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Abstract 
Component-based software engineering is concerned with 
predictability in both functional and performance behavior, 
though most formal techniques have typically focused their 
attention on the former.  The objective of this paper is to present 
specification-based proof rules compositional or modular 
verification of performance in addition to functionality, 
addressing both time and space constraints.  The modularity of 
the system makes it possible to verify performance correctness 
of a module or procedure locally, relative to the procedure itself.    
The proposed rules can be automated and are intended to serve 
as part of a system of rules that accommodate a language 
sufficiently powerful to support component-based, object- 
oriented software. 
 
Categories and Subject Descriptors 
D.2.13 [Software Engineering]: formal specification and 
verification of software performance. 
 
General Terms 
Verification, assertive language, formal specifications. 
 
Keywords 
Proof rule, performance, time and space. 
 
1.  INTRODUCTION 
 
Predictability is a fundamental goal of all engineering, including 
software engineering.  To show that a program predictably 
provides specified functional behavior, a variety of ways to 
apply a system of proof rules to a program for proving 
functional correctness have been studied since Hoare�s work. 
More recent efforts address the special challenge of modular 
reasoning for object oriented, component based software [1, 5, 
8, 9, 12].  These systems depend on programmer-supplied 
assertions that serve as formal specifications for the functional 
behavior of the software.  While correct functional behavior is 
critical to any software system, in order to achieve full 
predictability, we must ultimately address the issue of 
performance as well.  
 
A program that carries out the right job, but takes longer than 
available time to complete is of limited value, especially in 
modern embedded systems.  Similarly, a program that is 
functionally correct, but that requires more space than the 
system can provide is not useful either.  Cheng, Clemens, and 

Woodside  note the importance of the performance problem in 
their guest editorial on Software and Performance [21]:  

�Performance is a problem in many software 
development projects and anecdotal evidence suggests 
that it is one of the principal reasons behind cases 
where projects fail totally.  There is a disconnect 
between techniques being developed for software 
analysis and design and the techniques that are 
available for performance analysis.� 

 
Measurement during execution (e.g., using run-time monitoring) 
is a common approach for analyzing performance of large-scale 
systems [21].  The objective of this paper is to present static 
analysis (and hence, a priori prediction) as an alternative to 
measurement.  In particular, the focus is on modular or 
compositional performance reasoning:  Reasoning about the 
(functionality and performance) behavior of a system using the 
(functionality and performance) specifications of the 
components of the system, without a need to examine or 
otherwise analyze the implementations of those components 
[17].   
 
Compositionality is essential for all analysis, including time and 
space analysis, to scale up.   To facilitate compositional 
performance reasoning, we have introduced notations for 
performance specifications elsewhere [18].   Given functionality 
and performance specifications (and other internal assertions 
such as invariants), the rest of this paper describes a proof 
system for modular verification.  Section II sets up the 
framework to facilitate automated application of rules, using a 
simple example rule.  Section III contains proof rules for 
verification of procedure bodies and procedure calls, involving 
possibly generic objects with abstract models as parameters.  
Section IV contains an example to illustrate a variety of issues 
involved in formal verification.  Section V has a discussion of 
related work and summary.   
 
2.  ELEMENTS OF THE PROOF SYSTEM 
 
Though the underlying principles presented in this paper are 
language-independent and are applicable to any assertive 
language that includes syntactic slots for specifications and 
internal assertions, to make the ideas concrete we use the 
RESOLVE notation [15, 16].  RESOLVE is intended for 
predictable component-based software engineering and it 
includes notations for writing specifications of generic 
components that permit multiple realizations (implementations) 
of those components.  It also includes notations for specifying 
time and space behaviors of an implementation.  The 
implementations include programmer-supplied representation 



 

invariants, loop invariants, progress metrics, and other assertions 
depending on the structure.   
 
