
Modular Verification of Performance Correctness

Joan Krone
Dept. Math. and Comp. Science

Denison University
Granville, OH 43023, USA

+1 740 587 6484
krone@denison.edu

William F. Ogden
Dept. Comp. & Info. Science

The Ohio State Universtiy
Columbus, OH 43210, USA

+1 614-292-5813
ogden@cis.ohio-state.edu

Murali Sitaraman
Dept. Comp. Science
Clemson University

Clemson, SC 29634, USA
+1 864 656 3444

murali@cs.clemson.edu

Abstract
Component-based software engineering is concerned with
predictability in both functional and performance behavior,
though most formal techniques have typically focused their
attention on the former. The objective of this paper is to present
specification-based proof rules compositional or modular
verification of performance in addition to functionality,
addressing both time and space constraints. The modularity of
the system makes it possible to verify performance correctness
of a module or procedure locally, relative to the procedure itself.
The proposed rules can be automated and are intended to serve
as part of a system of rules that accommodate a language
sufficiently powerful to support component-based, object-
oriented software.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: formal specification and
verification of software performance.

General Terms
Verification, assertive language, formal specifications.

Keywords
Proof rule, performance, time and space.

1. INTRODUCTION

Predictability is a fundamental goal of all engineering, including
software engineering. To show that a program predictably
provides specified functional behavior, a variety of ways to
apply a system of proof rules to a program for proving
functional correctness have been studied since Hoare�s work.
More recent efforts address the special challenge of modular
reasoning for object oriented, component based software [1, 5,
8, 9, 12]. These systems depend on programmer-supplied
assertions that serve as formal specifications for the functional
behavior of the software. While correct functional behavior is
critical to any software system, in order to achieve full
predictability, we must ultimately address the issue of
performance as well.

A program that carries out the right job, but takes longer than
available time to complete is of limited value, especially in
modern embedded systems. Similarly, a program that is
functionally correct, but that requires more space than the
system can provide is not useful either. Cheng, Clemens, and

Woodside note the importance of the performance problem in
their guest editorial on Software and Performance [21]:

�Performance is a problem in many software
development projects and anecdotal evidence suggests
that it is one of the principal reasons behind cases
where projects fail totally. There is a disconnect
between techniques being developed for software
analysis and design and the techniques that are
available for performance analysis.�

Measurement during execution (e.g., using run-time monitoring)
is a common approach for analyzing performance of large-scale
systems [21]. The objective of this paper is to present static
analysis (and hence, a priori prediction) as an alternative to
measurement. In particular, the focus is on modular or
compositional performance reasoning: Reasoning about the
(functionality and performance) behavior of a system using the
(functionality and performance) specifications of the
components of the system, without a need to examine or
otherwise analyze the implementations of those components
[17].

Compositionality is essential for all analysis, including time and
space analysis, to scale up. To facilitate compositional
performance reasoning, we have introduced notations for
performance specifications elsewhere [18]. Given functionality
and performance specifications (and other internal assertions
such as invariants), the rest of this paper describes a proof
system for modular verification. Section II sets up the
framework to facilitate automated application of rules, using a
simple example rule. Section III contains proof rules for
verification of procedure bodies and procedure calls, involving
possibly generic objects with abstract models as parameters.
Section IV contains an example to illustrate a variety of issues
involved in formal verification. Section V has a discussion of
related work and summary.

2. ELEMENTS OF THE PROOF SYSTEM

Though the underlying principles presented in this paper are
language-independent and are applicable to any assertive
language that includes syntactic slots for specifications and
internal assertions, to make the ideas concrete we use the
RESOLVE notation [15, 16]. RESOLVE is intended for
predictable component-based software engineering and it
includes notations for writing specifications of generic
components that permit multiple realizations (implementations)
of those components. It also includes notations for specifying
time and space behaviors of an implementation. The
implementations include programmer-supplied representation

invariants, loop invariants, progress metrics, and other assertions
depending on the structure.

