Toward Reflective Metadata Wrappers for Formally

Specified Software Components

Stephen H. Edwards
Virginia Tech, Dept. of Computer Science
660 McBryde Hall
Blacksburg, VA 24061-0106 USA
+1 540 381 3020

edwards@cs.vt.edu

ABSTRACT

Abstract behavioral specifications for software components hold
out the potential for significantly improving a software engineer’s
ability to understand, predict, and reason soundly about the be-
havior of component-based systems. Achieving these benefits,
however, requires that specifications be delivered along with
components to the consumer. This paper considers the question
of what is the best way to package specification and verification
information for delivery along with a component. Rather than
distributing specifications in “source” form, an alternate solution
based on reflection is presented. A reflective interface that sup-
ports program-level introspective access to behavioral descrip-
tions is proposed. By embodying this interface in a wrapper com-
ponent, it becomes possible for the reflective interface to also
support services for contract violation checking, self-testing, and
abstract value manipulation, even when the underlying component
technology does not have built-in reflection capabilities.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
formal methods, programming by contract, assertion checkers,
class invariants; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—
specification techniques, pre- and post-conditions, invariants,
assertions; D.2.3 [Software Engineering]: Coding Tools and
Techniques—object-oriented programming;, 1D.2.5 [Software
Engineering]: Testing and Debugging—debugging aids.

General Terms
Design, Verification.

Keywords
Formal specification, reflection, design by contract, representation
invariant, wrapper class, unit test, integration test.

1. INTRODUCTION

Component-based software development (CBSD) is becoming
more prevalent every day, carrying with it the hope for greater
productivity and software quality. Indeed, off-the-shelf compo-
nents should be well-seasoned, well-tested, and more reliable than
newly written code. An even greater benefit potentially can be
provided by well-designed software components, however: they—
or more correctly, the abstract specifications that explain their
behavior—can help software engineers understand, predict, and

reason soundly about the dynamic behavior of component-based
software systems. Efforts at formally specifying the behavior of
software components aim at maximizing this effect.

To achieve this benefit for a commercial component, naturally the
component’s (formal) specification must be distributed along with
the component itself. For most commercial component technolo-
gies, including COM and its derivatives, CORBA, JavaBeans,
ActiveX, and .NET, components are distributed in a binary form.
Indeed, a central issue in reasoning about component-based soft-
ware is the problem of correctly reasoning about composite be-
haviors when source code is unavailable. If the component pro-
vider is going to deliver a behavioral specification as well, in what
form will it be delivered?

This position paper explores the question of how best to package
and deliver a component’s formal specification, as well as associ-
ated non-code information, along with the component’s imple-
mentation. Section 2 outlines the problem, while Section 3
sketches a possible solution: delivering a wrapper component that
provides access to a wide variety of information, including speci-
fication details, through a standardized, reflection-based interface.
Section 4 explores the various kinds of metadata and services that
may be appropriate to provide through such a reflective wrapper.
Section 5 summarizes the limitations of the approach, Section 6
outlines relations with previous work, and Section 7 summarizes
the issues covered.

2. PROBLEM AND SIGNIFICANCE

The problem under consideration, as introduced in Section 1,
supposes that a component provider also wishes to provide a for-
mal specification (perhaps along with verification information)
when a component is delivered:

What is the best way to package specification and verifi-
cation information for distribution to clients along with
a component?

One of the primary driving factors in binary packaging of com-
mercial components is protection of proprietary information or
trade secrets embodied in the component’s implementation. This
concern does not arise with specifications, of course. The client
cannot receive many of the benefits of having a component’s be-
havioral specification unless the specification is completely acces-
sible. “Hiding” a specification clearly is at direct odds with the
value added by distributing it with a component in the first place.
This leads to the naive view that a formal specification should be
delivered in human-readable “source” form. Even something as

simple as a text file containing the specification in a suitable for-
mal notation should suffice.

This simple approach to distributing specifications treats them the
same as traditional documentation, which is distributed most fre-
quently in printed form, as plain text, as HTML, or in a platform-
specific help file format. Besides simplicity, source distribution
of specifications has another strength: it highlights and reinforces
the fact that specifications are designed for communication with
software engineers—they are written for other people to read. In
essence, isn’t a formal specification the ultimate in rigorous
documentation?

