
Type Handling in a Fully Integrated Programming and
Specification Language

Gregory Kulczycki
Clemson University

Clemson, SC

gregwk@cs.clemson.edu

ABSTRACT
Integrated languages combine formal specification and pro-
gramming features, and make it possible to specify, imple-
ment, and verify programs within the same framework. This
paper examines the consequences of this fundamental inte-
gration on the type system of a software engineering lan-
guage, using Resolve as an example. It explains why name
matching for program types coexists naturally with struc-
tural matching for math types. It describes a formulation of
set theory and its relationship to the type system. And it
poses a variety of discussion questions concerning the use of
types and subtypes in the specification portion of the lan-
guage.

Keywords
Type checking, verification, subtypes, set theory, software
engineering

1. INTRODUCTION
Verification of component-based software requires languages
that integrate programming and specification features, and
types are at the heart of this integration. Programming
languages are not suited for specification, and specification
languages are not used for implementation. The elements
of both languages must be integrated to verify that an im-
plementation is correct with respect to a specification. This
requires that programming objects—in particular, types—
be described in mathematical terms. A wealth of papers
have been written about types and type systems, but these
papers invariably focus on types in programming (imple-
mentation) languages or types in specification languages.
The contribution of this paper is its description of a type
system for languages concerned with both implementations
and specifications.

The desire to build predictable, component-based software
has compelled many in the software verification commu-
nity to develop integrated languages—languages that com-

bine formal specification with programming. Examples of
such unions include JML, Eiffel, Resolve/C++1, Z vari-
ants, and Larch variants [3, 7, 9, 15]. Most of these in-
tegrated languages have resulted from appending a specifi-
cation language onto a preexisting programming language.
In contrast, Resolve [12, 14] has been developed from the
beginning as both a specification and a programming lan-
guage. The language is only one part of the Resolve sys-
tem for predictable software development. The system also
includes a framework and discipline for building software
that is—among other things—reusable, verifiable, efficient,
and understandable. The language is intimately tied to the
framework and discipline.

For the past few years the author of this paper has been in-
volved in designing and implementing tools that would bring
Resolve into the world of practical programming. The cur-
rent focus of this effort is the development of a Resolve
compiler. The project is complex, not only because the com-
piler must deal with a programming and specification lan-
guage combined, but because ongoing research makes the
language a moving target (e.g., performance specification
and verification [13]). During the course of writing the com-
piler we have been forced to refine our ideas about how types
should be handled in both mathematical and programming
contexts.

This paper addresses the following question: What are the
implications for the type system in a language that inte-
grates programming and specification? Using Resolve as
an example, we look for answers to this question. Section 2
presents the type model of Resolve and demonstrates how
types are treated in programming and mathematical con-
texts. Section 3 summarizes Ogden’s formulation of set the-
ory in Resolve [10] and explains how it relates to types.
Finally, section 4 examines a few specific issues involving
math types and subtypes.

2. OVERVIEW OF TYPES
An integrated language is much more complex than either
a programming language or specification language alone, so
simplicity is a primary concern. It is essential to have type
matching rules that are easily understandable. A program-
mer (or compiler) should not have to sift through a myriad
of rules and exceptions simply to evaluate the type of an
expression.

1Resolve/C++ uses only the specification portion of the
Resolve language

Concept Stack Template(type Entry;
evaluates Max Depth: Integer);

uses Std Integer Fac, String Theory;
requires Max Depth > 0;

Type Family Stack is modeled by Str(Entry);
exemplar S;
constraints |S| ≤ Max Depth;
initialization ensures S = Λ;

Operation Push(alters E: Entry; updates S: Stack);
requires |S| < Max Depth;
ensures S = 〈#E〉 ◦#S;

· · ·

end Stack Template;

Figure 1: A Concept for Stack

Mathematical and programming elements in the Resolve
language are kept as distinct as possible. Thus, assertions in
requires and ensures clauses2 of operations are strictly math-
ematical expressions, and conditions in while loops and if
statements are strictly programming expressions. Likewise,
all variables and types found in a mathematical expression
are math variables and math types, and those found in pro-
gramming expressions are program variables and program
types. This means that the same name has a different type
depending on whether it appears in a programming or math-
ematical context. Furthermore, mathematical expressions
and programming expressions are type-checked differently—
in mathematical expressions, types are matched according
to structure, whereas in programming expressions, they are
matched strictly by name.