The proof rules have been designed so that an automated clause 
generator can start at the end of a given assertive program and 
back over the code replacing the executable language constructs 
with assertions about the mathematical domain over which the 
program has been written.  The clause generator produces a 
clause that is equivalent to the correctness of the given program.  
The clause can then be evaluated manually, automatically by a 
theorem prover, or by a combination to determine whether the 
clause is provable in the appropriate mathematical domain, and 
thereby whether the program is correct (with respect to its 
specification).  To illustrate the ideas, we begin with a simple 
example.  First we consider functional behavior and then address 
performance for the following piece of assertive code: 
 
Assume x = 3; 
x := x + 1; 
Confirm x = 4; 
 
Exactly how such an assertive code comes into place, given a 
specification and an implementation, is explained in Section III.  
In this code segment, the programmer has supplied a pre-
condition indicated by the Assume keyword and a post-
condition following the keyword Confirm with some (assertive) 
code in between.  To prove the correctness of this segment, 
consider the following automatable proof rule for expression 
assignment: 
 
C \ Code; Evaluate (exp); Confirm Outcome_Exp[x ⇝ 
M_Exp(exp) ] 
___________________________________________ 
C \ Code; x := exp; Confirm Outcome_Exp; 
 
In this rule, C on the left side of both the hypothesis and the 
conclusion stands for Context and it denotes the collection of 
whatever information is needed about the code in order to reason 
about its correctness.  For example, the types of variables and 
the mathematical theories on which those types are based would 
be in the context. 
 
In our example, the Outcome_Exp is �x = 4.�  The Code 
preceding the assignment is the assertion �Assume x = 3.�  In 
the assertive clauses, the 3 and 4 are the mathematical integers, 
while the assignment statement is performing an increment on a 
computer representation of an integer.  (The use of mathematical 
integers in specifying computational Integer operations is 
documented in Integer_Template that specifies Integer objects 
and operations, and it is assumed to be in the context.) 
 
Applying the proof rule on the example leads to the following 
assertive code: 
 
Assume x = 3; Evaluate(x + 1); Confirm x + 1 = 4. 
 
This is the result of substituting the expression �x + 1� for x, the 
meaning of [x ⇝ M_Exp(exp)].  M_Exp denotes putting in the 
mathematical expression that corresponds to the programming 
expression, thus keeping our assertions over mathematical 
entities, rather than programming ones. There is a rule for 
Evaluate that causes the expression to be evaluated by the 

verifier.  Similarly, the verifier would simply continue backing 
through the rest of the code, applying appropriate proof rules, 
eliminating one more constructs in each step. 
 
Now we augment the above rule to prove functional correctness, 
with performance-related assertions.  Suppose we need to prove 
the correctness of the following assertive code: 
 
Assume x = 3 ^ Cum_Dur = 0 ^ Prior_Max_Aug = 0 ^ 
Cur_Aug = 0; 
x = x + 1; 
Confirm x = 4 ^ Cum_Dur + 0.0 = D:=  + DInt_+ ^  

Max(Prior_Max_Aug, Cur_Aug + 0 ) ≤ S:=
1; 

 
Here, D:=  denotes the duration for expression assignment2 
(excluding the time to evaluate the expression itself).  S:= 
denotes storage space requirement for expression assignment 
(excluding the storage space needed to evaluate the expression 
itself and the storage for variable declaration of x which is 
outside the above code). The units for time and space are 
assumed to be consistent, though we make no assumptions about 
the units themselves.  The rest of the terms (whose need may not 
become fully clear until after the discussion of procedures in 
Section III) are explained in the context of the following rule for 
expression assignment: 
 
C \ Code; Evaluate(exp); Confirm (  Outcome_Exp ∧   
 Cum_Dur + D:= + Sqnt_Dur_Exp ≤ Dur_Bd_Exp∧   

Max( Prior_Max_Aug, Cur_Aug + S:=  + 
Fut_Sup_Disp_Exp ) ≤ Aug_Bd_Exp)  ) 

[x⇝M_Exp(exp)]; 
────────────────────────── 
C \ Code; x := exp; Confirm Outcome_Exp ∧  Cum_Dur + 
Sqnt_Dur_Exp ≤ Dur_Bd_Exp ∧   

Max( Prior_Max_Aug, Cur_Aug + Fut_Sup_Disp_Exp ) ≤ 
Aug_Bd_Exp; 

 
The new rule includes everything needed for functional 
correctness, and also includes new clauses about time and space 
performance.  In spite of past attempts in the literature, it is just 
not possible to develop rules for performance correctness 
independently of functional correctness, because in general, 
performance depends on values of variables (which come from 
analyzing functional behavior) [17, 18].  In the example and in 
the rule, terms in bold print are keywords and the terms ending 
with �_Exp� represent expressions to be supplied by the 
programmer and kept up to date by the verifier. 

