A Component Oriented Notation for Behavioral
Specification and Validation

Isabelle Ryl and Mireille Clerbout and Arnaud Bailly
L.ILFL. CNRS UPRESA 8022
Bat M3, Cité Scientifique
59655 Villeneuve d’Ascq cedex
France

{ryl, clerbout, bailly}@lifl.fr

ABSTRACT

Component software development is definitely on a high
trend in the sofware engineering field. However, integrat-
ing components which the producer does not have complete
control over increases the risk of getting unexpected software
behavior. So developing components for reuse by third-party
integrators is a challenging task that one can make easier if
the behavior of these software components is precisely spec-
ified.

In this paper, we introduce a specification language com-
plementing the interface definition language IDL3 proposed
by OMG to describe CORBA Component Model compliant
components. This specification language is based on com-
munication history : the sequence of observable events -
method calls, return of method calls, events, exceptions —
that occurred since the system has been started. It allows
us to characterize the functional behavior of components by
way of invariants : an interface invariant specifies a contract
between a component that provides it and each of its clients,
whereas a component invariant constraints the whole com-
munication between one component and all its clients and
servers. We propose a procedure based on this notation
for generating specification-based test cases adapted to unit
testing and discuss how to use this notation for validation
purposes.

1. INTRODUCTION

The development of component based applications is clearly
a necessity for software industry in a world of large scale
distributed applications. Furthermore, the growth of a mar-
ket of reusable components, the famous Components off-the-
shelf — COTS — seems to be the only way to reduce produc-
tion costs in a domain where constantly evolving technol-
ogy checks productivity. Nevertheless, this approach makes
sense if components are high-quality and really ”compos-

able”. This can be achieved by strict development methods
and interoperability norms. This last point is addressed by
platforms like CORBA, EJB or DCOM.

The well-known advantages of a ”component oriented” ap-
proach are the following :

o reusability. Components are ”bricks” that are available
for designers,

o maintainability . Functionalities can be added or modi-
fied just by insulating responsible components,

e interoperabilty. Components implementing a given spec-
ification can be searched amongst existing components
offered by various providers on the COTS’ market.

To reach these goals, the specification of components has to
be precise enough to allow searching, testing and composing
components which are potentially designed, implemented,
integrated, and used by different people. The mere exis-
tence of a market itself depends on the confidence providers
and consumers may put in the functional correctness of a
product.

In ”Component Software” [22], Clemens Szypersky proposes
the following definition of components: ” A Software compo-
nent is a unit of composition with contractually specified in-
terfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to
composition by third parties.” This definition emphasizes
the use of well specified interfaces to describe components
because the interfaces have to be the only link between a
component and its outer-world i.e. its clients and environ-
ment.

One way to correctly specify interfaces is to use specific in-
terface description languages, like the OMG-IDL for CORBA
objects and the new OMG-IDL3 for CORBA Component
Model compliant components. IDL typically defines con-
tracts between components using method signatures. Un-
fortunately IDL contracts are mostly syntactic and do not
capture the semantic aspects of the contract. This leads to
under-specified components and breaks the initial interop-
erability goal. As an example, we can mention the work
of Ousmane Sy [21] who showed that five different imple-
mentations of the COS event service by CORBA framework

providers were neither inter-operable nor substitutable be-
cause of diverging interpretations of the OMG-IDL specifi-
cation.

During the last few years, the interest in formal software
development has grown steadily. Approaches based on for-
mal methods provide the advantages of a precise and non-
ambiguous specification language with a formal semantic.
And, even if formal proofs are out of their scope, formal
verification is possible and generally supported by tools.

Sofware quality should benefit from formal method based
component development a various stages:

1. a formal specification language has to be rich enough to
express the full semantics of components,

2. powerful tools have to be able to check the consistency of
specifications, using for example type-checking. Higher
level properties must be verified: it may be possible to
control that a component respect the contracts of its re-
quired environment, to control that the implementation
of a component conforms to its specification and that
connected components are compatible.

To fulfill this requirements, we propose to increase the speci-
fication power of OMG-IDL3 from the OMG CORBA Com-
ponent Model (CCM) with formal specifications. This in-
creased specification will follow the component through its
life-cycle and will serve as lingua franca for all the actors —
designers or users — to describe the behavior of the compo-
nent. We only focus on describing functional aspects and
do not address non-functional requirements like quality of
service or overall reliability.

To us, a component is a black box that offers services, re-
quires a specified environment, and can emit or receive asyn-
chronous events. Interfaces are seen as contracts between
two components or, in a more practical point of view as
communication channels (like the event channels) between
components. A system is then a set of components which
are connected to each other by interfaces and event chan-
nels, and we focus on communications between components.
Our specification language allows us to express two kinds of
property. The first one is the notion of protocol, that is to
say the partial order in which the input and output com-
munications have to occurred. The second one is the data
level, i.e. the possibility to specify properties on the value
of an input or output parameter.

To meet these requirements, we propose a specification lan-
guage based on communication traces.

The basic events of the system we consider are the messages
components exchange, which are supposed to be instanta-
neous and asynchronous:

e method calls between interfaces of components,
e return of method calls,

e exceptions between components,

e event sending,

e event receiving.

Note that internal method calls are not considered here.

