On Contract Monitoring for the Verification of
Component-Based Systems

Philippe Collet
Objects and Software Components Group

Laboratoire 13S - CNRS - Université de Nice - Sophia Antipolis
Les Algorithmes- Bat. Euclide B, 2000 route des Lucioles
BP 121, F-06903 Sophia Antipolis Cedex, France

Philippe.Collet@unice.fr

ABSTRACT

This position paper focuses on contract monitoring for com-
ponent interfaces, considering the verification of functional
and non-functional properties in the contracts. We inves-
tigate what properties are needed on behavioral and Qual-
ity of Service contracts. We also define what are the re-
quirements on a monitoring environment to handle properly
those contracts. We briefly transpose those requirements to
a meta-level architecture.

1. INTRODUCTION

The development of component-based systems intends to
deliver the beneficial effects that the object-oriented ap-
proach failed to completely provide: reuse of out-sourced
pieces of software and thus increased productivity. The def-
inition of component devised during the 1996 Workshop on
Component-Oriented Programming [1] is the following: “A
software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies
only. A software component can be deployed independently
and is subject to composition by third parties.”

In this definition, the specification process is clearly re-
lated to contractually specified interfaces. This position pa-
per focuses on the general notion of contract for components,
that is a component must expose functionalities, through its
functional contract, and its performances, using some non-
functional contract. More precisely, Beugnard et al [3] cat-
egorize contracts in four levels:

1. Syntactic contracts, that is signatures of data types.

2. Behavioral contracts, that is some semantic descrip-
tion of data types,

3. Synchronization contracts, which deal with concurrency
issues.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 2001 Philippe Collet.

4. Quality of Service (QoS) contracts, which encompass
all non-functional requirements and guarantees.

We consider it crucial to dispose of such contracts if we
want software components to behave like components from
other engineering domains. Moreover, software components
can certainly be the right software units to justify the ad-
ditional cost of using more formal approaches, as their life
cycle and their marketing strategies might be driven by qual-
ity. To create a real market of software components, appli-
cation developers must be capable of browsing, comparing
and choosing components [13] according to all their exposed
properties: an expression of services and quality of these ser-
vices is then obviously necessary. Those specifications must
then be verified one way or another.

Consequently we believe that the specification and verifi-
cation of component-based systems must take into account
those four levels of contract from the start, to provide a
broad and consistent framework to handle those different
kinds of properties. As we also believe that expressive for-
malisms are needed to support the contractual approach,
we base our work on the hypothesis that it is not possible
to fully verify statically that such contracts are never vio-
lated. The runtime enforcement of those contracts together
leads to specific monitoring problems as a straightforward
combination of separate contracts monitoring would inter-
fere with each other. A specific monitoring framework is
needed to handle all kinds of contract and we consider that
an appropriate meta-level architecture must be defined to
provide such a framework.

In this paper, we investigate what properties are needed
on contracts, by considering two specific levels, behavioral
and QoS. We define the global contract which consists of the
combination of the four levels. We describe what are the re-
quirements on a monitoring environment to handle properly
those contracts. We briefly transpose those requirements
to a meta-level architecture, both in its design and in its
implementation.

2. SPECIFICATION OF BEHAVIORAL AND
QOS CONTRACTS

In this paper, we only focus on the behavioral and QoS
contracts. The first level of contract corresponds to type
signatures, and type checking is usually performed stati-
cally. The synchronization aspects of contracts still need



to be studied in a general enough component framework, as
concurrency issues are often reduced to the means of com-
munication of a given connector of a component.

2.1 Behavioral Contract

Several specification techniques can be envisaged to spec-
ify the behavioral semantics of component interfaces. Cur-
rently the contractual approach based on preconditions, post-
conditions and invariants is promoted as a pragmatic but
valuable specification technique for components. Current
component frameworks are based on, or at least promote,
OO programming languages. The majority of those OO
languages provide only the first level of contract, but there
are languages, such as Eiffel [12], that inherently incorporate
behavioral contracts with preconditions, postconditions and
invariants. Many extensions to existing languages with be-
havioral contracts, such as iContract [10] or JML [11] for
Java, have also been designed.