                                                 
1 We have added terms �+ 0.0� and �+ 0� in the expressions 
here so that it is easy to match the syntactic structure of the rule 
given next.  
2 In RESOLVE, the right hand side of an assignment statement 
is restricted to be an expression.  In particular, x := y is not 
allowed on variables of arbitrary types.  For copying y to x, the 
assignment statement needs to be x := Replica(y).  This 
interpretation is implicit for (easily) replicable objects such as 
Integers for programming convenience.  This is what justifies 
the time analysis in the present rule.  To move the value of y to x 
efficiently on all objects large and small, and without 
introducing aliasing, RESOLVE supports swapping (denoted by 
�:=:�) as the built-in data movement operation on all objects [3]. 



 

 
First we consider timing.  The keyword Cum_Dur suggests 
cumulative duration.  At the beginning of a program the 
cumulative duration would be zero.  As the program executes, 
the duration increases as each construct requires some amount of 
time to complete.  The programmer supplies an over all duration 
bound expression, noted by Dur_Bd_Exp.  This is some 
expression over variables of the program that indicates  an 
amount of time acceptable for the completion of the program.  
As the verifier automatically steps backward through the code, 
that expression gets updated with proper variable substitutions 
as the proof rules indicate. 
 
For example, in the above rule, when the verifier steps backward 
over an assignment, the variable, �x,� receiving the assignment 
is replaced by the mathematical form of the given expression, 
�exp,� in all of the expressions included within the parentheses.   
 
Sqnt_Dur_Exp stands for the subsequent duration expression, 
an expression for how much time the program will take starting 
at this point.  This expression is updated also automatically by 
the verifier, along with other expressions in the rule. 
 
The duration (timing) for a program is clearly an accumulative 
value, i.e., each new construct simply adds additional duration to 
what was already present.  On the other hand, storage space is 
not a simple additive quantity.  As a program executes, the 
declaration of new variables will cause sudden, possibly sharp, 
increases in amount of space needed by the program.  At the end 
of any given block, depending on memory management, storage 
space for variables local to the block, may be returned to some 
common storage facility, causing a possibly sharp decrease in 
space. 
 
The right operation for duration is addition and for storage it 
turns out to be taking the maximum over any given block.   It is 
reasonable to assume that for any given program, there will be a 
certain amount of space needed for getting the program started.  
This will include the program code itself, since the code will 
reside in memory.  Assuming real, rather than virtual memory, 
the code will take up a fixed amount of space throughout the 
execution.  With this in mind, we think of some fixed amount of 
space for any given program that remains in use throughout the 
execution.  Our rules are written to deal with the space that 
augments the fixed storage and increases and decreases as the 
program executes. Prior_Max_Aug stands for �prior maximum 
augmentation� of space.  At the beginning of any program, the 
prior maximum will be zero, since only the fixed storage is in 
use.  As the program executes, over each block, a maximum of 
storage for that block is taken to be the Prior_Max_Aug.  At 
any point in the program, there will be a storage amount over the 
fixed storage.  We call that the current augmentation of space, 
Cur_Aug.  Of course, there will be some overall storage bound 
to represent what is acceptable.  We call that the augmentation 
bound expression, Aug_Bd_Exp.  Finally, just as there was an 
expression to represent how much additional time would be 
needed, there is an expression for how much storage 
(displacement) will be needed in the future, the future 
supplementary displacement expression,  
Fut_Sup_Disp_Exp. 
 

3. PROCEDURES  
 
We examine a more complicated procedure construct in this 
section, having introduced basic terminology using the 
expression assignment proof rule.  We present a rule for 
procedure declarations and one for procedure calls.  These rules 
apply not only to ordinary code when all variables and types are 
previously defined, but to generic code as well, i.e., code written 
for variables that have not yet been tied to a particular type or 
value.  This capability to handle generic code is critical for 
reusable, object-based components. 
 