While the value of reading specifications cannot be underesti-
mated, treating specifications as “plain old documentation™ misses
the opportunity to appropriately leverage those specifications in
development tools, during component composition, and during
automated reasoning or verification tasks. It is certainly possible
to force every CBSD tool to pick some specification notation,
support parsing/internalization of that notation, and maintain its
own representation of the relations between specifications and
components. Unfortunately, this strategy implies a huge duplica-
tion of effort among CBSD tool implementers, conflicting choices
made in different tools, and a number of other inefficiencies. As a
result, in asking what is the “best” way to package specifications
for distribution, this paper is aiming to support both human and
tool consumption and use of specifications.

The significance of this problem to researchers in formally speci-
fied components is apparent: a component’s client cannot reap
many of the benefits of a specification unless the specification is
delivered with the component. Similarly, the specification should
be delivered in a form that conveniently supports all of the activi-
ties the client may wish to perform, including both people-
oriented and tool oriented tasks.

3. APOSSIBLE SOLUTION: REFLECTIVE
METADATA WRAPPERS

If providing specifications (and other related information) as
traditional documentation has disadvantages, what alternatives are
available? Consider the history of software components. Provid-
ing specifications in source form is analogous in some ways to the
“old days™ when reusable components were subroutine libraries
shared as source code files among programmers. While the client
could always refer to the code, the critical interface information
(the name, parameter profile, description, and usage of each sub-
routine) was typically provided in embedded comments or as
separate documentation.

Component packaging and distribution has evolved enormously
since subroutine libraries first came into use, however. While
traditional documentation typically is provided for commercial
components, most commercial component technologies, including
COM, CORBA, JavaBeans, ActiveX, and .NET all provide some
API for “inspecting™ a component’s interface. In effect, a compo-
nent “knows™ what it exports, and a client can use a well-defined
interface to “ask™ what operations are available, how many pa-
rameters of what type are needed, what properties are provided,
and so on. Such an interface is a wonderful boon to component
packaging. It naturally allows any development environment to
immediately manage and support any newly installed component,
it supports “plug-in”-style integration of new features in applica-

tions, it supports automatic checks for (syntactic) interface com-
patibility during composition, and it can even support general-
purpose component-level scripting tools in some cases.

3.1 Reflect for a Moment

The ability of a component to respond to queries about its own
structure, behavior, or implementation is the cornerstone of re-
flection [24, 11]. Reflective software is capable of representing
(and thus operating on at run-time) some aspect(s) of itself.
Computational reflection is the activity of a computational sys-
tem when computing about or operating on (and thus potentially
altering) its own computation [17]. This concept arose in the
programming language arena, and has seriously impacted object-
oriented programming language design.

A reflective component can provide two different forms of reflec-
tion services: introspective capabilities provide read-only access
for inspecting component properties, while intercessory services
allow one to modify a component or alter its behavior in some
way [11]. While intercessory protocols are at the heart of compu-
tational reflection and metaprogramming [11, 16], the more re-
stricted introspective protocols supported by most component
technologies are still powerful tools. In effect, “interface inspec-
tion” APIs supported by most commercial components are simply
scaled down introspective interfaces.

If a typical component (say, a JavaBean) already supports a stan-
dardized interface for reporting on the syntactic properties of its
exported features, how difficult can it be to extend that interface
to include access to specification-level descriptions? Perhaps the
more interesting question is how far can this strategy be taken?

Many OO languages that support reflection, including Java, do so
by associating each object with a metaobject that encapsulates
information about how that object is structured and how it be-
haves. Often in class-based OO languages, an object’s metaobject
is a singleton object representing its class. This class object sup-
ports methods to determine the name and parameter profile of the
methods supported by instances of the class, the name and type of
instance and class-wide data members, the name and number of
superclasses, and so on. A class object may also offer interces-
sory capabilities, such as changing the way method dispatch is
supported. Normally, supporting intercessory capabilities re-
quires the metaobject approach to be built-in to the language.

By analogy, it is possible to turn a behavioral specification into a
stand-alone component that provides a standard interface for in-
specting all facets of the specification. Whereas a traditional
OOPL “class™ object represents a class’ structural or syntactic
interface, a specification object instead represents a specification’s
structural and behavioral description. All of the normal reason-
ing and structuring techniques applied to abstract class collections
and hierarchies could also be applied to specification objects. In
effect, this strategy turns a behavioral specification into another
operational component that can be delivered alongside the origi-
nal component it describes.

