
Spying on Components: A Runtime Verification Technique

Mike Barnett and Wolfram Schulte
Microsoft Research
One Microsoft Way

Redmond WA, 98052-6399, USA
{mbarnett,schulte}@microsoft.com

ABSTRACT
A natural way to specify component-based systems is by an
interface specification. Such a specification allows clients of
a component to know not only its syntactic properties, as is
current practice, but also its semantic properties. Any com-
ponent implementation must be a behavioral refinement of
its interface specification. We propose the use of executable
specifications and a runtime monitor to check for behavioral
equivalence between a component and its specification. Fur-
thermore, we take advantage of the COM infrastructure to
perform this kind of runtime verification without any in-
strumentation of the implementation, i.e., without any re-
compilation or re-linking.

1. INTRODUCTION
We believe that component-based programming needs for-

mal specifications at the interface level. Currently there are
standardized ways to formally specify the syntactic proper-
ties of a component, for example, by type libraries or IDL
files for COM components [7]. However, the proper mech-
anism for specifying semantic properties is still an open re-
search topic. Clearly, clients of a component, whether they
are human or other software components, require some way
of understanding the behavior of a component. Natural lan-
guage descriptions, while valuable, are often incomplete or
ambiguous and are in any case limited to human consump-
tion.

Even if there was agreement on a particular specification
technique, there is still the problem of ensuring that a par-
ticular component does indeed implement its specification.
We propose an answer to the first problem and a technique
that partially addresses the second problem.

Our approach for specifying components is to use AsmL to
write an executable specification at the highest level of ab-
straction that defines the behavior of a component as seen
through its interface by a client. AsmL is an industrial-
strength specification language we have developed at Mi-
crosoft Research. Based on the theory of Abstract State

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA 2001 Workshop on Specification and Verification of Component-
Based SystemsOct. 2001 Tampa, FL, USA
Copyright 2001 M. Barnett and W. Schulte.

Machines (ASMs) [16], it allows the writing of operational
specifications at any given level of abstraction. Using it, we
have built models of real-world components, like intelligent
devices, internet protocols, debuggers and network compo-
nents [2, 14]. Because ASMs have a formal semantics, an
AsmL specification is itself a formal specification.

For the second problem, we use AsmL’s native COM con-
nectivity and the COM infrastructure to dynamically mon-
itor the execution of a component. By checking for behav-
ioral equivalence between the component and its concur-
rently executing specification we ensure that, during a par-
ticular run, the component is a behavioral refinement of its
specification, i.e., a behavioral subtype [22].

There are two major issues that we do not address in this
paper: non-deterministic specifications and callbacks. Both
are crucial elements of component-based specification and
we have developed solutions for both of them, but they are
beyond the scope of this paper. Although our system is
implemented for COM components, it applies to any com-
ponent technology that uses dynamic linking.

The paper is organized as follows. Section 2 gives an
overview of AsmL. Section 3 explains how to use AsmL to
write an interface specification. Then in Section 4 we ex-
plain our technique for runtime verification. In Section 5 we
describe some initial experiments we have conducted within
Microsoft. An overview of similar approaches is discussed in
Section 6; Section 7 summarizes, presents limitations, and
describes future work.

2. AsmL
We write executable specifications of components in the

Abstract State Machine Language (AsmL). The language is
based on the theory of Abstract State Machines [16]. It is
currently used within Microsoft for modeling, rapid proto-
typing, analyzing and checking of APIs, devices, and proto-
cols.

The key aspects which distinguish AsmL from other re-
lated specification languages are:

• it is executable,

• it uses the ASM approach for dealing with state,

• it has a full-fledged object and component system,

• it supports writing non-deterministic specifications.

Our web site [13] contains a complete description as well
as an implementation that is freely available for non-
commercial purposes.

1



Because AsmL has native COM connectivity (the next
release will also be integrated into the .NET framework), one
can not only specify components in AsmL and simulate them
but also substitute low-level implementations by high-level
specifications. This substition allows heterogeneous systems
to be built, partly developed using standard programming
languages and partly using executable specifications. It is
also crucial for implementing runtime verification without
the need for instrumenting the implementation.