3.1 Procedure Declaration Rule 
 
Associated with every procedure is a heading that includes the 
name, the parameter list, and assertions that describe both 
functional and performance behavior: 
 
P_Heading:   
 
Operation P(updates x: T); 

requires P_Usg_Exp/  x  \; 
 ensures P_Rslt_Exp/  x, #x  \; 
 duration Dur_Exp/  x, #x  \; 
 manip_disp M_D_Exp/  x, #x  \; 
 
This heading is a formal specification for procedure P.  We use 
separate keywords Operation to denote the specification and 
Procedure to denote executable code that purports to implement 
an operation.  We have included only one parameter on the 
argument list, but of course, if there were more, they would be 
treated according to whatever parameter mode were to be 
indicated.  The updates mode means that the variable is to be 
updated, i.e., possibly changed during execution. 
 
In the heading, the type T may be a type already pinned down in 
the program elsewhere, or it might represent a generic type that 
remains abstract at this point.  The requires and ensures clauses 
are pre and post conditions respectively for the behavior of the 
operation, and the angle brackets hold arguments on which the 
clauses might be dependent.  Due to page constraints, the rule 
does not include other potential dependencies such as on global 
variables.    
 
Details of performance specification are given in [18].  
Duration is the keyword for timing.  Dur_Exp is a 
programmer-supplied expression that describes how much time 
the procedure may take.  That expression may be given in terms 
of other procedures that P calls and it may be phrased in terms 
of the variables that the operation is designed to affect.  We may 
need to refer both to the incoming value of x and to the resulting 
value of x in these clauses.  We distinguish them by using #x 
for the value of x at the beginning of the procedure and x as the 
updated value when the procedure has completed.  The last part 
of the Operation heading involves storage specification. Here, 
manip_disp (termed trans_disp in [18]) suggests manipulation 
displacement, i.e., how much space the procedure may 
manipulate as it executes.   
 



 

Given the operation heading, we next consider a rule for a 
procedure declaration to implement an operation. 
 
 C ∪  {P_Heading} \ Assume P_Usg_Exp ∧   

Cur_Dur = 0.0 ∧   
  Prior_Max_Aug = Cur_Aug = Disp(x);          
    P_Body;  
  Confirm P_Rslt_Exp ∧  Cur_Dur + 0.0 ≤ 
Dur_Exp ∧   

Max( Prior_Max_Aug, Cur_Aug + 0) ≤ M_D_Exp; 
C ∪  {P_Heading} \ Code; Confirm Outcome_Exp; 
───────────────────────────────── 
C \ P_Heading; Procedure P_Body; end P;  

Code; Confirm Outcome_Exp; 
 
As in the assignment rule, C stands for the context in which the 
procedure occurs. Note that P_Heading, the specification of 
Operation P, is added to the context making it possible for 
reasoning about the procedure to take place.  The conclusion 
line of the rule allows the procedure declaration to be made and 
followed by some code and a clause to confirm after the code. 
 
The hypotheses of the rule indicate that the procedure is to be 
examined abstractly, proving that no matter what value for the 
parameter is passed in, the result will satisfy both the functional 
and performance requirements. 
 
The first hypothesis checks functional behavior by showing that 
if the requires clause is met, then the ensures clause is satisfied 
upon completion of the procedure body.  For timing, we set the 
Cum_Dur to 0 thereby localizing the proof to just this 
procedure, avoiding the pitfall of having to consider the entire 
program when proving correctness for just this procedure.  After 
the procedure body, we confirm that the Cum_Dur remains 
below Dur_Exp, the bound expression given in the 
specifications.  It is assumed that the Cum_Dur acts like an 
auxiliary variable updated automatically at each step. 
 
Finally, we address the storage requirements.  Before the 
procedure body, we set the Prior_Max_Aug and the Cur_Aug 
both to be the amount of space required by the parameter, x.  
(Alternatively, the displacement of parameters at the beginning 
could be subtracted at the end.)  This is necessary to retain the 
local nature of the proof process.  The only concern that the 
procedure rule has about space is what the procedure uses above 
what has already been used in the past and what might be used 
in the future.  After the body, the rule checks that the max over 
the stated values is within the specified bound. 
 

3.2 Procedure Call Rule 
 
A picture serves to motivate space-related assertions in the 
procedure call rule.  The timing aspects of the rule are more 
straightforward and they are not shown in this picture.   
 