Now providing specification information for components appears
to be a simple matter: simply design a metaobject system similar
to that used in a class-based OOPL, except that metaobjects model
and allow access to formal behavioral descriptions instead of sim-
ply syntactic interfaces. If we wish to limit ourselves only to in-
trospection, this approach may be satisfactory. However, inter-
cessory services cannot easily be added through specification

objects alone if one is working using an existing component tech-
nology where metaobject-based reflection is not built-in to the
component model.

3.2 Decorating With Wrappers

Specification objects are a powerful idea, particularly for provid-
ing introspective capabilities and for sharing specifications among
behaviorally interchangeable components. Introducing them re-
quires little more than adding some kind of GetSpecifica-
tion() method to a component’s interface. On the other hand,
can intercessory services (that allow changes to component-level
behavior) be added to components that are implemented using a
non-reflective language or component technology?

It is possible to add some (but obviously not all) intercessory
capabilities to any component with the correct design. The deco-
rator pattern [7] suggests a simple approach that is suitable to the
situation at hand: add the reflective interface by packaging the
new operations in a wrapper component. This wrapper should
conform to the original specification, but will delegate all of the
work involved in the original operations to the component it
wraps. We can call such a component a reflective specification
wrapper (or simply reflective wrapper). At a minimum, this re-
flective wrapper provides the GetSpecification() access to
a stand-alone specification object. Further, by interposing a sepa-
rate processing layer between the client and the underlying com-
ponent, it becomes possible to add or remove features before or
after component operations. This supports a degree of interces-
sory customization—here, changing the behavior of the wrapper
by turning some features on or off, rather than modifying the be-
havior of the underlying component. Appropriately exploiting
this customization from the point of view of behavioral specifica-
tions is discussed in Section 4.

While neither the use of wrappers nor the use of reflection is a
new idea, the novelty lies in combining the two to provide pro-
gram-level access to specification information. First, the specifi-
cation information is clearly turned into another component that
can be delivered alongside the original. Further, rather than plac-
ing more operations and data inside the underlying component,
such a wrapper isolates these features in a separate layer between
the component and its client(s) (which now may include a host of
development tools in addition to other application code). This
approach, which is more in-line with object-oriented design, sepa-
rates the added features from the underlying code in a way that
can be made completely transparent to the remainder of the appli-
cation, that supports easy insertion or removal of the added capa-
bilities, and that naturally fits with conventional component dis-
tribution techniques.

Placing specification-oriented reflection features in a separate
class or component is a simple idea, but it refocuses attention with
dramatic results. It elevates the reflection features from the level
of one or two methods in a component interface up to the level of
a separately useful component abstraction. This elevation shifts
attention to the question of exactly what “meta™ data or services
should be provided by a reflective specification wrapper.

3.3 Summarizing the Proposed Solution
The position espoused in this paper is that a component’s specifi-
cation (and other supporting information) should be provided as

another component (or set of components), distributed in the
normal fashion. This position is founded on three insights:

1. Reflection supports both human-readable and tool-based
access to and application of the needed information. Reflec-
tion naturally supports standardized smart browsing tools
and other document navigation aids for human understanding
[6]. while it also supports uniform automated services that
rely on specification data without requiring the duplication of
effort necessitated by source code distribution.

2. Wrappers can be used to transparently add features to a com-
ponent without affecting the underlying entity. Further, they
add the ability to support limited forms of intercessory reflec-
tion, even when such features are not directly supported in
the underlying component technology.

3. If component instances are created using factories [7], client
code is completely insulated from dependencies on the con-
crete implementation used for each instance. This can en-
capsulate and even parameterize wrapping decisions, so that
reflection services can be employed when needed or stripped
out when unnecessary without altering clients.

While the position presented here is founded on a wide-ranging
collection of prior research, reflective specification wrappers in
the form described here have not yet been implemented. Instead,
this paper explores the issues and possibilities arising from the
proposed approach, both to highlight the problem of packaging
and distribution of specifications and to suggest a potential solu-
tion for exploration.

4. WHAT METADATA AND SERVICES
ARE NEEDED?

If one wishes to provide specification (and verification) informa-
tion through a reflection interface embodied in a wrapper compo-
nent, the next issue to face is the question of what data and/or
services to support through this interface. As is traditional with
reflection, the component information we are concerned with here
is truly metadata, in the sense that it describes the nature of the
component and how it behaves, in contrast to the data that the
component computes with or transforms. But exactly what meta-
data or intercessory services should be supported?

