Analysis of Component-Base d Systems — An Automated
Theorem Proving Approach -

Murali Rangarajan
Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418.
mrangara@ htc.honeywell.com

ABSTRACT

As systems become increasingly complex, there is an in-
creasing thrust towards designing systems at the require-
ments level. This approach enables the analysis of various
system properties such as functional correctness, constraint
satisfaction, et cetera at a very early stage in systems devel-
opment, thus enabling faster design of systems with fewer
design flaws. Analyses can be performed at various levels of
rigor. For mission critical systems, analysis using formal
techniques is highly preferable as it provides the highest
level of rigor. But the problem with using formal analy-
sis techniques is that they are either intractable for large
designs, or require highly specialized knowledge possessed
by a few select people. This prevents the majority of the
design population from using such formal analyses in their
design process. In this paper, we describe our approach for
analysis of component-based systems for functional correct-
ness using theorem proving techniques. The components
and the design are specified using the VSPEC specification
language. The model is translated into an equivalent model
in the PVS specification language, and various correctness
properties are automatically extracted from the model and
their proofs are proofs are automatically attempted using
specialized, dynamically generated, proof macros. Results
of applying our technique to various modeling problems are
provided, and the results are discussed.

1. INTRODUCTION

Hardware and software systems are becoming increasingly
complex. Hardware systems consisting of millions of transis-
tors and software systems requiring hundreds of thousands
of lines of code are now commonplace. Along with the com-
plexity of systems, methodologies have evolved to handle the

*Support for this work was provided in part by the CEENSS
Technology Program, contract number F33615-93-C-4304,
and the RASSP Technology Program, contract number
F33615-93-C-1316.

Perry Alexander

EECS Dept., Info. and Telecomm. Tech. Center,

The University of Kansas

2291 Irving Hill Rd, Lawrence, KS 66044-7321.

alex@ittc.ukans.edu

complexity. While these methodologies provide ease of de-
sign, even for large systems, they do not have sufficient inte-
grated support for analyzing correctness of designs. For ex-
ample, top-down and bottom-up hierarchical design strate-
gies are widely used to help design large systems. These
by themselves do not ensure correctness of design. What is
needed is some mechanism for analyzing functional correct-
ness of systems during the design process.

In recent times, a number of new techniques and methodolo-
gies have been proposed to handle systems design complex-
ity. These involve specifying requirements in a Requirements
Specification Language and analyzing specifications to ar-
rive at the correctness of designs. A number of semi-formal
and formal analyses have been proposed. Semi-formal meth-
ods and formal methods employing techniques such as model-
checking are easy to apply since a high degree of automation
can be achieved using these techniques. But semi-formal
methods do not provide the requisite rigor to be applicable
for safety/mission critical systems. Model-checking based
analyses are restricted by the problem of state-space explo-
sion (even after the use of state-folding), especially at the
high levels of abstraction frequently encountered at the de-
sign phases. Moreover, compositional analysis using model-
checking is not straightforward. Formal methods employ-
ing theorem proving have a wide range of applicability and
can provide the mathematical rigor required for analyzing
safety /mission critical systems. But they are difficult to ap-
ply as they require in-depth knowledge of formal notations
and theorem proving techniques.

Application of theorem proving for analyzing designs could,
according to the Formal Methods community, have a great
impact in the industry. However, modern designs are large
and complex, and formal analysis of such designs directly
is not practical. Therefore, a simplified model is analyzed
for correctness, from which the correctness of the original
model is assumed. But this need not be always true. Theo-
rem proving has the capability to directly analyze large and
complex designs. Such direct analysis provides more accu-
rate information about the correctness of designs. Thereby,
use of theorem proving techniques can lead to better designs.

Theorem proving is not currently practical for a number of
reasons. The first problem is identifying what needs to be
proved. This is a deceivingly complex task. The second
problem is that of specifying what needs to be proved in

some theorem proving language. The complex and mathe-
matical nature of such languages makes this a daunting task
for most designers. The third problem is that of modeling
the domain in the same specification language as that of the
theorems. The final problem is that of proving the theorems
once they have been specified in the language of a theorem
prover. The proof process varies wildly with the theorem
being proved, the design being verified, and the underlying
models on which the theorem is based.