 

 
 
 
Along the lower part of the picture the �fixed displacement� 
represents some amount of storage necessary for the program to 
run, an amount that does not vary throughout execution.  The 
code itself is included in this fixed storage.  Above the fixed 
storage the execution of the code requires a fluctuating amount 
of space, increasing when storage for new variables is allocated 
and decreasing when it is released. 
 
The auxiliary variable, Cur_Aug, represents at any point what 
the current amount of storage is over and above the fixed 
storage.   Note that the same variable appears twice on the 
picture, once at the place where a call to procedure P is made 
and again at the point of completion of P.  Cur_Aug has a value 
at every point in the program and is continually updated.  
Similarly, as the execution procedes, Prior_Max_Aug keeps 
track of the maximum storage used during any interval.  In the 
picture at the point where the call P(a) is made, Cur_Aug is 
shown, as is Prior_Max_Aug.  Of course, as the code execution 
progresses, the value for Prior_Max_Aug is updated whenever 
a new peak in storage use occurs. 
 
Within the procedure body, some local variables may be 
declared.  This augmented displacement is denoted in the figure 
by a spike in the line representing space allocation for the 
procedure code.  The specifications of the procedure include 
M_D_Exp, an expression that limits the supplementary storage a 
procedure may use.  The procedure must stay within that limit in 
order to be considered correct in terms of performance.  As the 
picture shows, the M_D_Exp is an expression about only local 
variables and whatever parameters are passed in.  These are the 
only variables under the control of the procedure and they are 
the only ones the procedure should need to consider for 
specification and verification purposes. 
 
Disp is an operator that extracts the amount of storage for a 
given variable.  This operator gets its value in the displacement 
clause given in an implementation of an object-oriented concept, 
and it is usually parameterized by the object�s value [18].  At the 



 

point where the call P(a) is made the picture shows Disp(a), to 
denote that a�s space allotment is part of the current 
augmentation displacement.  Upon completion of the procedure 
call, the new value of a, shown as ?a may be different and may 
require a different amount of space from what its value needed 
at the time of the call.  Disp(?a) is part of the current 
augmentation at the point of completion.  
Fut_Max_Sup_Exp, as noted before, describes a bound on the 
storage used by the remaining code, i.e., code following the 
current statement under consideration. 
 
Given his explanation, the procedure call rule follows: 
 
C ∪  {P_Heading} \ Code; Confirm P_Usg_Exp[x⇝a] ∧   

∀  ?a: M_Exp(T),  if P_Rslt_Exp[#x⇝a, x⇝?a] then 
Outcome_Exp[a⇝?a] ∧   

Cum_Dur + Dur_Exp[#x⇝a, x⇝?a] + 
Sqnt_Dur_Exp[a⇝?a] ≤ Dur_Bd_Exp[a⇝?a] ∧  
      Max(  Prior_Max_Aug, Cur_Aug ,  

Max( M_D_Exp[#x⇝a, x⇝?a],  
               Disp(?a) + Fut_Sup_Disp_Exp[a⇝?a] ) � Disp(a)  ) 

≤ Aug _Bd_Exp[a⇝?a]; 
�������������������������� 
C ∪  {P_Heading} \ Code; P(a); Confirm Outcome_Exp ∧   
  Cum_Dur + Sqnt_Dur_Exp ≤ Dur_Bd_Exp ∧   

Max( Prior_Max_Aug, Cur_Aug + Fut_Sup_Disp_Exp ) ≤ 
Aug_Bd_Exp; 

 
The heading for P is placed in the context, making available the 
specifications needed to carry out any proof.  In the conclusion 
line, a call to P with parameter a is made at the point in the 
program following Code.   
 
In modular reasoning, verification of this code that calls an 
operation P is based only on the specification of P.  The 
functional behavior is addressed in the top line of the hypothesis 
part of the rule.  To facilitate modular verification, at the point in 
the code where the call to P is made with parameter a, it is 
necessary to check that the requires clause, P_Usg_Exp with 
a replacing x holds.  The second hypothesis, also about 
functional behavior, checks to see that if the procedure 
successfully completes, i.e., the ensures clause is met with the 
appropriate substitution of variables, then the assertion 
Outcome_Exp holds, again with the appropriate substitution of 
variables.   These substitutions make it possible for the rules to 
talk about two distinct times, one at the point where a call to the 
procedure is made and one at the point of completion.  The 
substitution of what variables need to appear at what points in 
the proof process avoids the need ever to introduce more than 
two points in the time line, thereby simplifying the process.  
 
