
Testing Components

Neelam Soundarajan and Benjamin Tyler
Computer and Information Science

Ohio State University, Columbus, OH 43210
e-mail: {neelam,tyler}@cis.ohio-state.edu

Abstract
Our goal is to investigate specification-based approaches to
testing OO components. That is, given a class C and its
specification, how do we test C to see if it meets its spec-
ification? Two important requirements that we impose on
the testing approach are that it must not require access to
the source code of the class under test; and that it should
enable us to deal incrementally with derived classes, includ-
ing derived classes that exploit polymorphism to extend the
behavior of the base class. In this paper, we report on our
work towards developing such a testing approach.

1. INTRODUCTION
Our goal is to investigate specification-based approaches

to testing OO components. Suppose we are given an imple-
mentation of a class C and the specifications of its methods
in the form of pre- and post-conditions (and possibly a class
invariant). How do we test the implementation of C to see if
it meets its specifications? We are not specifically interested
in the question of how to choose a broad enough range of
test cases [12] although that would, of course, have to be an
important part of a complete testing methodology for OO
systems. Rather, we want to develop a general approach
that can be used to test that C meets its specifications.
Once we do this, we should be able to combine it with an
appropriate methodology for choosing test cases.

We impose two important requirements on the testing ap-
proach. First, as far as possible it must not require access
to the source code of the class under test. This is important
if we are to be able to test not just components we de-
signed and implemented but components that we may have
purchased from a software vendor. Second, the testing ap-
proach should enable us to deal incrementally with derived
classes, including derived classes that exploit polymorphism
to extend the behavior of the base class. Much of the power
of the OO approach derives from the ability to develop sys-
tems incrementally, using inheritance to implement derived
classes that extend the behavior of their base classes. To

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA 2001 Workshop on Specification and Verification of Component
Based SystemsOct. 2001 Tampa, FL, USA
Copyright 2001 N. Soundarajan and B. Tyler.

best exploit this incremental nature of OO, our approach
to reasoning about and testing the behavior of such classes
should also be correspondingly incremental. In this paper,
we report on our work towards developing such a testing
approach.

In the next section, we provide a more detailed statement
of the problem. In Section 3, we outline how the behavior of
derived classes that use polymorphism to enrich base class
behavior may be established in a verification system. In
Section 4 we show how our testing approach can work with
the kind of specifications used in the verification system.
In Section 5, we briefly consider some problems related to
testing classes that have components that may themselves
exploit polymorphism.

2. BACKGROUND AND MOTIVATION
An important tenet of the OO approach is abstraction.

Thus a client of a class should have an abstract view of the
class, rather than thinking in terms of the concrete struc-
ture, i.e., the member variables, of the class. Correspond-
ingly, the specification of a class C usually consists of pre-
and post-conditions of the methods of C, in terms of an
abstract or conceptual model of C. But abstraction causes
an important difficulty [2] for specification-based testing1.
When testing, we have to analyze how the values of the
member variables of the class change as various member op-
erations are invoked, so we have the problem of matching
these values to the abstract specification. Inheritance exac-
erbates the problem since the set of variables and operations
in the derived class is a complex mix of items defined in the
base and derived classes.

Given this, in our approach to testing, we work with con-
crete specifications for the classes. This is not to suggest
that abstract specifications are not important. It is just
that when considering and testing the behavior of the im-
plementation of C, the concrete state of the class has to
play an important role since that is what the implementa-
tion works with. Similarly, when considering the behavior
of the derived class, we (the designer of the derived class as
well as the tester) must keep in mind the concrete state of
both the base and derived classes. When dealing with the
behavior of some client code cc that uses C, we should of
course not think in terms of the concrete state of C; later
in the paper, we will see how abstract specifications (of C)
enter the picture when considering testing of cc.

1In this paper, by ‘component’, we will generally mean
‘class’ as in a typical OO language.

1

The concrete specification of C characterizes the behavior
of each method of C in terms of pre- and post-conditions
that are assertions on the member variables of C. The spec-
ification may also include an invariant, although for simplic-
ity we will usually ignore it in our discussion. Our goal is to
create a testing class TC corresponding to C that will allow
us to test the class C against this concrete specification. We
note that the word ‘testing’ in the title of the paper may be
considered a verb since we are interested in testing the be-
havior of C; it may also be considered an adjective since our
approach to testing is to construct the testing component
TC.