Szyperski [14] showed that behavioral contracts based on
pre and postconditions have several drawbacks related to
call-backs and re-entrance. Nevertheless, we believe it still
constitutes the best trade-off between expressiveness and
ease of comprehension by an average developer.

However, there are two different specification approaches
for those behavioral contracts:

e The first one can be qualified as language-based specifi-
cation, as the contract expression is a boolean expres-
sion of the annotated language, usually using all the
functional features (access to fields, method calls, ba-
sic types and operations) with some specific operators
to refer to previous states (old, @pre), to the result of
the annotated function (result), etc. The main refer-
ence is the Eiffel language [12], even if more expressive
assertion language have been proposed [10], with the
addition of quantification operators for example.

This approach suffers from its reuse of the annotated
language, as it is often hard to provide a complete for-
mal semantics for the assertion language, as the un-
derlying programming language does not provide one
either. Despite this problem, this approach is open
to partial specification, fits well with subtyping and is
well understood by developers.

Moreover, recent work [7] provides a sound framework
for behavioral contracts based on pre and postcondi-
tions. This theory [6] brings soundness regarding in-
heritance and interfaces in the context of the Java pro-
gramming language. But this theory is applicable to
many other cases.

e The other approach relies on model-based specifica-
tions [4], that is the annotations that make up the
contract are stated in terms of a mathematical model
of the states of objects. This kind of specification usu-
ally enables static analysis and theorem proving, as
they are based on an algebraic style. However, as the
expressiveness of the language increases, proofs are no
longer possible. Moreover, this kind of specification
is hard to understand by developers as they are not
trained or used to think in such a way.

A somewhat hybrid approach is now developed : JML
(Java Modeling Language) [11] restricts the use of mod-
els to model fields and reuses as much as possible the

Java syntax and semantics for basic operations in the
assertion language (access to fields, method calls, ba-
sic operators, etc.). JML also provides very interesting
features with the separate specification of normal and
exceptional behaviors, quantification operators and re-
finement of the specification models!. The runtime en-
forcement of some parts of the contract is also possible.
As a result, JML provides a well-founded basis from
the start, trying to be closer to developers.

Both approaches have advantages and drawbacks, and are
trying to eliminate their respective disadvantages: theoret-
ical work is done in the language-based approach, practical
issues motivate work in the model-based approach. One can
hope that the approaches will merge or that one approach
will reuse and adapt all beneficial aspects of the other one.

In the meantime, it must be noted that both JML and
language-based contracts systems lead to the same kind of
runtime monitoring systems, which will be shown to inter-
fere with other contract levels.

2.2 QoS Contract

Regarding QoS, contracts have been investigated in the
world of distributed objects and components systems. Soft-
ware components, in the broad sense, must be able to ex-
pose many different non functional properties, such as per-
formance, reliability, policies related to persistence, transac-
tions or security. Apart from the properties that are usually
provided by the container — or context —, designing a QoS
contract system expressing time and space performance in
function of some resources usage seems quite challenging, as
many aspects must be taken into account.

The complexity of algorithms can be easily related to an
order using the O notation on both the average and worst
cases. Both cases are likely to be relevant for a software
component. But this notation expresses complexity bounds,
independent of any deployment platform, so these formulas
need to be related to absolute bounds [14], showing some
real figures. In addition to the issue of comparing perfor-
mance, contracting QoS leads to the problem of handling
negotiation and renegotiation.