Although not shown in this paper, non-determinism is one
of the key features of AsmL. It allows designers to clearly
mark those areas where an implementation must make a
decision. In AsmL, non-determinsm is restricted; you can
choose or quantify only over bounded sets [5].

AsmL specifications are model programs: they are oper-
ational specifications of the behavior expected of any im-
plementation. Thus, they provide a minimal model by con-
straining implementations as little as possible. There are
three main properties of AsmL that support this.

1. The ASM notion of step allows the specifier to choose
an arbitrary granularity of sequentiality. Within a sin-
gle step, all updates (assignment statements) are eval-
uated in parallel; locations (variables) are written in
one atomic transaction at the end of the step. Using
the maximal step size means that no unnecessary se-
quencing is forced on the implementer. An implemen-
tation is free to choose an evaluation order consistent
with efficiency considerations.

2. Non-deterministic (bounded) choice is a basic con-
struct in the language. Although non-determinism is
undesirable in an implementation, non-deterministic
specifications allow implementations to make the cor-
rect engineering decisions. For instance, a specification
might say that any element satisfying certain condi-
tions can be returned from a collection where the im-
plementation might make a particular choice based on
the efficiency of searching the data structures that are
employed.

3. High-level data structures and programming con-
structs allow a specification to be expressed in ways
that might not be acceptable when efficiency is the
primary concern. For instance, a specification might
not bother to normalize a data structure, but instead
re-organize and manipulate it each time it is accessed.

In general, the primary goal of a specification is to be as clear
and understandable as possible; the goal of an implementa-
tion is to meet engineering considerations such as execution
time, storage efficiency, etc.

Compared to an implementation language such as C++,
we have found AsmL specifications to be an order of mag-
nitude more compact. While part of this is due to the ad-
vantages offered by any higher-level notation, some part is
caused by the specific features of AsmL enumerated above.

3. INTERFACE SPECIFICATIONS
Figure 1 presents a small example that we use through-

out. It is not COM-specific. Although written in AsmL, it
corresponds exactly to an interface expressed in IDL. AsmL
makes implicit the fact that COM methods also return a sta-
tus value in addition to whatever other values they return;
compiler-generated code handles that automatically.

interface ICanvas
createFigure(. . .) as IFigure

interface IFigure
getColor() as Color
setColor(c as Color)
getBorder() as IBorder

interface IBorder
getWidth() as Integer
setWidth(i as Integer)

Figure 1: Example Interfaces: Syntax Only

interface ICanvas
createFigure(c as Color , . . .) as IFigure =

new IFigure(c, . . .)

interface IFigure
var color as Color
border as IBorder = new IBorder(3)
getColor() as Color = color
setColor(c as Color) = color := c
getBorder() as IBorder = border

interface IBorder
var w as Integer
getWidth() as Integer = w
setWidth(i as Integer) =

if i < 0 then throw Exception(. . .) else w := i

Figure 2: Example Interfaces: Semantics

The example provides interfaces for a component-oriented
drawing program: a client interacts with a root interface,
ICanvas, to create and manipulate geometric figures, which
support the interface IFigure. Each figure has a nested ob-
ject, a border, which supports the interface IBorder. That is,
a component supporting the IFigure interface also must be
able to provide a reference to an IBorder interface. Whether
this reference is actually to a separate component, or just
a different interface on the same component is exactly the
kind of underspecification that component-based program-
ming encourages.

The method createFigure returns a reference to the IFig-
ure interface on the figure that is created. A figure’s border
is created with some default attributes; the attributes can
be changed later through calls to methods such as setWidth.
Note the syntax of the interface definitions alone allows data
values and interface references to be distinguished.

An example AsmL specification for this interface is shown
in Figure 2. It is written as a model program, as opposed
to a set of pre- and post-conditions (although AsmL does
provide also that style of specification). It is a particularly
trivial model; this is good — such a trivial component should
not have a complicated specification.

Note that the method setWidth throws an exception if the
argument is less than zero. The exception must belong to

2



Client
C

Server
S

-

-calls

Figure 3: A client-server architecture

Client
C

Server
S

Proxy
P

Model
M

- -

?

