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Abstract 
Software architecture is a crucial part of the specification of 
component-based systems.  Reasoning about software architecture 
can aid design, program understanding, and formal analysis.  
However, existing approaches decouple implementation code 
from architecture, allowing inconsistencies, causing confusion, 
violating architectural properties, and inhibiting software 
evolution.  ArchJava is an extension to Java that seamlessly 
unifies a software architecture with its implementation.  
ArchJava’s type system ensures that the implementation conforms 
to the architectural constraints.  Therefore, programmers can 
visualize, analyze, reason about, and evolve architectures with 
confidence that architectural properties are preserved by the 
implementation. 

1. Introduction 
Software architecture [GS93][PW92] is the organization of a 
software system as a collection of interacting components.  A 
typical architecture includes a set of components, connections 
between the components, and constraints on how components 
interact.  Describing architecture in a formal architecture 
description language (ADL) [MT00] can make designs more 
precise and subject to analysis, as well as aid program 
understanding, implementation, evolution, and reuse. 

Existing ADLs, however, are loosely coupled to implementation 
languages, causing problems in the analysis, implementation, 
understanding, and evolution of software systems.  Some ADLs 
[SDK+95][LV95] connect components that are implemented in a 
separate language.  However, these languages do not guarantee 
that the implementation code obeys architectural constraints, but 
instead rely on developers to follow style guidelines that prohibit 
common programming idioms such as data sharing.  Architectures 
described with more abstract ADLs [AG97][MQR95] must be 
implemented in an entirely different language, making it difficult 
to trace architectural features to the implementation, and allowing 
the implementation to become inconsistent with the architecture 
as the program evolves.  Thus, analysis in existing ADLs may 
reveal important architectural properties, but these properties are 
not guaranteed to hold in the implementation. 

In order to enable architectural reasoning about an 
implementation, the implementation must obey a consistency 
property called communication integrity [MQR95][LV95].  A 
system has communication integrity if implementation 
components only communicate directly with the components they 
are connected to in the architecture. 

This paper presents ArchJava, a small, backwards-compatible 
extension to Java that integrates software architecture smoothly 
with Java implementation code.  Our design makes two novel 
contributions: 

• ArchJava seamlessly unifies architectural structure and 
implementation in one language, allowing flexible 
implementation techniques, ensuring traceability between 
architecture and code, and supporting the co-evolution of 
architecture and implementation. 

• ArchJava also guarantees communication integrity in an 
architecture’s implementation, even in the presence of 
advanced architectural features like run time component 
creation and connection. 

The rest of this paper is organized as follows.  After the next 
section’s discussion of related work, section 3 introduces the 
ArchJava language.  Section 4 formalizes ArchJava’s type system 
and outlines a proof of soundness and communication integrity in 
ArchJava.  Section 5 briefly describes our initial experience with 
ArchJava.  Finally, section 6 concludes with a discussion of future 
work. 

2. Related Work 
A number of architecture description languages have been defined 
to describe, model, check, and implement software architectures 
[MT00].  Many ADLs support sophisticated analysis, such as 
checking for protocol deadlock [AG97] or formal reasoning about 
correct refinement [MQR95].  Some ADLs allow programmers to 
fill in implementation code to make a complete system 
[LV95][SDK+95].  However, there is no guarantee that the 
implementation respects the software architecture unless 
programmers adhere to certain style guidelines. 

Tools such as Reflexion Models [MNS01] have been developed 
to show an engineer where an implementation is and is not 
consistent with an architectural view of a software system.  These 
tools are particularly effective for legacy systems, where rewriting 
the application in a language that supports architecture directly 
would be prohibitively expensive. 

The UML is an example of specification languages that support 
various kinds of structural specification.  UML’s class diagrams 
can show the relationships between classes, and UML’s object 
diagrams show relationships between object instances.  However, 
in most UML tools, these diagrams are only intended to show 
some of the ways in which classes and objects can interact—they 
cannot be used to argue that no other kinds of interaction are 
possible, and thus do not support communication integrity.  
Object hierarchies can be expressed using composition 
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relationships, but this relationship does not enforce 
communication integrity either, because elements of the 
composition can still interact with outside objects. 

A number of computer-aided software engineering tools allow 
programmers to define a software architecture in a design 
language such as UML, ROOM, or SDL, and fill in the 
architecture with code in the same language or in C++ or Java.  
While these tools have powerful capabilities, they either do not 
enforce communication integrity or enforce it in a restricted 
language that is only applicable to certain domains.  For example, 
the SDL embedded system language prohibits all data sharing 
between components via object references. This restriction 
ensures communication integrity, but it also makes these 
languages very awkward for general-purpose programming.  
Many UML tools such as Rational Rose or I-Logix Rhapsody, in 
contrast, allow method implementations to be specified in a 
language like C++ or Java.  This supports a great deal of 
flexibility, but since the C++ or Java code may communicate 
arbitrarily with other system components, there is no guarantee of 
communication integrity in the implementation code. 