The trace of a running component, system or sub-system
is the sequence of all the events involving it that occurred
since its creation. The purpose of the specification is to
capture the set of all possible communication traces of a
given system. Note that a lot of works deals with the trace
notion in different contexts (for example CSP [10], trace
theory [8], ...).

After a short introduction to the CCM abstract model and
IDL3, Section 2 describes our specification language. Sec-
tion 3, gives some ideas of validation activities and proposes
a way to test components. After a short review of related
works, we conclude with some possible further work.

2. HOW TO SPECIFY COMPONENTS?

As already said, we build upon the CORBA Component
model. We insisted on the fact that the specification could
increase the reliability of the component at several stages
in its life. Therefore, the specification ought to be present
every time it might be needed and this explains our choice
of IDL3 as our ground language. It offers two advantages:

1. IDL3 already exists, is used by several tools, and is em-
bedded in the component package,

2. the IDL3 language contains all the necessary syntactic
definitions of components and interfaces that can be ex-
ploited for formal specification purposes.

In order to respect the IDL3 syntax, we just insert some
formal properties of components as IDL3 comments. That
way, the specification is embedded in the packaged compo-
nent and do not interfere with existing tools. To enlighten
our methodology, we will develop in the remainder of this
article a small example: an electronic ballot system.

Example informal specification. FEach voter uses an
electronic individual polling device that communicates with
a central office which registers the votes. To simplify the
writing, we just consider a referendum and some rules:

e voters are allowed to vote at most once,

e voters are allowed to read the results when the ballot is
over,

e the central accepts votes until the closure, then rejects
them,

e the central refuses to provide partial results before the
closure,

o the central must announce the correct results !!!

The first subsection presents the general CCM model, the
second one briefly introduces the IDL3 syntax. The last one
presents our formalism on the example.

2.1 Model

To formally specify software components, we first have to
agree on the definition of a component. We try in this sub-
section to present the abstract model we use that is part of
the CCM model. We are just a little bit more restrictive

than the CCM ; CCM components may support interfaces
and components may communicate with other components
outside the scope of interfaces: this is not allowed in our
model where all the components must declare ports (inter-
faces) and communicate through these ports only.

Interfaces are used by developers as implementation con-
tracts for components and by clients to interact with com-
ponents at runtime. Interface definition contains attributes
and method signatures and may be defined using multiple
inheritance. An interface groups a — hopefully coherent —
set of methods providing some services and, according to
the connection mechanism of the CCM model, it becomes a
communication channel for data exchange between compo-
nents.

A component definition groups attributes and ports. At-
tributes are properties of components set at deployment
time for configuration purpose. Attributes misuse may raise
exceptions. Ports come in four flavors:

e facets are interfaces provided by the component and syn-
chronously used by the clients,

e receptacles are interfaces used by the component in a
synchronous mode,

e event sinks are interfaces provided by the component
and asynchronously used by the clients,

e cvent sources are interfaces used by the component in an
asynchronous mode.

Ports are used at deployment time and runtime to connect
components together. According to this model, a compo-
nent may be seen as an element of a system that offers a
collection of services under the assumption that another col-
lection of services is available. This approach makes compo-
nent exchange easier. Note that components may be defined
using single inheritance (in a Java style). Figure 1 shows the
diagram (drawn from [15]) used to represent a component
and its ports.

O . . C
Facets : : Receptacles
O Component C
Event C . : i Event
Sink : : Source
S <

Figure 1: Component.

A system is a set of components. The current set of con-
nections between components represents the system’s con-
figuration. Figure 2 presents our proposed model for the
electronic vote example. Two types' of components are
used, one for the votes collecting central office, Center, and
one for the individual polling devices, Electronic_box. An
Electronic_box component is used by each voter, it offers

L For lack of space, we do not address the problem of identification of
voters which can be solved using a classical ”login/password” proto-
col.

an interface Electronic_vote that allows the voter to send his
vote or get the results. Electronic_box components are
distributed and connected to the Vote_Center interface of
a Center component that centralizes information. Cen-
ter’s main role is to count votes, it also offers an interface
Vote_Admin used to close the ballot. When the ballot is
closed, the Center sends an event to inform connected com-
ponents of the closure and transmits them results. The event
sinks of Electronic_box components are connected to the
event source of Center: the events sent via this source will
be received by all connected components.

Electronic_Vote Electronic_box

Closure
Center

Figure 2: The example model.

2.2 IDL3 short presentation

The OMG IDL3 language extends IDL2 with some syntac-
tic constructs to take into account the CORBA Component
abstract model. This section shall introduce IDL3 concepts
relevant to our example and is by no mean a full description
of the CORBA Component Model. We refer the reader to
[15] for more details about the CCM.

A part of the syntax is inherited from IDL2. Declarations
are gathered in modules that delimit a domain name. In-
terfaces declare attributes and methods. Interfaces may be
defined using multiple inheritance. Declarations are in a
C/Java style, methods may have in, out, and inout param-
eters of simple types (Short, Long, Float, Char, String,
Boolean, ...), complex types (Enum, Struct, Array, ...) or
object types. Methods may also throw exceptions which
may be defined by the user.