4.1 A Component’s Formal Specification

The most obvious metadata to provide is some representation of a
component’s formal specification. Just as a conventional metaob-
ject protocol provides introspective access to an object’s class, its
methods, and its fields, a reflective specification wrapper should
provide introspective access to all aspects of a component’s for-
mally specified exported interface. This is the role of the speci-
fication objects introduced in Section 3.1.

For a model-based component specification [28], the specification
object could provide access to the object’s abstract model, to the
pre- and postcondition for each operation or method, and to the
object’s abstract invariant. If an algebraic specification ap-
proach were used, access would instead be oriented toward axi-
oms and algebras. Beyond the basics, access to publicly available
fields or properties, exception behavior, and relationships to other
specifications (such as inheritance, perhaps) also need be consid-
ered.

However, as Szyperski notes in his definition, there is more to a
component than just an exported interface: “A software compo-
nent is a unit of composition with contractually specified inter-
faces and explicit context dependencies only” [25]. This perspec-
tive is also shared by the 3C model [15]. As a result, it is clear
that in addition to the exported interface, a reflective wrapper
should also provide introspective access to a component’s im-
ported interface: that is, the explicit context dependencies it
places on its environment. While the exported interface captures
the contract between a component and its client, the imported
interface forms the contract(s) between a component and the
other, lower-level components on which it is built.

Taken together, providing program-level access to a component’s
import and export interfaces seems like the bulk of the problem
when it comes to packaging and distributing a component’s for-
mal specification. On the other hand, elevating the reflection
interface to a separate component focuses attention on the other
information and services that can be provided through such an
object.

4.2 A Component’s Verification History

While one’s initial concern will necessarily be with distributing
specification information, in the long term. consideration of veri-
fication information will also be useful. Was a component for-
mally verified? By hand? With tool assistance? Was model-
checking used instead? Or was a testing-based approach used? Is
a proof or proof fragment available? Upon what assumptions is
the verification based?

The extent and quality of verification performed on a component
is clearly of interest to the client. In many cases, this information
is most useful before making a component purchasing decision.
Further, in the ideal situation where local certifiability (also called
the modular reasoning property) [26] is ensured by all compo-
nents in an application, there would be little need for verification
details by the client after purchase. However, without local certi-
fiability, verification details are important in supporting applica-
tion-level verification of component compositions. Further, if
formal verification is not used systematically throughout an appli-
cation, component-level verification information may be useful in
localizing defects during testing.

4.3 Violation Checking Services

Component-based development highlights the differing needs and
perspectives of the component-provider and the component-user
[8]. It is important to provide powerful capabilities for establish-
ing a component’s quality to the component-provider. The com-
ponent-user, on the other hand, must also be provided with the
services and information necessary to test her application in com-
bination with the component.

One approach to addressing both concerns is checking interface
contracts for violations. In addition to simply providing access to
specification and verification information, a reflective wrapper
can also provide contract checking features. Because of the way
the wrapper is interposed between the client and the component, it
is easy to add any or all of the following run-time checks:

e Precondition checks

e Postcondition checks

e Abstract invariant checks
e Representation invariant checks

This idea, originally proposed by the author and colleagues [3],
has been used with some success |9, 2|. Postcondition and in-
variant checking are extremely useful to the component provider
during development [1, 2, 19], while precondition checks are
useful to the client during component integration. Postcondition
and invariant checking can also be useful to the client in defect
localization during application testing.

A carefully designed reflective wrapper could allow each category
of checks to be enabled or disabled, perhaps on a per-operation
basis. Similarly, a component might even offer different levels of
checking for some conditions—fast, but less rigorous checks ver-
sus slow but tediously thorough checks, for example. An inter-
face that provides a systematic way to query the wrapper for the
checks it can provide as well as enable or disable them at desig-
nated levels would allow component composition environments to
directly support such services in a uniform way.

4.4 Self-Testing Services

Component-based approaches to software construction highlight
the need for detecting failures that arise as a result of miscommu-
nication among components. In an invited paper at the 22™ Inter-
national Conference on Software Engineering, Mary Jean Harrold
laid out a roadmap for the future of software testing research and
identified testing techniques for component-based systems as one
of the fundamental research areas ripe for exploration [8]. Viola-
tion checking services address some aspects of testing-based
component verification, but additional testing support can be
critical in supporting an application develop in the process of
verifying an application in combination with a component.