-calls

Figure 4: Proxy Architecture

some interface, but we do not show it.

4. RUNTIME VERIFICATION
A component that interacts with an implementation of

ICanvas is a client, while the implementation is a server;
together their architecture is shown in Figure 3. We re-
fer to the client program as C and the implementation of
the server as S . The important feature implied by such
an architecture is that the client is completely unaware of
the identity of the server component. C is aware solely of
the functionality provided through whatever interfaces are
supported by S . This is the crucial feature we rely on for
implementing our runtime verification.

To enable the AsmL specification to spy on the interac-
tions between C and S , we insert a component, P , which
operates as a proxy, as shown in Figure 4. Using a proxy
allows the interaction of the client C and the server S to be
observed without having to instrument (i.e., modify) either
component. The proxy forks all of the calls made from C
to S so that they are delivered to the AsmL specification or
model, M . From now on, we use the letters C , S , M , and P
to refer to the client, server, model, and proxy, respectively.

Inserting a proxy is easily accomplished for COM compo-
nents [7]. Clients can initiate access to a COM component
only by making a request to the operating system. That re-
quest can be intercepted either with or without the client’s
cooperation. As long as the value returned to the client is a
valid interface reference, the client is unable to distinguish
whether the reference is to the actual implementation, S , or
to our proxy, P . In fact, it is this property of COM that
allows transparent access to COM components that are not
local to the machine on which the client is executing.

Runtime verification means that from the client’s point of
view, the observed behavior of the model is indistinguishable
from that of the server, i.e., they are behaviorally equivalent.
Because this is a dynamic check, it means they are equiva-
lent only on the observed behavior; ideally the specification
allows more behaviors. An implementation restricts its be-
havior, usually for reasons of efficiency.

When runtime verification uncovers a difference in behav-
ior between the specification and the implementation, there
is no a priori way to know which is “wrong” (unless one
assumes that the specification is always correct. . . ). We are
unaware of any method for creating perfect specifications;
one can only hope to use a specification language that sup-
ports a layered approach. Engineering practice has shown
the importance of separating unrelated concerns in order to
focus on the proper details at issue. We have tried to ensure
AsmL is such a language.

4.1 The ProxyP

All method calls between C and S are intercepted by P .
As far as C is concerned, it is accessing the functionality
provided by S and is unaware of either P or M . P manages
the concurrent execution of M and S ; it forks every call so
that they are delivered to M as well as S . P compares the
results from both components, checking at each interface
call that they agree in terms of their success/failure codes
as well as any return values. (In our examples, we do not
explicitly show the checks for the success or failure of the
methods.) As long as they are the same, the results are
delivered to C . Otherwise S and M are not behaviorally
equivalent; the discrepancy is made evident to an observer
of the system.

We create P automatically from the definition of the inter-
faces that are used between C and S . The correct operation
of P relies on two properties of object references in S that
allow them to be used as identifiers.

1. They must be stable: an object reference returned to
C maintains its identity in S . The client C can always
use that reference to refer to the same object.

2. They can be tested for equality: a reflexive, symmetric
operation allows P to distinguish different objects.

We believe both of these properties to be reasonable and
easily met; we mention them only to be explicit about our
dependencies.

4.2 Verifying Data
For methods that return atomic data values, runtime ver-

ification is comparatively simple. P maintains a global table
map, which stores object references created in P to pairs of
corresponding model and server object references:

map as Map of Object to (Object ∗ Object)

The datatype Map in AsmL is an associative array, i.e.,
an array whose indices do not have to be integers. Initially
this table contains just one entry: the reference of the root
object of P along with the tuple containing the references
to the roots of M and S . This entry is created when C
first connects to P . As object references are returned to the
client, the map is kept current, as explained in Section 4.3.