Figure 3 shows the IDL3 definitions of our example’s inter-
faces. The module Vote starts by defining four exceptions
(an exception may contain fields) followed by interface defi-
nitions. Electronic_Vote is the interface used by the voters,
it offers two methods, one to vote and one to read the re-
sults. The first one has an in-parameter which represents
the value of the vote (true for ”yes” and false for "no”)
and it may throw two exceptions: too_late if somebody
tries to vote after the closure and already_voted if some-
body tries to vote twice. The method read_results has two
out-parameters respectively returning the number of ”yes”
and "no” votes of the ballot. This method may also throw
an exception when used before the closure (the results are
not available). The interfaces Vote_Center and Vote_Admin
are facets of the Center, they are respectively used by the
Electronic_Box components and by an administrator. The
vote method is used to transmit the elector’s vote to the

center, it returns a boolean indicating if the vote has been
taken into account or not (in case of closure for example).
The method close allows an administrator to close the bal-
lot and throws an exception if already closed. Comments
are between /** and */ or // and end of line.

module Vote {
exception too_late{};
exception already_voted{};
exception already_closed {};
exception not_closed {};

interface Electronic_Vote {
void vote (in boolean choice)
raises (too_late, already_voted);
void read_results (out long yes,
out long no)
raises (not_closed);

/%%
invariant
(h; _<-this.vote(.) |- H)
=> (! <-this.vote(_) in h)
&&
(h; _<-this.vote<already voted> |- H)
=> (_<-this.vote(.) in h)
&&
((_<-this.vote<too_late> |
<-this.read_results (_,.));h in H) =>
h/<- |- (<-this.vote<too_late> |
_<-this.read_results (_,.)))*
*/

}s

interface Vote_Center {
boolean vote (in boolean choice);
I

interface Vote_Admin {
void close() raises (already_closed);
VAL
invariant
(h; _<-this.close() |- H) =>
(! <-this.close() in h)
*/
}s
...// insert here component declarations

};

Figure 3: Interface Specifications.

Components are introduced by the keyword component. As
already said, components may contain attributes and ports
definitions. Several keywords allow us to distinguish differ-
ent kinds of ports: provides and uses for facets and re-
ceptacles, consumes for event sinks and publishes or emits
respectively for 1-to-n or 1-to-1 event sources.

Figures 4 and 5 complete our example’s definition. Com-
ponent Center has two facets and one I-to-n event source
while component Electronic_box has one facet, one recep-

tacle and one event sink. Each producing or consuming
event port specifies a type of event: events are simply val-
uetypes (that is to say objects by value) that inherit from
the Components: :EventBase interface. In our example, a
closure event has two attributes encoding results of the bal-
lot: yes_number for count of ”yes” and no_number for count
of "no”. Thus, an event has a meaning of its own (here
indicating ballot’s closure) but may also carry values (here
results of the vote).

One can notice that all ports of a component are named
and that a component may offer several ports of the same
type. The (de-)connection operations are relevant facts in
the component life, they consist in the assignment of real ref-
erences to receptacles and sources of the component. Con-
nection and deconnection operations are implicit methods
of any component.

2.3 Specificationlanguagepresentation

We have previously expressed our goals, and said that we
use IDL3 as our components’ definition language. It is now
time to describe the formal specification language inserted
as comments. As said earlier, we only focus (at least at this
stage of our work) on the functional aspect of components,
aiming to answer to these questions :

e How to describe a component’s behavior 7

e How to ascertain that two components are interchange-
able i.e they offer the same services?

e How to be sure that several components can be con-
nected?

A system evolves from its creation to its destruction by way
of components interactions. Thus, the ”state” of a system
(or component) may be seen as the result of its past inter-
actions with its environment. So, the specification language
we use is based on the concept of communication ”history”.
This idea comes from an object oriented formal notation
developed at Oslo University: OUN (Oslo University Nota-
tion)[17].

The communication history of a system is a sequence of ob-
servable events (a trace) that records all communications be-
tween components that occurred since the system has been
started. The notion of ”observable” event depends on the
viewpoint we consider:

e observable events of a system are all the communications
between components (method calls, returns of method
calls, events, exceptions),

e observable events of a component are the events of the
system that can be ”seen” from the viewpoint of the
component, that is to say all the communications whose
sender or receiver is the component,

e observable events of an interface of a component are the
communications involving the component through this
interface.

Events of the system are supposed to be instantaneous,
they may fall into four categories:

component Center {
provides Vote_Center v;
provides Vote_Admin a;
publishes Closure c;
VAL
invariant

functions
result : Trace, boolean -> int;
result (empty,.) -> 0,

result(h;_, x) -> result(h).
*/

(h; <-a.close() |- H) => (!_<-a.close() in h)
&& (h;_<-a.close<already_closed> |- H) => (<-a.close() in h)
&& (h; _<-v.vote(_:true) |- H) => (!this->c[x,y] in h)
&& (h; _<-v.vote(_:false) |- H) => (this->c[x,y] in h)
&& (h;_<-a.close() |- H) => (hl;this->c[x,y]

result(h;_<-v.vote(x),x) -> result(h,x) +1,

|- h & x=result(hl,true) && y=result(hl,false))

Figure 4: Component Center.