It is possible for a reflective wrapper to provide self-testing capa-
bilities in addition to violation checking services. For example, a
selection of component developer-provided test suites (from short
and simple to long and thorough) could be embodied in the reflec-
tive wrapper. Self-testing can then be performed by executing a
selected test suite on the wrapped component—perhaps while also
enabling interface violation checking.

Such a testing approach provides a natural, incremental approach
to application integration. If each component comes pre-
packaged with test data (and with violation checking services
acting in the role of test oracle), a component’s own self-test be-
comes an ideal “real world” test for the lower-level components
on which it depends.

Such an approach could even be expanded to support the integra-
tion of client-written test suites into the self-testing scheme.
Bruce Weide has also suggested that such a wrapper could poten-
tially be augmented to provide operation call/parameter record
and playback capabilities [27].

At this point, the benefit of intercessory services from the point of
view of component specifications becomes clear. An appropri-
ately structured reflective wrapper can provide for changes in its
own behavior—it can allow one to enable or disable specific ac-
tions that occur immediately before or after it delegates calls to
the wrapped implementation. Although this does not support
intercessory actions on the underlying component, simply adding
or removing certain actions before and after delegating to the

wrapped component supports many powerful capabilities oriented
toward component composition and testing-based verification.

4.5 Abstract Value Manipulation

The component wrapping scheme previously proposed for inter-
face violation checking [3] uses a novel approach to implementing
checks before and after operations. Instead of implementing
checks in terms of the concrete implementation values inside the
underlying component (and thus violating encapsulation), the
component is required to provide the computational equivalent of
an abstraction function (or abstraction relation). Program-level
classes that correspond to the various mathematical modeling
types used in defining the state model and pre- and postconditions
for the component are used to represent abstract (specification-
level) values. The result is that the wrapper asks the component
to “project” an abstract value of its current state as a separate ob-
ject. All checking and analysis is then done on this object, which
is designed to mimic the corresponding mathematical abstraction.

This abstraction relation approach can be co-opted for a reflective
specification wrapper to provide additional intercessory capabili-
ties. If a component were to provide both an abstract-relation-
based projection function (“convert-to-abstract-model™) and a
corresponding injection function (“convert-from-abstract-
model”), then it would be possible for a development environment
or other tool to directly access and manipulate an abstract repre-
sentation of the state of a component. Further, manipulations of
that abstract representation could then be “pumped back down”
into the component itself. This approach works naturally for
components where the abstraction relation is a one-to-one map-
ping. For many-to-one or many-to-many mappings from repre-
sentations to abstract values, practical convert-from-abstract-
model injection functions are not always possible, and so such a
feature cannot be required for all reflective wrappers.

While such an interface can be used for certain kinds of metapro-
gramming, in the context of component-based software, greater
impact is likely to accrue from using such a capability within a
development environment. All components would now have a
standard interface for plugging into state visualization tools, for
prototyping and testing use, and for interfacing with model-
checking tools.

4.6 Documentation?

To come full circle, one can also consider incorporating program-
level access to component documentation through a reflective
interface, as opposed to providing specification information
through traditional documentation. JavaDoc and other embedded
documentation strategies push the documentation down into the
source code in a way that allows tools to extract, format, package,
and navigate it for human readability. In the same manner, one
can imagine the specification object obtained from GetSpeci-
fication() providing component-level, per-operation-level,
and per-parameter-level documentation strings in a form suitable
for compilation into on-line documentation, use in a component
property browser, or use in a documentation search database. As
with current components, it is likely that printed documentation
will be needed for some purposes, but providing program-
accessible documentation through a standard interface may have
unexplored benefits.

5. LIMITATIONS

There are a number of drawbacks to explore when considering the
wrapper approach proposed here. One immediate concern is that
this approach may lead to code bloat in the final application, since
each component would now be accompanied by one or more sup-
plementary classes to provide its wrapper, testing support, abstract
value manipulation, and other services. The critical aspect of the
wrapper approach is that all of these services are designed for use
during development, when specification information about com-
ponents is most valuable, rather than after delivery, when compo-
nent specifications are of little or no use to the end user. Because
these additional services wrap the underlying component during
development, it is a simple matter to remove them for final release
builds, without requiring access to the component’s source code.

Another concern is whether or not this approach will demonstra-
bly lead to better quality components. However, the position in
this paper is that reflective wrappers are designed to provide a
mechanism to deliver and later access a component’s specification
(particularly by development tools). Solving this problem is nec-
essary to allow developers of component-based software to lever-
age the formal specifications created by component developers.
One should not make the mistake of presuming that any solution
to the specification packaging and distribution problem will, by
itself, be sufficient to guarantee an increase in software quality.