The proof rules have been designed so that an automated clause
generator can start at the end of a given assertive program and
back over the code replacing the executable language constructs
with assertions about the mathematical domain over which the
program has been written. The clause generator produces a
clause that is equivalent to the correctness of the given program.
The clause can then be evaluated manually, automatically by a
theorem prover, or by a combination to determine whether the
clause is provable in the appropriate mathematical domain, and
thereby whether the program is correct (with respect to its
specification). To illustrate the ideas, we begin with a simple
example. First we consider functional behavior and then address
performance for the following piece of assertive code:

Assume x = 3;
x := x + 1;
Confirm x = 4;

Exactly how such an assertive code comes into place, given a
specification and an implementation, is explained in Section III.
In this code segment, the programmer has supplied a pre-
condition indicated by the Assume keyword and a post-
condition following the keyword Confirm with some (assertive)
code in between. To prove the correctness of this segment,
consider the following automatable proof rule for expression
assignment:

C \ Code; Evaluate (exp); Confirm Outcome_Exp[x ⇝
M_Exp(exp)]

C \ Code; x := exp; Confirm Outcome_Exp;

In this rule, C on the left side of both the hypothesis and the
conclusion stands for Context and it denotes the collection of
whatever information is needed about the code in order to reason
about its correctness. For example, the types of variables and
the mathematical theories on which those types are based would
be in the context.

In our example, the Outcome_Exp is �x = 4.� The Code
preceding the assignment is the assertion �Assume x = 3.� In
the assertive clauses, the 3 and 4 are the mathematical integers,
while the assignment statement is performing an increment on a
computer representation of an integer. (The use of mathematical
integers in specifying computational Integer operations is
documented in Integer_Template that specifies Integer objects
and operations, and it is assumed to be in the context.)

Applying the proof rule on the example leads to the following
assertive code:

Assume x = 3; Evaluate(x + 1); Confirm x + 1 = 4.

This is the result of substituting the expression �x + 1� for x, the
meaning of [x ⇝ M_Exp(exp)]. M_Exp denotes putting in the
mathematical expression that corresponds to the programming
expression, thus keeping our assertions over mathematical
entities, rather than programming ones. There is a rule for
Evaluate that causes the expression to be evaluated by the

verifier. Similarly, the verifier would simply continue backing
through the rest of the code, applying appropriate proof rules,
eliminating one more constructs in each step.

Now we augment the above rule to prove functional correctness,
with performance-related assertions. Suppose we need to prove
the correctness of the following assertive code:

Assume x = 3 ^ Cum_Dur = 0 ^ Prior_Max_Aug = 0 ^
Cur_Aug = 0;
x = x + 1;
Confirm x = 4 ^ Cum_Dur + 0.0 = D:= + DInt_+ ^

Max(Prior_Max_Aug, Cur_Aug + 0) ≤ S:=
1;

Here, D:= denotes the duration for expression assignment2
(excluding the time to evaluate the expression itself). S:=
denotes storage space requirement for expression assignment
(excluding the storage space needed to evaluate the expression
itself and the storage for variable declaration of x which is
outside the above code). The units for time and space are
assumed to be consistent, though we make no assumptions about
the units themselves. The rest of the terms (whose need may not
become fully clear until after the discussion of procedures in
Section III) are explained in the context of the following rule for
expression assignment:

C \ Code; Evaluate(exp); Confirm (Outcome_Exp ∧
 Cum_Dur + D:= + Sqnt_Dur_Exp ≤ Dur_Bd_Exp∧

Max(Prior_Max_Aug, Cur_Aug + S:= +
Fut_Sup_Disp_Exp) ≤ Aug_Bd_Exp))

[x⇝M_Exp(exp)];
──────────────────────────
C \ Code; x := exp; Confirm Outcome_Exp ∧ Cum_Dur +
Sqnt_Dur_Exp ≤ Dur_Bd_Exp ∧

Max(Prior_Max_Aug, Cur_Aug + Fut_Sup_Disp_Exp) ≤
Aug_Bd_Exp;

The new rule includes everything needed for functional
correctness, and also includes new clauses about time and space
performance. In spite of past attempts in the literature, it is just
not possible to develop rules for performance correctness
independently of functional correctness, because in general,
performance depends on values of variables (which come from
analyzing functional behavior) [17, 18]. In the example and in
the rule, terms in bold print are keywords and the terms ending
with �_Exp� represent expressions to be supplied by the
programmer and kept up to date by the verifier.

1 We have added terms �+ 0.0� and �+ 0� in the expressions
here so that it is easy to match the syntactic structure of the rule
given next.
2 In RESOLVE, the right hand side of an assignment statement
is restricted to be an expression. In particular, x := y is not
allowed on variables of arbitrary types. For copying y to x, the
assignment statement needs to be x := Replica(y). This
interpretation is implicit for (easily) replicable objects such as
Integers for programming convenience. This is what justifies
the time analysis in the present rule. To move the value of y to x
efficiently on all objects large and small, and without
introducing aliasing, RESOLVE supports swapping (denoted by
�:=:�) as the built-in data movement operation on all objects [3].