To our knowledge, no QoS contract language or system
expresses and verifies performance issues based on input pa-
rameters and resources usage, but QML (QoS Modeling Lan-
guage) [8] looks like the most advanced QoS specification
language. In QML, the QoS specification is made of three
mechanisms: contract type, contract and profile. Contract
type are QoS aspects, such as performance or reliability. A
contract is an instance of a contract type and a profile asso-
ciates a QML contract with an interface. The QoS aspects
that can be represented in QML are quite powerful, with dif-
ferent domains of value, constraints and even statistics on
measured values over a period of time. However QML does
not provide any means to express a QoS contract according
to some parameters that would come from the component
interface, e.g. to specify a time constraint in relation with
the size of an input data structure. Moreover resources con-
sumption cannot be specified. QML contracts are made of
constraints on domains of values, and a contract can refine

1JML also provides a when clause, which can be seen as part
of a level 3 contract on synchronization: if a method is called
and its preconditions hold, the call will wait until the when
clause holds as well.



another one by adding constraints or putting stronger con-
straints on an already constrained domain. Each kind of
constraint that can be defined in QML must specify a to-
tal order among its values. A conformance relation is then
defined between the contracts.

Monitoring QoS is not considered in QML [8], but similar
QoS oriented approaches monitor some properties at run-
time by configuring the middleware, or by using meta-level
mechanisms [2]. As some categories of QoS can involve per-
vasive monitoring, like security in Java [5], interferences be-
tween the separate QoS monitoring already proposed would
certainly occur. As general-purpose QoS specification for-
malisms are likely to be proposed, a contract monitoring en-
vironment must be carefully designed to enable to express
the correct combination of each corresponding monitoring
process. It must be also kept open enough to take into
account the possible new features. The environment must
also handle the case of partial conformance between QoS
contracts or during monitoring, e.g. a time constraint is re-
spected but a space constraint is not. Different policies are
then applicable: termination, renegotiation, etc. The same
problem arises on the global contract, as described in the
next section.

2.3 Putting Contracts Together

Considering all four levels together (type, behavior, syn-
chronization, QoS), a proper combination can be determined
in order to provide a global contract. The general specifica-
tion can simply be done separately in each contract formal-
ism and the conformance rule of this global contract is the
conjunction of all conformance rules. However, it is also im-
portant to consider the case where some partial conformance
is achieved, which typically leads to contract renegotiation
in QoS-aware systems. Different actions regarding the con-
tract can be started:

e Termination if the QoS contract is considered as too
important to be renegotiated.

e Renegotiation of the QoS contract with weaker con-
straints (e.g. a 3D component cannot provide a 30
frames/s rate and the new QoS contract asks for 25).

e Withdrawal of the QoS contract, getting back to a
purely functional best-effort approach.

e Renegotiation of the functional contract and possibly
of the QoS contract (e.g. the same 3D component
is asked to lower its resolution and may be asked to
maintain the 30 frames/s rate).

Consequently the combination of all contracts must be pro-
vided with the addition of dynamic negotiation capabilities,
which can be taken for example from the QoS formalism.

2.4 Monitoring Issues

Monitoring at runtime needs a proper support so that a
specific contract monitoring does not affect another moni-
toring process at a different level. For example, behavioral
and QoS monitoring can interfere if the monitoring code
that evaluates assertions create new objects when the QoS
is monitoring space occupancy. In the same way, the time
spent in monitoring must not be taken into account in pro-
filing time, unless explicitly specified. Consequently, mon-
itoring behavioral contracts must be done in a framework
that will not interfere on any other contract level:

e by not adding new types in the type hierarchy;

e by not modifying the program behavior in relation to
synchronization;

e and finally by not consuming any time or space!

Even if the first property can be achieved by modifying all
the methods that give access to type information, it is not
feasible to completely achieve the second and third proper-
ties. Nonetheless, the monitoring environment must strive
for minimizing the effect of the observer on the observed
phenomena.

3. REQUIREMENTS FOR
MONITORING CONTRACTS

In order to provide an appropriate framework to monitor
all kinds of contract, we propose exposing the necessary con-
cepts that are manipulated by behavioral contract systems.
In the same way, we expect to describe an open enough
framework for QoS monitoring, so that the monitoring pro-
cesses can be manipulated and composed at the global level.