2.1 Math vs Program Context
Figure 1 shows a Resolve specification of a Stack compo-
nent. This simple example turns out to be sufficiently pow-
erful to illustrate the ideas in this paper. The Type Family
declaration introduces the program type Stack and gives its
mathematical model. We use Type Family instead of just
Type because the concept (and therefore the type) is generic
until it is instantiated, so the declaration of Stack here en-
compasses an entire family of types. In the type family
declaration, the left side contains the program type Stack,
and the right side contains the math type Str(Entry). The
fact that mathematical and programming elements come to-
gether in a type declaration underscores the fundamental
role that types play in an integrated language. The exem-
plar introduces a variable of type Stack to describe proper-
ties that hold for any arbitrary variable of type Stack. For
example, the constraints clause indicates that the length
of any Stack must always be less than Max Depth.

In the specification of Operation Push, parameters E and
S are program variables. When a call is made to this oper-
ation, the compiler checks that the first argument to Push
is of type Entry, and the second argument is of type Stack.
When S appears in the requires clause, however, the com-

2preconditions and postconditions

Realization Array Realiz for Stack Template;

Type Stack is represented by Record
Contents: Array 1..Max Depth of Entry;
Top: Integer;

end;
conventions 0 ≤ S.Top ≤ Max Depth;
correspondence

Conc.S =

|S.Top|∏
i=1

〈S.Contents(i)〉

Rev

;

initialization
S.Top := 0;

end;

Procedure Push(alters E: Entry; updates S: Stack);
· · ·

end Push;

· · ·

end Array Realiz;

Figure 2: A Realization for Stack

piler analyzes it as a math variable. The variable S has been
declared as program type Stack, but since the variable oc-
curs in a mathematical context, the compiler instead uses
the mathematical model of Stack given in the type fam-
ily declaration. So the variable S appearing in the requires
clause has math type Str(Entry). The rest of the concept is
analyzed similarly.

In Resolve, like in other model-based languages such as
VDM and Z, a handful of math types are used for modeling
many different program types. This mirrors scientific dis-
ciplines like Physics, where the same mathematical model
is used to capture widely different concepts. Different pro-
gram types such as Stack and Queue may both be modeled
using mathematical strings. This makes it convenient to
write specifications such as the one shown here:

Operation Stk Q Transfer(clears S: Stack;
replaces Q: Queue);

ensures Q = #SRev;

2.2 Structural vs Name Matching
The implementation or realization of Stack Template in Fig-
ure 2 introduces a Stack type with a specific programming
structure. It indicates how a Stack is represented for this
particular realization. The conventions clause provides the
representation invariant—it indicates which representation
states are permitted. The correspondence clause, or ab-
straction relation, shows how this representation is related to
the mathematical model of Stack given in the concept. No-
tice that the correspondence clause contains two variables,
S and Conc.S, that are not declared directly in this scope.
These variables are derived from the special exemplar vari-
able in the concept’s type declaration. Figure 3 illustrates
what the compiler does when analyzing the declaration of
Stack in a realization. It locates the exemplar from the type

Module Scope

Type Scope

S: Stack

Type Scope

Stack RealizationStack Concept

Module Scope

exemplar S

Conc.S: Str(Entry)

Figure 3: Affect of Exemplar on Realization

family declaration in the corresponding concept, and uses
its name to create two variables within the type scope of
the realization. The first variable is named S and has pro-
gram type Stack. The second variable is named Conc.S
(read as “the conceptual value of S”) and has math type
Str(Entry), the mathematical model of Stack. The corre-
spondence clause describes the relationship between these
two variables.