1. ¢ = (¢’ : ©).m(Z) denotes a call of method m with the
tuple of parameter values z initiated by component c, m
is a method of facet i of component ¢’. Events belonging
to this category are termed initiation events,

2. ¢4+ (¢’ : i).m(¥y : z) denotes "normal” return of a previ-
ous event, the parameter values § may be different from z
since out and inout parameter modes are allowed. The
optional : z value denotes possible return value of the
method. Events belonging to this category are termed
termination events,

3. ¢ « (c' : ©).m < e > denotes termination of a method
call by an exception e. Those events are termed excep-
tion events,

4. ¢ = {(c1:51),...,(cn : Sn)}[Z] denotes an asynchronous
message, an event sent by component c to sinks s1, ..., s,
of components ci, .. ., ¢, respectively with tuple of values
Z. Those events are termed asynchronous events.

Note that we do not characterize attributes and (de-)connec-
tion events: we consider attributes as pairs of set/get meth-
ods and (de-)connection events as method calls.

The set of possible events of the system is called the alpha-
bet of the system (it depends on interfaces and compo-
nents comprising the system). We can define in the same
way alphabets for various elements of the system depending
on what they can observe.

The alphabet of a component is the subset of events of
the system whose receiver or sender is this component.

The alphabet of a component seen through an in-
terface is the subset of the component alphabet contain-
ing events that are initiation, termination or exception of
method calls defined in this interface.

A trace of a component (resp. a system) is a sequence
of events of this component’s (resp. system) alphabet in
which a termination or exception event responds to a past
initiation event. Notice that asynchronous events have no
corresponding terminations. One may think of a trace as a
sequence of events of a running system registered in the or-
der they appeared since the start of the system until an arbi-
trary observation instant. Clearly, the system may run after
the observation — a trace does not represent complete exe-
cution — and observation may occur at any time — a trace’s
prefix is also a trace.

A system element’s specification describes its behavior in
terms of possible communication traces. A component’s
specification is expressed as an invariant on traces (in first
order logic). This invariant characterizes a subset of all pos-
sible traces over the component’s alphabet hence capturing
this component’s semantic.

An invariant may be added to each interface or compo-
nent. Informally, it is a first order formula with variables,
constants, functions, predicates and constraints whose mod-
els are the valid traces of the component.

Our purpose is to convince the reader of expressiveness of
such a notation and not to detail the syntactic sugar it offers,
so we give an idea of the notation on the example.

Interface invariants in our example are shown in Figure
3. In our model, interface invariants are seen as 1-to-1 con-
tracts, so they specify communications between a compo-
nent implementing the interface, represented by the key-
word this, and one of its clients, represented by the symbol
_which denotes any value in the corresponding domain (here
the set of components). This does not inhibit one-to-many
communication schemes: a component may receive method
calls from different clients through one of its interfaces but

component Electronic_Box{
provides Electronic_Vote e;
uses Vote_center v;
consumes Closure c;
VAL
invariant

*/

(h; <-e.vote(x) |- H) => (this->v.vote(x);this<-v.vote(x:true) -| h)
&% (h;_<-e.vote<too_late> |- H) => (_->c[_,_] in h)
&& (h; _<-e.read_results(x,y) |- H) => (.->c[x,y] in h)
&% (h;_<-e.read_results<not_closed> |- H) => (!_->c[_,_] in h))

Figure 5: Component Electronic_Box.

the invariant of the interface specifies the communication
pattern with each client. Clients are independent from each
others thus the contract declared in each interface must en-
sure that clients can use some services whatever other clients
may do. For example, if a file must be opened by a client
before being read, a client following this rule must not be
affected by another client trying to read this file without
opening it.

Let us first detail the Electronic_Vote interface. The sym-
bol H denotes the history, that is to say a solution to the
formula. This invariant is a conjunction (denoted by &&) of
three implications. The first one says that a vote ends cor-
rectly if it is the first one: if a sequence (denoted by ;) of
a trace h and the termination of a vote is a prefix (denoted
by |-) of the history then h does not contain any termina-
tion of vote (! denotes the negation and in denotes ”is a
factor of”). The second part of the invariant describes the
converse situation: a vote ends by exception already_voted
if it is not the first one. The third part addresses another
problem: votes are accepted before the closure and results
are available after the closure. The closure may occur at any
time, the client of the interface cannot detect it except if he
receives a too_late exception or the results. This part of
the invariant says that any part h of the history following an
exception too_late in response to a vote or (denoted by |)
a termination of read_results, only contains responses to
method calls that are exceptions too_late or terminations
of read results (/<- denotes the projection? onto termina-
tion and exception events only).

Interfaces Vote_Center and Vote_admin have simpler speci-
fications. There is no invariant in the first one since there
is only one method whose use does not depend on anything
observable in this interface. We could have said that as soon
as the return value has been false, it remains false until
the end (the vote is closed) but the user is free to specify
properties or not if they seem not to be useful. The invari-
ant of Vote_Admin just says that a closure operation ends
normally if it is the first one: it is not possible to close the
ballot twice. The invariant does not specify at what point
the exception already_closed may occur because it is not

2The projection of a trace t onto a set of events E can be seen as the
operation that deletes in ¢ all the events that do not belong to E.

decidable in the interface: a client cannot predict if another
client has closed the vote before him.