In [16], we had suggested the following simple approach to
the construction of TC: For each method m() of C, include
a corresponding test method test m() in TC that will invoke
m(). To do this we need an instance object, call it tc, of type
C. More precisely tc is a member variable of TC of type C,
and its value will be (a reference to) an object of type C.
Let us assume that the constructor of TC has initialized tc
to such a value. We can now write test m() to simply consist
of a call to m() followed by an assert statement in which we
require that the post-condition post.m is satisfied. Now m()
is required to work, that is ensure that its post-condition is
satisfied when it finishes, only if its pre-condition was satis-
fied at the time of the call to it. Thus a natural definition
of the body of test m() is:

if (pre.m) { tc.m(); assert(post.m); }

Since the object here is tc, references to a variable x of C
in pre.m, post.m should be replaced by to tc.x. Are these
references legal? Member variables are typically protected,
and accessible only within C (and derived classes). In Java
[1], we could put TC in the same package with C and give
data members package scope. It is not clear how to address
this in other languages; we had suggested in [16] that it
may be useful to introduce the privileged notion of test class
into the language, with the methods of the test class being
given access to the members of the class2. Another point
is that post.m may contain references to the value of tc.x
at the time of the call. So we need to save this value in,
say, xold, and replace (in post.m) x@pre by xold; in general,
we need to use a cloning operation [11] for this purpose.
Yet another issue has to do with the form of the assertions.
Given that we want the assertions to be machine checkable,
they have to have a somewhat restricted form [5, 8]. One
possibility [11] would be to require that the assertions be
legal boolean expressions allowed by the language. Here we
will just assume that simple assertions, including quantifiers
over finite domains, are allowed.

In this paper, we want to focus on a different issue. Sup-
pose again that D is a derived class of C. Some methods
may be defined (or redefined) in D while others may be
inherited from C. Most importantly, even some of the in-
herited methods may exhibit behavior that is different from
their behavior in the base class because of calls to meth-
ods that are redefined in D. Following the design patterns

2In C++, we could simply declare TC a friend of C but,
as is widely recognized, the friend mechanism is subject to
serious abuse.
It is also worth noting that if the state of tc is such that
pre.m is not satisfied, the body of test m() would be entirely
skipped; this may be considered a truly extreme instance of
poor test-case-choice!

literature [6], we will call such methods template methods,
the methods they invoke that may be redefined in D being
called hook methods. Let t() be a template method of C,
and h() a hook method that t() invokes. As we just noted,
redefining h() in the derived class enriches also the behav-
ior of t(). When reasoning about t() in the base class, we
would have appealed to the base class specification of h() to
account for the effects of the calls that t() makes to h(). In
order to be sure that the conclusions we have reached about
the behavior of t() apply also to its behavior in the derived
class despite the redefinition of h(), we have to require that
the redefined h() satisfies its base class specification; this
requirement is the essence of behavioral subtyping [10, 4].
But ensuring that t() continues to behave in a way that is
consistent with it its base class specification is only part of
our concern. The reason that we redefined h() in the derived
class was to thereby enrich (as we will see even in the simple
example later in the paper) the behavior of t(). Therefore we
need to be able to reason incrementally about this enriched
behavior and, more to the point of this paper, we need to
be able to test the enriched behavior that t() exhibits (or is
expected to exhibit) in the derived class as a result of the
redefinition of h().

First let us consider how the behavior of t() may be spec-
ified in the base class so that we can reason incrementally
about it in the derived class. The approach used in [3, 15]
to specify the behavior of t() in the base class is to include
suitable information, in its specification, about the sequence
of hook method calls t() makes during its execution. This
information is in the form of conditions on the value of the
trace variable τ associated with t() that records information
about these calls. This information can then be used [15]
to arrive at the richer behavior to t() in the derived class3

by combining it with the derived class specification of h().
In this paper we will see how we can test the implementa-
tion of C and D, in particular the code of t() (and h()), to
check whether it satisfies this richer specification about its
behavior.

This is a challenging task because we need to keep track of
the value of τ . Every time t() makes a call to h() (or another
hook method), τ has to be updated to record information
about this call (and return) but, of course, there is nothing in
the code of t() to do so. After all, τ is a variable introduced
by us in order to help reason about the behavior of t(),
not something included by the designer of C. One possible
solution to this problem would be to modify the code of
t() to include suitable (assignment) statements, immediately
before and after each hook method call, that would update
τ appropriately. But this would violate our requirement
that we not assume access to the body of C, and certainly
not modify it. As we will see, it turns out that we can, in
fact, exploit polymorphism in the same way that template
methods do, to address this problem.