A more significant concern is the question of how specifications
will be communicated through the wrapper interface. A program-
manipulable representation of specification features is necessary
for this strategy to work. One possibility is to use the Extensible
Markup Language (XML) [30] to represent specification informa-
tion, which would require the development of one or more appro-
priate Document Type Definitions (DTDs). Such a representation
must be generally acceptable in order for tools to support it. It is
difficult to imagine that one representation could work for the
myriad of specification approaches and notations available today.
Instead, such a representation would most likely require difficult
choices about the specification approach to be used.

Finally, it is clear that packaging and delivery of specifications
using the wrapper approach will require additional work by com-
ponent developers above and beyond simply creating the specifi-
cations. Generation of wrapper boilerplate and implementation of
many wrapper services, including representing and accessing
specification details, can be automated so that no additional work
is required of component developers. However, fully supporting
all of the features described in Section 4 will require some manual
effort. The primary services that may require additional devel-
oper-supplied code are:

e Precondition, postcondition, and invariant checks for viola-
tion-checking services.

e Selection (and perhaps even construction) of test suites for
self-testing services.

e Abstract model projection and injection functions to support
abstract value manipulation.

To make this approach practical, it is clear that a “sliding scale™ of
wrapper functionality, where a given wrapper provides only some
subset of the reflective services described in Section 4, is desir-
able. Component developers who wish to devote the resources
necessary for implementing more comprehensive wrapper features

might then have an advantage in competing for more demanding
customers.

6. RELATED WORK

The wrapper approach to providing access to specification infor-
mation was initially inspired by a prior framework for run-time
behavioral contract checking [3] and a larger strategy for end-to-
end, automated, specification-based testing [2]. This prior re-
search is also related to formal specification and to verification, as
well as specification-based testing and parameterized program-
ming. Because of the sweeping nature of the position advocated
here, it is related to and has been influenced by a wide variety of
existing work across a selection of topics in design, programming
languages, formal specification, testing, and software reuse.

Reflection has a 20-year history in programming languages [24],
and has been widely discussed at OOPSLA, at the Annual Work-
shops on Object-Oriented Reflection and Metalevel Architectures,
and more recently at the International Conference on Meta-Level
Architectures and Reflection. Kiczales has provided one of the
most influential discussions of the subject in the context of CLOS
[11]. Ferber described alternative approaches to supporting com-
putational reflection in class-based OOPLs [5]. The proposal in
this paper adds nothing new to the realm of reflection—instead it
aims to take what has been learned about reflection in the design
of object-oriented languages and reapply those insights to a new
problem: packaging and providing access to specification infor-
mation and related services. The primary difference in the ap-
proach proposed here is that many useful reflection capabilities
can be provided within a framework that does not support reflec-
tion simply by using wrappers (although general computational
reflection cannot, of course). Past work involving formal specifi-
cation and reflection has primarily focused on reflection as a
specification technique, or on how to specify reflective behavior
[14, 23].

Within the reuse community, the issue of providing program-level
access to specification features has received little attention. The
question of how and what to describe in relation to a component’s
verification history, however, has been discussed widely under the
topic of “component certification™ [20, 4, 29, 21, 10]. Lessons
from the reuse community provide much insight into what kinds
of information may be useful to clients in this regard.

The interface violation checking approach described here [3]
naturally meshes with Bertrand Meyer’s view of design by con-
tract [18]. A violation checking wrapper is intended to provide
run-time checking of such contractual obligations while separat-
ing such checks from either of the parties involved. The value
added by the wrapper approach results from separating the check-
ing code from both the client and the base component and
promoting it to a separately manageable class. This addresses
concerns about clutter, expression of more complex conditions,
and detracting from the focus of the underlying implementation,
while allowing one to easily include or exclude checks on a per-
component basis in a plug-and-play fashion.

Alternative approaches to run-time assertion checking include
Eiffel [19], iContract [13], Rosenblum’s Annotation Pre-
Processor (APP) [22], and Kiczales” Aspect] [12]. Eiffel supports
compiler-generated run-time checks based on user-provided Boo-
lean assertions phrased in terms of publicly exported class fea-
tures. iContract provides services similar to those of Eiffel, but

for Java programs. APP allows separately defined checking op-
erations to be compiled into or out of C code for assertion check-
ing, but makes no distinction between values at the abstract,
specification level and the concrete, implementation level. As-
pect] allows one to create a separate aspect containing checking
code and then choose whether or not to weave this cross-cutting
decision into a non-checking implementation at build time. In
many ways, Aspect] is philosophically closest to the approach
advocated here.