In this example, we do not speak about initiation events:
the component implementing the interface is not responsible
for input events, it may only ensure its own outputs. Inputs
events are often used to specify several situations of the kind:
”if a client sends me this event before this one then this will
happen ...”.

Component invariants follows same syntax than interface
invariants, but a component invariant specifies the whole
communication pattern between this component and all other
components, clients or servers: at this stage it is possible to
specify the interleaving of its communications with several
other components. The trace set of a component is described
by its own invariant and the invariants of the interfaces it
provides.

Definition. (Trace set) Let us denote by X the alphabet
of a component ¢ and f1,..., fn its facets. The invariants
of the component and the interfaces are respectively denoted
by ¢, 01,...,pn. Then, the trace set of the component c is
defined by:

{te X | pt) AVie {1,...,n},V e p;(t/fi/c)}

where ¢’ denotes another component and t/f;/c the projec-
tion of t over the events that are communications through
the facet f; with c.

In other words, the trace set of c¢ is the set of words defined
on Y. that satisfy the invariant of ¢ and the invariant of
each facet of ¢ with respect to a projection over communica-
tions with another component through this facet?. Note that
there is a subtle difference between the alphabet’s definition
and the notation used: as soon as two components are con-
nected, the receptacle contains the reference of the interface
of the other component, so it may be used directly. Thus,
we use the notation c->r.m(x) instead of c->(c’:1) .m(%)
when the receptacle r of c is connected to the facet i of
c’. Similarly, we do not denote the current component by
this but by the name of the port involved in the communi-
cation, this allows us to easily distinguish communications
on different ports.

Figure 4 gives the specification of the Center component, a
conjunction of five implications. The first and the second
ones say that the ballot may be closed at most once, other-
wise an already_closed exception is thrown. This invariant
differs from Vote_Admin interfaces’ invariant because of the
possible instantiations of mute symbol _: in the component
invariant, it may represent any other component each time
it appears. Thus we can say that a client calling the close
method receives an exception if the termination of close has
already occurred, whichever client has received this termi-
nation. The two following implications say that votes are
accepted while the closure has not been announced and that
they are rejected (return value false) as soon as the closure
is announced. The last implication is a little bit different
since it uses a function. The ”"functions part” of the speci-
fication is an auxiliary part that allows the user to define its
own functions for specification purposes only. The definition
of a function must start by the name of the function, and
the parameter and return value types. The function itself is
defined in a Prolog style by several clauses: the clause that
will be used is chosen by unification on the heads of clauses
in the order they are declared. Note that functions do not
have side effects on traces or values passed to them. The
result function calculates the result of the vote on a trace
of the component: it takes two parameters, a trace and a
boolean and it returns number of votes that appear in the
trace with the boolean as parameter value. If the trace is
empty, the result is 0 whichever boolean value is given as
input. If the trace ends by a vote termination event whose
parameter is the boolean which is currently counted, the re-
sult is the function applied to the beginning of the trace plus
one. If the trace ends by any other event, this event does
not affect the result. Let us return to the last part of the
invariant. If a close event succeeds, then an asynchronous
event has been sent with values x and y that are the correct
results of the vote. This example shows how powerful is the
specification language: it is possible to describe when calls
or exception occur but also to precisely calculate parame-
ters’ values.

The form of the specification of the Electronic_Box compo-
nent is very similar to the previous one, we only detail the
first part of the conjunction in which three components are
involved. It says that voters’ choices are correctly transmit-
ted to the center: each termination event of vote is immedi-
ately preceded (-1 is read as ”is a suffix of”) in the trace by
center’s method vote initiation event (i.e. vote) with the
same value of the vote x and matching termination with re-
turn value true. Thus, the vote has been transmitted and,
since the three events are consecutive, we can deduce that
there is one transmission for each vote.

To conclude on this example, the language allows us to ex-
press properties like protocols between several components
as well as precise descriptions of parameter values and case
when exceptions are thrown. The example of the function
result shows that it is possible to calculate, using a func-
tion, an abstract state of a component from the trace. Our
model supports synchronous (method calls) as well as asyn-
chronous (events) communication. Components may be im-
plemented using multi-threading, re-entering code and so on.
Anything concerning the implementation is out of our scope
so for example we cannot express the fact that a component

must be multi-threaded, but our model supports it.

3. V&V ACTIVITIES

As said in the introduction, our project aims at providing
tools to exploit the specification at different stages of the
component’s life. A formal specification provides a strong
reasoning basis to deal with the system’s properties. The
specification is all the more useful as automated tools are
provided. We propose to use the specification for differ-
ent purposes: to validate the specification, to ensure that
the component is conforming to the specification by way of
testing methods, to check the composability and the sub-
stitutability of components. We expose in this section the
different ideas, emphasizing the test phase which is the most
advanced part of the work.

3.1 Validation

Specification Validation. The first step is to ensure that
the specification satisfies the user’s requirements. A specifi-
cation written by a user is not systematically valid and may
contains two kinds of errors:

e errors using the language concepts that may lead to in-
consistency — e.g. an empty trace set or a trace set not
closed under prefix,

o design errors that may lead to under specification.

In order to detect such errors, validation tools must be pro-
vided to check the specification. Clearly, the general prob-
lem of the validation of specifications is undecidable so any
tool we provide will not be completely automatic.