3Ruby and Leavens [14] (see also earlier work by Kiczales
and Lamping [7, 9]) present a formalism where some ad-
ditional information about a method beyond its functional
behavior is provided; this may include, for example, infor-
mation about the variables the given method accesses, the
hook methods it invokes, etc. While this is not as complete
as the information we can provide using traces, it has the
important advantage that it is relatively easy to build tools
that can exploit this information, or indeed even mechani-
cally extract this type of information from the code, rather
than having to be specified by the designer.

2

3. INCREMENTAL REASONING
Let us consider a simple example consisting of a bank ac-

count class as the base class (and a derived class we will
define shortly). The definition (in Java-like syntax) of the
Account class appears in Figure 1. The member variable bal

class Account {
protected int bal; // current balance
protected int nautos; // no. of ‘automatic’ transactions
protected int autos[]; // array of automatic transactions

public Account() { bal = 0; nautos = 0 ; }
public int getBalance() { return bal; }
public void deposit(int a) { bal += a; }
public void withdraw(int a) { bal −= a; }
public final void addAuto(int a) {

autos[nautos] = a; nautos++; }
public final void doAutos() {

for (int i=0; i < nautos; i++) {
if (autos[i] > 0) { deposit(autos[i]); }
else { withdraw(autos[i]); } } }

}
Figure 1: Base class Account

maintains the current balance in the account. The meth-
ods deposit(), withdraw(), and getBal() are defined in the
expected manner. Their concrete specifications4 are easily
given:

pre.Account.getBalance() ≡ true
post.Account.getBalance() ≡

[!{nautos, autos, bal} ∧ (result = bal)]

pre.Account.deposit(a) ≡ (a > 0)
post.Account.deposit(a) ≡

[!{nautos, autos, a} ∧ (bal = #bal+a)]

pre.Account.withdraw(a) ≡ (a > 0)
post.Account.withdraw(a) ≡

[!{nautos, autos, a} ∧ (bal = #bal−a)] (1)

In the post-conditions we use the notation “!S” to denote
that the value of each of the variables that appears in the set
S is the same as it was at the start of the method in question.
The “#”notation, also in the post-condition, is used to refer
to the value of the variable at the start of the execution of
the method. Thus these specifications simply tell us that de-
posit() and withdraw() update the value of bal appropriately
and leave the other variables unchanged; and getBalance()
returns the balance in the account and leaves all variables
unchanged. The notation result [11] in the post-condition
refers to the value returned by the function in question.

More interesting are the ‘automatic transactions’. The
autos[] array maintains the current set of automatic trans-
actions, nautos being a count of the number of these trans-
actions. doAutos() is the (only) template method of this
class. Whenever it is invoked, it performs each of the trans-
actions in the autos[] array by invoking the hook methods
deposit() and withdraw(). A positive value for an array el-
ement denotes a deposit, a negative value denotes a with-

4This class is so simple that its abstract specification would
essentially be the same as its concrete specification. Note
also that we have included the name of the class in the specs
since we will also consider the behavior of these methods in
the derived class. Thus, (1) specifies the behavior of these
methods when applied to an instance of the Account class.

drawal. Thus doAutos() iterates through the elements of
this array, invoking deposit() if the element in question is
positive and withdraw() if it is negative. addAuto() allows
us to add another transaction to the autos[] array. We will
leave the precise specification of addAuto() to the interested
reader; its pre-condition would require the parameter value
to be not equal to 0, the post-condition would say that au-
tos[] array is updated to include this value at the end of the
array (and nautos is incremented by 1).

