions are enabled in every state (i.e.,
a component cannot block messages arriving at its in-
put ports). This is not a big restriction, since almost al-
ways we can throw an error condition for messages that
a component cannot handle (also, we can use the type
system to ensure that no arbitrary message arrives at in-
put ports of a component).

There are few differences between a regular IOA and
the kinds of programs that we are dealing with in
ACOEL. First, components in ACOEL can be dynami-
cally created and destroyed. Also, each component has
its own state. In ACOEL there are no global variables
and methods. Since component instances are dynami-
cally created and destroyed, an IOA model should in-
clude actions for creation and destruction of automaton
and for modeling system of automaton. To model dy-
namic creation of components, we introduce a create ac-
tion crt(A) that corresponds to creation of an automaton
A. The crt(A) will also invoke the constructor function
that modifies the state of A. The create action crt(A)
can be thought of as an input action to the newly cre-
ated automaton A, and the input action will invoke the
constructor methods of the corresponding component.
The create action will be executed by another automaton
for creating a new automaton. At any instance, only a
finite set of automaton exists. We can think of a configu-
ration C as a finite set fhA1; s1i; : : : hAn; snig, where Ai,
for 1 � i � n, is automaton identifier and si is the state
of Ai. An action � essentially changes a configuration C
to a new configuration C0, a create action will add a new
automaton to C, and all other action will simply change
the states of existing automaton.

4. THE CORAL LANGUAGE
In this section we will briefly introduce CORAL using

the iterator pattern example. Our intention is only to ex-
pose the core ideas behind CORAL. A component au-
tomaton (CA) consists of two main parts: (1) states
and (2) transitions . The states part consists of a
set of state variables, whose types can be either primi-
tive or composite data types. Primitive data types in-
clude char , string , int , float , and reference type.
Composite data types can be either in-built types or user-
defined types. In a types part one can define new data
types (see Figure 2). The transitions part consists
of a set of state transition written in the style of pre-
condition-effect-error for each action. This is illustrated
in ListAutomaton , a CORAL automaton for the List
component (see Figure 2). For each action, we list the
pre -condition part, the eff ect part, and the error part.
Whenever the pre-condition part is satisfied, the eff
part is executed otherwise the error part (if defined) is

coral ListAutomaton {
types:

Iter {
int id ;
enum st = {active, passive} ;

}
states:

int srcId ;
List l ; // list type
Iter iter[] ; // a hash of iterators.

transitions:
input void CLIntf.add (int index, Elem e) {

pre:
(forall i iter[i].st==passive) &&

(l.length < index)
eff:

l.insert(index, e) ;
error:

throw AddException ;
}
input void CLIntf.remove(int index, Elem e) {

pre:
(forall i iter[i].st==passive) &&

(l.length < index)
eff:

l.remove(index, e) ;
error:

throw RemoveException ;
}

input Elem CLIntf.get (int index) {
pre:

(l.length < index)
eff:
error:

throw GetException ;
}
input CLIntf.iterator () {

pre:
eff:

// add a new iterator to iter
int newsrcId = create ListIterator

iter.add(newsrcId) ;
return newsrcId ;

}
input ILIntf.start() {

pre:
eff:

iter[srcId].st = active ;
}
input ILIntf.end() {

pre:
eff:

iter[srcId].st = passive ;
}
input Elem ILIntf.get (int index) {

pre:
(iter[srcId] == active)
(l.length < index)

eff:
error:

throw GetException ;

}
input ILIntf.remove() {

pre:
(iter[srcId] == active) &&
(forall i and i!=srcId

{iter[i].st==passive}) &&
(l.length < index)

eff:
l.remove(index, e) ;

error:
throw RemoveException ;

}
}

Figure 2: CORAL for List component.

4

executed. The eff part essentially performs state trans-
formations.

For the example in Figure 2, the states part consists
of three states: srcId is the identity of the source com-
ponent that is invoking the input action. l is a list with
operations such insert , remove , etc. An insert op-
eration will add an element to l and changes the state
of l to a new l . The iter state keeps track of all itera-
tors that a client created. A create operation will essen-
tially create a new iterator identity and saves it in iter .
Consider the input action CLIntf.add() , the eff part
will be executed only if all the iterators in iter[] are
passive and the index is less than the length of the list.
Otherwise the error part is executed.

We essentially translate a CA to an IOA, and then ver-
ify properties in IOA. An input action in CA also returns
a value (which can either a normal value or an error con-
dition). So an input action in CA is translated into a in-
put action followed by an output action in IOA. The pur-
pose of the output action is to return a value or an error
condition back to source component. We do the same
for an output action in CA (i.e., it is also broken into an
output action followed by an input action).

Unlike in IOA, in CA we typically do not perform
composition operation explicitly—we typically verify
whether a composition is a valid composition, and the
actual composition is effected by subtype relation be-
tween ports via connect statement. There are two
kinds of verification we are interested: invariance and
reaching an error state. An invariance is a property that
is true in all reachable states. Reaching an error state
means that a pre-condition fails and an “error” state is
reached. An execution of an automaton is a finite se-
quence of so; �1; : : : ; �n; sn, with s0 being a start state of
the automaton. A state is reachable if it occurs in some
execution. Our main goal is verification of safety prop-
erties (rather than liveness or fairness properties).