Component-based infrastructures such as COM, CORBA, and 
JavaBeans provide sophisticated services such as naming, 
transactions and distribution for component-based applications.  
Some commercial tools even provide graphical ways to connect 
components together, allowing simple architectures to be 
visualized.  However, these systems have poor support for 
structural specification of dynamically changing systems, and 
have no concept of communication integrity.  Communication 
integrity can only be enforced by programmer discipline following 
guidelines such as the Law of Demeter [LH89] that states, “only 
talk to your immediate friends” in a system. 

Advanced module systems such as MzScheme’s Units [FF98] and 
ML’s functors [MTH90] can be used to encapsulate components 
and to describe the static architecture of a system.  The FoxNet 
project [B95] shows how functors can be used to build up a 
network stack architecture out of statically connected components.  
However, these systems do not guarantee communication integrity 
in the language; instead, programmers must follow a careful 
methodology to ensure that each module communicates only with 
the modules it is connected to in the architecture. 

More recently, the component-oriented programming languages 
ComponentJ [SC00] and ACOEL [Sre01] extend a Java-like base 
language to explicitly support component composition.  These 
languages can be used to express components and static 
architectures.  However, neither language makes dynamic 
architectures explicit, and neither enforces communication 
integrity. 

3. The ArchJava Language 
ArchJava is designed to investigate the benefits and drawbacks of 
a relatively unexplored part of the ADL design space.  Our 
approach extends a practical implementation language to 
incorporate architectural features and enforce communication 
integrity.  Key benefits we hope to realize with this approach 
include better program understanding, reliable architectural 
reasoning about code, keeping architecture and code consistent as 
they evolve, and encouraging more developers to take advantage 
of software architecture.  ArchJava’s design also has some 
limitations, discussed below in section 3.6. 

A prototype compiler for ArchJava is publicly available for 
download at the ArchJava web site [ACN01a].  Although in 
ArchJava the source code is the canonical representation of the 
architecture, visual representations are also important for 
conveying architectural structure.  This paper uses hand-drawn 
diagrams to communicate architecture; however, we have also 
constructed a simple visualization tool that generates architectural 
diagrams automatically from ArchJava source code.  In addition, 
we intend to provide an archjavadoc  tool that would 
automatically construct graphical and textual web-based 
documentation for ArchJava architectures. 

To allow programmers to describe software architecture, ArchJava 
adds new language constructs to support components, 
connections, and ports.  The rest of this section describes by 
example how to use these constructs to express software 
architectures.  Throughout the discussion, we show how the 
constructs work together to enforce communication integrity, 
culminating in a precise definition of communication integrity in 
ArchJava.  Reports on the ArchJava web site [ACN01a] provide 
more information, including the complete language semantics and 
a formal proof of communication integrity in the core of 
ArchJava. 

3.1 Components and Ports 
A component is a special kind of object that communicates with 
other components in a structured way.  Components are instances 
of component classes, such as the Parser  component class in 
Figure 1. Component classes can inherit from other components. 

A component instance communicates with external components 
through ports.  A port represents a logical communication channel 

public component class  Parser { 
  public port  in { 
    provides void  setInfo(Token symbol, 
                           SymTabEntry e); 
    requires  Token nextToken() 
                   throws  ScanException; 
  } 
  public port  out { 
    provides SymTabEntry getInfo(Token t); 
    requires void compile(AST ast); 
  } 
 
  void parse(String file) { 
    Token tok = in.nextToken(); 
    AST ast = parseFile(tok); 
    out.compile(ast); 
  } 
 
  void  parseFile(Token lookahead) { ... } 
  void  setInfo(Token t, SymTabEntry e) { ... } 
  SymTabEntry getInfo(Token t) { ... } 
  ... 
} 
 

Figure 1.  A parser component in ArchJava.  The Parser  
component class uses two ports to communicate with other 
components in a compiler.  The parser’s in  port declares a 
required method that requests a token from the lexical 
analyzer, and a provided method that initializes tokens in 
the symbol table.  The out  port requires a method that 
compiles an AST to object code, and provides a method that 
looks up tokens in the symbol table. 
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between a component instance and one or more components that 
it is connected to. 

Ports declare three sets of methods, specified using the 
requires , provides , and broadcasts  keywords.  
Provided methods can be invoked by other components connected 
to the port.  The component can invoke a disjoint set of required 
methods through the port.  Each required method is implemented 
by a component that the port is connected to.  Broadcast methods 
are just like required methods, except that they must return void  
and may be connected to an unbounded number of 
implementations. 