The purpose of this work is to devise a mechanism for au-
tomated analysis of component-based designs for common
classes of errors. We use the VSPEC specification language
to demonstrate our approach. From VSPEC specifications,
equivalent PVS theories are automatically generated. The
generated theories contain verification obligations (as theo-
rems) for interfaces and interconnections. Automated proof
assistance is provided for the verification activities. This ap-
proach was applied to a variety of example problems. The
results (presented in section 4) showed that it is possible to
generate PVS models corresponding to VSPEC specifica-
tions, and that properties about interfaces and interconnec-
tions can be generated as theorems. They also showed that
it is possible to automatically generate proof scripts for cer-
tain categories of models such that the generated theorems
can be automatically proved by the PVS theorem prover.

Since the goal was to automate the proof process, a number
of simplification strategies were adopted. First, the seman-
tics of VSPEC was kept simple by removing all unnecessary
extensions, while at the same time, ensuring the validity of
the resulting semantics. Next, the properties to be analyzed
were generated from at-most two levels in the design hierar-
chy of the system. This results in much simpler properties
to prove than if we were to consider the design as a whole.
Recursive application of this technique to all the levels in the
design provides information about the overall correctness of
the design. Finally, the proofs themselves are generated as
sequences of LISP commands, the same format used by PVS.
This enables the proofs steps to be executed automatically
to check whether a certain property is applicable to a design.
It is to be noted here that the proof macros only increase
the possibility of a proof being completed, but they do not
guarantee it. Whether the proof is actually completed or not
depends upon a number of factors such as the complexity
of the design, complexity of the specifications, the property
being analyzed, etc.

2. VSPEC

VSPEC is arequirements specification language for VHDL.
VSPEC was originally designed as a Larch Interface Lan-
guage for VHDL. Therefore, VSPEC borrows a number of
features from VHDL. The VHDL entities, architectures, and
packages are directly used by VSPEC. The information pro-
vided by VSPEC is specified in a specification construct.
VSPEC specifications are similar to VHDIL architec-
tures in that they provide additional information about an
existing entity. VSPEC’s declarative specification style com-
plements the traditional VHDL operational style. Together,
VSPEC and VHDL support modeling from requirements
acquisition through verification and synthesis.

As a working example, a VSPEC description of a sorting

component is shown in Figure 1. The entity sort is identical
to the VHDL entity construct. This provides the interface
for the VSPEC specifications. The package construct is also
similar to that of VHDL, with the exception of the keyword
mutable. This type specifier has been added in VSPEC to
enable the designer to specify complex types without giving
any particular implementation.

The module sort_spec constitutes a VSPEC specification
of the sort entity. The sensitive to clause is similar to
sensitivity lists and the wait statement in VHDL — it defines
when the component is active. It is basically a boolean pred-
icate indicating when an entity should begin executing. The
functional requirements are defined using the requires (pre-
condition) and ensures (post-condition) clauses. These two
clauses define component function as a relationship between
current and next state axiomatically. Any implementation
that makes the post-condition true in the next state, given
that the pre-condition is true in the current state, is a valid
implementation of these requirements. The includes clause
is used to include PVS definitions in a VSPEC description.
The sorts and operators defined in the PVS theories named
by the includes clause can be used in the VSPEC defini-
tion. In the example specification from Figure 1, the sort
component operates correctly in any initial state whenever
its input changes and produce an output that is ordered and
is a permutation of the input. Note that event is a prede-
fined VSPEC predicate that is true whenever its associated
signal changes values in the previous state change.

In addition to allowing the designer to describe functional
requirements, VSPEC also allows the designer to specify
performance constraints using the constrained by clause.
This clause defines relations over constraint variables such
as power consumption, layout area (expressed as a bounding
box), heat dissipation, clock speed and pin-to-pin timing.
Constraint theories are written in PDL [4], and verified using
the associated evaluation tool. Users may define their own
constraints and theories if desired [3].

The functional semantics are modeled upon the semantics of
VHDL under simulation. Therefore, each entity behaves as
an independent process, interacting with the outside world
using messages sent and received through its ports. Each
entity is modeled as a CSP [2] process, and architectures are
modeled using CSP’s parallel composition operator. Com-
ponent interaction is specified in terms of events. Events are
instantaneous actions that represent some real-world occur-
rence of interest. The set of events considered relevant for
a particular description of an object is called the object’s
alphabet. A process represents the behavior pattern of an
object described in terms of events from the object’s alpha-
bet. A sequence of events that a process participates in is
called a frace of that process. A process is fully defined by
its alphabet and the set of all possible traces of that process.

