
Specification and Verification
 of Component-Based Systems Workshop

Gary T. Leavens
Computer Science, Iowa State Univ.

229 Atanasoff Hall
Ames, IA 50011-1040 USA

+1-515-294-1580

leavens@cs.iastate.edu

Dimitra Giannakopoulou
NASA Ames Research Center

M/S 269-2
Moffett Field, CA 94035-1000 USA

+1-650-604-0504

dimitra@ptolemy.arc.nasa.gov

Murali Sitaraman
Computer Science, Clemson Univ.

419 Edwards Hall
Clemson, SC 29634 USA

+1-864-656-6738

murali@cs.clemson.edu

ABSTRACT
The associated poster summarizes results from the OOPSLA 2001
workshop on Specification and Verification of Component-Based
Systems. The workshop's goal is to explore foundations for
applying formal methods to component-based systems. The
results and future work sections of the poster will be prepared
during the workshop.

Keywords
Specification, verification, component-based systems.

1. INTRODUCTION
The goal of this workshop is to explore how formal (i.e.,
mathematical) techniques can be or should be used to establish a
suitable foundation for specification and verification of
component-based systems. Component-based systems [1][4][7]
are a growing concern for the object-oriented community.
Specification and reasoning techniques are urgently needed to
permit composition of systems from components, for which
source code is unavailable. The workshop will consider
formalization of both functional and performance behavior.

The workshop hopes to bring together both researchers and
practitioners in the areas of component-based software and formal
methods, with the aim of addressing specification and verification
problems. We are also interested in bridging the gap between
principles and practice. The idea is to focus more of the effort in
formal methods on component-based systems. Besides issues
important in object-oriented specification and verification, other
issues are also important in the practice of component-based
systems, such as concurrency, mechanization and scalability,
performance (time and space), reusability, and understandability.
The participants will brainstorm about these and related topics to
understand both the problems involved and how formal
techniques may be useful in solving them. The main expected
result of the meeting would be an outline of collaborative research
topics and a list of areas for further exploration.

1.1 Why do Components Need Formal
Methods?
To be able to use and reuse components reliably, one must be able
to predict what they will do when used together in a particular
context. Furthermore, one must have some degree of confidence
in their correctness and performance. Fundamentally, one must

have some kind of specification for the components in order to
even predict their behavior and even to ask whether they are
correct. The formality of the specification is not an end in itself,
rather it prevents ambiguity and also allows tools to use the
specification without having to: (a) understand natural language
and (b) understand enough domain knowledge to resolve
ambiguities (which will still not be possible in all cases).

Formal specifications lend themselves to processing by a variety
of tools. For example, type checkers can check for basic kinds of
consistency. Static analysis tools and model checkers can check
for various kinds of deeper semantic errors. Run-time checking of
specifications can help isolate errors. Specifications can also be
used to help generate test inputs. At the extreme, formal
verification systems can attempt to prove correctness of
implementations for all legal inputs. The kinds of tools applied
depend on how critical the software is; for example, software for
airplane control or for controlling nuclear reactors may undergo
more scrutiny than that for a video game.

Formal verification, i.e., proving the correctness of components
and their compositions can be expensive. For this reason, the term
in this context will be used in a broader sense, to include all the
different kinds of analysis approaches and tools described above
(such as type checkers or model checking). Formal verification, in
this sense, is an interesting topic of discussion for the workshop
for the following reasons. First, the capability to perform analysis
on a system (in particular with the help of automated tools)
leverages significantly the effort of formalizing specifications.
Second, formal verification serves as a surrogate for
understanding how a person or a tool might reason about
components and their compositions. That is, one can use formal
verification as a way of testing the soundness of various
techniques for reasoning, even if those techniques are most often
applied informally as “rules of thumb.”

The importance of using formal methods to gain understanding,
even if they are not applied directly in practice can be seen by
analogy to engineering disciplines. Bridge building and other
structural engineering projects were successfully carried out for
thousands of years before formal methods, such as Newtonian
mechanics and calculus, were developed to the point of useful
applicability. However, as bridge projects became more and more
complex and ambitious, spectacular failures became more
common; this was particularly true in the 19th and early 20th
centuries [5]. Formal models developed in materials science and
mechanical engineering played important roles in moving the

engineering of large structures out of the intuitive, “rule of
thumb” world and into a more rigorous realm that made more
ambitious projects possible. This analogy suggests that
component-based software engineering should also develop
formal methods, not necessarily for daily use, but in building tools
that can be used daily. This seems especially true in the areas of
specification, standardization, and reliability [6], all areas where
solid theoretical foundations are important contributors to
success.