A port specifies both the services implemented by a component 
and the services a component needs to do its job.  Required 
interfaces make dependencies explicit, reducing coupling between 
components and promoting understanding of components in 
isolation.  Ports also make it easier to reason about a component’s 
communication patterns. 

Each port is a first-class object that implements its required and 
broadcast methods, so a component can invoke these methods 
directly on its ports.  For example, the parse  method calls 
nextToken  on the parser’s in  port.  These calls will be bound 
to external components that implement the appropriate 
functionality. 

3.2 Component Composition 
In ArchJava, software architecture is expressed with composite 
components, which are made up of a number of subcomponents1 

                                                                 
1 Note: the term subcomponent indicates composition, whereas 

the term component subclass would indicate inheritance. 

connected together.  Figure 2 shows how a compiler’s architecture 
can be expressed in ArchJava.  The example shows that the parser 
communicates with the scanner using one protocol, and with the 
code generator using another.  The architecture also implies that 
the scanner does not communicate directly with the code 
generator.  A primary goal of ArchJava is to ease program 
understanding tasks by supporting this kind of reasoning about 
program structure. 

3.2.1 Subcomponents 
A subcomponent is a component instance that is declared inside 
another component class.  Components can invoke methods 
directly on their subcomponents.  However, subcomponents 
cannot communicate with components external to their containing 
component.  Thus, communication patterns among components 
are hierarchical. 

Subcomponents are declared using a component field—a field of 
component type inside a component class, declared using the 
component  keyword.  For example, the compiler component 
class defines scanner, parser, and code generator subcomponents.  
To enable effective static reasoning about subcomponents, 
component fields are treated as protected , final , and not 
static .  Subcomponents are automatically instantiated when the 
containing component is created—programmers can use a new 
expression in the field initializer in order to call a non-default 
constructor. 

3.2.2 Connections 
The connect  primitive connects two or more subcomponent 
ports together, binding each required method to a provided 
method with the same name and signature.   Connections are 
symmetric, and several connected components may require the 
same method.  Required methods must be connected to exactly 
one provided method.  However, invoking a broadcast method 
results in calls to each connected provided method with the same 
name and signature. 

Provided methods can be implemented by forwarding invocations 
to subcomponents or to the required methods of another port.  The 
semantics of method forwarding and broadcast methods are given 
in the language reference manual on the ArchJava web site 
[ACN01a].  Alternative connection semantics, such as 
asynchronous communication, can be implemented in ArchJava 
by writing custom “smart connector” components that take the 
place of ordinary connections in the architecture. 

3.3 Communication Integrity 
The compiler architecture in Figure 2 shows that while the parser 
communicates with the scanner and code generator, the scanner 
and code generator do not directly communicate with each other.  
If the diagram in Figure 2 represented an abstract architecture to 
be implemented in Java code, it might be difficult to verify the 
correctness of this reasoning in the implementation.  For example, 
if the scanner obtained a reference to the code generator, it could 
invoke any of the code generator’s methods, violating the 
intuition communicated by the architecture.  In contrast, 
programmers can have confidence that an ArchJava architecture 
accurately represents communication between components, 
because the language semantics enforce communication integrity. 

Communication integrity in ArchJava means that components in 
an architecture can only call each others’ methods along declared 

Compiler 
out  in out  in 

parser  codegen  scanner  

 
 
public component class  Compiler { 
  component Scanner scanner; 
  component Parser parser; 
  component CodeGen codegen; 
 
  connect  scanner.out, parser.in; 
  connect  parser.out, codegen.in; 
 
  public static void main(String args[]) { 
    new Compiler().compile(args); 
  } 
 
  public void  compile(String args[]) { 
    // for each file in args do: 
    ...parser.parse(file);... 
  } 
} 
 

Figure 2.  A graphical compiler architecture and its 
ArchJava representation.  The Compiler  component class 
contains three subcomponents—a Scanner , a Parser , 
and a CodeGen.  This compiler architecture follows the 
well-known pipeline compiler design [GS93].  The 
scanner , parser , and codegen  components are 
connected in a linear sequence, with the out  port of one 
component connected to the in  port of the next component. 
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connections between ports.  Each component in the architecture 
can use its ports to communicate with the components to which it 
is connected.  However, a component may not directly invoke the 
methods of components other than its children, because this 
communication may not be declared in the architecture—a 
violation of communication integrity.  We define communication 
integrity more precisely in section 3.5. 

