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Abstract

Object-oriented systems are able to treat objects indirectly by message passing.
This allows them to manipulate objects without knowing their exact runtime type.
Behavioral subtyping helps one reason in a modular fashion about such programs.
That is, one can reason based on the static types of expressions in a program,
provided that static types are upper bounds of the runtime types in a subtyping
preorder, and that subtypes satisfy the conditions of behavioral subtyping. We
survey various notions of behavioral subtyping proposed in the literature for object-
oriented programming. We also sketch a notion of behavioral subtyping for objects
in component-based systems, where reasoning about the events that a component
can raise is important.

6.1 Introduction

Component-based systems require a renewed emphasis on specification and verifi-
cation, because if one is to build a computer system based on components built by
others, then one must know what each component is supposed to do and trust it to
carry out that task. Similarly, the builder of a component needs to know what be-
havior its users depend on, so that improvements in algorithms and data structures
can be made.

A specification of a component can meet both these needs, since it acts as a con-
tract between builders and their clients [LG86, Mey92]. The builders are obligated
to make the component behave as specified, but gain the opportunity to use any
data structures and algorithms that satisfy the contract. A client can only use the
component through the specified interface given by the contract; in particular the
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client is prohibited from using hidden features. In return, the client gains the ability
to treat the component abstractly, as a black box that behaves as specified.

6.1.1 Background

Traditionally, software has been specified using pre- and post-conditions [Hoa69,
Dij76, Hes92]. As is well-known, a procedure specification given in this style con-
sists of two predicates. The precondition describes the states in which the procedure
can be invoked; if procedures are modeled as relations between states (pre-state and
post-states), then the precondition is the characteristic predicate of this relation’s
domain. The postcondition describes the transformation of pre-states into accept-
able post-states; it is the characteristic predicate of the relation itself.

Abstract data types (ADTs) can also be specified using such specifications for
their operations; these specifications are written using a mathematical abstraction
of the values of objects of the type, called abstract values [FJ92, GHG+93, Jon90,
LG86, OSWZ94]. To prove an implementation of such a specification is correct, one
must be able to find an abstraction relation that relates the values of the objects used
in the implementation to the abstract values, in such a way that the relationship
is preserved by the operations, and is the identity on more fundamental types (like
the integers) [Hoa72, LP97, Nip86, Sch90, SWO97].

For components in the sense of Microsoft COM or Java Beans, specification
techniques are much less clear. Key features of components that are distinct
from OO systems and that affect specification and verification are the following
[Szy98, DW99].

• A component may provide more than one interface to its clients. For instance,
it will typically provide an interface for other components (listeners) to register
for the events that it may raise. However, each such interface can be specified
separately.

• A component may not be self-contained, but may have some requirements on the
context in which it must be used. However, one can treat these dependencies
as extra parameters, as, for example, is done in OBJ [FGJM85, Gog84] and the
RESOLVE family of specification languages [SWO97].

• A component will raise events (i.e., invoke callbacks) during execution of its op-
erations, for example when its instances experience state changes. Traditional
specification languages ignore such higher-order behavior, although the refine-
ment calculus [Bac88, Bv92, BvW98, Mor94, MV94, Mor87, Woo91] does pro-
vide a paradigm for specifying when such events are raised by using model (or
abstract) programs. (But it is only recently that it has been applied in this area
[BS97, Mik98a, MSL99].)

For example, an editor component might have a context dependency on a spell
checker, and would raise events when the text is changed.
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6.1.2 Specifications for Components

As we described above, the higher-order behavior of callbacks, is a critical issue that
distinguishes the specification of components from the specification of ADTs. By
a callback , we mean a method that is invoked to handle some event; typically this
method is in an object that is only registered as interested in the event at run-time.