The self-testing concepts folded into the reflective wrappers pro-
posed here have been most heavily influenced by current research
in automated, specification-based testing [2]. The idea of provid-
ing self-testing capabilities through a standard interface is or-
thogonal to the approach(es) used to generate test suites and the
approach(es) used to assess correctness. As a result, virtually any
testing approach could be integrated into the wrapper strategy.

7. SUMMARY

For clients to receive the benefits provided by formal specifica-
tions, those specifications must be distributed to clients along
with the components they describe. The discussion presented
here explores some of the issues surrounding the question of how
best to package and deliver such specification information.

The position taken in this paper is that a component’s specifica-
tion (and other supporting information) should be provided as
another component (or set of components), consisting of a reflec-
tive specification wrapper and associated specification objects.
This position is based on three insights: reflection supports both
human-oriented and tool-oriented access to specifications; a
wrapper approach cleanly allows the addition of interface func-
tionality and opens up powerful reflection capabilities, even when
the underlying component technology does not support reflection;
and the whole scheme can be implemented in a manner transpar-
ent to client code.

Given this position, potential introspective and intercessory ser-
vices for reflective specification wrappers were explored. In addi-
tion to specification and verification information, reflective wrap-
pers could potentially be used to provide services for violation
checking, self-testing, and even abstract value manipulation.
Even documentation could be accessed programmatically through
a reflective wrapper. Although such reflective specification wrap-
pers have not been implemented in the form proposed here, their
potential deserves further investigation.

The position taken in this paper only outlines one possible
mechanism for packaging and delivering specification informa-
tion, however. While many of the services and capabilities sug-
gested in this paper require significant research issues to be ad-
dressed before one can capitalize on the wrapper approach, the
services are orthogonal enough that progress can be made incre-
mentally. Nevertheless, the cornerstone of the approach involves
capturing and representing “plain old specifications.” First and
foremost, this research issue must be solved for the position es-
poused here to be viable. A program-manipulable representation
of specification features is necessary for this strategy to work—
perhaps one based on XML. Such a representation must be gen-
erally acceptable in order for tools to support it. It is difficult to
imagine that one representation could work for the myriad of
specification approaches and notations available today. Instead,

such a representation would most likely require difficult choices
about the specification approach to be used.

8. ACKNOWLEDGMENTS

Bruce Weide, Murali Sitaraman, and Joseph Hollingsworth have
all contributed to the basic approach proposed in this paper; their
contributions are greatly appreciated. In addition, we gratefully
acknowledge financial support from Virginia Tech and from the
National Science Foundation under grant CCR-0113181. Any
opinions, conclusions or recommendations expressed in this paper
are those of the author and do not necessarily reflect the views of
NSF or Virginia Tech.

9. REFERENCES

[1] Edwards, S.H. Black-box testing using flowgraphs: An ex-
perimental assessment of effectiveness and automation
potential. Software Testing, Verification and Reliability,
Dec. 2000; 10(4): 249-262.

[2] Edwards, S.H. A framework for practical, automated black-
box testing of component-based software. Sofiware Testing,
‘erification and Reliability, June 2001; 11(2).

[3] Edwards, S., Shakir, G., Sitaraman, M., Weide, B.W., and
Hollingsworth, J. A framework for detecting interface viola-
tions in component-based software. In Proc. 5th Int'l Conf.
Software Reuse, IEEE CS Press: Los Alamitos, CA,1998, pp.
46-55.

[4] Edwards, S.H., and Weide, B.W. WISRS8: 8" Annual Work-
shop on Software Reuse: Summary and working group re-
ports. ACM SIGSOFT Software Engineering Notes,
Sept./Oct. 1997; 22(5): 17-32.

[5] Ferber, J. Computational reflection in class based object-
oriented languages. ACM SIGPLAN Notices (Proc. OOP-
SLA’89), Oct. 1989; 24(10): 317-326.

[6] Foote, B., and Johnson, R.E. Reflective facilities in Small-
talk-80. ACM SIGPLAN Notices (Proc. OOPSLA’89), Oct.
1989; 24(10): 327-335.