First we consider timing. The keyword Cum_Dur suggests
cumulative duration. At the beginning of a program the
cumulative duration would be zero. As the program executes,
the duration increases as each construct requires some amount of
time to complete. The programmer supplies an over all duration
bound expression, noted by Dur_Bd_Exp. This is some
expression over variables of the program that indicates an
amount of time acceptable for the completion of the program.
As the verifier automatically steps backward through the code,
that expression gets updated with proper variable substitutions
as the proof rules indicate.

For example, in the above rule, when the verifier steps backward
over an assignment, the variable, �x,� receiving the assignment
is replaced by the mathematical form of the given expression,
�exp,� in all of the expressions included within the parentheses.

Sqnt_Dur_Exp stands for the subsequent duration expression,
an expression for how much time the program will take starting
at this point. This expression is updated also automatically by
the verifier, along with other expressions in the rule.

The duration (timing) for a program is clearly an accumulative
value, i.e., each new construct simply adds additional duration to
what was already present. On the other hand, storage space is
not a simple additive quantity. As a program executes, the
declaration of new variables will cause sudden, possibly sharp,
increases in amount of space needed by the program. At the end
of any given block, depending on memory management, storage
space for variables local to the block, may be returned to some
common storage facility, causing a possibly sharp decrease in
space.

The right operation for duration is addition and for storage it
turns out to be taking the maximum over any given block. It is
reasonable to assume that for any given program, there will be a
certain amount of space needed for getting the program started.
This will include the program code itself, since the code will
reside in memory. Assuming real, rather than virtual memory,
the code will take up a fixed amount of space throughout the
execution. With this in mind, we think of some fixed amount of
space for any given program that remains in use throughout the
execution. Our rules are written to deal with the space that
augments the fixed storage and increases and decreases as the
program executes. Prior_Max_Aug stands for �prior maximum
augmentation� of space. At the beginning of any program, the
prior maximum will be zero, since only the fixed storage is in
use. As the program executes, over each block, a maximum of
storage for that block is taken to be the Prior_Max_Aug. At
any point in the program, there will be a storage amount over the
fixed storage. We call that the current augmentation of space,
Cur_Aug. Of course, there will be some overall storage bound
to represent what is acceptable. We call that the augmentation
bound expression, Aug_Bd_Exp. Finally, just as there was an
expression to represent how much additional time would be
needed, there is an expression for how much storage
(displacement) will be needed in the future, the future
supplementary displacement expression,
Fut_Sup_Disp_Exp.

3. PROCEDURES

We examine a more complicated procedure construct in this
section, having introduced basic terminology using the
expression assignment proof rule. We present a rule for
procedure declarations and one for procedure calls. These rules
apply not only to ordinary code when all variables and types are
previously defined, but to generic code as well, i.e., code written
for variables that have not yet been tied to a particular type or
value. This capability to handle generic code is critical for
reusable, object-based components.

3.1 Procedure Declaration Rule

Associated with every procedure is a heading that includes the
name, the parameter list, and assertions that describe both
functional and performance behavior:

P_Heading:

Operation P(updates x: T);

requires P_Usg_Exp/ x \;
 ensures P_Rslt_Exp/ x, #x \;
 duration Dur_Exp/ x, #x \;
 manip_disp M_D_Exp/ x, #x \;

This heading is a formal specification for procedure P. We use
separate keywords Operation to denote the specification and
Procedure to denote executable code that purports to implement
an operation. We have included only one parameter on the
argument list, but of course, if there were more, they would be
treated according to whatever parameter mode were to be
indicated. The updates mode means that the variable is to be
updated, i.e., possibly changed during execution.

In the heading, the type T may be a type already pinned down in
the program elsewhere, or it might represent a generic type that
remains abstract at this point. The requires and ensures clauses
are pre and post conditions respectively for the behavior of the
operation, and the angle brackets hold arguments on which the
clauses might be dependent. Due to page constraints, the rule
does not include other potential dependencies such as on global
variables.

Details of performance specification are given in [18].
Duration is the keyword for timing. Dur_Exp is a
programmer-supplied expression that describes how much time
the procedure may take. That expression may be given in terms
of other procedures that P calls and it may be phrased in terms
of the variables that the operation is designed to affect. We may
need to refer both to the incoming value of x and to the resulting
value of x in these clauses. We distinguish them by using #x
for the value of x at the beginning of the procedure and x as the
updated value when the procedure has completed. The last part
of the Operation heading involves storage specification. Here,
manip_disp (termed trans_disp in [18]) suggests manipulation
displacement, i.e., how much space the procedure may
manipulate as it executes.