Szyperski illustrates the pitfalls of callbacks with examples such as directories and
a text models and views [Szy98, Section 5.5]. His directory example illustrates the
complicating factor of callbacks sharply. Consider a Directory component with op-
erations in its interface to add and remove files: addEntry and removeEntry. Unlike
a simple, first-order OO ADT, these operations also raise events to notify listeners
of changes in the directory. The listeners satisfy an interface named DirObserver.
The class Directory also provides operations to register and unregister listeners
for such events, which it inherits from its ancestor DirObserverKeeper. The im-
mediate superclass of Directory is a class RODirectory, which is a subclass of
DirObserverKeeper. RODirectory supplies methods equals and thisFile to ob-
serve directories.

However, if the specification for Directory does not take the callbacks into
account, then there is no way to guarantee the postconditions of addEntry and
removeEntry, since a callback can undo the work of either of them. In Szypreski’s
example, invoking addEntry with a file named “Untitled” breaks the contract be-
cause of the behavior of a callback that removes files named “Untitled”. However,
the caller (client) thinks that addEntry is broken when in fact the behavior of the
callback is the one that caused the anomaly.

Szyperski gives a specification that prevents this problem by having a test function
inNotifier that returns true when “a notifier call is in progress” [Szy98, page 56].
He adds preconditions to addEntry and removeEntry that require that inNotifier
returns false; so that changes to directories can only occur when no notification is in
progress. This is fine, but leaves one to wonder how the details can be formalized.

One way to formalize the specification of this example is to use both specification-
only variables (also called ghost or model variables, see, for example Leino’s work
[Lei95]) and model programs (as in the refinement calculus). We present such a
specification for the four types written in JML [LBR99] below.

Figure 6.1 specifies the type DirObserverKeeper. It is itself a fairly simple ADT.
Some notes on JML may be helpful. JML is a behavioral interface specification

language. It specifies the interface of a Java module using Java syntax, and adds
annotations to specify behavior. In JML, Java comments that start with an at-
sign (@) mark annotations; JML treats the body of such comments as part of the
specification.

As in Larch [GHG+93], specifications of behavior are written in terms of ab-
stract values, which are given as the values of model variables in JML. In JML
specification-only declarations use the keyword model:. The keyword instance:
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import edu.iastate.cs.jml.models.*;

public interface DirObserverKeeper extends JMLType {
//@ public model: instance: boolean in_notifier
//@ initially in_notifier == false;
//@ public model: instance: JMLObjectSet listeners
//@ initially listeners != null
//@ && listeners.equals(new JMLObjectSet());
//@ public invariant: listeners != null;

public boolean inNotifier();
//@ normal_behavior:
//@ ensures: \result == in_notifier;

public void register(DirObserver o);
//@ normal_behavior:
//@ requires: o != null;
//@ modifiable: listeners;
//@ ensures: listeners.equals(\old(listeners).insert(o));

public void unregister(DirObserver o);
//@ normal_behavior:
//@ requires: o != null;
//@ modifiable: listeners;
//@ ensures: listeners.equals(\old(listeners).remove(o));

}

Fig. 6.1. A JML specification of a DirObserverKeeper interface

says that a field declaration, which in an interface would normally be static, is
instead to be considered as an instance variable in each class that implements the
interface. For example, in Figure 6.1, in_notifier and listeners are both model
variables. The initially clauses give possible starting values for these model vari-
ables. The abstract values of these model variables are described, to the user, as
either built-in Java primitive types (like boolean) or as a Java class with immutable
objects. JML calls such classes pure; they are used to encapsulate the mathematical
description of abstract values. An example of such a class is JMLObjectSet, which
is found in the package edu.iastate.cs.jml.models. Such classes allow JML
specifications to use Java expression syntax for invoking their operations, without
compromising mathematical rigor. The operations (Java methods) are specified
with normal_behavior: clauses, which give the usual pre- and postcondition style
specification over the model variables. Preconditions start with requires:, and
postconditions with ensures:. The modifiable: clauses in the last two method
specifications say that only the model variable listeners, and variables declared
to depend on it in an implementation [LBR99, Lei95], may have their value changed
by invocation of one of these methods.