3.4 Dynamic Architectures 
The constructs described above express architecture as a static 
hierarchy of interacting component instances, which is sufficient 
for a large class of systems.  However, some system architectures 
require creating and connecting together a dynamically 
determined number of components.  Furthermore, even in 
programs with a static architecture, the top-level component must 
be instantiated at the beginning of the application. 

3.4.1 Dynamic Component Creation 
Components can be dynamically instantiated using the same new 
syntax used to create ordinary objects.  For example, Figure 2 
shows the compiler’s main  method, which creates a Compiler  
component and calls its invoke  method.  At creation time, each 
component records the component instance that created it as its 
parent component.  For components like Compiler  that are 
instantiated outside the scope of any component instance, the 
parent component is null . 

Communication integrity places restrictions on the ways in which 
component instances can be used.  Because only a component’s 
parent can invoke its methods directly, it is essential that typed 
references to subcomponents do not escape the scope of their 
parent component.  This requirement is enforced by prohibiting 
component types in the ports and public interfaces of components, 
and prohibiting ordinary classes from declaring arrays or fields of 
component type.  Since a component instance can still be freely 
passed between components as an expression of type Object , a 
ComponentCastException  is thrown if an expression is 
downcast to a component type outside the scope of its parent 
component. 

3.4.2 Connect expressions 
Dynamically created components can be connected together at run 
time using a connect expression.  For instance, Figure 3 shows a 
web server architecture where a Router  component receives 
incoming HTTP requests and passes them through connections to 
Worker  components that serve the request.  The 
requestWorker  method of the web server dynamically creates 
a Worker  component and then connects its serve  port to the 
workers  port on the Router . 

Communication integrity requires each component to explicitly 
document the kinds of architectural interactions that are permitted 
between its subcomponents.  A connection pattern is used to 
describe a set of connections that can be instantiated at run time 
using connect expressions.  For example, connect pattern  
r.workers, Worker.serve  describes a set of connections 
between the component field r  and dynamically created Worker  
components. 

Each connect expression must match a connection pattern 
declared in the enclosing component.  A connect expression 
matches a connection pattern if the connected ports are identical 
and each connected component instance is either the same 

component field specified in the pattern, or an instance of the type 
specified in the pattern.  The connect expression in the web server 
example matches the corresponding connection pattern because 

WebServer 
workers 

serve 

request 

create 

Router 
 
 
 

Worker  

 
public component class WebServer { 
  component  Router r; 
  connect r.request, create; 
  connect pattern  r.workers, Worker.serve; 
 
  public void run() { r.listen(); } 
  private port create { 
    provides r.workers requestWorker() { 
      Worker newWorker = new Worker(); 
      r.workers connection 
        = connect (r.workers, newWorker.serve); 
      return connection; 
    } 
  } 
} 
  
public component class Router { 
  public port interface workers { 
    requires void httpRequest(InputStream in, 
                             OutputStream out); 
  } 
  public port request { 
    requires this .workers requestWorker(); 
  } 
  public void listen() { 
    ServerSocket server = new ServerSocket(80); 
    while ( true ) { 
      Socket sock = server.accept(); 
      this .workers conn = main.requestWorker(); 
      conn.httpRequest(sock.getInputStream(), 
                       sock.getOutputStream()); 
    } 
  } 
} 
 
public component class Worker extends Thread { 
  public port serve { 
    provides void httpRequest(InputStream in, 
                            OutputStream out) { 
      this .in = in; this .out = out; start(); 
    } 
  } 
  public void run() { 
    File f = getRequestedFile(in); 
    sendHeaders(out); 
    copyFile(f, out); 
  } 
  // more method & data declarations... 
} 
 

Figure 3.  A web server architecture.  The Router  
subcomponent accepts incoming HTTP requests, and pass 
them on to a set of Worker  components that respond. 
When a request comes in, the Router  requests a new 
worker connection on its requestWorker  port.  The 
WebServer  then creates a new worker and connects it to 
the Route r.  The Router  assigns requests to Workers  
through the workers  port. 
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the newWorker  component in the connect expression is of static 
type Worker , the same type declared in the pattern. 

3.4.3 Port Interfaces 
Often a single component participates in several connections 
using the same conceptual protocol.  For example, the Router  
component in the web server communicates with several Worker  
components, each through a different connection.  A port 
interface describes a port that can be instantiated several times to 
communicate through different connections at run time. 

Each port interface defines a type that includes all of the required 
methods in that port.  A port interface type combines a port’s 
required interface with an instance expression that indicates 
which component instance the type allows access to.  For 
example, in the Router  component, the type this .workers  
refers to an instance of the workers  port of the current Router  
component (in this case, this  would be inferred automatically if 
it were omitted).  The type r.workers  refers to an instance of 
the workers  port of the r  subcomponent.  This type can be used 
in method signatures such as requestWorker  and local 
variable declarations such as conn  in the listen  method.  
Required methods can be invoked on expressions of port interface 
type, as shown by the call to httpRequest  within 
Router.listen . 