Let us now consider the specification of doAutos(). An
obvious specification for this method would be:

pre.Account.doAutos() ≡ true
post.Account.doAutos() ≡

[!{nautos, autos} ∧
(bal = #bal+(Σ(k = 0 . . . nautos− 1). autos[k])] (2)

This specifies that doAutos() updates bal appropriately.
What is missing is information about the hook method calls
that it makes during execution. As a result, although (2) is
correct in what it specifies, it proves inadequate in allowing
us to reason about the enriched behavior that this method
will exhibit in the derived class, to which we turn next.

class NIAccount extends Account {
protected int tCount; // transaction count

public NIAccount() { tCount := 0; }
public void deposit(int a) { bal += a; tCount++; }
public void withdraw(int a) { bal −= a; tCount++; }
public int getTC() { return tCount; }
}

Figure 2: Derived class NIAccount

The enrichment provided by NIAccount (for ‘New and
Improved account’ !) is fairly simple: it keeps a count of
the number of transactions (deposits and withdrawals) per-
formed on the account. This is achieved by redefining de-
posit() and withdraw() appropriately5. The newly defined
method, getTC() allows us to find the value of the transac-
tion count. The specifications of these methods are straight-
forward modifications of (1). We will only write down the
specs for getTC() and deposit():

pre.NIAccount.getTC() ≡ true
post.NIAccount.getTC() ≡

[!{nautos, autos, bal, tCount} ∧ (result = tCount)]

pre.NIAccount.deposit(a) ≡ (a > 0)
post.NIAccount.deposit(a) ≡

[!{nautos, autos, a} ∧ (bal = #bal+a)
∧ (tCount = #tCount+1)] (3)

Let us now turn to the behavior of doAutos() in the NI-
Account class. It is clear from the body of this template
method, as defined in the base class, that during its execu-
tion, the value of tCount will be incremented by the num-
ber of transactions in the autos[] array, i.e., by the value
of nautos, since doAutos() carries out each of these trans-
actions by invoking deposit() or withdraw(). But we cannot
arrive at this conclusion from its specification (2), not even
given the specification (3) for the behavior of the redefined

5If these methods were at all complex, it would have been
appropriate to invoke the base class methods in their defini-
tions; here, the only task to be performed by the base class
portion is to update bal, so we have just repeated the code.

3

hook methods that doAutos() invokes. The problem is that
there is nothing in (2) that in fact tells us that doAutos()
invokes deposit() or withdraw(). Indeed, if we rewrote the
body of doAutos() so that it directly added each element of
the autos[] array to bal, instead of invoking deposit() and
withdraw() to perform the transactions, it would still satisfy
the specification (2) but, of course, this rewritten method,
in the NIAccount class (i.e., when applied to a NIAccount
object) would not change the value of tCount.

Consider the following more informative specification:

pre.Account.doAutos() ≡ (τ = ε)
post.Account.doAutos() ≡

[!{nautos, autos} ∧(|τ | = nautos)
∧ (bal = #bal + (Σ(k = 0 . . .nautos− 1). autos[k]))
∧ (∀k : (1 ≤ k ≤ |τ |) :

τ [k].m ∈ {deposit,withdraw})] (4)

τ denotes the trace of hook method calls that doAutos()
makes during its execution. At its start, doAutos() has
not made any hook method calls, so τ is ε, the empty se-
quence. Each hook method call (and corresponding return)
is recorded by appending a single element to τ . This element
consists of a number of components, including the name of
the method in question, the parameter values passed in the
call, the returned results, etc.; for full details, we refer the
reader to [15]. Here we are interested only in the identity of
the method; τ [k].m gives us the identity of the method in-
voked in the call recorded in the kth element of τ . Thus the
post-condition in (4) states that when doAutos() finishes, it
would have made as many hook method calls as nautos, the
number of automatic transactions in the autos[] array, and
that each of these calls will be to either deposit() or with-
draw(). This specification can, using the enrichment rule of
[15], then be combined with the specification (3) to arrive
at the following:

post.NIAccount.doAutos() ≡
[!{nautos, autos} ∧(|τ | = nautos)
∧ (bal = #bal + (Σ(k = 0 . . .nautos− 1). autos[k]))
∧ (∀k.(1 ≤ k ≤ |τ |). τ [k].m ∈ {deposit,withdraw})
∧ (tCount = #tCount + nautos)] (5)

This asserts, as expected, that doAutos() increments the
transaction count appropriately. Informally speaking, what
we have done here is to ‘plug-in’ the additional information
provided by the derived class specs (3) of the hook meth-
ods, into the specification (4) of the template method, to
arrive at the enriched behavior of the template method in
the derived class.