Figure 6.2 specifies the interface of directory observers, which are callback objects.
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import Directory;

public interface DirObserver {
void addNotification(Directory o, String n);
//@ normal_behavior:
//@ requires: o != null && o.in_notifier && n != null && n != "";
//@ modifiable: \everything;
//@ ensures: o.equals(\old(o));

void removeNotification(Directory o, String n);
//@ normal_behavior:
//@ requires: o != null && o.in_notifier && n != null && n != "";
//@ modifiable: \everything;
//@ ensures: o.equals(\old(o));

}

Fig. 6.2. A JML specification of a DirObserver interface.

The callbacks will be made when the model variable in_notifier of the directory
that is being changed is true. The callbacks are permitted to do anything at all,
except that they must terminate normally, and cannot modify the directory giving
notice. The \old(o) in the postcondition represents the pre-state value of o.

Figure 6.3 specifies the interface RODirectory, for read-only directories. This
interface extends DirObserverKeeper, and so inherits all of its specifications [DL96,
LBR99]. It adds a model variable entries, which is a finite map from strings to file
objects. The two invariant: clauses specify these types. The thisFile operation
is specified using case analysis; the first requires: clause applies globally, but only
one of the two specification cases that follow it will apply, depending on whether the
name given is defined in the map entries. The equals operation is also respecified
here.

Figure 6.4 gives the specification of the interface Directory, which adds AddEntry
and RemoveEntry methods to its superclass RODirectory. Both specifications are
similar, so let us consider the specification of AddEntry. It is given by a model
program (hence it starts with model_program:). The syntax of a model program
is that of a Java block (statements surrounded by curly braces). As in the refine-
ment calculus, the meaning is that a correct implementation must refine the model
program. This model program in AddEntry contains two statements. The first is a
normal_behavior: statement, which is followed by a for-loop. The normal behav-
ior statement ends at the semicolon (;) following ensures:. It is a specification of
what, in a refinement, some concrete code must accomplish. It says that entries
is modified to add the given association. The for-loop is used to say, abstractly,
how notifications are done. From this one can tell that when addNotification
is called, the model variable in_notifier is true, and the association has already
been added to the directory.
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//@ model: import edu.iastate.cs.jml.models.*;

public interface RODirectory extends DirObserverKeeper {
//@ public model: JMLValueToObjectMap entries
//@ initially entries != null
//@ && entries.equals(new JMLValueToObjectMap());
//@ public invariant: entries != null && \forall (JMLType o)
//@ [entries.isDefinedAt(o) ==> o instanceof JMLString];
//@ public invariant: \forall (JMLString s)
//@ [entries.isDefinedAt(s)
//@ ==> entries.apply(s) instanceof Files.File];

public Files.File thisFile(String n);
//@ normal_behavior:
//@ requires: n != null && n != "";
//@ {
//@ requires: entries.isDefinedAt(new JMLString(n));
//@ ensures: \result.equals( (Files.File)
//@ entries.apply(new JMLString(n)));
//@ also:
//@ requires: !entries.isDefinedAt(new JMLString(n));
//@ ensures: \result == null;
//@ }

public /*@ pure: @*/ boolean equals(Object oth);
//@ normal_behavior:
//@ requires: !(oth instanceof RODirectory);
//@ ensures: \result == false;
//@ also:
//@ requires: oth instanceof RODirectory;
//@ ensures: \result ==
//@ ( entries.equals(((RODirectory)oth).entries)
//@ && listeners.equals(((RODirectory)oth).listeners));

}

Fig. 6.3. A specification of a RODirectory interface.

The technical “tricks” used in this specification were model (ghost) variables and
model programs. By using these features, one can show both what callbacks can
do and exactly the state in which they are called. The utility of model programs
in this setting was first made known to us by Büchi and Sekerinski [BS97]. For
us, model programs seem more practical than other ways of specifying callbacks
and higher-order procedures [EHL+94, EHMO91, Gog84]. Recently, other work on
the refinement calculus has provided a more thorough treatment of this subject,
including a modular reasoning technique that has been proved sound [MSL99].
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//@ model: import edu.iastate.cs.jml.models.*;