Port interfaces are instantiated by connect expressions.  A connect 
expression returns a connection object that represents the 
connection.  This connection object implements the port 
interfaces of all the connected ports.  Thus, in Figure 3, the 
connection object connection  implements the interfaces 
Worker.serve  and r.workers , and can therefore be 
assigned to a variable of type r.workers . 

Provided methods can obtain the connection object through which 
the method call was invoked using the sender  keyword.  The 
detailed semantics of sender  and other language features are 
covered in the ArchJava language reference available on the 
ArchJava web site [ACN01a]. 

3.4.4 Removing Components and Connections 
Just as Java does not provide a way to explicitly delete objects, 
ArchJava does not provide a way to explicitly remove components 
and connections.  Instead, components are garbage-collected 
when they are no longer reachable through direct references or 
connections.  For example, in Figure 3, a Worker  component 
will be garbage collected when the reference to the original 
worker (newWorker ) and the references to its connections 
(connection  and conn ) go out of scope, and the thread within 
Worker  finishes execution. 

3.5 Limitations of ArchJava 
There are currently a number of limitations to the ArchJava 
approach.  Our technique is presently only applicable to programs 
written in a single language and running on a single JVM, 
although the concepts may extend to a wider domain.  
Architectures in ArchJava are more concrete than architectures in 
ADLs such as Wright, restricting the ways in which a given 
architecture can be implemented—for example, inter-component 
connections must be implemented with method calls.  Also, in 
order to focus on ensuring communication integrity, we do not yet 
support other types of architectural reasoning, such as reasoning 

about the temporal order of architectural events, or about 
component multiplicity. 

ArchJava’s definition of communication integrity supports 
reasoning about communication through method calls between 
components.  Program objects can also communicate through data 
sharing via aliased objects, static fields, and the runtime system.  
However, existing ways to control communication through shared 
data often involve significant restrictions on programming style.  
Future work includes developing ways to reason about these 
additional communication channels while preserving 
expressiveness.  Meanwhile, our experience (described below) 
suggests that rigorous reasoning about architectural control flow 
can aid in program understanding and evolution, even in the 
presence of shared data structures. 

4. ArchJava Formalization 
In this section, we discuss the formal definition of communication 
integrity and ArchJava’s semantics.  The next subsection defines 
communication integrity in ArchJava and intuitively explains how 
it is enforced.  Subsection 5.2 gives the static and dynamic 
semantics of ArchFJ, a language incorporating the core features of 
ArchJava.  Finally, subsection 5.3 outlines proofs of 
communication integrity, subject reduction, and progress for 
ArchFJ. 

4.1 Definition of Communication Integrity 
Communication integrity is the key property of ArchJava that 
ensures that the implementation does not communicate in ways 
that could violate reasoning about control flow in the architecture.  
Intuitively, communication integrity in ArchJava means that a 
component instance A may not call the methods of another 
component instance B unless B is A’s subcomponent, or A and B 
are sibling subcomponents of a common component instance that 
declares a connection or connection pattern between them. 

We now precisely define communication integrity in ArchJava.  
Let the execution scope of component instance A on the run time 
stack, denoted escope(A), be any of A’s executing methods and 
any of the object methods they transitively invoke, until another 
component’s method is invoked. 

Definition 1 [Dynamic Execution Scope]:  Let m be an executing 
method with stack frame mf .  If m is a component method, then 
mf  ∈ escope(this ).  Otherwise, mf  ∈ escope(caller(mf)). 

Now we can define communication integrity: 

Definition 2 [Communication Integrity in ArchJava]:  Let :< be 
the subtyping relation over component classes.  A program has 
communication integrity if, for all run time method calls to a 
method m of a component instance b in an executing stack frame 
mf , where mf  ∈ escope(a), either: 

1. a = b, or  

2. a = parent(b), or  

3. parent(a) = parent(b) ∧ “connect [pattern] 
(f|t) 1.p 1,...,(f|t) n.p n” ∈ class(parent(a)) 
∧ ∃i,j ∈ 1..n s.t. (parent(a).f i  = a ∨ type(a)<:t i ) ∧ 
 (parent(a).f j  = b ∨ type(b)<:t j ) ∧ 
 m ∈ requiredmethods(pi ) ∧ 
  m ∈ providedmethods(pj ) 
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4.2 Formalization as ArchFJ 
We would like to use formal techniques to prove that the 
ArchJava language design guarantees communication integrity, 
and show that the language is type safe—that is, show that certain 
classes of errors cannot occur at run time.  Unfortunately, proofs 
of type safety in a language like Java are extremely tedious due to 
the many cases involved, and to our knowledge the full Java 
language has never been formalized and proven type safe.  
Therefore, a standard technique, exemplified by Featherweight 
Java [IPW99], is to formalize a core language that captures the 
key typing issues while ignoring complicating language details. 