Program type matching in Resolve is done strictly by name.
This is reasonable because a primary motivation for intro-
ducing different type names is to keep objects of different
types distinct. Also, in a language that separates inter-
faces (as specifications) from implementations, clients will
not have access to the structural programming representa-
tion of a type, so that structural matching can not be ac-
complished consistently.

Math type matching is done by structure. The structure
consists of math types that can be simple or composite.
If a program type name is encountered in a mathematical
context, the compiler uses its corresponding mathematical
model to convert it to a math type expression. In Resolve,
like in Z, built-in composite types include set theory opera-
tors ×, →, and P. Composite types are parameterized types
that take other types as arguments. Resolve also permits
the use of user-defined composite types. In the type ex-
pression Str(Entry), Str is a user-defined composite type
(defined in the module String Theory, which is imported
through the uses clause in Figure 1). For a composite math
type to match another by structure, the types of their argu-
ments must also match. For example, Queue × Fahrenheit
matches Stack× Centigrade if and only if the mathematical
models of Queues and Stacks match, and the mathematical
models of Fahrenheit and Centigrade match. Constraints
on mathematical models—given by the constraint clause in
the type family declaration—are ignored by the analyzer;
checking constraints is the responsibility of the verifier.

To illustrate the difference between name matching in the
programming world and structural matching in the math
world, consider the type declaration of Stack in figure 2.
The representation uses both a record and an array, which
are composite program types. In Resolve, the type Record
is modeled by a Cartesian product (denoted by the infix
operator ×), and the type Array is modeled by a function

Table 1: Type Evaluations of Variables
Variable Program Type Math Type
S Stack (Z → Entry)× Z

S.Contents %Array(10,20) Z → Entry
S.Contents(1) Entry Entry
S.Top Integer Z

(denoted by the infix operator →)3 [10]. Also, the program
type Integer is modeled by the mathematical integers Z.4

The generic type Entry is treated as a primitive type when
seen from a math context because its math model is not
known before instantiation.

Now consider a variable S of type Stack. Table 1 shows how
a compiler will evaluate the variables in the first column de-
pending on whether they occur in a program or math con-
text. For example, if S.Contents occurs in a requires clause,
it evaluates to the math type Z → Entry. If the variable
S.Top occurs in the condition of a while loop, it evaluates
to the program type Integer. The type %Array(10,20) is a
unique name created by the compiler.

A compiler for Resolve must keep track of more type in-
formation than typical compilers. It must have access to
the program name of the type, the program structure of the
type, and the math structure of the type. The program
structure of the type is not needed for matching purposes,
but it is needed to determine whether variables of that type
may use the special syntax of Records or Arrays. For exam-
ple, since the type Stack in the realization above is struc-
turally a record, any variable S of type Stack can use special
syntax to refer its fields—S.Contents and S.Top.

3. SET THEORY
Sets are the fundamental building blocks of the Resolve
language. There are several reasons why sets are a natural
choice. First and most importantly, sets are foundational to
Mathematics. All programming objects must have a math-
ematical model, and sets can be used to describe any math-
ematical domain. No matter how complicated a real world
problem is, it can be captured with sets. The same could not
be said if we were to use, say, real numbers, as the building
blocks of the language. Another reason for using sets is that
the basic notions of sets—membership, union, subset, and
so forth—are familiar to most students and programmers.
Finally, sets are flexible enough to describe the language
itself.

3.1 Echelons
The particular flavor of set theory used in Resolve has been
developed by Bill Ogden at The Ohio State University [10].
The core of the theory is traditional: It starts with the no-
tion of a universe of all sets (Set) and uses the notion of
membership (∈) as a basis for defining all the operators we
expect to see on sets (∪, ∩, ⊆, P, →, etc.). A distinguishing

3Strictly speaking, the Resolve type Array is modeled
by a Cartesian product composed of a function and two
integers—one for each bound.
4This model will obviously have constraints, involving min-
imum and maximum values, but recall that constraints are
ignored during type-checking

aspect of the theory is the notion of special sets known as
echelons. Echelons are large universes of sets that are closed
under the operations of ordinary set theory, such as unions
and power sets.