Thus when the client uses an interface reference of type
IFigure to call getColor, it is really calling the method on
an instance of a class, PFigure, defined in P . The behavior
of PFigure.getColor is shown in Figure 5. The table map
is consulted to retrieve the interface references to M and
S . Each is an interface reference to an object implementing
the interface IFigure in M and S , respectively. The method
getColor is called in each of the components and their return

3



class PFigure implements IFigure
getColor() as Color =

let (M ,S) = map(me)
let m = M .getColor()
let s = S .getColor()
if s 6= m then

throw Exception(. . .)
else

return s

Figure 5: PFigure.getColor

values are then compared to guarantee that M and S remain
equivalent, from the perspective of the client.

Consider the similar method setWidth that would be de-
fined on an instance of a class PBorder. If the client called
it with a negative argument, then M would throw an excep-
tion. In such a case, S.setWidth should also throw a subtype
of the same exception type.

4.3 Verifying Objects
The simple scheme outlined in Section 4.2 breaks down

when a method returns an interface reference. For instance,
in our example, the methods createFigure and getBorder
both return interface references. Consider the situation
when a client calls createFigure (which is probably the first
method the client will call). Our proxy, P , calls the method
on both the implementation and the model. Both M and S
will return to P a created object internal to the respective
components; the objects must support the IFigure interface.

One problem is that there is no way for P to make an
equality test between the references returned from M and
S . That is, it cannot decide at this time whether or not
the two figures are the same. That can be decided only as
operations returning simple data (such as getColor) on those
figures are invoked.

Another problem is that P needs to return a reference
(to an object supporting the IFigure interface) to the client.
If the interface reference from S is returned directly to C ,
then P will no longer be able to monitor the communication
between C and S . C may use that interface reference to
make further method calls and those calls would go directly
to S .

To solve both problems, P creates a a new local object,
p, from the class PFigure. P installs the pair of objects
returned from M and S in the global table map, indexed by
p. Instead of returning either the reference from M or S ,
it returns a reference to the local object p. Then, when the
client calls getColor on p, it is executing the method shown
in Figure 5.

In this way, all interface references from S are spoofed.
(This is the standard way marshalling proxies are created
for remote interfaces in COM [7].) Returning the interface
reference to the local object means that all future calls can
be monitored.

Now, consider the case when an interface reference is not
new; say it is a reference that has been returned from S in
some previous call. For instance, if getBorder is called more
than once on the same figure, the same reference will be re-
turned. So if S returns an interface reference, s1, then M

class PCanvas implements ICanvas
createFigure(. . .) as IFigure =

let (M , S) = map(me)
let m = M .createFigure(. . .)
let s = S .createFigure(. . .)
if (m = nothing) and (s = nothing) then

return nothing
else

let p = checkObjects(m, s)
if p = nothing then

let p′ = new PFigure()
map(p′) := (m, s)
return p′

else
return p

Figure 6: PCanvas.createFigure

checkObjects(m as Object , s as Object) as Object =
if (m = nothing) or (s = nothing) then

throw Exception(. . .)
elseif ∃ p ∈ domain(map)

where map(p) = (m, s) then
return p

elseif ∃ p ∈ domain(map)
where first(map(p)) = m

or second(map(p)) = s then
throw Exception(. . .)

else
return nothing

Figure 7: checkObjects

must also have returned an interface reference, m1. Again,
there is no way to know if the two interface references re-
fer to two “equal” components: equality cannot be decided
between them.

However, the references must have been seen together as a
pair the previous time; this is where we assume the stability
of the interface references. If the two returned references
form such a pair, then there is a local object, p, such that
map(p) is the pair (m1, s1). Then p is the spoof for the pair
and should be returned to C . Otherwise, there is some other
pair in the map (m2, s1), indexed by another local object p′.
(Remember the assumption is that s1 has been seen before,
i.e., returned from S at some earlier method invocation.)
This is enough evidence to know that M and S are not
behaviorally equivalent because they are not responding in
the same way to the same method call. The symmetric
argument handles the case when m1 has been seen by P
before.

All of these possibilities are illustrated in P ’s method for
createFigure as shown in Figure 6. The logic that decides
the correspondence (or lack thereof) between the returned
interface references is enapsulated in the method checkOb-
jects, which is defined in Figure 7. This explains how the
entry in the table retrieved in Figure 5 was initially created.