We have modified Featherweight Java (FJ) to capture the essence 
of ArchJava in ArchFJ.  ArchFJ makes a number of 
simplifications relative to ArchJava.  ArchFJ leaves out ports; 
instead, each component class has a set of required and provided 
methods.  Static connections and component fields are left out, as 
they are subsumed by dynamically created connections 
components.  We also omit the sender  keyword and broadcast 
methods.  As in Featherweight Java (FJ), we omit interfaces.  
These changes make our type soundness proof shorter, but do not 
materially affect it otherwise. 

4.2.1 Syntax 
Figure 4 presents the syntax of ArchFJ.  The metavariables C and 
D range over class names; E and F range over component and 
class names; S, T, and V range over types; P and Q range over 
component classes; f  and g range over fields; d and e range over 
expressions; l  ranges over labels generated by <fresh> ; and M 
ranges over methods.  As a shorthand, we use an overbar to 
represent a sequence.  We assume a fixed class table CT mapping 
regular and component classes to their definitions.  A program, 
then, is a pair  (CT, e) of a class table and an expression. 

ArchFJ includes the features of FJ plus a few extensions.  Regular 
classes extend another class (which can be Object , a predefined 

class) and define a constructor K and a set of fieldsf and 

methodsM.  Component classes can extend another component 

class, or Object  (as in FJ, there are no interfaces).  Component 

classes also declare a set of required methodsR  and a set of 

connection patterns X between their subcomponents. 

Expressions include field lookup, method calls, object and 
component creation, various casts, a connect expression, and an 
error expression.  These are extended from FJ in a few small 
ways: 

• All method calls capture the current object this  in an 
additional psuedo-argument which comes last and is not 
passed on to the callee. 

• Components are labeled with a fresh label when they are 
created (labels in a method body are freshly generated when 
a method call is replaced with the method’s body).  This 
label allows us to reason about object identity in an 
otherwise functional language (assignment is not relevant to 
our type system or definition of communication integrity).  
Components also keep track of their parent, and which of 
their parent’s component fields they were created with. 

• In addition to regular casts to a class type, there are two new 
cast forms: one that allows casting to the required interface 
of a component (i.e., the set of methods the component 
requires), and another that allows casting to a component 
field type.  The first cast accepts an instance expression type, 
while the latter cast includes an argument that captures the 
value of this  in the current scope.  Both arguments are 
used to verify the casts in the dynamic semantics. 

• A connect expression conceptually creates a connection 
object on which components can invoke their required 
methods.  The connect expression captures this , the parent 
object that created the connection. 

Types: 
 
T ::= P 
 | e.P R 
 | E   _ 
 | U(e.P R) 
 

Subtyping: 
 
 T : T <  (S-REFLEX) 
 

 
V : S

V : T    T : S

<
<<

 (S-TRANS) 

 

 
R2R1 .Qe : .Pe

Q : P

<
<

 (S-REQUIRED) 

 
 Object : T <  (S-OBJECT) 
 

 
RR

RR

e.P : )e.PU(

e.Pe.P

<
∈

 (S-UNION) 

 

 
F : E

} ... { F extends

E class ][component  E

<

=)(CT

 (S-EXTENDS) 

 

Figure 5.  ArchFJ Types and Subtyping Rules 

Syntax: 
                       _ _    _  

CL ::= class C extends C {C f; K M} 
                                       

CP ::= component  c las s P ex tends 
[P|Object] {C f; K M R X} 
      _ _         _        _   _ 

K ::= E(C f) {super(f); this.f = f;} 
        _ _ 

M ::= T m(T x) { return e; } 
                 _ _ 

R ::= required T m(T x) 
                      _ 
X ::= connect pattern (P) 
 
e ::= x 
 |   e.f _ 
 |   e.m(e,_this) 
 |   new C(e ) 

|   new P(e, <fresh>, e parent ) 
|   (C)e 
|   (e.P R)e 

 |   cast(this , P, e) 
 |   connect(e, this) 
 |   error 
 

Figure 4.  ArchFJ Syntax 
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• We represent failed dynamic checks (such as casts) with an 
explicit error  value, to make our progress theorem cleaner 
to state. 