The motivation for echelons comes from the need to provide
a collection of sets that is (1) large enough to model ev-
erything one would normally want to model in a computer
program, and (2) small enough that it does not exhaust all
the sets in Set . Henceforth, let the set Set (pronounced “fat
set”) denote the collection which we draw from to model
all program objects in our language. Certainly Set must
have sufficient modeling power for all programming objects.
Using Set as Set, however, would not leave a specifier any
sets to describe the language with. For example, one would
require sets that were larger than Set when writing the spec-
ifications for a Resolve compiler that was written in Re-
solve.

To provide sufficient models for programming objects, Set
must be closed under the basic type operations of the lan-
guage. Assume A and B are types that are modeled by
sets in Set. Then any type expression that can be derived
from A and B must also be contained in Set. Resolve
currently permits the operators ×, →, and P in type ex-
pressions. Therefore, if A and B are elements of Set, A× B,
A → B, and P(A) must also be elements of Set.

Echelons are closed under these basic operations. The prop-
erties of echelons include closure under membership, pairing,
unions and power sets, which means they are also closed
under operators × and →.5 We can define an echelon oper-
ation on A, E(A), to be the smallest echelon that contains
A. If we take E0 = φ, then E1 = E(E0) contains the sets
φ, P(φ), P(P(φ)), . . . , which are traditionally used to model
the natural numbers. It can be shown that E1 is only count-
ably infinite, so it will not be large enough for real world
models. E2 = E(E1), however, does provide sufficient sets.
It contains models for N, R, P(R), R× R, R → R, etc.

If Set is at least E2 we know it has sufficient modeling power
for all ordinary programs. In Resolve, Set is generally as-
sumed to be E2, but whether it is E2, or E3, or E100, the
important fact is that a specifier still has access to E(Set) to
describe the language itself. A rigorous treatment of eche-
lons can be found in [10]. The objective of this summary is
only to present enough information to give an idea of their
significance for program specification.

3.2 Primitive Types
If sets are the building blocks of the Resolve language,
then primitive types are the cornerstones on which the other
blocks rest. Declarations of primitive types take the form:

T0 : Set

T1 : Set → Set

T2 : Set× Set → Set

T3 : Set× Set× Set → Set

...

5Assuming appropriate definitions of × and →, we can show
that A× B ⊆ P(P(

⋃{A, B})), and A → B ⊆ P(A×B).

Most often only the first two will be seen. The first type, T0,
is a simple type, while the remaining types are composite.
Like all composite types, primitive composite types cannot
be used in isolation—they must have parameters. For ex-
ample, if Str: Set → Set, then one cannot declare x: Str,
but one can declare an x: Str(Gamma), where Gamma: Set.

A primitive type, like every other object in Resolve, is a
set. Abstractly, a type is distinguished from other sets of
the same cardinality by its properties. For example, it can
be shown that the sets N and Z have the same cardinality,
but the set N is not closed under subtraction, while the set
Z is. Primitive types in Resolve are introduced via two
constructs. First, a definition spells out the properties of
the type:

Def Is Natural Number Like(N: Set, 0: N,
suc: N → N): B =

(*P1*) ∀n : N, suc(n) 6= 0 and
(*P2*) Is Injective(suc) and
(*P3*) ∀S : P(N),

if 0 ∈ S ∧ ∀n : N, n ∈ S ⇒ suc(n) ∈ S
then S = N;

Then an assumption introduces a set that satisfies that def-
inition:

Assumption Is Natural Number Like(N, 0, suc);

The properties in the definition (P1–P3) mirror the axioms
one would normally see in an axiomatic description of the
natural numbers. The approach of using definitions to de-
scribe the properties of a type simplifies the semantics of the
language—we do not have to concern ourselves with special
syntax and semantics for signatures and axioms. In Re-
solve, definitions are used to introduce all mathematical
objects, whether they are constants, variables, functions, or
types. The above assumption indicates that the set N (to-
gether with sets 0 and suc) is any arbitrary model of the
natural numbers. This enforces abstractness because the
natural numbers are not identified with one particular rep-
resentation.