[7] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[8] M.J. Harrold. Testing: A road map. In The Future of Sofi-
ware Engineering, A. Finkelstein, ed., ACM Press, New
York, NY, 2000, pp. 61-72.

[9] Hollingsworth, J.E., Blankenship, L., and Weide, B.W. Ex-
perience report: Using RESOLVE/C++ for commercial soft-
ware. In Proc. ACM SIGSOFT 8th Int’l Symposium on the
Foundations of Software Engineering (San Diego, CA, No-
vember 2000), ACM, pp. 11-19.

[10]1EEE. Supplement to IEEE Standard for Information Tech-
nology—Sofiware Reuse—Data Model for Reuse Library In-
teroperability: Asset Certification Framework. IEEE Std
1420.1a-1996, Apr. 3, 1997.

[11]Kiczales, G., des Rivieres, I., Bobrow, D.G. The Art of the
Metaobject Protocol. MIT Press, 1992.

[12]Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W.G. Aspect-oriented programming with As-
pectl. Available on-line at http://www.aspectj.org.

[13]Kramer, R. iContract—the Java design by contract tool. In
Proc. Technology of Object-Oriented Languages, TOOLS
26, IEEE CS Press, 1998, pp. 295-307.

[14]Kurihara, M. and Ohuchi, A. An algebraic specification of a
reflective language. In Proc. 15" Annual Int’l Computer
Software and Applications Conf., COMPSAC '91, IEEE CS
Press, 1991, pp. 231-236.

[15]Latour, L., Wheeler, T., and Frakes, B. Descriptive and pre-
dictive aspects of the 3Cs model, SETA1 working group
summary. Ada Letters (Proc. 1* Symp. Environments and
Tools for Ada), Spring 1991; 11(3): 9-17.

[16]Lee, A.H. and Zachary, J.L. Reflections on metaprogram-
ming. [EEE Trans. Sofiware Engineering, Nov. 1995;
21(11): 883-893.

[17]Maes, P. Concepts and experiments in computational reflec-
tion. ACM SIGPLAN Notices (Proc. OOPSLA '87), Dec.
1987; 22(12): 147-155.

[18]Meyer, B. Applying “design by contract.” Computer, Oct.
1992; 25(10): 40-51.

[19]Meyer, B. Object-Oriented Software Construction, 2nd
Edition. Prentice Hall PTR: Upper Saddle River, New Jer-
sey, 1997.

[20] Poulin, 1., and Tracz, W. WISR'93: 6" Annual Workshop on
Software Reuse: Summary and working group reports. ACM
SIGSOFT Software Engineering Notes, Jan./Feb. 1994;
19(1).

[21]Rohde, S.L., Dyson, K.A., Geriner, P.T., and Cerino, D.A.
Certification of reusable software components: Summary of
work in progress. In Proc. 2™ IEEE Int'l Con. Engineering
of Complex Computer Systems. IEEE CS Press, 1996,
pp.120-123.

[22]Rosenblum, D.S. A practical approach to programming with
assertions. [EEE Trans. Sofiware Eng., Jan. 1995; 21(1): 19-
31.

[23] Saeki, M., Hiroi, T., and Ugai, T. Reflective specification:
Applying a reflective language to formal specification. In
Proc. 7™ Int’l Workshop on Software Specification and De-
sign, IEEE CS Press, 1993, pp. 204-213.

[24] Smith, B. Reflection and semantics in a procedural lan-
guage. Technical Report 272, Massachusetts Institute of
Technology, Laboratory for Computer Science, Cambridge,
MA, 1982.

[25] Szyperski, C. Component Sofiware: Beyond Object-
Oriented Programming, Addison-Wesley, 1998.

[26] Weide, B.W., Heym, W.D., and Hollingsworth, J.E. Reverse
engineering of legacy code exposed. In Proc. 17" Int’l Conf.
Software Engineering, ACM, Seattle, WA, Apr. 1995, pp.
327-331.

[27] Weide, B.W., Heym, W.D., and Ogden, W.F. “Modular re-
gression testing”: Connections to component-based software.
In Proc. 9" Annual Workshop on Software Reuse, Jan., 1999.

[28] Wing, I.M. A specifiet's introduction to formal methods. [30] www.xml.org.
1IEEE Computer, Sept. 1990; 29(9): 8-24.

[29] Wohlin, C., and Runeson, P. Certification of software com-
ponents. /[EEE Trans. Software Engineering, June 1994;
20(6): 494-499.