It is important to note here that the specification of Operation P 
may be relational, i.e., alternative outputs may result for the 
same input.  Regardless of what value results for parameters 
after a call to P, the calling code must satisfy its obligations.  
This is the reason for the universal quantification of variable ?a 
in the rule.  
 

The next hypothesis in the rule is about timing, and it checks, 
after variable substitution, that any result from the procedure 
will lead to satisfaction of specified time bounds for the client 
program.  It is not surprising that any reasoning about time or 
space must be made in terms of the variables being manipulated, 
since their size and representation affect both.   
 
Finally, the displacement hypothesis considers the maximum 
over several values.  To understand this hypothesis, the picture 
helps by illustrating the prior maximum augmentation, current 
augmentation both at the point of the call and at the point of the 
return.  The picture also shows the displacement for actual 
parameter a at the beginning of the procedure call and the 
displacement of ?a at the end.      
 
The displacement hypothesis involves a nested max situation.  
We consider the inner max first.  Here we are taking the 
maximum over two items.  The first is the expression from the 
procedure heading that identifies how much storage the 
procedure will need in terms of the local variables and the 
parameters.  The second is the sum of the amount of space 
required by the final value of the updated parameter referred to 
as ?a and the amount of space for the rest of the program 
represented by Fut_Sup_Disp_Exp.  From the second 
quantity we subtract the displacement of a, since it was 
accounted for in the current augmentation.  Finally, we take the 
max over the two items and show that it remains within the 
overall bound. 
 
The technique used in parameter passing naturally affects the 
performance behavior of a procedure call.  In the rule, we have 
assumed a constant-time parameter passing method, such as 
swapping [3].  An additional degree of complication is 
introduced when an argument is repeated as a procedure call, 
because extra variables may be created to handle the situation.  
The present rule does not address this complexity. 
 
4.  AN EXAMPLE 
 
In this section, we present a more comprehensive example of a 
generic code segment, including appropriate expressions for 
describing time and space.  In our example, we reproduce 
Stack_Template concept from [18], where a detailed explanation 
of the notation may be found: 
 



 

Concept Stack_Template( type Entry; 
      evaluates Max_Depth: Integer); 
   uses Std_Integer_Fac, String_Theory; 
  requires Max_Depth > 0; 
 
 Type_Family Stack  ⊆  Str(Entry); 
  exemplar S; 
  constraints  S  ≤ Max_Depth; 
  initialization 
   ensures S = Λ; 
 
 Operation Push( alters E: Entry; updates S: Stack ); 
  requires  S  < Max_Depth; 
  ensures S = 〈#E〉 ° #S; 
 
 Operation Pop( replaces R: Entry; updates S: Stack ); 
  requires  S  > 0 ; 
  ensures #S = 〈R〉 ° S; 
 
 Operation Depth_of( restores S: Stack ): Integer; 
  ensures Depth_of = (  S ); 
 
 Operation Rem_Capacity( restores S: Stack ): Integer; 
  ensures Rem_Capacity = ( Max_Depth − S ); 
 
 Operation Clear( clears S: Stack ); 
end Stack_Template; 
 
This specification is for a generic family of stacks whose entries 
are left to be supplied by clients and whose maximum depth is a 
parameter.  It exports a family of stack types along with the 
typical operations on stacks.  Any given stack type is modeled as 
a collection of strings over the given type Entry whose length is 
bounded by the Max_Depth parameter.   
 
In order to promote both component reuse and the idea of 
multiple implementations for any given concept, our design 
guidelines include the recommendation that concepts should 
provide whatever operations are necessary to support whatever 
type is being exported and operations that allow a user to check 
whether or not a given operation should be called.  In the stack 
example both Push and Pop must be present because those are 
the operations that define stack behavior.    The Depth_of and 
Rem_Capacity enable a client to find out whether or not it is 
alright to Push or to Pop.   These are called primary operations. 
 