The semantics for VSPEC is given in the PVS specification
language [1]. This includes definitions for all the operators
and types used in VSPEC, and the meanings for the various
VSPEC clauses. This formal definition of all the aspects of
the language in PVS enables the formal analysis of models,
as detailed in the next section.

package sort_pkg is
type integer_array is mutable;
end sort_pkg;

use sort_pkg;
entity sort is
port (input: in integer_array;
output: out integer_array);
end sort;

use sort_pkg;
specification sort_spec of sort is
includes SortPredicates;
sensitive to input’event;
requires true;
ensures
permutation(output’post, input)
and inorder (output’post);
constrained by
power <= 5mW and size <= 3um * 5um
and heat <= 10mW and clock <= 50MHz
and input<->output <= 5 ms;
end sort_spec;

Figure 1: VSPEC description of a sorting compo-
nent.

3. TRANSLATION

An example VSPEC file is shown in figure 2, and its cor-
responding generated-PVS file is shown in figures 3 and 4.
The generation process is purely syntactic and is completely
automated by the VSPEC parser. The heart of the trans-
formation to PVS involves: (i) transforming ports and state
variables into Store representation; and (ii) manipulating
the requires, ensures and sensitive to clauses. The gen-
eral structure of all generated PVS theories are similar, with
the basic differences being in the parameters to the theories,
and in the right hand sides of the various axioms.

entity m3 is

port (inl : in integer; inoutl :
outl : out integer);

end m3;

inout integer;

specification m3_spec of m3 is
begin
state statel : integer;
sensitive to inl’event;
modifies inouti;
requires inl > inoutl;
ensures outl’post = statel and
inl = inoutl’post;
end m3_spec;

Figure 2: Example VSPEC file

The state of any VSPEC system is defined using a Store.
The store is a simple abstraction of the record structure
containing all the ports and state variables. Each theory
representing a specification must have access to the type
Store. Multiple definitions of a type in PVS results in each
definition being a different type, thereby making proofs over

stores impossible. To get around this problem, the Store
type and the constant empty are passed as parameters to
all the entity theories as their first two parameters. For
the same reason, the type Component is also passed as a
parameter. Since there always is a 'root’ theory from which
the analysis starts, this process ensures that only one Store
and Component are visible throughout the system.

If the original VSPEC file had imported any PVS theories,
they would be imported at this point. The reason for im-
porting theories at this point is that types defined in those
theories may be needed for the remaining parameters to the
theory. The locations of the included theories are specified
by the corresponding LIBRARY declarations. In our example,
since there are no included theories, no importing state-
ments are generated here. The remaining parameters are
the declarations of the port variables. They are declared as
functions from a Store to their corresponding type.

The body of the theory starts by declaring a constant comp
that represents the current component. All the properties
of components are defined over their respective comps. This
enables the linkage of various properties to specific compo-
nents. Next, the OneComponent and the TypeSpecificInfo
theories are included. The OneComponent theory specifies all
aspects of the process (associated with the VSPEC entity)
independently from any VSPEC component. Theories rep-
resenting specific components specialize OneComponent. The
advantage of this approach is that verification of OneCompo-
nent need only be performed once. The basic theorems need
not be reproven each time. The theory TypeSpecificInfo
defines some operators that are common to all types. This
theory is included once for each data type used in the sys-
tem.

The state variables are all declared in a manner analogous
to the port variables. They are declared as constant func-
tions from a Store to their corresponding types. Next, some
generic variables used in the axioms and theorems are de-
clared.

The sensitive to, requires and ensures clauses are each
transformed into axioms over stores. The sensitive to
clause is defined by the axiom sensitive_ax, the requires
clause by the axiom requires_ax over the pre state, and
the ensures clause by the axiom ensures_ax over the states
pre and post. The transformation of these clauses involves
two basic activities: (i) combining the various occurrences
of each clause into one; and (ii) replacing variable references
with functions over Store.

The modifies event_ax axiom and the input_event_ax ax-
ioms are part of the semantics of component activation and
define when the functions modSet_event and input_event
are true. The former is true when there is an event on one
of the modifies variables (including the OUT and STATE

variables). The latter is true when there is an event on an

IN or INOUT variable.