3.3 Objects as Sets
Every programming object in the Resolve language can
be modeled by a set contained in Set. That is, any variable,
function, or type that occurs in a programming context must
lie within Set. Though math objects are exempt from this
restriction, most math objects seen in programs will also
be in Set because they are typically used to describe pro-
gram objects. When we want to describe complex software
like compilers and verifiers, our specifications will draw on
objects that lie outside of Set.

Simple primitive types are directly contained in Set, and
composite primitive types always take parameters, which
also puts them in Set. The set operators that we are per-
mitted to use in math type expressions (×, →, and P) are
all closed under echelons. Since all math types that are used
to model program types are constructed by applying com-
posite types and set operators to other math types, all such
math types are in Set.

All program types have a mathematical model, which is a
math type expression. The declaration:

Type Family Stack is modeled by Str(Entry);

is the text equivalent to:

Type Family Stack ⊆ Str(Entry);

The subset operator is used instead of the equal operator
because of constraints on the model. For an example, see
Figure 1.

All programming objects in Resolve belong to some type,
as indicated by the type membership operator (:). Since
all types are modeled by sets in Set, the type membership
operator can be replaced with set membership (∈) to de-
scribe the mathematical relationship between an object and
its type. Finally, since Set is closed under membership, all
programming objects must be in Set.

4. DISCUSSION TOPICS
During type-checking, a compiler needs to be concerned with
a number of questions, such as how to treat subtypes, when
to require casts, when to report errors, and when to give
warnings. Although these questions must be answered for
both program and math types, we focus on how they ap-
ply to math types, mainly because of the rich diversity of
views on how types should be handled in specification lan-
guages, ranging from traditionalists [2, 3, 15] to those whose
type systems incorporate theorem provers [11] to those who
question the necessity of type systems altogether [6]. Issues
involving program subtypes will largely depend on how the
language in question handles polymorphism, a topic that
merits a separate paper.

The distinction between types and other objects (variables
and functions) is quite clear in the programming world: pro-
gram types are introduced by the keyword Type. How-
ever, in the math world all objects—variables, functions,
and types—are introduced by the keyword Definition or
through quantifiers in expressions. This uniformity is inten-
tional, since all objects are sets, but it forces specifiers and
compilers to rely on other cues to tell them which mathe-
matical objects can be used as types. Examples based on
subtypes are discussed in this section.

If an object T is declared to be of type P(A) where A is a
type, then T is also a type, and we say that T is a subtype
of A. Permitting such declarations requires the language to
have reasonable semantics for handling the relationship be-
tween the type T being declared and the type A being used
in the declaration. Consider the definition:

Definition Even : P(N) = {n : N | n mod 2 = 0};

It is reasonable to want to declare objects of type Even and
add them together using the + operator defined in Natu-
ral Number Theory (the theory introducing N). The type
of the result would be N, so a specifier could write:

∀e1, e2 : Even,∃n : N � 2 · n = e1 + e2;

To analyze this expression, a compiler needs to know that
Even is a subtype of N, and it must have an algorithm that
determines which + operator to use if there is more than
one choice. This can become non-trivial, and as a rule, if
something is complex for the compiler, it is also conceptually
complex for the programmer or specifier. One way to sim-
plify things is to require explicit type casting, so the above
expression would produce an error if there were no + oper-
ator defined that took two objects of type Even. To use the
+ from natural number theory, a specifier might be forced
to write:

∀e1, e2 : Even,∃n : N � 2 · n = (N)e1 + (N)e2;

This makes the expression harder to write since the spec-
ifier must do the work that the compiler would have done
to decide which + should be be used. In Resolve, where
emphasis is on qualities such as reuse and understandabil-
ity, readability usually takes precedence over writability. In
this example, there is an argument for both sides in terms
of readability. If the + operator is overloaded in an un-
conventional way, explicit casting may clarify things; if the
+ operator is not overloaded at all, explicit casting simply
adds unnecessary clutter to the expression.