4. TESTING POLYMORPHIC BEHAVIOR
Suppose we wanted to test the class Account to ensure that

it behaves as expected, i.e., according to its specifications.
We could use the approach outlined in Section 2 to define the
corresponding test class, TAccount shown partially in Fig-
ure 3. tAccount is the test account object. rg as an object of
type Random, to be used for generating random values (for
use as parameter values). t deposit() is the test method cor-
responding to deposit(). We generate a random amount rd
to deposit into tAccount, and if the pre-condition of deposit()
(as specified in (1)) is satisfied, we invoke deposit(rd) on tAc-
count, and then assert that the post-condition of deposit()
must be satisfied, with appropriate substitutions such as re-
placing bal by tAccount.bal being made. Note that we also

class TAccount {
protected Account tAccount; // test object
Random rg;
public void t deposit() {

int rd = rg.nextInt(); int oldbal = tAccount.bal; . . .
if(rd > 0) { tAccount.deposit(rd);

assert((tAccount.bal = oldbal+rd) ∧ . . .); }
}

Figure 3: Test class TAccount

need the save the starting values of the data members of
tAccount since the post-condition refers to these values. We
have shown only one of these in the figure, oldbal being the
variable in which the starting balance in tAccount is saved.
Of course, when the data member in question is more com-
plex, such as the array autos[], this becomes somewhat more
involved; and if the member is an object (of a type defined
by the user), this will require, as we noted in Section 2, that
the corresponding class provide a cloning operation.

The test methods t withdraw() and t getBal() are similarly
written, and we will omit them. Let us consider the tem-
plate method doAutos(). If we were only interested in the
specification (2) which gives us information only about the
functional effect that doAutos() has on the data members of
the Account class, this too would be straightforward6. But
a key aspect of the behavior of doAutos(), indeed the aspect
that qualifies it as a template method and makes it possible
to define derived classes that enrich its behavior by simply
redefining deposit() and/or withdraw(), is of course the calls
it makes to these hook methods. Thus if we are to really test
the implementation of doAutos() against its expected behav-
ior, the testing must be against the trace-based specification
(4).

However, we face an important difficulty in doing this.
The problem is that the trace variable τ which plays a key
role in this specification is not an actual member variable
of the Account class. We could, of course, introduce such
a variable in the test class TAccount but this won’t serve
our purpose. The problem is that τ has to record appropri-
ate information about the hook method calls that doAutos()
makes during its execution; this cannot be done in the test
method t doAutos() before it calls doAutos() or after doAu-
tos() returns. In other words, what we need to do is to ‘track’
doAutos() as it executes; whenever it it gets ready to make a
hook method call, we have to ‘intervene’, record appropriate
information about the call – in particular, the name of the
method called, the parameter values, the state of the object
at the time of the call – and then let the call proceed; once
the hook method finishes execution and returns control to
doAutos(), we again need to intervene and record informa-
tion about the results returned and the (current) state of
the object. One possible way to do this would be to insert
the appropriate statements to update the value of τ before
and after each hook method call in the body of doAutos();
but this would not only require access to the source code of
doAutos(), it will require us to modify that source code, and

6One question here would be that of generating a random
value in the tAccount.autos[] array; indeed, in general, the
test object should be in a random (reachable) state, rather
than being initialized to some ‘standard’ state; but this ques-
tion is independent of inheritance and polymorphism, so we
will ignore it here.

4

this is clearly undesirable.
The solution turns out to be provided by polymorphism

itself. The key is to define TAccount not as a class that
includes a member variable of type Account but rather to
have TAccount as a derived class of Account. We call this
new test class T2Account in order to distinguish it from the
original test class TAccount. T2Account appears in Figure 4.
The variable tau of T2Account is the trace variable in which

class T2Account extends Account {
protected trace tau; // trace variable
public void deposit(int aa) {

// add element to tau to record info such as
// name of method called (deposit),
// parameter value (aa) etc., about this call;
super.deposit(aa);
// add info to tau about the result returned
// and current state.
}
// withdraw() will be similarly defined.
public void t doAutos() {

tau = ε;
// check pre-condition, then call doAutos(),
// assert post-condition.
}
}

Figure 4: Test class T2Account

we record information about the sequence of hook method
calls that doAutos() will make during its execution.