Our guidelines suggest that secondary operations, ones that can 
be carried out -- efficiently -- using the primary ones, should be 
in an enhancement.  An enhancement is a component that is 
written for a specific concept.  It can use any of the exported 
types and operations provided in that concept.  For example, we 
might write an enhancement to reverse a stack.  In it would be 
an operation whose specifications indicate that whatever stack is 
passed into the procedure is supposed to be reversed.  Given 
below is the functionality specification of such an enhancement: 
 
Enhancement Flipping_Capability for Stack_Template; 
 Operation Flip(updates S: Stack); 
  ensures S = #SRev; 
end Flipping_Capability; 
 

The advantage of writing this capability as an enhancement is 
that it is reusable, i.e., it will work for all Stack_Template 
realizations.  For an example of a Stack_Template realization, a 
reader is referred to [18]. 
 
In our implementation, given below, we have included both the 
code (it is purely generic since any realization of the given stack 
concept may be used for the underlying stack type) and the 
performance specifications that deal with time and space.   
 
Realization Obvious_F_C_Realiz for 
Stack_Template.Flipping_Capability; 
     Duration Situation Normal: ∃  CPu, CPo, CIE, CEI, CSIS: ℝ>0 ∋   

  CPu = LUB(DurPush[Entry×Stack]) and  
CPo = LUB(DurPop[Entry×Stack]) and  

 CIE = LUB(DurIs_Empty[Stack]) and  
CEI = DurEntry.Initialization and  

 CSIS + Max_Depth∗ CEI = DurStack.Initialization; 
        Defn const C1: ℝ>0 = (CIE + CPo + CPu); 

Defn const C2: ℝ>0 = (DurCall(1) + CEI + CSIS + CIE + C:=:); 
Defn const Cnts_Disp( S: Str(Entry) ): ℕ =  
( ∑ ∗

Entry:E
)E()S,E(Ct_Occurs Disp  ); 

Displacement Situation Normal: ∃  DSD, DEID: ℕ ∋   
      DEID = DispEntry.Init_Val and  

∀  S: Stack, Disp(S) = DSD +  
DEID∗ (Max_Depth − |S|) + Cnts_Disp( S ) and  

∀  E: Entry, Disp(E) ≥ DEID and 
Is_Nominal(Mnp_DispPop(E, S)) and  
Is_Nominal(Mnp_DispPush(E, S)) and 
Is_Nominal(Mnp_DispIs_Empty(S)); 

 
Procedure Flip( upd S: Stack ); 
 duration Normal: C1∗ |#S| + Max_Depth∗ CEI + C2; 
 manip_disp Normal: 2∗ DSD + DEID∗ (2∗ Max_Depth + 

1 − |@S|) + Cnts_Disp( @S ); 
 Var Next_Entry: Entry; 

 Var S_Flipped: Stack; 
 While ¬  Is_Empty( S ) 
     updating S, S_Flipped, Next_Entry; 

    maintaining #S = S_FlippedRev◦S and  
    Entry.Is_Initial(Next_Entry); 

     decreasing |S|; 
     elapsed_time Normal: C1∗ |S_Flipped|; 
     max_manip_space 2∗ DSD + DEID∗ (2∗ Max_Depth  

+ 1 − |#S|) + Cnts_Disp( #S ); 
 do 
  Pop( Next_Entry, S ); 
  Push( Next_Entry, S_Flipped ); 
 end; 
 S :=: S_Flipped; 
      end Flip; 
end Obvious_F_C_Realiz; 
 
In writing performance specifications, there is a trade-off 
between generality and simplicity.  Given that the space/time 
usage of a call to every operation could depend on the input and 
outputs values of its parameters at the time of the call, a general 
version of performance specification can be quite complex.   But 
we can simplify the situation, if we make some reasonable 



 

assumptions about the performance of reusable operations.  
While the performance specification language should be 
sufficiently expressive to handle all possibilities, in this paper, 
we present simplified performance expressions making a few 
assumptions.  When the assumptions do not hold, the 
performance specifications do not apply.   
 
There may a variety of ways in which time and space are 
handled, such as the straightforward allocation of space upon 
declaration and immediate return upon completion of a block as 
one method, and amortization as another.  Here we use the term 
Duration Situation followed by Normal to indicate the former.  
A specification may also give performance behavior for more 
than one situation. 
 