In some programming languages, casting to a parent type
is implicit, but casting to a subtype must be explicit. An
analogous example in the math world might define:

Definition Vertex : P(Z) = {z : Z | 1 ≤ z ≤ Max Vert};

Definition Cost(G : Graph; v1, v2 : Vertex) : R
6

If casting to a subtype is required, one must write

∀G : Graph,∀z1, z2 : Z,
Cost(G, (Vertex)z1, (Vertex)z2) ≤ 4.7; (1)

instead of

∀G : Graph,∀z1, z2 : Z, Cost(G, z1, z2) ≤ 4.7; (2)

This may seem quite reasonable for a programmer, but some
specifiers may consider the following expression perfectly
reasonable:

∀G : Graph,∀z1, z2 : Z, if z1, z2 ∈ Vertex
then Cost(G, z1, z2) ≤ 4.7; (3)

There is nothing wrong with expression (3) as a mathemat-
ical formula, and it is obvious that the Cost function is de-
fined for all z1, z2 ∈ Vertex. But if we insist that the com-
piler must report a type error for expression (2), then we
must insist that it does the same for expression (3). There
may be merit in exploring ways that allow the specifier more
flexibility in writing expressions while still insisting that he
provide sufficient clues to the compiler of his intentions. For
example, we might allow:

∀G : Graph,∀z1, z2 : Z, if z1, z2 : Vertex
then Cost(G, z1, z2) ≤ 4.7; (4)

6We can imagine that the Cost function indicates the ex-
pense of traveling from v1 to v2 in graph G.

Expression (4) replaces the set membership operator (∈) of
expression (3) with a type membership operator (:). This
could indicate to the compiler that z1 and z2 are to be
treated as belonging to type Vertex for the remainder of
the expression scope. Unfortunately, we would have to de-
velop another mechanisms for the case where the if part of
expression (4) were in a precondition and the then part of
the expression were in a postcondition. If we introduce too
many distinct mechanisms for handling a conceptually sim-
ilar situation we run the risk of significantly complicating
the language.

All of the questions that arise with subtypes due to the
power set operator may occur with primitive types as well.
It is reasonable to think of N, Z, and R as distinct types—
after all, their algebraic structures are different. It is also
reasonable to want to treat N as a subset of Z and Z as a
subset of R. If these relationships between primitive types
are desired, a mechanism different from the one for subtypes
must be provided that allows the compiler to treat them as
such.

5. RELATED WORK
Many examples of integrated languages exist, though the
degree of integration varies widely. Eiffel [9] is essentially
a programming language with a few specification features
built in. Like Resolve, it was created independently of
any preexisting programming language; unlike Resolve, its
specification features are limited—it does not include a com-
plete formal specification language (see p. 400 of [9]). JML
(Java Modeling Language) [7] is a behavioral specification
language that was created for Java. Used together, JML
and Java form an integrated language. Unlike Eiffel, JML
provides models for its programming objects. Mathemati-
cal expressions in both Eiffel and JML are designed to look
similar to programming expressions. Accordingly, they will
also type-check similarly. Recall that Resolve type-checks
mathematical expressions by structure and programming
expressions by name. Resolve/C++ [5] applies the Re-
solve framework and discipline to the C++ programming
language. It uses the specification portion of the Resolve
language for reasoning. Integrated languages formed by
combining a preexisting specification language with a preex-
isting programming language will type-check mathematical
expressions in accordance with the rules of the specification
language and will type-check programming expressions in
accordance with the rules of the programming language.

Most practical specification languages allow some form of
subtyping [2, 7, 15]. The PVS verification system [11] per-
mits downcasting to predicate subtypes by generating a proof
obligation when a type is detected in a place where its sub-
type is expected. Problems similar to those presented in
section 4 cause Lamport to question whether specification
languages should be typed at all [6]. Topics relating to pro-
gram subtypes include behavioral subtypes [8] and match-
ing [1].

6. CONCLUSION
Integrated languages must have an effective method for han-
dling program and math types. Integration requires that
a mechanism exist for relating programming and mathe-
matical elements. Type declarations are a natural place

to describe this relationship. Practical concerns compel us
to treat programming and mathematical objects differently.
Program types should match according to their names, and
math types should match according to their structure.