3.1 Behavioral Contract Monitoring

The monitoring technique for such contracts consists in
checking the appropriate preconditions at the entry of a
method, the postconditions and invariants at the exit. Defin-
ing what are the appropriate assertions, i.e. the semantically
correct ones, to be monitored on a given object at runtime,
according to inheritance, subtyping and implemented inter-
faces [6] is considered as out of the scope of the monitoring
process. We present a list of requirements on the monitoring
system:

e The integration of the contract enforcement code with
the normal code must not create new visible classes or
methods — wrapping asserted methods is a common
way to integrate assertions —. KEven if programmers
can be told not to use these, any tool that uses the
modified class will consider them as normal unless cor-
rectly hidden or specified. Avoiding a pervasive inte-
gration is also important for the deployment footprint,
which could be constrained in a QoS contract.

e Specific data structures and code are usually necessary
to manage the integration, to avoid non-termination of
assertion checking due to recursion, to provide asser-
tion triggering at a fine-grained level (class or object)
and to make the checker thread-safe!

e All accesses to instance fields and all method calls that
are made to evaluate an assertion are recorded as such,
i.e. not counted in time measurement.

e All created objects during any evaluation are excluded
from space measurement.

e The synchronization policies and behaviors normally
defined for the component should not be modified.
How this can be achieved, totally or partially, remains
an open question. However, the sketched framework is
expected to be able to design and experiment proper
solutions.



The assertion languages always provide enhancements to
boolean expressions in order to increase expressiveness. The
most common ones are studied in relation to the monitoring
issues:

e Quantification operations (V, 3), or more generally
higher-level functions, need to be translated to the un-
derlying language, thus generating extra code and new
functions. That boils down to the first side-effects pre-
sented above.

e Access to the result of the annotated function usually
generates side-effects because of methods wrapping or
any other techniques used to provide this feature.

e Reference to the previous state of objects in the spec-
ification of procedures (old, @pre) is usually done by
generating local variables that keep references or val-
ues of the concerned variables by computation at the
method entry. They are later referenced at method
exit. This additional code generates side-effect. This
is also the same for the let construct, which is used
to avoid repetitions in assertions.

All the prototyped approaches that have been proposed so
far generates all, or almost all, side-effects listed above. That
includes approaches based on source to source processing,
bytecode adaptation, compile-time or runtime reflection and
aspect-based processing.

3.2 QoS Contract Monitoring

As a proper general QoS specification language is not
available, we infer some principles on how to monitor QoS.
Taking QML as an example, the monitoring would be based
on time measurement and appropriate recording to com-
pute necessary values and statistics. QoS in general would
be based on measurement of many parameters, to compute
results ranging from simple constraints to complex function
of several parameters, such as time and space requirements
together with dependencies on available resources, size of
input data, etc.

Consequently, the computation of these results needs to
be semantically correct, that is:

e without any interference from other contracts, and ac-
tually, without any interference coming from the com-
ponent surrounding, such as the services provided by
the container.

e at the appropriate times. Considering the method call
as the essential point of contracting, the monitoring
environment can be kept open by reusing the fine-
grained model of aspect-oriented programming [9] to
consider the following events: before the method call
(client side), at the method entry (provider side), be-
fore the exit (provider side), just after the method call
(client side). A distinction can also be made between
the method call and the effective method execution
(late binding).

3.3 Requirements for an appropriate meta-
level
Monitoring behavioral contracts can be seen as an aspect
in the sense of aspect-oriented programming [9]. Monitoring
some QoS properties in middleware has been done through

message reflection [2]. Consequently we consider that the
monitoring of all forms of contracts must be done in a ap-
propriate meta-level framework supporting message inter-
ception, as contracts are mainly monitored on method calls.
However this meta-level must satisfy strong constraints, as
it must provide a clear separation between the normal be-
havior and other aspects, so that monitoring of contracts
can be as transparent as possible to the semantics and to
QoS for the client.