For the component to ever become active, its initial state
must be a part of the set of active states of the process. This
fact is ensured by the first theorem (initstates_th) in the
generated theory. Since, currently, there is no mechanism

%% PVS representation of specification m3_spec of entity m3

m3_spec [Store: TYPE+, empty: Store, Component: TYPE+,

inl : [Store -> integer], inoutl : [Store -> integer],
outl : [Store -> integer]] : THEORY
BEGIN

% The component corresponding to this entity
comp: Component

IMPORTING jvsp@OneComponent[Store, empty, Component, comp]

%% The state variables in this entity
statel : [Store -> integerl]

%% Variables used in theorems and axioms
pre, post, any: VAR Store

%% Part of definition for semantics for event
modifies_event_ax :
(event(outl, any) OR event(inoutl, any))

%% Requires Clause defines I
requires_ax : AXIOM I(comp) (pre) = (

% Ensures clause defines 0
ensures_ax : AXIOM O(comp) (pre,post) =

AXTOM modSet_event (comp) (any) =

inl(pre) > inoutl(pre))

(outl (post) = statel(pre) AND inl(pre) = inoutl (post))

% Sensitive to clause
sensitive_ax :

AXTOM member (pre,Psi(comp)) = (event(inl, pre))

Figure 3: Partial PVS translation of specification m3_spec, part 1 — Variables and axioms

to specify the initial values of the various port and state
variables, the axiom initstates_ax asserts that the initial
state 1s equal to Psi. This automatically ensures us that
InitStatesis a subset of Psi.

The remaining theorems represent the single-component pro-
of obligations. The completeness proof obligation is gener-
ated as the theorem complete_th, the witness for incom-
pleteness obligation as theorem incomplete_th and the in-
consistency obligation as the theorem inconsist_th. This
completes the generated PVS theory for the specification
m3_spec.

Abstract architectures are defined by: (i) specifying commu-
nication paths between components; and (ii) defining activa-
tion conditions to indicate when components should process
inputs. The state of an architecture is defined to be the
union of its components states. Component communication
is achieved when their states share objects. Activation is the
VSPEC dual of VHDL’s sensitivity lists and indicate when
a component should process its input. Together, commu-
nication and activation define the semantics of architecture
specifications.

The VSPEC architecture for the find component is shown
in figure 5. The VSPEC architecture is identical to the
VHDIL architecture, except for the use of the key word
VSPEC to denote VSPEC specifications rather than VHDL
components during instantiation. The variables in the sig-
nal declaration represent internal connections between the
components in the architecture. Following the signal dec-

larations, the components in the architecture are instanti-
ated with appropriate parameters. The parameters repre-
sent connections with other components, or with the inter-
faces of the architecture, based on the name of the param-
eter. This concludes an architecture description. In our
example, the find_arch architecture has two components
— the sorter component, which is an instance of the sort
component, and the searcher component, which is an in-
stance of the bin_search component.

The PVS representation for this architecture (Figures 6, 7)
has, as usual, the parameters Store, empty and Component.
This enables the architecture to be imported in other archi-
tectures. Following this, the theory Architecture is im-
ported to provide semantics to the various architecture op-
erators. The ports of the higher-level component (find, in
our example) are then declared. These form the ports of
the architecture too, and provide inputs to and obtain out-
puts from the components in the architecture. The signals,
which provide connections between the components in the
architecture, are declared next.

The specifications of the higher-level component and the
components in the architecture are imported with appro-
priate (depending upon how the component is connected)
instantiations. The sole axiom of the theory (theorem arch
_comps_Axiom in our example) defines the set arch_comps to
be composed of the comps of all the components in the ar-
chitecture. This declaration is essential for the definition of
the architecture process, the process representing the paral-
lel composition of these components.

%% Possible initial value in all traces of entity_process.

initstates_ax: AXIOM InitStates(comp) = Psi(comp)

%% Value of outputs and state variables does not change between post &
%% any. Initstates must be a subset of Psi for the model to be valid!
initstates_th: THEOREM subset?(InitStates(comp), Psi(comp))

%% Completeness obligation

complete_th: THEOREM (member (pre, LegalStates(comp)) AND

menber (pre, Psi(comp))) => I(comp) (pre)

%% Witness for incompleteness

incomplete_th: THEOREM EXISTS (x: Store): (member(x,LegalStates(comp))

AND member(x, Psi(comp))) => NOT I(comp) (x)