Given the rationale above, why have even tools based on formal
methods found at best a limited application in practical
component-based technologies? Non-technical reasons contribute
to this situation, including industrial reluctance to use formal
notations, the need for training, and associated costs [2]. But other
reasons are technological. Part of the problem is the lack of
adequate tools, or tools that are powerful enough to justify their
cost. Here, lack of formality may be part of the problem; for
example, the lack of a precise formal semantics for some parts of
the UML hinders tools that try to use UML specifications.
Another part of the problem is the lack of expressiveness and
maturity of formal specification languages. Furthermore, many
analysis techniques are computationally expensive and may not be
able to deal with systems of realistic size. A topic for discussion at
the workshop is ways of increasing the scalability of specification
and verification techniques by making them more compositional.

1.2 What’s Different about Components?
Components pose some problems for formal methods that are
different, at least in degree, from object-oriented software. In
particular, one must have a compositional (i.e., modular) way of
reasoning about system compositions, because the source code for
components is not available [7]. Compositional reasoning is
reasoning about the (functionality and performance) behavior of a
system using the (functionality and performance) specifications of
the components of the system, without a need to examine or
otherwise analyze the implementations of those components. Of
course, compositional reasoning is desirable for object-oriented
software in general, but it is a necessity for component-based
systems.

Components also tend to make more demands on a formal
specification and verification system. One reason for this is that
they are often generic; instead of a dictionary that works with keys
that are a particular kind of string, a component often needs to
work with any type having a “hash” method. Components often
involve callbacks, which contribute to difficulties in both
specification and verification [7].

Compositional reasoning is also a problem for performance (e.g.,
time and space). Again, this is because in building a system from
components one does not have the ability to change the
underlying components. Hence, to have good performance for the
composed system, it becomes essential to have a way to reason
about the performance used by the components. To be
compositional, such reasoning must be based on the specifications
of the components, something that is traditionally ignored in
functional specifications.

Similarly, reasoning about concurrency properties, such as
absence of deadlock, becomes more difficult with components,
since aspects of the concurrent behavior of the component must
be specified in order to allow compositional reasoning.

2. RELATED WORK
There have been several other workshops on component-based
systems, both at OOPSLA and ECOOP. However, these
workshops tend not to address formal methods. Leavens and
Sitaraman previously organized a workshop at ESEC/FSE 1997
[3], which led to the publication of an edited volume [4]. Many of
the papers in that volume address the concerns of the workshop.
There was also a workshop addressing related concerns at ICSE
this year [1]. However, much remains to be done in this area.

3. GETTING MORE INFORMATION
The workshop’s web site is as follows.

 http://www.cs.iastate.edu/~leavens/SAVCBS/index.html

This web site will be maintained after the workshop and can be
visited for links to the participants and their papers. We hope to
organize a special issue of a journal that will invite revised and
expanded versions of the workshop papers.

4. ACKNOWLEDGMENTS
Leavens was supported in part by NSF grant CCR-009790.
Sitaraman was supported in part by DARPA project DAAH04-96-
1-0419, monitored by the U. S. Army Research Office. Leavens
and Sitaraman were also supported by NSF grant CCR-0113181.

5. REFERENCES
[1] Crnkovic, I., H. Schmidt, J. Staffor, and K. Wallnau.

Proceedings of the 4th ICSE Workshop on Component-
Based Software Engineering: Component Certification and
System Prediction. IEEE Comp. Soc., 2001.

[2] Hinchey, M. G., and J. P. Bowen. Applications of Formal
Methods FAQ. In M. G. Hinchey and J. P. Bowen (eds.),
Application of Formal Methods, chapter 1, pp. 1-15.
Prentice-Hall, 1995.

[3] Leavens, G. T., and M. Sitaraman (eds.). Foundations of
Component-Based Systems Workshop, Proceedings, 1997.
http://www.cs.iastate.edu/~leavens/FoCBS/index.html

[4] Leavens, G. T., and M. Sitaraman (eds.). Foundations of
Component-Based Systems. Cambridge U. Press, 2000.

[5] Petroski, H. Design Paradigms: Case Histories of Error and
Judgment in Engineering, Cambridge U. Press, 1994.

[6] Spector, A., and D. Gifford. A Computer Science Perspective
on Bridge Design, CACM, 29:268-283, 1986.

[7] Szyperski, C. Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, NY, 1998.