We believe that this transparency can be achieved by
defining a minimal set of interactions between the two lev-
els, taking into account low-level issues such as object al-
location. At the meta level, the careful implementation of
the specific contractual constructs we have described is ex-
pected to enforce transparency as well. The main issue of
such a framework will certainly be performance, as both
levels will need to act as almost separate execution environ-
ments. The implementation of a prototype to experiment
these ideas has begun. It uses a language-based specifica-
tion language for Java, OCL-J, which adapts the Object
Constraint Language of UML to the Java programming lan-
guage. The developed prototype is intended to use the Java
Platform Debugging Architecture (JPDA), as this architec-
ture provides a framework that is close in some points to
our requirements. We expect these experiments to provide
feedback on how to properly design the interactions between
the base and the meta levels, as well as new insights in the
area of contract monitoring.

4. CONCLUSION

In order to provide quality software components, the spec-
ification and verification of component-based systems must
take into account both the functional and non-functional
contracting of interfaces. By considering a global contract
merging all kinds of contracts, we showed that renegotia-
tion of QoS contracts must be supported and that different
monitoring codes must be aware of each other and must not
interfere. Consequently we argue that contract monitoring
must be handled globally inside a meta-level that clearly
separates the base level and the meta-level in all functional
and non-functional aspects.

5. ACKNOWLEDGMENTS

Thanks to Jacques Malenfant for discussions on non-functional

contracts and for pinpointing the QoS specification language
QML.

6. REFERENCES

[1] International Workshop on Component-Oriented
Programming (WCOP’96), 1998.

[2] M. Aksit, A. Noutash, M. van Sinderen, and
L. Bergmans. QoS Provisioning in Corba by
Introducing a Reflective Aspect-Oriented Transport
Layer. In 1st ECOOP Workshop on Quality of Service
in Distributed Object Systems (QoSDOS 2000), 2000.

[3] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and
D. Watkins. Making Components Contract Aware.
Computer, 32(7), July 1999.

[4] Y. Cheon and G. T. Leavens. A Quick Overview of
Larch/C++. Journal of Object Oriented
Programming, 7(8):39-49, Oct. 1994.



[5]

[6]

[9]

[10]

U. Erlingsson and F. B. Schneider. IRM Enforcement
of Java Stack Inspection. In IEEE Symposium on
Security and Privacy, Oakland, California, May 2000.
R. B. Findler and M. Felleisen. Contract Soundness
for Object-Oriented Languages. In Proceedings of
OOPSLA 2001, 2001.

R. B. Findler, M. Latendresse, and M. Felleisen.
Behavioral Contracts and Behavioral Subtyping. In
Proceedings of Foundations of Software Engineering
(FSE’2001), 2001.

S. Frolund and J. Koistinen. Quality of Service
Specification in Distributed Object Systems Design.
Distributed System Engineering, December 1998.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An Overview of
AspectJ. In Proceedings of the 24th European
Conference on Object-Oriented Programming
(ECOOP’2001), Lecture Notes in Computer Science.
Springer Verlag (Berlin), 2001.

R. Kramer. iContract - the Java Design by Contract
Tool. In M. Singh, B. Meyer, J. Gil, and R. Mitchell,
editors, International Conference on Technology of
Object-Oriented Languages and Systems (Tools 26,
USA’98), IEEE Computer Society Press (New York),
1998.

G. T. Leavens, A. L. Baker, and C. Ruby. JML: A
Notation for Detailed Design. In H. Kilov, B. Rumpe,
and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175-188. Kluwer, 1999.
B. Meyer. Object-Oriented Software Construction. The
O-O series. Prentice Hall Inc. (Englewood Cliffs, NJ),
2nd edition, 1997.

H. L. Nielsen and R. Elmstrom. Proposal for Tools
Supporting Component Based Programming. In
Fourth International Workshop on
Component-Oriented Programming (WCOP’99), 1999.
C. Szyperski. Component Software — Beyond
Object-Oriented Programming. Addison-Wesley
Publishing Co. (Reading, MA), 1998.