public interface Directory extends RODirectory {

public void addEntry(String n, Files.File f);
//@ model_program: {
//@ normal_behavior:
//@ requires: !in_notifier && n != null && n != "" && f != null;
//@ modifiable: entries;
//@ ensures: entries != null
//@ && entries.equals(\old(entries.extend(new JMLString(n), f)));
//@ for (JMLObjectSetEnumerator e
//@ = new JMLObjectSetEnumerator(listeners);
//@ e.hasMoreElements(); ) {
//@ in_notifier = true;
//@ ((DirObserver)e.nextElement()).addNotification(this, n);
//@ in_notifier = false;
//@ }
//@ }

public void removeEntry(String n);
//@ model_program: {
//@ normal_behavior:
//@ requires: !in_notifier && n != null && n != "";
//@ modifiable: entries;
//@ ensures: entries != null
//@ && entries.equals(\old(entries.remove(new JMLString(n))));
//@ for (JMLObjectSetEnumerator e
//@ = new JMLObjectSetEnumerator(listeners);
//@ e.hasMoreElements(); ) {
//@ in_notifier = true;
//@ ((DirObserver)e.nextElement()).removeNotification(this, n);
//@ in_notifier = false;
//@ }
//@ }

}

Fig. 6.4. A specification of a Directory interface.

6.1.3 Modular Reasoning

An important concern in both object-oriented and component-based programming
is how to reason about extensions of programs. For example, suppose one has a
method m that takes a RODirectory as an argument. If the implementation of m is
correct with respect to its specification, then it should work correctly for Directory
arguments. This is the notion of modular reasoning , which can be seen as a criteria
for goodness of verification techniques [LW90, LW95, Lei95]. The basic idea for
modular reasoning about OO programs is to:

• Assign to each expression in a program a static type that is an upper bound on
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the dynamic type of the expression’s value. (That is, if the static type is T , then
the value must have a dynamic type that is a subtype of T .)

• Reason about client code using the static types of expressions, as in standard
reasoning about programs with ADTs.

• Prove that each subtype used in the program is a behavioral subtype of its su-
pertypes [Ame87, AvdL90, Ame91, Dha97, LW93b, LW94, Utt92, UR92]. In
simplest terms, this means that the subtype objects obey the specification of
their supertype objects [DL96].

The advantage of modular reasoning is that unchanged methods do not have to
be respecified or reverified when new behavioral subtypes are added.

6.1.4 Outline

The rest of this chapter is organized as follows. In Section 6.2 we consider the
relationship between subtypes and behavioral subtypes. In Section 6.3 we survey
the literature on behavioral subtyping in OO systems. We then discuss in Section 6.4
some ideas about subtyping for component-based systems. Finally, we offer some
conclusions.

6.2 Subtyping and Behavioral Subtyping

In this section we define some important terms and make several distinctions among
superficially-related concepts in OO languages that are important in understanding
behavioral subtyping and how they differs from less OO concepts. In particular we
distinguish meta-types and object types, and refinement and behavioral subtyping.

6.2.1 Classes, Types, and Specifications

A class is a program module that describes a set of potential instances or objects.
In many languages, such as Java and Smalltalk, a class also describes a class object ,
which can be sent messages to create instances (in Smalltalk), and which also holds
information common to all instances (such as the code for methods, the class name,
etc.). One can also make a distinction between instance methods and class methods;
instance methods can be sent to an instance, while class methods are sent to class
objects. We will use the term “class method” to refer also to the static methods
and constructors of languages like C++ and Java.

A type is a static attribute of some phrase in a programming language. For
example, numeric literals have a type such as int. In OO languages, both class
objects and instances have types. The type of an instance is derived from the class
declaration, and a structural rendering of such a type only involves the instance
methods. Such a type corresponds to a Java interface, since it describes a protocol
for manipulating objects; hence it is called an object type. The extension of an
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object type is thus a set of objects with a common protocol [GHJV95]. All the
instances of a given object type can thus be sent the same set of messages (method
calls with arguments) without generating a type error.

By contrast a class type or meta-type describes the protocol of class objects. A
structural rendering of such a type involves the types of class methods and the
object types of the instances that the class can create.