%% Inconsistency obligation

inconsistent_th: THEOREM (member (pre, LegalStates(comp)) AND

menber (pre, Psi(comp))) => NOT I(comp) (pre)
END m3_spec

%% End of PVS representation of entity

Figure 4: PVS translation of specification m3_spec, part 2 — Theorems

architecture find_arch of find is

signal sig_outl, sig_out2, sig_out3, sig_out4: integer;

begin
sorter: VSPEC entity sort

port map (inl, in2, in3, in4, sig_outl, sig_out2, sig_out3,

sig_out4);
searcher: VSPEC entity bin_search

port map (sig_outl, sig_out2, sig_out3, sig_out4, key,

output) ;
end architecture find_arch;

Figure 5: VSPEC specification of find component’s architecture

The generated theorems represent the various proof obliga-
tions for architectures. The input consistency proof obliga-
tion is generated as the input_interface_th theorem, the
output consistency proof obligation as the output_inter-
face_th theorem, strong liveness proof obligation for sort
component as the strong live_sort_thl theorem, and weak
liveness and inconsistency proof obligations of the bin_search
component as the theorems weak_live bin_search_th2 and
inconsist bin _search_ th3. The numbers at the end of
theorem names are used to disambiguate between the same
proof obligations of the same component used multiple times
in the architecture. The sort component does not have the-
orems corresponding to the weak liveness and inconsistency
proof obligations as there are no other components providing
inputs to it. All its inputs are obtained from the interface of
the architecture. Similarly, the bin_search component does
not have a strong liveness theorem as all its outputs are part
of the architecture interface.

4. PROOF AUTOMATION MECHANISM

Automation is critical for the success of any new methodol-
ogy, and application of theorem proving is not an exception.
But automation of theorem proving, in the general case, is

not possible. Our approach has been to generate proof steps
that have a high probability of successful completion. This
approach is facilitated by the fact that both the generated
theorems, and the semantics required for their proofs, have
been written by us. This enables us to fine-tune the proof
steps for individual theorems.

The proof steps generated for individual theorems are de-
pendent upon the terms in the theorem. The general ap-
proach is to LEMMA the relevant axioms and theorems, in-
stantiate them with appropriate constants, perform appro-
priate replacements of terms, and finally, to use PVS’s built-
in macro GRIND to attempt completion of the proof. Power-
ful prover commands provided by PVS are used in order to
generalize the generated proof. For example, the (INST?)
command provided by PVS attempts to automatically in-
stantiate universally quantified variables in the antecedent
with appropriate skolem variables.

The proof process starts by using the VSPEC parser to
parse a component specification or architecture. The parser’s
--pvs flag generates the PVS equivalent of the parsed mod-
ule. While generating theorems for the PVS module, the

input_interface_th: THEOREM member (pre,

Psi(find_spec[Store, empty, Component, inl, in2, in3, in4,

key, output].comp)) =>

(member (pre, Psi(sort_spec[Store, empty, Component, inl, in2, in3,
in4, sig_outl, sig_out2, sig_out3, sig_out4].comp))

or member (pre, Psi(bin_search_spec[Store, empty, Component,
sig_outl, sig_out2, sig_out3, sig_out4, key, output].comp)))

strong_live_sort_thl: THEOREM

O(sort_spec[Store, empty, Component, inl, in2, in3, in4, sig_outl,

sig_out2, sig_out3, sig_out4].comp) (pre,post)

=> (member(post, Psi(bin_search_spec[Store, empty, Component,
sig_outl, sig_out2, sig_out3, sig_out4, key, output].comp)))

weak_live_bin_search_th2: THEOREM

(member (pre, Psi(sort_spec[Store, empty, Component, inl, in2, in3,
in4, sig_outl, sig_out2, sig_out3, sig_out4].comp))

and O(sort_spec[Store, empty, Component, inl, in2, in3, in4,
sig_outl, sig_out2, sig_out3, sig_out4].comp) (pre, post))

=> member (post, Psi(bin_search_spec[Store, empty, Component,
sig_outl, sig_out2, sig_out3, sig_out4, key, output].comp))

END find_arch
% End of PVS representation of architecture.

Figure 7: Partial PVS representation of find architecture, part 2

corresponding proof scripts and LISP files for use with the
PVS proof checker are also simultaneously generated. After
completion of the parsing, the PVS proof checker is invoked
in the batch mode. Since PVS uses a LISP interface, a
LISP file, containing a sequence of commands for execution

by PVS, can be passed to PVS in the batch mode.