The t doAutos() method starts by initializing tau to ε,
then calls doAutos() (on the self object). Let us consider
what happens when doAutos() executes, in particular when
it invokes the deposit() method (withdraw() is, of course,
similar, so we won’t discuss it). We have redefined de-
posit() in T2Account, so this call in doAutos() to deposit()
will be dispatched to T2Account.deposit() since the object
that doAutos() is being applied to is of type T2Account.
Now T2Account.deposit() is simply going to delegate the call
to the Account.deposit() but before it does so, it records ap-
propriate information, such as the name of the hook method
called (‘deposit’), the parameter value (aa), etc., about this
call on tau. Next, T2Account.deposit() calls the deposit()
defined in Account; when Account.deposit() finishes, con-
trol comes back to T2Account.deposit(); T2Account.deposit()
now records additional information (about the result re-
turned, current state of the object, etc.), and finishes, so
control returns to Account.doAutos(). The net effect is that
the original code, Account.deposit(), of the hook method in-
voked has been executed but, in addition, information about
this call has been recorded on the trace. And to do this, we
did not have to modify the code of any of the methods of
Account, indeed we did not even need to be able to see that
code.

One point might be worth stressing: T2Account.deposit()
is not the test method corresponding to deposit(); rather,
it is a redefinition of the hook method Account.deposit() in
order to record information about calls that template meth-
ods might make to this hook method, the information being
recorded on the trace of the template method. If there is
more than one template method, we might consider intro-
ducing more than one trace variable, and yet another vari-
able to keep track of which template method is currently

being tested so that the redefined hook methods can record
the information on the correct trace variable. This is in fact
not necessary since only one template test method will be
executing at a time, and it starts by initializing tau to ε.
Of course we have assumed that we can declare tau to be of
type “trace”. If we really wanted to record all the informa-
tion that tau has to contain in order to ensure completeness
of the reasoning system [15], things would be quite com-
plex. We can simplify matters somewhat by only recording
the identities of the hook methods called and the parameter
values and results returned. This is a topic for further work.

This approach can also be used for testing abstract classes,
i.e., classes in which one or more of the hook methods may
be abstract (in Java terminology; pure virtual in C++, de-
ferred in Eiffel). The only change we have to make is that
in T2Account.deposit(), we cannot invoke super.deposit(); in-
stead, we would just record information in tau and return
to doAutos(). Note that the specifications (2) and (4) would
also be quite different. For one thing, we cannot really es-
tablish (2) because, if Account.deposit() (and, presumably,
Account.withdraw() as well) is abstract, there is no way to
tell what effect doAutos() will have on bal, etc. Nevertheless,
the portion of (4) that refers to the hook methods invoked
can still be specified since the basis for this can be seen
from the body of the template method, so the designer of
the Account class could have written this down as part of
the specification of doAutos(). The t doAutos() method will
then test that doAutos() does indeed satisfy the expectation
about the hook methods it will call7.

Let us now consider the derived class NIAccount. How do
we construct the test class TNIAccount? We cannot define
it as a derived class of T2Account because then the redef-
initions of the hook methods in NIAccount would not be
used by the test methods in TNIAccount. In fact, in gen-
eral, test classes should be final; i.e., a given test class TC is
only intended to test that the methods of the corresponding
class C meet their specs. A different class D, even if D is
a derived class of C, would have to have its own test class
defined for it. Of course, TNIAccount would be quite similar
to T2Account. The important differences would be that we
would have test methods corresponding to any new methods
defined in NIAccount, and pre- and post-conditions would be
the ones from the specifications (such as (3) and (5)) of this
class.

Before concluding this section, we should note one other
point. An important assumption we have made is that hook
methods obey behavioral subtyping [10], i.e., any redefini-
tions of hook methods in the derived class must continue
to satisfy their base class specifications. If this were not
the case, the reasoning that we have performed in the base
class about the behavior of the template method, including
the trace-based specification of that method, may no longer
be valid. For example, suppose a template method t() first
calls the hook method h1(); if the value returned by h1()
is positive, t() then calls h2(), else it calls h3(). Suppose

7In fact, we would not only want to be assured about the
identity of the hook methods called or the number of times
they are called (which are the pieces of information provided
by (4)) but also the parameter values passed in these calls as
well as the state just before the calls, etc.; this is particularly
important if the hook method in question is abstract. This
additional information can be provided using our traces al-
though the resulting specs are naturally much more involved
[15].