Given the operation heading, we next consider a rule for a
procedure declaration to implement an operation.

 C ∪ {P_Heading} \ Assume P_Usg_Exp ∧

Cur_Dur = 0.0 ∧
 Prior_Max_Aug = Cur_Aug = Disp(x);
 P_Body;
 Confirm P_Rslt_Exp ∧ Cur_Dur + 0.0 ≤
Dur_Exp ∧

Max(Prior_Max_Aug, Cur_Aug + 0) ≤ M_D_Exp;
C ∪ {P_Heading} \ Code; Confirm Outcome_Exp;
─────────────────────────────────
C \ P_Heading; Procedure P_Body; end P;

Code; Confirm Outcome_Exp;

As in the assignment rule, C stands for the context in which the
procedure occurs. Note that P_Heading, the specification of
Operation P, is added to the context making it possible for
reasoning about the procedure to take place. The conclusion
line of the rule allows the procedure declaration to be made and
followed by some code and a clause to confirm after the code.

The hypotheses of the rule indicate that the procedure is to be
examined abstractly, proving that no matter what value for the
parameter is passed in, the result will satisfy both the functional
and performance requirements.

The first hypothesis checks functional behavior by showing that
if the requires clause is met, then the ensures clause is satisfied
upon completion of the procedure body. For timing, we set the
Cum_Dur to 0 thereby localizing the proof to just this
procedure, avoiding the pitfall of having to consider the entire
program when proving correctness for just this procedure. After
the procedure body, we confirm that the Cum_Dur remains
below Dur_Exp, the bound expression given in the
specifications. It is assumed that the Cum_Dur acts like an
auxiliary variable updated automatically at each step.

Finally, we address the storage requirements. Before the
procedure body, we set the Prior_Max_Aug and the Cur_Aug
both to be the amount of space required by the parameter, x.
(Alternatively, the displacement of parameters at the beginning
could be subtracted at the end.) This is necessary to retain the
local nature of the proof process. The only concern that the
procedure rule has about space is what the procedure uses above
what has already been used in the past and what might be used
in the future. After the body, the rule checks that the max over
the stated values is within the specified bound.

3.2 Procedure Call Rule

A picture serves to motivate space-related assertions in the
procedure call rule. The timing aspects of the rule are more
straightforward and they are not shown in this picture.

Along the lower part of the picture the �fixed displacement�
represents some amount of storage necessary for the program to
run, an amount that does not vary throughout execution. The
code itself is included in this fixed storage. Above the fixed
storage the execution of the code requires a fluctuating amount
of space, increasing when storage for new variables is allocated
and decreasing when it is released.

The auxiliary variable, Cur_Aug, represents at any point what
the current amount of storage is over and above the fixed
storage. Note that the same variable appears twice on the
picture, once at the place where a call to procedure P is made
and again at the point of completion of P. Cur_Aug has a value
at every point in the program and is continually updated.
Similarly, as the execution procedes, Prior_Max_Aug keeps
track of the maximum storage used during any interval. In the
picture at the point where the call P(a) is made, Cur_Aug is
shown, as is Prior_Max_Aug. Of course, as the code execution
progresses, the value for Prior_Max_Aug is updated whenever
a new peak in storage use occurs.

Within the procedure body, some local variables may be
declared. This augmented displacement is denoted in the figure
by a spike in the line representing space allocation for the
procedure code. The specifications of the procedure include
M_D_Exp, an expression that limits the supplementary storage a
procedure may use. The procedure must stay within that limit in
order to be considered correct in terms of performance. As the
picture shows, the M_D_Exp is an expression about only local
variables and whatever parameters are passed in. These are the
only variables under the control of the procedure and they are
the only ones the procedure should need to consider for
specification and verification purposes.

Disp is an operator that extracts the amount of storage for a
given variable. This operator gets its value in the displacement
clause given in an implementation of an object-oriented concept,
and it is usually parameterized by the object�s value [18]. At the

point where the call P(a) is made the picture shows Disp(a), to
denote that a�s space allotment is part of the current
augmentation displacement. Upon completion of the procedure
call, the new value of a, shown as ?a may be different and may
require a different amount of space from what its value needed
at the time of the call. Disp(?a) is part of the current
augmentation at the point of completion.
Fut_Max_Sup_Exp, as noted before, describes a bound on the
storage used by the remaining code, i.e., code following the
current statement under consideration.