Let us briefly illustrate one kind of verification prob-
lem, called concurrent modification problem (CMP).
This problem was motivated from Ramalingam et
al. [18]. We have simplified the problem from what is
described in Ramalingam et al. [18]. The main problem
with CMP is that when an iterator is active a modifica-
tion to the underlying aggregate structure can cause an
inconsistency between the iterator and aggregate struc-
ture. Most implementation of an iterator pattern will al-
low modification to an aggregate structure only through
the iterator (especially when an iterator is active). Let
us slightly modify the client code given in Section 2 and
include the statement l.add(0,e) in the while-loop.

component Client {
out CIIntf ciout ;
out CLIntf clout ;
main() {

List l = new List() ;
connect clout to l.clin ;
// add a bunch of elements ...
ListIterator li = l.iterator() ;
connect ciout to li.ciin ;
while(ciout.hasNext() {

Elem e = ciout.next() ;

l.add(0,e) ;
}

}

In the ListAutomaton the pre condition for l.add
will fail since an iterator in iter state may still be ac-
tive. Although the above example looks trivial there are
many non-trivial phases that one has to go through be-
fore coming to the conclusion. For instance, we need
alias analysis information to disambiguate different it-
erators. We need to use theorem proving techniques
to verify invariants defined in the pre-conditions. We
have used end() method to explicitly terminate an it-
erator. Compared to Ramalingam et al., our approach
gives very conservative result. It is to be noted that our
intention in using CMP is only to illustrate the use of
IOA for verifying this, albeit simplified, problem.

5. DISCUSSION AND RELATED WORK
Verifying software system is an age-old, but certainly

not a solved problem. Many specification and verifi-
cation techniques have been proposed in the literature
for ensuring that software systems are safe and well-
behaved [2, 14, 24, 3, 12, 7, 20]. With the advent of the
Internet-based applications it is even more important to
ensure safety and security of software system. In this
paper we presented CORAL for abstracting and spec-
ifying requirements of ACOEL components. We used
IOA for modeling ACOEL components. Typically in the
past, IOA has been used to model distributed system.
In CORAL we use IOA to verify whether a component
when plugged into a system will behave correctly, and
also whether a client of the component will use the com-
ponent correctly or not. CORAL can be used to ver-
ify other kinds of constraints such a protocol verifica-
tion [25]. We can simply encode the correct sequences
of method calls using an automaton.

This paper presents a preliminary experience of us-
ing IOA for software verification. There are many open-
ended problems that needs to be resolved. Handling
aliasing, sub-type polymorphism, etc. presents some in-
teresting challenges. Recently Attie and Lynch proposed
dynamic IOA that can handle dynamic creation and de-
struction of automaton. Rather than thinking in terms
of single automaton, dynamic IOA goes one step further
and defines a configuration of interacting automata [4].
We are currently exploring on how to use the full po-
tential of dynamic IOA in CORAL. For verification pur-
poses we have to deal with practical programming lan-
guages which typically include aliasing and polymor-
phism. Unlike IOA, our main goal is verification of com-
ponents. One component can be connected to another
component through their ports if the corresponding port
types have a sub-type relation (i.e., the input port should
be a subtype of the output port). We use CORAL to go
beyond subtype relation and verify other kinds of con-
straints [16].

Model checking is a classical approach to verification
of software systems [8]. Bandera is a collection of tools
for model-checking concurrent Java programs [9]. It
takes Java source code, compiles them, and generates
code for verification tools like SMV and SPIN. SLAM

5

project is very similar to Bandera project, except that
SLAM also uses predicate abstraction and discovery to
point errors in C code [5]. Strix is specification lan-
guage for expressing business process and a Strix com-
piler once generates code for SMV model checker [6].
CANVAS uses EASL specification and translate them to
a 3-valued logic for verifying program properties [18].
JML is a Java Modeling Language and it uses design-
by-contract and Larch theorem prover to verify program
properties [15]. There are several other projects related
to software verification.

Another important, but related, area is the Architec-
ture Description Language (ADL) [19]. A software sys-
tem is typically starts off with a requirement and a de-
sign phase. During this phase, the implementation de-
tails are typically ignored and the focus is on under-
standing and developing software architecture. ADLs
are typically used at this phase to specify the structure
and the requirements of a software system. ArchJava is
an example of integrating ADL with Java [1]. CORAL
can be used as a ADL. One can express the requirements
of ACOEL components, even before implementing them
using CORAL. To use as an ADL, we need a way to com-
pose component automaton. For this we rely on IOA
theory of composing automaton.

6. CONCLUSION
In this paper we briefly introduced CORAL as a lan-

guage for abstracting and specifying ACOEL compo-
nents. CORAL is based on IOA. Unlike classical IOA, our
intention in using the theory of IOA is for verification
of software components. We are currently working on
three aspects of CORAL. First we are refining on the syn-
tax and semantics of CORAL. Second, we are focusing
on the dynamic IOA model for CORAL. Finally, we are
looking at ways to model aliasing, sub-typing, classes,
and other states within IOA. Both ACOEL and CORAL
are at design stages, and we are at initial stages of imple-
mentation. We expect to publish more details of CORAL
in the near future.