4.2.2 Types and Subtypes 
ArchJava’s types and subtyping rules are given in Figure 5.  
Types include class and component types (E), required interface 
types of components (e.P R), and union types of multiple required 
interfaces.  Subtyping of classes and components is defined by the 
reflexive, transitive closure of the immediate subclass relation 
given by the extends  clauses in CT.  We require that there are 

no cycles in the induced subtype relation.  Required interface 
types follow the subtyping relation of components (ignoring the 
instance expressions, which are reasoned about separately from 
subtyping).  Finally, every type is a subtype of Object , and a 
union is a subtype of all its member types. 

4.2.3 Reduction Rules 
The reduction relation, defined by the reduction rules given in 
Figure 6, is of the form eÆe’ , read “expression e reduces to 
expression e’  in one step.”  We write Æ* for the reflexive, 
transitive closure of Æ.  The only unusual reduction rule is R-
XINVK, which allows method invocation on connection 
expressions.  The mbody helper function does a lookup to 
determine the correct method body to invoke.  Two error rules are 
defined representing casts that are not guaranteed to succeed by 
the type system presented below.  The reduction rules can be 
applied at any point in an expression, so we also need appropriate 
congruence rules (such as if eÆe’  then e.f Æe’.f ), which we 
omit here.  Furthermore, we assume an order of evaluation that 
follows Java’s normal evaluation rules. 

4.2.4 Typing Rules 
Most of the typing rules given in Figure 7 are standard.  Typing 
judgments are given in anHQYLURQPHQW +� D ILQLWH PDSSLQJ IURP

variables to types.  Rule T-INVK places constraints on passing 
connection objects to an argument position declared with a 
required interface and instance expression of this , to ensure that 
the connection object does indeed connect the receiver object.  
Rule T-PNEW introduces qualified component types.  Rule T-
CONNECT introduces union types for connections.  In addition, 
T-CONNECT verifies that some connection pattern in the current 
component matches the types of the connected objects; this will 
be important later for establishing that reduction cannot get stuck 
due to an illegal connection. 

Class, method, and connection typing rules check for well-formed 
class definitions, and have the form “class declaration E  is OK,” 
and “method/connection X is OK in E.”  The rules for class and 
method typing are similar to those in FJ.  In the case of 
component classes, the typing rule verifies that only subclasses of 
Object  may define required methods—as in ArchJava, 
component subclasses may only inherit existing required methods 
from their component superclass.  The connection typing rule 
verifies that each required method has a unique provided method 
with the right signature, and that every method name has only one 
signature across all the required methods. 

We have made one significant simplification relative to FJ.  We 
do not distinguish between upcasts, downcasts, and so-called 
“stupid casts” which cast one type to an unrelated one.  This 
means that our type system does not check for “stupid casts” in 
the original typing derivation, as Java’s type system does.  
However, the change shortens our presentation and proofs 
considerably, and the stupid casts technique from FJ can be easily 
applied to our system to get the same checks that are present in 
Java. 
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Figure 6.  ArchFJ Reduction Rules 



 8 

 

4.2.5 Auxiliary Definitions 
Most of the auxiliary definitions shown in Figures 8 and 9 are 
straightforward and are taken from FJ.  The connection typing 
rule verifies that the passed-in this  expression is one of the 
instance expressions in the union type.  The connection method 
lookup rule chooses the component i providing the method with 
mtype, based on the static types in the original connection 
declaration.  It is guaranteed to choose a unique component 
because the connection typing rule implies that mtype is only 
defined for one of the types in the connection.  It then picks the 
actual method body dynamically using the usual mbody rule.  
Finally, it returns the expression to be passed as this  in the 
method call. 

The legal rule checks that a connect expression corresponds to a 
connection pattern.  It also verifies that the connect expression 
was created inside the parent component of each sibling. 
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Figure 7.  ArchFJ Static Semantics 
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4.3 Theorems 
We state three main theorems: communication integrity, subject 
reduction, and progress.  Subject reduction and progress together 
imply that the ArchJava type system is sound.  First, the reduction 
rules ensure communication integrity: 

Theorem [Communication Integrity in ArchFJ]:   

1. For all direct method invocations on a component P that 
succeed, either P or P’s parent component is the current 
component this . 

2. For all method invocations on a connection that succeed, the 
current component P is part of the connection, P and the 
component Q being invoked either have the same parent or 
one is the parent of the other, and the parent P’  declared a 
connection pattern between P and Q. 

Proof:  Part 1 of communication integrity is ensured by the 
precondition dthis =e ∨ d this =eparent  of R-PINVK.  Part 2 of 

communication integrity is ensured by the precondition ed this ∈  

of R-XINVK as well as the definition of legal. 