Types can be viewed as degenerate specifications, since they give information
about the syntax of methods (their names, and types of arguments, etc.), but do
not (usually) involve behavior. By contrast, a behavioral specification describes both
syntax and semantics, as seen in the preceding figures.

A behavioral specification of a meta-type (i.e., of a set of classes) involves both
the specification of how objects are created (constructors in C++ and Java), class
methods, and a specification of how instances behave in response to instance meth-
ods. By contrast, a behavioral specification of an object type (a Java interface)
does not involve constructors or other class methods.

6.2.2 Refinement

Refinement is an important relationship on meta-types. It is a stronger relationship
than behavioral subtyping, which relates object types.

Refinement is a relationship between behavioral specifications that is useful in
developing programs from specifications [Mor94, Woo91]. The basic idea is that a
refinement , C, of a specification, A, is a specification that is stronger than A in
the sense that every correct implementation of C is also a correct implementation
of A; thus, C will have no more correct implementations than A. Another way of
thinking about a refinement is that the set of allowed behaviors of the refinement
is a subset of the behaviors allowed by the original specification.

Refinement can also be extended to a relationship between implementations and
specifications and between implementations. If one thinks of each implementation
module as having a specification that describes its exact behavior, or if one uses a
programming language as an (operational) specification language, then this idea,
which is crucial to the refinement calculus, falls out. In this sense, one meaning of
“a refinement” is “a correct implementation.” Thus, we will say just “a refinement”
for the longer phrase “an implementation of a refined specification” below.

For example, given a procedure specification, one can reason about the correct-
ness of client code using its specification, without knowing anything about its im-
plementation. Many different implementations may be linked into a program with-
out changing the soundness of such reasoning, if each such implementation is a
refinement of the specification used in reasoning. If one takes a total-correctness
specification for a procedure g with precondition RA and postcondition EA, then a
refinement must:
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• have the same syntax (the same name, number of arguments, argument types,
return type, and exception result types),

• a precondition RC such that RA ⇒ RC , and
• a postcondition EC such that the following holds.

(RC ⇒ EC) ⇒ (RA ⇒ EA) (6.1)

See the paper by Cheng and Chen in this volume for further discussion of formula
(6.1). This formula is weaker than the usual one for postconditions, which is that
EC ⇒ EA [Mor90]. The usual formula is both simpler and works in most practical
cases. Note also that termination is implicitly required by both specifications, and
so there is no explicit proof obligation to show termination.

For specifications given in terms of model programs, the techniques of the refine-
ment calculus would be used instead of the pre- and postcondition rule described
above.

For abstract data types, refinement means again that each implementation of
refinement is an implementation of the original specification [Win83, GM94]. Such
data type refinement can be mediated by a change in the way data is modeled
[GM94, MG90, Mor94, Mor89]. One can use an abstraction function [Hoa72] or
relation [LP97, Nip86, Sch90, SWO97] to translate between logical assertions in the
theory of one abstract model and another. For example, suppose the specification
C is a refinement of A, and C is stated using a theory TC , which we assume includes
the theory used to state the specification of A. Suppose that rC→A is a relation
between the models of C and A, so that rC→A(c′, a′) holds when c′ is related to
a′. In the following we use the notations x ˆ, x ′, and x ◦ to denote the pre-state,
post-state, and arbitrary public state values of x (respectively). Then it must be
that (again for total-correctness specifications):

• C and A have the same interface (the same name, class and instance methods
with the same number of arguments, argument types, etc.),

• using the theory of the specification of C, TC , C’s invariant implies A’s

TC ` ∀self : C . ∃x : A .

rC→A(self ◦, x ◦)
∧ (invariantC(self ◦) ⇒ invariantA(x ◦))

(6.2)

• C’s history constraint† must imply A’s:

TC ` ∀self : C . ∃x : A .

rC→A(self ˆ, x ˆ) ∧ rC→A(self ′, x ′)
∧ (constraintC(self ˆ, self ′) ⇒ constraintA(x ˆ, x ′))

(6.3)