4



5. EXPERIENCES
Within Microsoft, we have used AsmL for runtime verifi-

cation in two case studies on existing product components.
Since they already existed, we reverse-engineered an AsmL
model from the available documentation, discussions with
the responsible product group, and (self-imposed) limited
access to the source code. We did not want to re-implement
the current components, but wanted to have a true n-version
system. Both components are of medium-size: between 50
and 100 thousand lines of code (LOC).

The first case study was partially described in [2]. We
created a model of the Debug Services component for the
.NET Runtime. The Debug Services control the execution
of a .NET component in the runtime; a debugger is a client
that requests the installation and removal of breakpoints,
etc. (In turn, a person executing a debugger is a client
of the debugger.) Our model was less than 4K LOC. The
published case study is more concerned with describing the
methodology for creating the specification. In the course of
performing runtime verification, we encountered a violation
of the Debug Services protocol. In conversations with the
product team, it turned out that there was an unresolved
ambiguity in the meaning of one method when used to re-
spond to a callback. While it could not be considered a
major bug in any sense, it did make them realize that they
had never decided how to resolve the ambiguity even though
they had held meetings about it. Had they been using run-
time verification, the problem would not have been able to
lie hidden for so long.

For our second case study we modeled the Network Con-
figuration Engine that is part of the Windows operating sys-
tem. The engine is responsible for maintaining a database
of installed network drivers and the network paths that ex-
ist between them. We wrote the specification only from the
documentation; it ended up being about 2K LOC. We per-
formed runtime verification using an automated test suite
provided by the product group and again found a discrepency
between the model and the implementation. For one partic-
ular method, a flag is used to choose between two different
behaviors. However in the real implementation there had
originally been three different behaviors and the one that
was removed was different from the one that was removed
from the documentation. This demonstrated the usefulness
of having a specification as documentation: had it been used
during the development process, the documentation would
have been guaranteed to be consistent with the implemen-
tation.

6. RELATED WORK
The need to specify and check components is widely rec-

ognized (cf. [26]). However there is neither a standard way
to specify components nor any standard for checking an im-
plementation’s conformance with its specification.

In a recent book, Leavens and Sitaraman [19] summarize
the current approaches for specifying components formally.
In that book, Leavens and Dhara [20] use the specification
language JML to specify Java components. As we do, JML
uses model programs in addition to pre- and post-conditions.
Our approaches are very similar, but JML is restricted to
specifying Java, while AsmL can be used with any program-
ming language. Müller and Poetzsch-Heffter’s [25] article
in the same volume also concerns the specification of inter-

faces, but with pre- and post-conditions. Their main con-
cern is the verification of frame properties, i.e., controlling
the modifications a method can make.

In Edwards et al. [9], an architecture is proposed for de-
riving wrappers for any class implementing an interface that
is enriched with pre- and post-conditions. Human interven-
tion is required to map the concrete state of the class to the
abstract state used in the interface specification. The advan-
tage of our approach is that the operations on the abstract
state are independent of the concrete state, so an AsmL
specification can check any implementation. However, the
use of an abstraction function means that discrepencies can
potentially be discovered earlier than by checking behavioral
equivalence as we do.

Jonkers, working at Phillips, is also working on interface
specifications [18]. In their work on Ispec, they use tran-
sition systems to provide the semantics for interface speci-
fications. However they don’t try to execute the model in
isolation or run it in parallel with the implementation. In-
stead they want to generate black-box tests.

Besides JML, there has been a lot of work on using as-
sertions to specify Java interfaces, e.g., Contract Java [11,
12], iContract [8], and Jass [4]. And of course, Eiffel [23,
24], uses pre- and post-conditions to specify components.
However, these do not introduce model programs as we do.

Closer to our work on runtime verification is the work on
program checking as proposed by Blum and Wasserman [6].
They argue that it is often much easier to write a program
that checks whether a result is correct, than to prove the
algorithm correct that produces the result. For example,
it is difficult to factor an integer, but, given x and y , it is
trivial to determine whether or not y is a factor of x . In our
case the checker is the specification.