Given his explanation, the procedure call rule follows:

C ∪ {P_Heading} \ Code; Confirm P_Usg_Exp[x⇝a] ∧

∀ ?a: M_Exp(T), if P_Rslt_Exp[#x⇝a, x⇝?a] then
Outcome_Exp[a⇝?a] ∧

Cum_Dur + Dur_Exp[#x⇝a, x⇝?a] +
Sqnt_Dur_Exp[a⇝?a] ≤ Dur_Bd_Exp[a⇝?a] ∧
 Max(Prior_Max_Aug, Cur_Aug ,

Max(M_D_Exp[#x⇝a, x⇝?a],
 Disp(?a) + Fut_Sup_Disp_Exp[a⇝?a]) � Disp(a))

≤ Aug _Bd_Exp[a⇝?a];
��������������������������
C ∪ {P_Heading} \ Code; P(a); Confirm Outcome_Exp ∧
 Cum_Dur + Sqnt_Dur_Exp ≤ Dur_Bd_Exp ∧

Max(Prior_Max_Aug, Cur_Aug + Fut_Sup_Disp_Exp) ≤
Aug_Bd_Exp;

The heading for P is placed in the context, making available the
specifications needed to carry out any proof. In the conclusion
line, a call to P with parameter a is made at the point in the
program following Code.

In modular reasoning, verification of this code that calls an
operation P is based only on the specification of P. The
functional behavior is addressed in the top line of the hypothesis
part of the rule. To facilitate modular verification, at the point in
the code where the call to P is made with parameter a, it is
necessary to check that the requires clause, P_Usg_Exp with
a replacing x holds. The second hypothesis, also about
functional behavior, checks to see that if the procedure
successfully completes, i.e., the ensures clause is met with the
appropriate substitution of variables, then the assertion
Outcome_Exp holds, again with the appropriate substitution of
variables. These substitutions make it possible for the rules to
talk about two distinct times, one at the point where a call to the
procedure is made and one at the point of completion. The
substitution of what variables need to appear at what points in
the proof process avoids the need ever to introduce more than
two points in the time line, thereby simplifying the process.

It is important to note here that the specification of Operation P
may be relational, i.e., alternative outputs may result for the
same input. Regardless of what value results for parameters
after a call to P, the calling code must satisfy its obligations.
This is the reason for the universal quantification of variable ?a
in the rule.

The next hypothesis in the rule is about timing, and it checks,
after variable substitution, that any result from the procedure
will lead to satisfaction of specified time bounds for the client
program. It is not surprising that any reasoning about time or
space must be made in terms of the variables being manipulated,
since their size and representation affect both.

Finally, the displacement hypothesis considers the maximum
over several values. To understand this hypothesis, the picture
helps by illustrating the prior maximum augmentation, current
augmentation both at the point of the call and at the point of the
return. The picture also shows the displacement for actual
parameter a at the beginning of the procedure call and the
displacement of ?a at the end.

The displacement hypothesis involves a nested max situation.
We consider the inner max first. Here we are taking the
maximum over two items. The first is the expression from the
procedure heading that identifies how much storage the
procedure will need in terms of the local variables and the
parameters. The second is the sum of the amount of space
required by the final value of the updated parameter referred to
as ?a and the amount of space for the rest of the program
represented by Fut_Sup_Disp_Exp. From the second
quantity we subtract the displacement of a, since it was
accounted for in the current augmentation. Finally, we take the
max over the two items and show that it remains within the
overall bound.

The technique used in parameter passing naturally affects the
performance behavior of a procedure call. In the rule, we have
assumed a constant-time parameter passing method, such as
swapping [3]. An additional degree of complication is
introduced when an argument is repeated as a procedure call,
because extra variables may be created to handle the situation.
The present rule does not address this complexity.