† A history constraint is a monotonic relation on pairs of states; it relates an earlier state to a later state
[LW93b, LW94]. History constraints are useful in abbreviating specifications, and have implications for
behavioral subtyping that are discussed below. In JML history contraints are syntatically stated as if
they related a pre-state and a post-state, although the semantics is more general.
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• for each instance method, g, the specification of g in C must refine that of g in
A via rC→A. For pre- and postcondition specifications, this means that:

– g’s precondition in A, preg
A, must imply the corresponding precondition in C:

TC ` ∀self : C . ∃x : A .

rC→A(self ˆ, x ˆ)
∧ (preg

A(x ˆ) ⇒ preg
C(self ˆ))

(6.4)

– g’s specification in C must be such that the following holds:

TC ` ∀self : C . ∃x : A .

rC→A(self ˆ, x ˆ) ∧ rC→A(self ′, x ′)
∧ (((preg

C(self ˆ) ⇒ postgC(self ˆ, self ′))
⇒ (preg

A(x ˆ) ⇒ postgA(x ˆ, x ′))))

(6.5)

• each class method, f , in A is refined by the class method f in C via rC→A.

Besides dealing with model programs, the refinement calculus is a way of system-
atically deriving refinements [Bac88, Bv92, BvW98, Mor94, MV94, Mor87, Woo91].
Each such derivation is a small step, and is guaranteed to be correct. The calculus
uses a wide-spectrum language in which programs are enriched by (nondeterminis-
tic) specification statements. In this way one may start the refinement process with
a behavioral specification which consists of only a specification statement, and by
making several refinement steps, arrive at completely executable code.

6.2.3 Subclasses, Subtypes, and Behavioral Subtypes

Refinement, as defined above, does not capture one key feature of OO programming:
the use of message passing to achieve subtype polymorphism. One way to view this
distinction is that refinement for abstract data types makes no distinction between
meta types and object types. Behavioral subtyping is essentially refinement of object
types, whereas in common terminology, refinement of types refers to meta-types.

However, let us step back for a moment, and discuss not the relation of refine-
ment and behavioral subtyping, but the relationships of subclassing, subtyping, and
behavioral subtyping.

Since classes, types, and behavioral specifications are, in our terminology, different
kinds of things, it follows that subclassing, subtyping, and behavioral subtyping are
different kinds of relationships. As summarized in Figure 6.5, a subclass relationship
relates implementation modules, a subtype relationship relates object protocols,
and a behavioral subtype relationship relates behavioral specifications. Subclasses
inherit field and method declarations from superclasses, subtypes inherit interface
obligations (to implement methods) from their supertypes, and behavioral subtypes
inherit interface obligations and behavioral specifications from the specifications of
their supertypes. Another way to look at this is in terms of the guarantees each kind
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relates inherits guarantees

subclass modules fields, methods data format matches
subtype object protocols interface obligations no type errors
beh. subtype specifications specifications expected behavior

Fig. 6.5. Relationships.

of relationship makes. Roughly speaking, a subclass relationship guarantees some
common data structures in objects (common field and method slots), a subtype
relationship guarantees that no type errors occur when subtype objects are used
in place of supertype objects, and a behavioral subtype relationship guarantees no
surprising behavior occurs when subtype objects are used in place of supertype
objects.

6.3 Notions of Behavioral Subtyping

Work on subtyping in type systems has important connections to behavioral subtyp-
ing. A behavioral subtype must be a subtype, since otherwise surprising behaviors
(type errors) would arise. This makes sense if one thinks of structural typing as a
weak behavioral specification. Two recent books describe type systems with subtyp-
ing for single-dispatch languages [AC96] and multiple-dispatch languages [Cas97].