To address this problem, we benefit from the work initiated
in Oslo for the OUN notation [17]. Even if the two nota-
tions are not exactly the same (there are objects in OUN
and components in our notation and it is syntactically more
restrictive) the basic concepts are very close so we can use
the same approach. The solution adopted in OUN is to use
the tools offered by the PVS toolkit [18, 6]: PVS provides
(among other things) a model-checker and a powerful theo-
rem prover. The particularity of the prover is to allow the
user to include proof strategies adapted to its own problems:
this increases the automation of the proofs. The idea is to
define the semantics of OUN in PVS in order to directly
use the PVS tools, the work of [13] may be adapted to our
notation.

Testing. As soon as the specification satisfies user’s re-
quirements, the problem is to obtain an implementation of
the component that conforms to this specification. One ap-
proach is to generate code from specification, this produces
a safe code but we rejected it for several reasons. First,
the goal of the ”component approach” is to free the devel-
oper from technical stuff to make him concentrate on busi-
ness logic: specialists are recognized to write efficient code
adapted to their domains. Second, our approach considers
components as interchangeable ”black boxes” and peculiar-
ities of the code are out of our scope. As most of the soft-
ware production lines do, we propose to use testing to check
a component’s correctness with respect to its specification.
The test process is detailed in the next subsection.

Another problem is composition: how to be sure that two
components are compatible 7 Once components are shown
to conform to their specifications, the compatibility of two
components depends on the compatibility of their specifi-
cations. The effective connections of components are dy-
namical but port types may be used to statically check the
correctness of the possible connections during the validation
phase of the component (if there is one) or later during the
assembly phase. It suffices to check that each component
respects the contract of interfaces it uses and that each used
interface provides the expected services®. For that, we have
to check the compatibility of trace sets. A component ¢ will
behave correctly when assembled if (1) its traces relative
to the viewpoint we consider (here by the way of projec-
tion) satisfy the invariant of the interfaces it uses and (2) if
the used interfaces do not provide unexpected outputs (non-
deterministic components may have several outputs for the
same inputs). In other words:

Definition. (Connectable components) Let ¢ be a com-
ponent and T, be its trace set. The component ¢ is ”con-
nectable” if and only if for each type I of receptacles or ob-
ject parameters of ¢, for all component ¢ providing a facet
of type I, and for all trace t of To/I/c :

o(t), (1)
Yh € Tu/I/ce (b =1t/ =)= (h€ T/I/C). (2)

This definition is supposed to ensure compatibility of com-
ponents. This is the case when receptacles and parameters
used by a component are exactly of the declared type. The
following question concerns sub-typing: what happens if we
connect a receptacle of type I to a facet whose type is a
sub-type of I?7 We expect all static verifications to remain
valid whatever dynamic connections are made. For that, we
use behavioral sub-typing: a subtype will behave like any of
its super-types in the same context. Thus, the definition of
connectable components we gave is valid even if sub-typing
is used and we have a strong inheritance relation. ”Behave
like super-type” means for us that if we give the inputs of
the super-type to the subtype, the subtype produces outputs
that could have been produced by the super-type:

Definition.” (Behavioral Interface Inheritance) Let
I be an interface that inherits from Ji,...,Jn. Let the for-
mulas @1, ..., pn be the invariants of Ju, ..., J, respectively.
The inheritance relation of I is correct if and only if for all
component ¢ providing I and for all component ¢’ :

Vt € Te/I1/c Vi€ {1,...,n}[(t] ==t/Ti] =) = @i(t)]-

The correctness of the inheritance relations of interfaces
should be proved during the validation of the specification.
Note that component inheritance does not affect our verifi-
cations so it is not constrained.

The specification may also be useful at other stages in a sys-
tem’s life. We can for example evoke the maintenance: when

3As a matter of fact the same checks are necessary for each object
parameter, the process is identical.

4Using this definition, specifications are not inherited. This choice
gives some freedom in the sub-typing relations but may lead to exces-
sive writing work. We could add a stronger inheritance relation using
projection that would add more constraints on sub-typing but offers
specification inheritance.

can we say that two components are interchangeable ? Since
our model pays a large attention to interfaces, we can as-
sert that two components having the same ports are strictly
equivalent (we still speak about functionalities). This re-
lation may be too strong from a practical point of view: it is
interesting to replace a component by another one, different
but providing at least the same services in the same context,
we say that they may be substituted:

Definition. (Substitutability) 4 component ¢’ may be
substituted for a component c if:

e the services provided by ¢ may be provided by ¢’ i.e. for
each facet of c, either ¢ provides a facet of the same type
or it provides a facet of a behavioral subtype,

e the services required by ¢ are available i.e. receptacles
of ¢ are of the same types or behavioral super-types as
receptacles of c,

e ¢ and ¢ have the same sources and sink.

This definition works because of the behavioral inheritance
relation we defined earlier on interfaces. In some sense it
defines a kind of behavioral sub-typing for components.