The loader file is generated by the parser, and has a se-
quence of commands for execution by the PVS proof checker.
The load commands loads a file called prfobs_fns.lisp,
which defines two main LISP functions — mytc and myprove.
The mytc function instructs PVS to typecheck a file. The
myprove function first installs the generated proof script,
then uses it to prove a specification. The results are stored
in a file called proof _status, which is printed out at the end
of the proof process.

5. RESULTSAND EVALUATION

In this section, we present the results of analyzing model
systems using our approach. The main aim of perform-
ing this evaluation was to identify the factors that affect
the automatability of proofs. Towards this end, the exam-
ple systems incorporate a wide variety of situations. They
include control-based and data-based activation of compo-
nents; linear, branching and feed-back architectures; and
systems with intentional bugs that result in incompleteness
(necessitating proofs over existential quantifiers).

The automated theorem-proving analysis has been applied
to a number of systems. The find system has been de-
scribed throughout this dissertation. It was chosen for illus-
tration as it is a conceptually simple example that demon-
strates most of the features of our approach. Apart from the

find example, the AlarmClock system (a synthesis bench-
mark developed by Synopsis), the PIP system (a Digital Sig-
nal Processing System developed by our sponsors), and the
CruiseControl system (a standard modeling problem) were
also analyzed.

The results of our analyses are presented in table 1. The
first column of the table lists the various modules that were
analyzed. The second column indicates whether a module
is a single component or an architecture. The third column
lists the number of theorems that were automatically proved.
The fourth column lists the number of theorems with pos-
stble proofs in that module. This is critical for statistical
analysis of the effectiveness of our approach. A theorem has
a possible proof if it is not preempted by some other the-
orem. For example, successful proof to the Completeness
proof obligation automatically implies that the Incomplete-
ness and Inconsistency proof obligations cannot be proved.
At the same time, successful proof of the Incompleteness
proof obligation invalidates the Completeness proof obliga-
tion, but does not necessarily mean that the Inconsistency
proof obligation should hold. It may or may not, depending
on the model. Such cases are handled by the eighth column,
where we list the number of (invalidated) theorems that are
not provable (even by hand) in a given model. We are mainly
interested in seeing how many of the provable (that is, pos-
sible minus invalidated) theorems are automatically proved.
The fifth through seventh columns list the various causes
(activation style employed, specification style employed, or
presence of existential quantifiers) for why certain provable
theorems could not be proved automatically. The specifica-
tion style column also includes cases in which the problems
are caused by deficiencies in the source specification lan-
guage. The final column lists genuine bugs identified by the

Module Comp/ | Auto- | Pos- | Act. | Spec. | Exist. Not Bug
Name Arch mated | sible | Style | Style | Quant. | Prov.
find Comp 2 2

sort Comp 2 2

bin__search Comp 1 2 1

find__arch Arch 3 4 1

AC Comp 2 2

comparator Comp 2 2

counter Comp 2 2

mux Comp 2 2

AC__arch Arch 1 5 4

PIP Comp 2 2

PulseDetector Comp 1 3 1 1
InterrogatorDecoder | Comp 1 2 1

PulseGenerator Comp 1 2 1

PIP__arch Arch 2 6 4

CruiseControl Comp 2 2

SystemState Comp 2 2

CDS Comp 2 2

CTS Comp 2 2

CruiseControl_arch Arch 4 6 1 1

Table 1: Results of applying automated proof obligations to various systems

%% PVS representation of architecture find_arch of
%% entity find
find_arch [Store: TYPE+, empty: Store,
Component: TYPE+] : THEORY
BEGIN

IMPORTING jvsp@Architecture[Store, empty, Component]

%% Ports of
inl: [Store
in2: [Store
in3: [Store
in4: [Store -> integer]

key: [Store -> integer]

output: [Store -> integer]

the Higher Level Component
-> integer]
-> integer]
-> integer]

=>
=>
=>
=>

[Store
[Store
[Store
[Store

sig_outl:
sig_out2:
sig_out3:
sig_out4:

integer]
integer]
integer]
integer]

%% Variables used in theorems and axioms
pre, post, any: VAR Store

Figure 6: Partial PVS representation of find archi-
tecture, part 1

system.