4. AN EXAMPLE

In this section, we present a more comprehensive example of a
generic code segment, including appropriate expressions for
describing time and space. In our example, we reproduce
Stack_Template concept from [18], where a detailed explanation
of the notation may be found:

Concept Stack_Template(type Entry;
 evaluates Max_Depth: Integer);
 uses Std_Integer_Fac, String_Theory;
 requires Max_Depth > 0;

 Type_Family Stack ⊆ Str(Entry);
 exemplar S;
 constraints  S ≤ Max_Depth;
 initialization
 ensures S = Λ;

 Operation Push(alters E: Entry; updates S: Stack);
 requires  S < Max_Depth;
 ensures S = 〈#E〉 ° #S;

 Operation Pop(replaces R: Entry; updates S: Stack);
 requires  S > 0 ;
 ensures #S = 〈R〉 ° S;

 Operation Depth_of(restores S: Stack): Integer;
 ensures Depth_of = ( S);

 Operation Rem_Capacity(restores S: Stack): Integer;
 ensures Rem_Capacity = (Max_Depth − S);

 Operation Clear(clears S: Stack);
end Stack_Template;

This specification is for a generic family of stacks whose entries
are left to be supplied by clients and whose maximum depth is a
parameter. It exports a family of stack types along with the
typical operations on stacks. Any given stack type is modeled as
a collection of strings over the given type Entry whose length is
bounded by the Max_Depth parameter.

In order to promote both component reuse and the idea of
multiple implementations for any given concept, our design
guidelines include the recommendation that concepts should
provide whatever operations are necessary to support whatever
type is being exported and operations that allow a user to check
whether or not a given operation should be called. In the stack
example both Push and Pop must be present because those are
the operations that define stack behavior. The Depth_of and
Rem_Capacity enable a client to find out whether or not it is
alright to Push or to Pop. These are called primary operations.

Our guidelines suggest that secondary operations, ones that can
be carried out -- efficiently -- using the primary ones, should be
in an enhancement. An enhancement is a component that is
written for a specific concept. It can use any of the exported
types and operations provided in that concept. For example, we
might write an enhancement to reverse a stack. In it would be
an operation whose specifications indicate that whatever stack is
passed into the procedure is supposed to be reversed. Given
below is the functionality specification of such an enhancement:

Enhancement Flipping_Capability for Stack_Template;
 Operation Flip(updates S: Stack);
 ensures S = #SRev;
end Flipping_Capability;

The advantage of writing this capability as an enhancement is
that it is reusable, i.e., it will work for all Stack_Template
realizations. For an example of a Stack_Template realization, a
reader is referred to [18].

In our implementation, given below, we have included both the
code (it is purely generic since any realization of the given stack
concept may be used for the underlying stack type) and the
performance specifications that deal with time and space.

Realization Obvious_F_C_Realiz for
Stack_Template.Flipping_Capability;
 Duration Situation Normal: ∃ CPu, CPo, CIE, CEI, CSIS: ℝ>0 ∋

 CPu = LUB(DurPush[Entry×Stack]) and
CPo = LUB(DurPop[Entry×Stack]) and

 CIE = LUB(DurIs_Empty[Stack]) and
CEI = DurEntry.Initialization and

 CSIS + Max_Depth∗ CEI = DurStack.Initialization;
 Defn const C1: ℝ>0 = (CIE + CPo + CPu);

Defn const C2: ℝ>0 = (DurCall(1) + CEI + CSIS + CIE + C:=:);
Defn const Cnts_Disp(S: Str(Entry)): ℕ =
(∑ ∗

Entry:E
)E()S,E(Ct_Occurs Disp);

Displacement Situation Normal: ∃ DSD, DEID: ℕ ∋
 DEID = DispEntry.Init_Val and

∀ S: Stack, Disp(S) = DSD +
DEID∗ (Max_Depth − |S|) + Cnts_Disp(S) and

∀ E: Entry, Disp(E) ≥ DEID and
Is_Nominal(Mnp_DispPop(E, S)) and
Is_Nominal(Mnp_DispPush(E, S)) and
Is_Nominal(Mnp_DispIs_Empty(S));

Procedure Flip(upd S: Stack);
 duration Normal: C1∗ |#S| + Max_Depth∗ CEI + C2;
 manip_disp Normal: 2∗ DSD + DEID∗ (2∗ Max_Depth +

1 − |@S|) + Cnts_Disp(@S);
 Var Next_Entry: Entry;

 Var S_Flipped: Stack;
 While ¬ Is_Empty(S)
 updating S, S_Flipped, Next_Entry;

 maintaining #S = S_FlippedRev◦S and
 Entry.Is_Initial(Next_Entry);

 decreasing |S|;
 elapsed_time Normal: C1∗ |S_Flipped|;
 max_manip_space 2∗ DSD + DEID∗ (2∗ Max_Depth

+ 1 − |#S|) + Cnts_Disp(#S);
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Flipped);
 end;
 S :=: S_Flipped;
 end Flip;
end Obvious_F_C_Realiz;

In writing performance specifications, there is a trade-off
between generality and simplicity. Given that the space/time
usage of a call to every operation could depend on the input and
outputs values of its parameters at the time of the call, a general
version of performance specification can be quite complex. But
we can simplify the situation, if we make some reasonable

assumptions about the performance of reusable operations.
While the performance specification language should be
sufficiently expressive to handle all possibilities, in this paper,
we present simplified performance expressions making a few
assumptions. When the assumptions do not hold, the
performance specifications do not apply.