3.2 Componenttesting

We have already explained the reasons which lead us to
chose a testing method to verify correctness of a component
towards its specification. In this subsection, we give some
more details about the testing process. Defining a testing
procedure requires to:

e select a representative set of test cases since exhaustive
testing is not tractable,

e have an oracle, that is to say something (another pro-
gram, a human, a specification, ...) able to decide if
the program gives the right answer when executed with
a test case,

e be able to execute the tests, that is to say run the tested
program with the chosen test cases (inputs) and check
(using the oracle) the program’s outputs correcteness.

Our proposition takes place in functional, unitary, and speci-
fication-based black-box testing. The use of formal specifi-
cations for testing has several well-known advantages, and
because of its form, the notation we propose has the follow-
ing ones:

e we use it to generate test cases which are traces, thus we
test a complete behavior involving several other compo-
nents, several methods, client and server aspects of the
component, and not a simple stimulus/response proto-
col,

e the specification is the oracle because traces contain in-
puts as well as outputs. Note that the specification
language form is very different from programming lan-
guages, thus avoiding redundancy errors.

Test-case generation. As a first step, we have to generate
a representative subset of a component trace set. The form
of the specification introduces two kinds of problems: first

we have to generate sequences of events and secondly we
have to find parameter values that satisfy the constraints.

The invariant is a formula: terms and logical connectives.
First, we consider the formula from the viewpoint of propo-
sitional calculus where trace predicates are the atoms of the
formula. By finding all combinations of predicates that sat-
isfy this formula we are defining all possible behaviors of
this component, which is close to the classic disjunctive nor-
mal form partitioning techniques from the test literature [7].
Each solution gives us formulas to obtain sets of test cases.
The problem is then to generate these test cases. The terms
generate languages that contain variables constrained by
predicates. For example, the invariant of Electronic_Box
is a conjunction of implications. The resolution gives us the
disjunctive normal form we could have obtained by replac-
ing each A = B by (AAB)V (mAAB)V (-AA-B) and
distributing. So, for example one term of the disjunction is
given by Figure 6.

(h; <-e.vote(x) |- H)

(this->v.vote(x) ;this<-v.vote(x:true) -| h)
- (h;_<-e.vote<too_late> |- H)

= (_—>C[_,_] in h)

- (h;_<-e.read -results(x,y) |- H)

= (~>clx,y] in h)

- (h;_<-e.read_results<not_closed> |- H)
(!=>c[-,] in h))

>>>>>>>

Figure 6: A sample conjunction of Invariant terms.

The solution we adopted to obtain the traces is to use Pro-
LOG as introduced in [14]: operators on trace languages,
predicates, functions defined by users (which are already in
a PrROLOG-like form), ... may be defined as PROLOG clauses.
The goal of the program has one free variable which is H
thus, it enumerates the traces. To obtain a tractable test
case set, we have to define when to stop. We use the regu-
larity hypothesis introduced in [3] which formalizes the fol-
lowing idea: ”if we test all the test cases whose complexity
is lower than the complexity of the formula, then we can
consider that the formula is valid”. The problem is to de-
fine the complexity to use. For the moment, we consider the
number of operators allowing to generate the traces which
is not fully satisfying. When the sequences are built, the
last operation consists in instantiating parameter variables.
Constraints on parameters are given by predicates and we
use uniformity hypothesis introduced in [3] to select one rep-
resentative value for each domain.

Test-case execution. We obtain a set of test cases which
are traces, the problem is now to execute the traces. The
abstraction level of our model gives us traces that are not
directly executable. During the process development of com-
ponents, the IDL3 description is projected in IDL2 and then
some rules define projections onto different programming
languages. So we have to apply the same projections rules
to our traces to obtain the real traces that may be observed
during the component execution.

The development of a test platform aimed at EJB is in
progress. The basic idea is to use a test container. A com-

ponent under test is placed in the test container which mon-
itors the test executions: other components are represented
by stubs that transmit messages to the container.

4. RELATED WORKS

There is now widespread acceptance over the necessity to
specify software system and one acknowledges that having
a precise and unambiguous formal specification available is
a prerequisite in order to automate black-box testing.

Today there exist some proposals for specification languages
designed for Interfaces Definition Languages : for exam-
ple Larch/Corba [20] which is rather data-oriented due to
its roots in Abstract Data Type or Borneo [19] where con-
straints do not consider data. Note that these two proposals
only take into account server aspects of components.

In [5, 4] the authors extend general IDLs and then CORBA-
IDL with protocol information concerning supported and
required services using Milner’s polyadic w-calculus which
seems to be a more low level syntax language than ours and
[2] uses a formalism based on Petri Net to specify CORBA
component. The specification conformance with testing is
not addressed in these works.

The generalized use of UML notation and its various behav-
ioral formalisms (state-charts, collaboration and sequence
diagrams) brings out several approaches (and tools) for test-
case generation in object-oriented software. These works are
based on techniques closed to finite state machines or finite
labeled transition systems [9, 16, 12, 11].

Another class of approaches for test generation uses par-
tition testing techniques [3, 7, 1]. Even if these techniques
generally lean on model-based or algebraic specifications our
project will benefit from these works.