The presentation of our Subject Reduction and Progress theorems 
is adapted from FJ [IPW99]. 

Theorem [Subject Reduction]:  If 00 Te ∈Γ --l  and 10 ee → , then 

11 Te ∈Γ --l  for some 01 T : T < . 

Proof sketch:  The main property required is the following term-
substitution lemma: 

Lemma 1 [Term Substitution]:  If 00 Te S:x , ∈Γ --l  and 

1Sd ∈Γ --l  where 01 S : S < , then 1T]exd[ ∈Γ --l  for some 

01 T : T < . 

Lemma 1 is proved by induction on the derivation of 

00 Te S:x , ∈Γ --l . 

The theorem itself can then be proved by induction on the 
derivation of 10 ee → , with a case analysis on the last rule used.  

Lemma 1 is useful in many of the steps, and especially for the 
congruence rules. 

The only tricky case is to show that the preconditions of T-INVK 
still hold after a reduction step.  This can be shown based on a 
case analysis on the introduction of required component types (T-
INVK, T-CONNECT, and T-CAST), and a lemma that term 
substitution preserves the required relationships among instance 
expressions. 

Theorem [Progress]:  Suppose e is a well-typed expression.  
Then either e has an error  subexpression, or e is a value made 
up of only new and connect expressions, or e Æ e’ . 

Proof sketch:  The theorem is proved by induction on the 
derivation of the reduction of e.  For each reduction rule, we 
show that any valid typing for the subexpressions in the left-hand-
side, together with the assumption of progress for the 
subexpression, implies the preconditions for the reduction rule.  
In most cases the implication is clear, but two interesting lemmas 
are necessary for rules R-PINVK and R-XINVK, respectively. 

Lemma 2 [An expression of component type reduces to this  
or a direct child component of this ]:   

Consider an expression ),e.m(et …  where et =new E(…) , 

mbody(m,E) = (x,e 0), and e0 has a subexpression this) ,e.m(e 11 .  

If Pe :Ethis ,T:x 1 ∈--l  and 

)e,Q( new /this]ee [d/x, parent1t …→ * , then either e1 = this  

or eparent  Æ* e t . 

This lemma can be proved by a case analysis of the last typing 
rule used in the typing derivation of e1.  There are only three rules 
that result in a component type: T-VAR, T-PNEW, and T-PCAST 
(methods cannot return component type, by the well-formed 
method rule).  The T-VAR rule gives a component type to a 
variable x , but the only way a component type can be introduced 
LQWR + LV E\ WKH FRPSRQHQW PHWKRG W\SLQJ UXOH� ZLWK x  = this .  If 
the component type was introduced in T-PNEW, e1 = new 
Q(…,this)  and so eparent  = et .  If the component type came 
from T-PCAST, e1 must be of the form cast(this, P, new 
Q(…,eparent )) , and so the derivation of 

)e,Q( new /this]ee [d/x, parent1t …→ *  must include a 

reduction rule R-PCAST which verifies that eparent  = et  in the 
final expression. 

Lemma 3 [Well-typed connection expressions are legal]:  If 
T)econnect(e, this ∈Γ --l  then )( )econnect(e, thislegal . 

The typing rule T-CONNECT, together with Lemma 2, 
demonstrates that all the required properties in legal hold. 

Method body lookup: 
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5. Evaluation 
We have written a prototype compiler for ArchJava, which is 
available for download from the ArchJava web site [ACN01a].  In 
order to determine whether the ArchJava language enables 
effective component-oriented programming, we undertook a case 
study applying ArchJava to Aphyds, a 12,000-line circuit design 
application written in Java. 

Results from our case study [ACN01b] indicate that for this 
program, the developer’s architecture can be expressed in 
ArchJava with relatively little effort (about 30 programmer hours).  
The resulting architecture yields insight into the program’s 
communication patterns, and may be useful in eliminating 
software defects. 

6. Conclusion and Future Work 
ArchJava allows programmers to effectively express software 
architecture and then seamlessly fill in the implementation with 
Java code.  This paper has motivated and outlined a language 
design integrating architecture and implementation, and proved 
type soundness and communication integrity in a formalization of 
ArchJava.  At every stage of development and evolution, 
ArchJava enforces communication integrity, ensuring that the 
implementation conforms to the specified architecture.  Thus, 
ArchJava helps to promote effective architecture-based design, 
implementation, program understanding, and evolution. 

In future work, we intend to extend the case study to larger 
programs, to see if ArchJava can be successfully applied to 
programs of 100,000 lines and up.  We will also investigate 
extending the language design to enable more advanced reasoning 
about component-based systems, including temporal ordering 
constraints on component method invocations and constraints on 
data sharing between components. 
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