We provide constants that represent durations for each of the 
procedures that might be called, taking least upper bound when 
those durations might vary according to contents.  For example, 
DurPush stands for the amount of time taken by a Push operation.  
Since that might vary depending on the particular value being 
pushed, the least upper bound is used to address that fact. 
 
The way this approach allows the use of generic code is to have 
specifications that can be given in terms of the procedures they 
call.  We think of initialization as a special procedure, one for 
each type, that is called when a variable is declared.  For 
example, DurStack.Initialization means the duration associated with 
the initialization of a stack.  We do not know nor do we need to 
know what particular kind of stack will be used here, rather our 
specifications are completely generic, allowing the specific 
values to be filled in once a particular stack type has been 
designated. 
 
All of the constants at the beginning of the realization are 
presented as convenience definitions so that the expressions 
written in the duration and manip_disp clauses will be shorter 
to read. 
 
Just as we have identified what duration constants are needed 
for specifying the duration of the reversing procedure, we also 
set up definitions to make the storage (manip_disp) expression 
shorter to read.  We can now see how the duration and 
manipulation displacement expressions associated with each 
procedure can be used when scaling up and using those 
procedures in a larger program. 
 
In verifying the correctness of the procedure, for the loop 
statement, the programmer supplies the following information:   
 

• An updating clause that lists variables that might 
be modified in the loop, allowing the verifier to 
assume that values of other variables in scope are 
invariant, i.e., not modified; 

• A maintaining clause that postulates an invariant 
for the loop; 

• A decreasing clause that serves as a progress 
metric to be used in showing that the loop 
terminates; 

• An elapsed time clause for each situation 
assumption in the duration specification to denote 
how much time has elapsed since the beginning 
of the loop; and  

• A max_manip_space clause that denotes the 
maximum space manipulated since the beginning 
of the loop in any iteration. 

 
The proof rule for while loop (not given here) checks that each 
of the programmer-supplied clauses is valid and then employs 
them in the proof.   
 
In this short version of the paper, we have omitted discussion of 
several important issues, including proof rules for loop 
statements as well as other constructs.  We have also not 
explained how the system can accommodate dynamic and/or 
global memory management, though the framework allows for 
those complications.  Finally, the non-trivial aspects of a 
framework within which to discuss the soundness and 
completeness of the proof system need to be presented. 
 
5. RELATED WORK AND SUMMARY 
 
The importance of performance considerations in component-
based software engineering is well documented [7, 19, 20, 21].   
Designers of languages and developers of object-based 
component libraries have considered alternative 
implementations providing performance trade-offs, including 
parameterization for performance [2].  While these and other 
advances in object-based computing continue to change the 
nature of programming languages, formal techniques for static 
performance analysis have restricted their attention to real-time 
and concurrency aspects [6, 10, 11, 20].   
 
Hehner and Reddy are among the first to consider formalization 
of space (including dynamic allocation) [4, 13].  Reddy�s work 
is essentially a precursor to the contents of this paper, and its 
focus is on performance specification.  The proof system for 
time and (maximum) space analysis outlined in [4] is similar to 
the elements of our proof system given in section 2 of this paper.  
Both systems are intended for automation.  In verification of 
recursive procedures and loops, for automation, we expect time 
remaining and maximum manipulated space clauses to be 
supplied by a programmer, though the need for the clauses is not 
made apparent in the examples in Hehner�s paper.   Our rules for 
these constructs are, therefore, different.  Other differences 
include performance specification of generic data abstractions 
and specification-based modular performance reasoning.  This 
becomes clear, for example, by observing the role of the 
displacement functions in the procedure call rule in Section 3. 
 
This paper complements our earlier paper on performance 
specification in explaining how performance can be analyzed 
formally and in a modular fashion.  To have an analytical 
method for performance prediction, i.e., to determine a priori if 
and when a system will fail due to space/time limits, is a basic 
need for predictable (software) engineering. Clearly, 
performance specification and analysis are complicated 
activities, even when compounding issues such as concurrency 
and compiler optimization are factored out.  Bringing these 
results into practice will require considerable education and 
sophisticated tools. More importantly, current language and 
software design techniques that focus on functional flexibility 
need to be re-evaluated with attention to predictable 
performance.   
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