5. CONCLUSIONS

‘We have presented in this paper a component oriented for-
mal notation and some of the general definitions that can be
exploited to validate specifications and to prove component
properties. This work takes sense if tools are provided to
specify and validate implemented components. The work is
in progress, especially the test platform for EJB. Since Einar
Broch Johnsen recently finished the definition of OUN se-
mantics in PVS [13], we are now ready to exploit it to deal
with validation aspects. Some other aspects could impact
our work in the future. The first one is to address the gen-
eral composition problem: how to build a component from
components? In our context, the problem is to find a trace
set for the assembly from the component trace sets, it re-
lates to the problem of formal language reconstruction. The
second one is to describe a component which an applica-
tion needs and find it. This requires a specification of the
application and to be able to extract from it a component
specification (which is not the most difficult part). Clearly,
the major problem would be to search a component and the
automation of the search seems not to be tractable for the
moment. Anyway, if a candidate component is found by a
user, it is possible to compare its specification — if it has one
— to the specification deduced from the application’s or to
test it — if it has no specification, in order to be sure that it
is convenient for the application.

6.

ACKNOWLEDGMENTS

We are grateful for feedback from discussions with the GOAL
team, in particular Raphaél Marvie and Philippe Merle.
Jean-Marc Geib has provided valuable detailed advice con-
cerning this manuscript.

7.
[1]

[2]

[4

[llua)

[5]

[7]

[9]

[10]

[11]

[12]

[13]

REFERENCES

B. K. Aichernig. Systematic Black-Boz Testing of
Computer-Based Systems through Formal Abstraction
Techniques. PhD thesis, Technischen Universitit Graz,
Germany, 2001.

R. Bastide, O. Sy, and P. Palanque. Formal
specification and prototyping of CORBA systems. In
Proc. ECOOP’99, Lisbon Portugal, vol. 1628 of LNCS,
pp- 474-494, 1999.

G. Bernot, M.-C. Gaudel, and B. Marre. Software
testing based on formal specifications: a theory and a
tool. IEEE Software Engineering Journal,
6(6):387-405, 1991.

C. Canal, L. Fuentes, J. Troya, and A. Vallecillo.
Extending CORBA interfaces with pi-calculus for
protocol compatibility. In Proc. TOOLS Europe’2000),
Mont Saint-Michel, France, pp. 208-225. IEEE
Computer Society Press, 2000.

C. Canal, L. Fuentes, and A. Vallecillo. Extending
IDLs with pi-calculus for protocol compatibility. In
Proc. ECOOP’99 Workshop Reader, ECOOP’99
Workshops, Panels, and Posters, vol. 1743 of LNCS,
pp- 56, 1999.

J. Crow, S. Owre, J. Rushby, N. Shankar, and

M. Srivas. A tutorial introduction to PVS. In Proc.
Workshop on Industrial-Strength Formal Specification
Techniques, Boca Raton, Florida, 1995.

J. Dick and A. Faivre. Automating the generation and
sequencing of test cases from model-based
specifications. In Proc. FME’93: Industrial-Strength
Formal Methods, vol. 670 of LNCS, pp. 268284, 1993.

V. Diekert and G. Rozenberg, editors. The Book of
Traces. World Scientific, Singapore, 1995.

J. Hartmann, C. Imoberdorf, and M. Meisinger.
UML-based integration testing. In Proc. ISSTA 2000,
pp- 60-70, Portland, Oregon, 2000.

C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

T. Jéron, J.-M. Jézéquel, and A. Le Guennec.
Validation and test generation for object-oriented
distributed software. In Proc. PDSE’98, Kyoto, Japan,
1998.

J.-M. Jézéquel, A. L. Guennec, and F. Pennaneac’h.
Validating distributed software modeled with the
Unified Modeling Language. In Proc. UML’98 -
Beyond the Notation, Mulhouse, France., vol. 1618 of
LNCS, pp. 365-377, 1998.

E. B. Johnsen and O. Owe. A PVS proof environment
for OUN. Research Report 295, Department of
Informatics, University of Oslo, june 2001.

10

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

B. Marre. Une méthode et un outil d’assistance a la
sélection de jeur de tests & partir de spécifications
algébriques. PhD thesis, Université de Paris-Sud —
Orsay, 1991.

R. Marvie and P. Merle. Corba Component Model:
Discussion and use with OpenCCM. Informatica,
submitted.

A. J. Offutt and A. Abdurazik. Generating tests from
UML specifications. In Proc. UML99, Fort Collins,
CO, pp. 416-429. IEEE Computer Society Press, 1999.

O. Owe and I. Ryl. A notation for combining formal
reasoning, object orientation and openness. RR 278,
Department of Informatics, University of Oslo, 1999.

S. Owre, J. Rushby, N. Shankar, and F. von Henke.
Formal verification for fault-tolerant architectures:
Prolegomena to the design of PVS. IEEE Transactions
on Software Engineering, 21(2):107-125, 1995.

S. Sankar. Introducing formal method to software
engineers through OMG’s CORBA environment and
interface definition language. In Proc. AMAST’96
Munich, Germany, vol. 1101 of LNCS, pp. 52-61,
1996.

G. Sivaprasad. Larch/CORBA: Specifying the
behavior of CORBA-IDL interfaces. TR 95-27a,
Department of Computer Science, Iowa State
University, 1995.

O. Sy. Spécification comportementale de composants
CORBA. PhD thesis, Université de Toulouse I, 2001.

C. Szyperski. Component Software — Beyong Object
Oriented Programming. Addison-Wesley, 1998.