5

also that the base class specification of h1() asserts that it
will return a positive value. When reasoning about the base
class, we might then establish, on the basis of this specifi-
cation of h1(), a specification for t() which asserts that the
identity of the first hook method that t() calls (as recorded
in the first element of the trace τ of t()) is h1(), and the
identity of the second method called is h2(). Suppose now
we redefine h1() in the derived class so that it returns a neg-
ative value. Then, in the derived class, t() will not satisfy its
specification, and the problem is not with t() but with the
way that h1() was redefined. The redefined h1() does not
satisfy its base class specification, i.e., it violates behavioral
subtyping. Hence, when testing the behavior of the hook
methods in the derived class, it may be useful not just to
test against the derived class specification of the method,
but also against its base class specification to ensure that
the redefined hook method still satisfies that specification.

5. DISCUSSION
Let us briefly consider a class C that has a member vari-

able acc of type Account. In reasoning about the behavior of
the methods of C, we will of course depend upon the spec-
ifications of the Account class. Do we have to worry about
the specifications of the NIAccount class? Yes, indeed. The
point is that for a particular object that is an instance of
C, the acc component may well be of type NIAccount8. In
fact, one reason for defining classes such as NIAccount is
precisely that client classes such as C can take advantage of
the enrichment provided by this class. What are the issues
that we have to consider in reasoning about and testing the
behavior of C?

One possibility would be that in reasoning about C, we
only take account of the specification of Account. And in
testing C, we only create instances of C that have an acc
component of type Account. But this is clearly insufficient.
We need to test the behavior of C for instances that have an
acc component of type NIAccount. In fact, whenever a new
derived class of a base class such as Account is defined, the
behavior of any client code of Account has to be re-tested
[13]. While this may seem undesirable, it is to be expected.
After all, by defining a new derived class of Account, we are
enriching the behaviors that a client class, such as C, of Ac-
count can exhibit; so naturally we have to test for such richer
behaviors. The techniques for reasoning about such richer
behaviors of C, as well as the corresponding techniques for
testing them, are topics for further work.

8Of course, in languages like C++ for this to happen, acc
would have to be a pointer to Account but this is a language
detail which we can ignore.

6. REFERENCES
[1] K. Arnold, J. Gosling, and D. Holmes. Java

Programming Language, Third Edition, 2000.

[2] E. Berard. Essays on object oriented software
engineering. Prentice-Hall, 1993.

[3] M. Buchi and W. Weck. The greybox approach: when
blackbox specifications hide too much. Turku Centre
for Computer Science TR No. 297, 1999,
http://www.tucs.abo.fi/.

[4] K.K. Dhara and G.T. Leavens. Forcing behavioral
subtyping through specification inheritance. In
Proc. of 18th Int. Conf. on Softw. Eng., pages
258–267. IEEE Computer Soc., 1996.

[5] S. Edwards, G. Shakir, M. Sitaraman, B. Weide, and
J. Hollingsworth. A framework for detecting interface
violations. In Proc. of 5th Int. Conf. on Softw. Reuse.
IEEE, 1998.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: Elements of reusable OO software.
Addison-Wesley, 1995.

[7] G. Kiczales and J. Lamping. Issues in the design and
specification of class libraries. In OOPSLA ’92, pages
435–451, 1992.

[8] P. Krishnamurthy and P. Sivilotti. The specification
and testing of quantified progress properties in
distributed systems. In 23rd Int. Conf. of Software
Eng. ACM, 2001.

[9] J. Lamping. Typing the specialization interface. In
OOPSLA, pages 201–214, 1993.

[10] B. Liskov and J. Wing. A behavioral notion of
subtyping. ACM Trans. on Prog. Lang. and Systems,
16:1811–1841, 1994.

[11] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, 1997.

[12] G. Myers. The art of software testing. John Wiley,
1979.

[13] D. Perry and G. Kaiser. Adequate testing and OO
programming. Journal of Object Oriented
Programming, 2:13–19, 1990.

[14] C. Ruby and G. Leavens. Safely creating correct
subclasses without seeing superclass code. In
OOPSLA 2000, pages 208–228. ACM, 2000.

[15] N. Soundarajan and S. Fridella. Framework-based
applications: Incremental development to incremental
reasoning. Proc. of 6th Int. Conf. on Softw. Reuse, pp.
100–116, Springer, 2000.

[16] N. Soundarajan and B. Tyler. Specification-based
incremental testing of object-oriented systems. In
TOOLS 39, pp. 35–44, IEEE CS Press, 2001.

6