Acknowledgement
I thank Deepak Goyal for valuable discussions and com-
ments on an earlier draft of the paper.

7. REFERENCES
[1] Jonathan Aldrich and Craig Chambers. ArchJava:

connecting software architecture to implmentation.
Technical Report UW-CSE-01-08-01, Univ. of
Washington, August 2001.

[2] Dean Allemang. Extending the applicability of
formal verification techniques. In Gary T. Leavens
and Murali Sitaraman, editors, Proceedings of the
First Workshop on the Foundations of
Component-Based Systems, Zurich, Switzerland,
September 26 1997, pages 1–10, September 1997.

[3] R. Allen and D. Garlan. A Formal Basis for
Architectural Connection. ACM Transactions on
Software Engineering and Methodology, 6(3):213–249,
June 1997.

[4] Paul C. Attie and Nancy A. Lynch. Dynamic
input/output automata: a formal model for
dynamic systems. In CONCUR’01: 12th
International Conference on Concurrency Theory,
LNCS. Springler-Verlag, 2001.

[5] T. Ball and S. Rajamani. Checking temporal
properties of software with boolean programs. In
Proceedings of the Workshop on Advances in
Verification, 2000.

[6] B. Bloom. Seeing by owl-light:Symbolic model
checking of business application requirements.
Technical Report ????, IBM T.J. Watson Research
Center, 2001.

[7] William Chan, Richard J. Anderson, Paul Beame,
Steve Burns, Francesmary Modugno, David
Notkin, and Jon D. Reese. Model checking large
software specifications. IEEE Transactions on
Software Engineering, 24(7):498–520, July 1998.

[8] Edmund M. Clarke, Orna Grumberg, and David E.
Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems,
16(5):1512–1542, September 1994.

[9] James C. Corbett, Matthew B. Dwyer, John Hatcliff,
Shawn Laubach, Corina S. Pasareanu, Robby, and
Hongjun Zheng. Bandera: extracting finite-state
models from java source code. In International
Conference on Software Engineering, pages 439–448,
2000.

[10] Martin Fowler and Kendall Scot. UML Distilled:
Applying the Standard Object Modeling Language.
Addison-Wesley, 1997.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements od Reusable
Object-Oriented Software. Addison-Wesley
Publishing Company, New York, NY, 1995.

[12] S. Garland, J. Guttag, and J. Horning. An overview
of Larch. In Functional Programming, Concurrency,
Simulation and Automated Reasoning, pages 329–348.
Springer-Verlag Lecture Notes in Computer
Science 693, 1993.

[13] S. Garland and N. Lynch. Using i/o automata for
developing distributed systems. In Gary T.
Leavens and Murali Sitaraman, editors,
Foundations of Component-Based Systems, pages
285–312. Cambridge University Press, 2000.

[14] M. Goedicke, H. Schumann, and J. Cramer. On the
specification of software components. In
Jean-Pierre Finance, editor, Proceedings of the 6th
International Workshop on Software Specification and
Design, pages 166–174, Como, Italy, October 1991.
IEEE Computer Society Press.

[15] Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: a java modeling language. In Formal
Underpinnings of Java Workshop (at OOPSLA ’98),
1998.

[16] B. H. Liskov and J. M. Wing. A behavioral notion
of subtyping. ACM Trans. Prog. Lang. and Sys.,
16(1):1811–1841, November 1994.

[17] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, Norwell Massachusetts,

6

1993.
[18] G. Ramalingam, A. Warshavsky, J. Field, and

M. Sagiv. Deriving specialized heap analyses for
verifying component-client conformance.
Technical Report RC22145, IBM T.J. Watson
Research Center, August 2001.

[19] Mary Shaw and David Garlan. Software
Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, 1996.

[20] Murali Sitaraman, Lonnie R. Welch, and
Douglas E. Harms. On specification of reusable
software components. International Journal of
Software Engineering and Knowledege Engineering,
3(2):207–229, 1993.

[21] Alan Snyder. Inheritance and the development of
encapsulated software components. In Bruce
Shriver and Peter Wegner, editors, Workshop on
Object-Oriented Programming, pages 165–188,
Camebridge, MA, 1987. MIT Press.

[22] Vugranam C. Sreedhar. ACOEL: A
component-oriented extensional language.
Technical report, IBM T.J. Watson Research Center,
2001.

[23] Vugranam C. Sreedhar. York: Programming
software components. In Joint 8th European Software
Engineering Conference and 9th ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, 2001. Poster session.

[24] D. Yellin and R. Strom. Protocol specifications and
component adaptors. ACM Transactions on
Programming Languages and Systems, 19(2):292–333,
1997.

[25] Daniel M. Yellin and Robert E. Strom. Protocol
specifications and component adaptors.
Transactions on Programming Languages and Systems,
19(2):292–333, March 1997.

7