There are four main factors that affect the provability of
generated theorems. The most significant of these factors is
the structure of the architecture. Linear architectures are
the easiest to perform automated analysis. Branching ar-
chitectures increase the complexity of generated theorems
and require additional proof steps, such as proof by cases,
in some cases. The most complicating structure is feedback,
which has its greatest impact on bisimulation proofs. Sys-
tems with feedback require induction proofs, which, in the
general case, cannot be automated. Therefore, systems with
feedback cannot be automatically analyzed. A special case

of systems with feedback is the use of local store by com-
ponents. For all practical purposes, a system with a local
store is similar to that same system generating outputs to a
component that feeds the same values back to the original
component during the next activation period. Therefore,
systems with local store cannot be automatically analyzed.

The activation style employed plays a crucial role in the
provability of the proofs. When using control-based acti-
vation, it becomes necessary to do an inductive proof over
all traces of the system in order to identify the states in
which a component can be activated. The validity of the pre-
condition is checked in all such active states. On the other
hand, when using data-based activation, the pre-condition
can be verified directly from the activation condition, and
so is automatable.

The third factor that affects the complexity of proofs is the
specification style employed by the user to specify the user-
defined operators in PVS. Specifications using conservative
extension are more amenable to automated proofs as the
prover can automatically expand relevant terms, whereas
other specification styles require explicit introduction of rel-
evant axioms into the proof process.

The final factor is the presence of existential quantifiers in
the theorem proved. At present, there is no automated
mechanism to provide correct instantiations to existential
quantifiers. Therefore, while the semantics allow such proofs
to be manually performed, they cannot be automated. How-
ever, one of the new engines being implemented for the PVS
theorem prover is aimed at rectifying this deficiency. This
engine, once fully implemented, is expected to find suit-
able instantiations (in most cases) if they exist. This engine
would allow automated proofs to many more proof obliga-
tions than currently possible.

6. SUMMARY AND CONCLUSIONS

In this work, we presented an approach to using theorem
proving for automatic analysis of abstract, component-based,

designs. It involved the use of two different languages, one
that is easy for the designers to write specifications in, and
another in which it is easy to prove theorems. For abstract
designs, the VSPEC specification language was used, while
the PVS theorem prover was used for proving properties
about the design.

The two-language approach necessitated the writing of the
semantics of the specification language in the theorem prov-
ing language and translating specifications into that seman-
tics. A number of interesting properties generic to component-
based hardware-like systems were identified. These analyze
the interfaces and interconnections of an architecture with
respect to a specification. Since interfaces and interconnec-
tions were identified as the sources of most errors in systems
design and implementation, these were expected to have the
most impact. Translation is a straightforward process, with
one PVS theory being generated for each VSPEC entity.
The various clauses are generated as axioms within the the-
ory. The proof obligations for the analysis of interfaces and
interconnections within the model are generated as theorems
within the theory.

The final part of our approach involved the generation of
proof steps to attempt automated proofs to the generated
theorems. The proof steps were generated simultaneously
with the generation of theorems. The proof steps make use
of powerful proof macros provided by the PVS proof checker
so as to make the proofs generic.

Our methodology was evaluated with the goal of identifying
the conditions under which it is or is not effective. Four mod-
els were analyzed using our approach — the Find model, the
AlarmClock model, the PIP model and the CruiseControl
model. Most of the provable theorems were shown to be
automatically proved using the generated proof scripts. A
number of factors affecting the automatability of the proofs
were also identified. These include structure of the archi-
tecture, activation style, specification style and presence of
existential quantifiers.

In conclusion, our approach to the problem is promising.
The use of theorem proving facilitates appropriate handling
of abstraction during the early design stages, while the au-
tomation makes this approach easily applicable. Our use of
design abstraction and small theorems makes our approach
tractable.

7. REFERENCES

[1] Judy Crow, John Rushby, Natarajan Shankar, and
Mandayan Srivas. A Tutorial Introduction to PVS. SRI
International, Menlo Park, CA, June 1995. Presented
at WIFT’95.

[2] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666-77, 1978.

[3] Amitvikram Rajkhowa. Vspec constraints modeling,
evaluation and verification. Master’s thesis, University
of Cincinnati, 1999.

[4] Ranga Vemuri, Ram Mandayam, and Vijay Meduri.
Performance modeling using PDL. Computer,
29(4):44-53, April 1996.