Using this idea, Antoy and Hamlet [1] propose the use of
algebraic specifications to specify software. Algebraic spec-
ifications use high level data structures, thus solving one of
the aforementioned problems of pre-/post-conditions. The
price is that when checking the implementation against the
specification one needs abstraction. Their system is able
to run the executable specification (in fact it is a rewrite
system) in parallel with the implementation in C; similar to
our framework, they check the results on the method bound-
aries. They include a comprehensive review of similar work;
we do not repeat it here. But due to the restricted nature of
algebraic specifications, they cannot deal with state or with
object identities (without a lot of coding).

Another similar project is the SLAM project by Herranz-
Nieva and Moreno-Navarro [17]. They developed a new
specification language and define class operations with pre-
/post-conditions. The resulting specifications are translated
to C++; part of the pre-/post-conditions are compiled to
Prolog. Using a bridge between C++ and Prolog, the Pro-
log clauses are used as assertions during runtime. Results
are speculative, since the project is in the early stages of
development.

While not specifically relating to interface specification,
Erlingsson and Schneider [10] have also developed a method
for injecting a runtime monitor into programs to enforce
security properties. In their examples, the monitors are de-
rived from finite automata and so are consequently limited.
The transitions of the automata must be triggered by events
that are observable at the level of machine code. This is ap-
propriate for the security properties they check, but are not

5



suited for checking interface properties.
Instead of performing checks at runtime, there has been

much work using static analysis to prove general properties
about a program. While it provides a more general result
that is true of any execution of the program, the limitations
of program analysis enforce a consequent weakening of the
set of properties that can be checked. Perhaps the most well
known static program checker is ESC/Java [21].

7. CONCLUSIONS
We have presented a specification method for interfaces

that allows a component implementing the interface to be
run concurrently with its specification with no need for re-
compiling, re-linking, or any sort of invasive instrumentation
at all. While runtime verification does not prove that the
component is correct (with respect to its specification), it
does guarantee that, for that particular trace, the compo-
nent is a behavioral subtype of its specification. For systems
that are not amenable to current formal verification technol-
ogy, this may be the highest degree of formal proof possible.
To be useful in real-world applications, formal specifications
must provide benefit within the existing development pro-
cesses. Runtime verification can be used as part of current
testing techniques, whether directed or ad-hoc.

We have used our methods to model two medium-sized
components within Microsoft and performed runtime veri-
fication during user scenarios as well as in the context of
testing using an automated test suite. Both times we have
been able to find discrepencies between the actual compo-
nent and its specification.

While this presentation has been restricted to determinis-
tic specifications and systems that do not make callbacks,
these burdensome qualifications are addressed in a more
complicated scheme [3]. Unfortunately, this scheme is sub-
ject to exponential worst-case behavior. We are developing
a new system that will be integrated into the .NET runtime,
which does not suffer from this drawback.

Our specification language, AsmL, allows other opportu-
nities which are beyond the scope of this paper. For in-
stance, we have used it for early prototyping and test-case
generation [15].

We believe that runtime verification shows promise in pro-
viding automated support for keeping a specification alive
and for ensuring that an implementation correctly imple-
ments its specification.

8. REFERENCES
[1] Sergio Antoy and Richard G. Hamlet. Automatically

checking an implementation against its formal
specification. Software Engineering, 26(1):55–69, 2000.

[2] Mike Barnett, Egon Börger, Yuri Gurevich, Wolfram
Schulte, and Margus Veanes. Using Abstract State
Machines at Microsoft: A case study. In Abstract State
Machines: Theory and Applications, volume 1912 of
LNCS, pages 367–379, Berlin, Germany, March 2000.
Springer-Verlag.

[3] Mike Barnett, Lev Nachmanson, and Wolfram
Schulte. Conformance checking of components against
their non-deterministic specifications. Technical
Report MSR-TR-2001-56, Microsoft Research, June
2001. Available from
http://research.microsoft.com/pubs.

[4] Detlef Bartetzko, Clemens Fischer, Michael Möller,
and Heike Wehrheim. Jass — Java with Assertions.
http://semantik.informatik.uni-
oldenburg.de/~jass/doc/index.html.