There may a variety of ways in which time and space are
handled, such as the straightforward allocation of space upon
declaration and immediate return upon completion of a block as
one method, and amortization as another. Here we use the term
Duration Situation followed by Normal to indicate the former.
A specification may also give performance behavior for more
than one situation.

We provide constants that represent durations for each of the
procedures that might be called, taking least upper bound when
those durations might vary according to contents. For example,
DurPush stands for the amount of time taken by a Push operation.
Since that might vary depending on the particular value being
pushed, the least upper bound is used to address that fact.

The way this approach allows the use of generic code is to have
specifications that can be given in terms of the procedures they
call. We think of initialization as a special procedure, one for
each type, that is called when a variable is declared. For
example, DurStack.Initialization means the duration associated with
the initialization of a stack. We do not know nor do we need to
know what particular kind of stack will be used here, rather our
specifications are completely generic, allowing the specific
values to be filled in once a particular stack type has been
designated.

All of the constants at the beginning of the realization are
presented as convenience definitions so that the expressions
written in the duration and manip_disp clauses will be shorter
to read.

Just as we have identified what duration constants are needed
for specifying the duration of the reversing procedure, we also
set up definitions to make the storage (manip_disp) expression
shorter to read. We can now see how the duration and
manipulation displacement expressions associated with each
procedure can be used when scaling up and using those
procedures in a larger program.

In verifying the correctness of the procedure, for the loop
statement, the programmer supplies the following information:

• An updating clause that lists variables that might
be modified in the loop, allowing the verifier to
assume that values of other variables in scope are
invariant, i.e., not modified;

• A maintaining clause that postulates an invariant
for the loop;

• A decreasing clause that serves as a progress
metric to be used in showing that the loop
terminates;

• An elapsed time clause for each situation
assumption in the duration specification to denote
how much time has elapsed since the beginning
of the loop; and

• A max_manip_space clause that denotes the
maximum space manipulated since the beginning
of the loop in any iteration.

The proof rule for while loop (not given here) checks that each
of the programmer-supplied clauses is valid and then employs
them in the proof.

In this short version of the paper, we have omitted discussion of
several important issues, including proof rules for loop
statements as well as other constructs. We have also not
explained how the system can accommodate dynamic and/or
global memory management, though the framework allows for
those complications. Finally, the non-trivial aspects of a
framework within which to discuss the soundness and
completeness of the proof system need to be presented.

5. RELATED WORK AND SUMMARY

The importance of performance considerations in component-
based software engineering is well documented [7, 19, 20, 21].
Designers of languages and developers of object-based
component libraries have considered alternative
implementations providing performance trade-offs, including
parameterization for performance [2]. While these and other
advances in object-based computing continue to change the
nature of programming languages, formal techniques for static
performance analysis have restricted their attention to real-time
and concurrency aspects [6, 10, 11, 20].

Hehner and Reddy are among the first to consider formalization
of space (including dynamic allocation) [4, 13]. Reddy�s work
is essentially a precursor to the contents of this paper, and its
focus is on performance specification. The proof system for
time and (maximum) space analysis outlined in [4] is similar to
the elements of our proof system given in section 2 of this paper.
Both systems are intended for automation. In verification of
recursive procedures and loops, for automation, we expect time
remaining and maximum manipulated space clauses to be
supplied by a programmer, though the need for the clauses is not
made apparent in the examples in Hehner�s paper. Our rules for
these constructs are, therefore, different. Other differences
include performance specification of generic data abstractions
and specification-based modular performance reasoning. This
becomes clear, for example, by observing the role of the
displacement functions in the procedure call rule in Section 3.

This paper complements our earlier paper on performance
specification in explaining how performance can be analyzed
formally and in a modular fashion. To have an analytical
method for performance prediction, i.e., to determine a priori if
and when a system will fail due to space/time limits, is a basic
need for predictable (software) engineering. Clearly,
performance specification and analysis are complicated
activities, even when compounding issues such as concurrency
and compiler optimization are factored out. Bringing these
results into practice will require considerable education and
sophisticated tools. More importantly, current language and
software design techniques that focus on functional flexibility
need to be re-evaluated with attention to predictable
performance.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the contributions of members of
the Reusable Software Research Groups at Clemson University
and The Ohio State University. We would especially like to
thank Greg Kulczycki, A. L. N. Reddy, and Bruce Weide for
discussions on the contents of this paper. Our thanks are also
due to the referees for their suggestions for improvement.