The theoretical basis of the specification language will affect
which objects can be used as types, and will determine the
kinds of models that can be constructed for program objects.
We need to distinguish sets that model real world objects
in a language from larger sets that are needed to describe
compilers and verifiers for that language.

The handling of subtypes in the specification portion of an
integrated language offers a series of trade-offs. Systems that
allow a specifier greater flexibility in writing expressions run
the risk of permitting poor expressions that could be caught
quickly with a less tolerant type system.

7. ACKNOWLEDGMENTS
Several people contributed important ideas to this work and
made helpful comments about drafts of this article. I would
especially like to thank Murali Sitaraman, Bill Ogden and
Steven Atkinson.

We also gratefully acknowledge financial support from our
own institutions, from the National Science Foundation un-
der grants CCR-0113181, DUE-9555062, and CDA-9634425,
from the Fund for the Improvement of Post-Secondary Ed-
ucation under project number P116B60717, and from the
Defense Advanced Research Projects Agency under project
number DAAH04-96-1-0419 monitored by the U.S. Army
Research Office. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the au-
thors and do not necessarily reflect the views of the National
Science Foundation, the U.S. Department of Education, or
the U.S. Department of Defense.

8. REFERENCES
[1] M. Abadi and L. Cardelli. On subtyping and

matching. ACM Transactions on Programming
Languages and Systems, 18(4):401–423, July 1996.

[2] D. Gries and F. B. Schneider. A Logical Approach to
Discrete Math. Springer-Verlag, New York, 1993.

[3] J. V. Guttag and J. J. Horning. Larch: Languages and
Tools for Formal Specification. Springer-Verlag, New
York, 1993.

[4] D. E. Harms and B. W. Weide. Copying and
swapping: Influences on the design of reusable
software components. IEEE Transactions on Software
Engineering, 17(5):424–435, May 1991.

[5] J. Hollingsworth, L. Blankenship, and B. W. Weide.
Experience report: Using RESOLVE/C++ for
commercial software. In Proceedings SIGSOFT FSE.
ACM, November 2000.

[6] L. Lamport and L. C. Paulson. Should your
specification language be typed? ACM Trans.
Program. Lang. Syst., 21(3):502–526, May 1999.

[7] G. T. Leavens, A. A. Baker, and C. Ruby. JML: A
notation for detailed design. In H. Kilov, B. Rumpe,

and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, chapter 12. Kluwer, 1999.

[8] G. T. Leavens and K. K. Dhara. Concepts of
behavioral subtyping and a sketch of their extension
to component-based systems. In G. T. Leavens and
M. Sitaraman, editors, Foundations of
Component-Based Systems. Cambridge University
Press, Cambridge, United Kingdom, 2000.

[9] B. Meyer. Object-Oriented Software Construction.
Prentice Hall PTR, Upper Saddle River, New Jersy,
2nd edition, 1997.

[10] W. F. Ogden. The Proper Conceptualization of Data
Structures. The Ohio State University, Columbus, OH,
2000.

[11] J. Rushby. Subtypes for specifications. In Software
Engineering - ESEC/FSE ’97, pages 4–19. ACM
SIGSOFT, September 1997.

[12] M. Sitaraman, S. Atkinson, G. Kulczycki, B. W.
Weide, T. J. Long, P. Bucci, W. Heym, S. Pike, and
J. E. Hollingsworth. Reasoning about
software-component behavior. In Procs. Sixth Int.
Conf. on Software Reuse, pages 266–283.
Springer-Verlag, 2000.

[13] M. Sitaraman, W. F. Ogden, G. Kulczycki, J. Krone,
and A. Reddy. Performance specification of software
components. In Proceedings of SSR ’01, pages 3–10.
ACM/SIGSOFT, May 2001.

[14] M. Sitaraman and B. W. Weide. Component-based
software using RESOLVE. ACM Software Engineering
Notes, 19(4):21–67, 1994.

[15] J. Spivey. The Z Notation. Prentice Hall, New York,
1989.