[5] A. Blass, Y. Gurevich, and S. Shelah. Choiceless
Polynomial Time. Annals of Pure and Applied Logic,
100:141–187, 1999.

[6] Manuel Blum and Hal Wasserman. Software reliability
via run-time result-checking. Journal of the ACM,
44(6):826–849, November 1997.

[7] Don Box. Essential COM. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1998.

[8] A. Duncan and U. Hölze. Adding contracts to Java
with handshake. Technical Report TRCS98-32,
University of California at Santa Barbara, December
1998.

[9] Stephen H. Edwards, Gulam Shakir, Murali
Sitaraman, Bruce W. Weide, and Joseph
Hollingsworth. A framework for detecting interface
violations in component-based software. In
P. Devanbu and J. Poulin, editors, Proceedings: Fifth
International Conference on Software Reuse, pages
46–55. IEEE Computer Society Press, 1998.

[10] Ulfar Erlingsson and Fred B. Schneider. SASI
enforcement of security policies: A retrospective.
Technical Report TR99-1758, Cornell University,
Computer Science, July 19, 1999.

[11] Robert Bruce Findler and Matthias Felleisen.
Behavioral interface contracts for java. Technical
Report TR00-366, Department of Computer Science,
Rice University, August 2000.

[12] Robert Bruce Findler, Mario Latendresse, and
Matthias Felleisen. Object-oriented programming
languages need well-founded contracts. Technical
Report TR01-372, Department of Computer Science,
Rice University, 6100 South Main Stree, Houston,
Texas, 77005, 2001.

[13] Microsoft Research Foundations of Software
Engineering, 2001.
http://research.microsoft.com/fse.

[14] Uwe Glässer, Yuri Gurevich, and Margus Veanes.
Universal plug and play machine models. Technical
Report MSR-TR-2001-59, Microsoft Research, June
2001. Available from
http://research.microsoft.com/pubs/.

[15] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte,
and Margus Veanes. Testing with Abstract State
Machines. In Formal Methods and Tools for Computer
Science, Eurocast 2001, pages 257–261. IUCTC
Universidad de Las Palmas de Gran Canaria, February
2001. Submitted for inclusion in LNCS ASM 2001.

[16] Y. Gurevich. Evolving Algebras 1993: Lipari Guide.
In E. Börger, editor, Specification and Validation
Methods, pages 9–36. Oxford University Press, 1995.

[17] Angel Herranz-Nieva and Juan Jose Moreno-Navarro.
Generation of and debugging with logical pre and
post-conditions. http://lml.ls.fi.upm.es/slam/.

[18] H.B. Jonker. Ispec: Towards practical and sound
interface specifications. In IFM’2000, volume 1954 of
LNCS, pages 116–135, Berlin, Germany, November
1999. Springer-Verlag.

[19] G. T. Leavens and M. Sitaraman (eds.). Foundations

6



of Component-Based Systems. Cambridge University
Press, New York, NY, 2000.

[20] Gary T. Leavens and Krishna Kishore Dhara.
Concepts of behavioral subtyping and a sketch of their
extension to component-based systems. In Gary T.
Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, chapter 6, pages
113–135. Cambridge University Press, 2000.

[21] K. Rustan M. Leino. Applications of extended static
checking. In Patrick Cousot, editor, Static Analysis:
8th International Symposium (SAS’01), Lecture Notes
in Computer Science, pages 185–193. Springer, July
2001.

[22] Barbara Liskov and Jeannette Wing. A behavioral
notion of subtyping. ACM Transactions on
Programming Languages and Systems,
16(6):1811–1841, November 1994.

[23] Bertrand Meyer. Eiffel: The Language.
Object-Oriented Series. Prentice Hall, New York, NY,
1992.

[24] Bertrand Meyer. Object-oriented Software
Construction. Prentice Hall, New York, NY, second
edition, 1997.

[25] P. Müller and A. Poetzsch-Heffter. Modular
specification and verification techniques for
object-oriented software components. In Foundations
of Component-Based Systems [19], pages 137–160.

[26] Clemens Szyperski. Component Software.
Addison-Wesley Publishing Company, Reading,
Massachusetts, 1999.

7