We gratefully acknowledge financial support from the National
Science Foundation under grants CCR-0081596 and CCR-
0113181, and from the Defense Advanced Research Projects
Agency under project number DAAH04-96-1-0419 monitored
by the U.S. Army Research Office.

REFERENCES

1. Ernst, G. W., Hookway, R. J., and Ogden, W. F.,
�Modular Verification of Data Abstractions with
Shared Realizations�, IEEE Transactions on Software
Engineering 20, 4, April 1994, 288-307.

2. Generic Programming, eds. M. Jazayeri, R. G. K.
Loos, and D. R. Musser, LNCS 1766, Springer, 2000.

3. Harms, D.E., and Weide, B.W., �Copying and
Swapping: Influences on the Design of Reusable
Software Components,� IEEE Transactions on
Software Engineering, Vol. 17, No. 5, May 1991, pp.
424-435.

4. Hehner, E. C. R., �Formalization of Time and Space,�
Formal Aspects of Computing, Springer-Verlag, 1999,
pp. 6-18.

5. Heym, W.D. Computer Program Verification:
Improvements for Human Reasoning. Ph.D.
Dissertation, Department of Computer and
Information Science, The Ohio State University,
Columbus, OH, 1995.

6. Hooman, J., Specification and Compositional
Verification of Real-Time Systems, LNCS 558,
Springer-Verlag, New York, 1991.

7. Jones, R., Preface, Proceedings of the International
Symposium on Memory Management, ACM SIGPLAN
Notices 34, No. 3, March 1999, pp. iv-v.

8. Leavens, G., �Modular Specification and Verification
of Object-Oriented Programs�, IEEE Software, Vol. 8,
No. 4, July 1991, pp. 72-80.

9. Leino, K. R. M., Toward Reliable Modular Programs,
Ph. D. Thesis, California Institute of Technology,
1995.

10. Liu, Y. A. and Gomez, G., �Automatic Accurate
Time-Bound Analysis for High-Level Languages,�

Procs. ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, LNCS
1474, Springer-Verlag, 1998.

11. Lynch, N. and Vaandrager, F., �Forward and
backward simulations-Part II: Timing-Based
Systems,� Information and Computation, 121(2),
September 1995, 214-233.

12. Muller, P. and Poetzsch-Heffter, A., �Modular
Specification and Verification Techniques for Object-
Oriented Software Components,� in Foundations of
Component-Based Systems, Eds. G. T. Leavens and
M. Sitaraman, Cambridge University Press, 2000.

13. Reddy, A. L. N., Formalization of Storage
Considerations in Software Design, Ph.D.
Dissertation, Department of Computer Science and
Electrical Engineering, West Virginia University,
Morgantown, WV, 1999.

14. Schmidt, H. W. and Chen, J. Reasoning About
Concurrent Objects. In Proceedings of the Asia-
Pacific Software Engineering Conference, IEEE,
Brisbane, Australia, 1995, 86-95.

15. Sitaraman, M., and Weide, B.W., eds. Component-
based software using RESOLVE. ACM Software Eng.
Notes 19,4 (1994), 21-67.

16. Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B.
W., Long, T. J., Bucci, P., Heym, W., Pike, S., and
Hollingsworth, J. E., �Reasoning About Software-
Component Behavior,� Procs. Sixth Int. Conf. on
Software Reuse, LNCS 1844, Springer-Verlag, 2000,
266-283.

17. Sitaraman, M., �Compositional Performance
Reasoning,� Procs. Fourth ICSE Workshop on
Component-Based Software Engineering: Component-
Certification and System Prediction, Toronto, CA,
May 2001.

18. Sitaraman, M., Krone, J., Kulczycki, G., Ogden, W.
F., and Reddy, A. L. N., �Performance Specification
of Software Components,� ACM SIGSOFT
Symposium on Software Reuse, May 2001.

19. Szyperski, C., Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1998.

20. Special issue on Real-Time Specification and
Verification, IEEE Trans. on Software Engineeering,
September 1992.

21. Special section: Workshop on Software and
Performance, Eds., A. M. K. Cheng, P. Clemens, and
M. Woodside, IEEE Trans. on Software Engineeering,
November/December 2000.