The concept of behavioral subtyping seems to have been in the air in the late
1980s. The first edition of Meyer’s book on OO software construction in Eiffel
[Mey88] gives one of the first accounts of the idea. Unfortunately, Eiffel has an
unsound definition of behavioral subtyping, because the language’s type system has
an unsound definition of subtyping [Coo89]. America gave the first sound definition
of behavioral subtyping that appeared in print [Ame87] (reworked in [Ame91]); he
emphasized the need for contravariance and gave a simple proof of the soundness
of his rule based on Hoare’s rule of consequence. The simple version of America’s
definition [Ame91, pp. 77–78], where the types of additional arguments and the
result do not vary when a method is overridden in the subtype, uses a “transfer
function” φC→A from the abstract values of a subtype, C, to the abstract values of
its supertype, A. Then it must be that:

• for each instance method g in A, g’s precondition in A composed with the transfer
function, preg

A(φC→A(self ˆ)), must imply the corresponding precondition in C:

TC ` ∀self : C . (preg
A(φC→A(self ˆ)) ⇒ preg

C(self ˆ)) (6.6)

• for each instance method g in A, g’s specification in C must be such that the
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following holds:

TC ` ∀self : C . postgC(self ˆ, self ′) ⇒ postgA(φC→A(self ˆ), φC→A(self ′))
(6.7)

The main difference between America’s notion of behavioral subtyping and refine-
ment is that it only applies to instance methods, and does not apply to class meth-
ods. America also showed how to extend the definition to deal with contravariant
subtyping among the other parameters of a method and with subtyping of the result,
by using the transfer functions for these arguments as well.

America’s work (with van der Linden) in ECOOP/OOPSLA ’90 [AvdL90] is
interesting in its attempt to make behavioral subtyping statically checkable by using
keywords to stand for behavioral properties.

6.3.1 Model Theory

6.3.2 For Types with Immutable Objects

Also in the late 1980s Leavens, in his Ph.D. thesis [Lea88, Lea90], showed how
to use the notion of behavioral subtyping to do modular verification of OO pro-
grams [Lea91, LW90, LW95]. Leavens’s definition of behavioral subtyping is model-
theoretic. The basic notion is that of a coercion relation between models of abstract
values [LP92], which has led to a precise model-theoretic characterization of behav-
ioral subtyping for types with immutable objects [LP96].

Leavens’s work is inspired by other model-theoretic treatments of behavioral sub-
typing and related ideas. A major influence is the work of Reynolds on category-
sorted algebras [Rey83, Rey85]. This work forms the basis for a model-theory for
multimethod languages, and a theory of subtyping based on homomorphic coercion
functions (which can be generalized to homomorphic relations). The idea is that if
C is a subtype of A, then there must be a coercion function from objects of type C

to objects of type A, φC→A that is preserved by the instance methods in the sense
that, for example, for an instance method g that has types A → A and C → C:

φC→A(g(s)) = g(φC→A(s)). (6.8)

Category-sorted algebras make it possible to do modular reasoning about overload-
ing and coercions. By generalizing static overloading to message passing (mul-
timethod dispatch is just dynamic overloading), and coercions to subtyping, this
theory also applies to OO languages with multimethods.

Another strain of model theory is based not on coercions, but on set inclusions. In
such theories, the abstract values of a subtype are included in the abstract value set
of each of its supertypes. Functions on such values exhibit subtype polymorphism,
as a function works on any subset of its domain. Cardelli used such models in an
early proof of the soundness of a type system with subtype polymorphism [Car88].

Goguen and Meseguer’s Order-Sorted Algebra (OSA) [GM87], used inclusion
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models to help deal with subtyping in algebraic specifications. Bruce and Weg-
ner adapted OSA to give a definition of behavioral subtyping for OO programming
languages [BW90]. Such a definition says that, if one can construct a model where
the set of subtype objects is a subset of the set of supertype objects, then the
subtypes in question are behavioral subtypes.

The relationship between such models and models based on coercion is simple.
Given a model based on coercions, one can construct an inclusion model by simply
treating the set of abstract values of the supertype as the union of the sets of
abstract values for their subtypes. If necessary, abstract values of each type can be
“tagged” first, so that they can still be distinguished when part of a larger set. The
functions that model the instance methods of the supertype can then be defined
by cases, so that, for each type tag, the corresponding function from the coercion
model can be run. In the other direction, one can simply take as coercion functions
the inclusion function that maps each subset to its containing set.

The above construction shows that the key issue in constructing an inclusion
model is not making the sets have the inclusion relationships, but in constructing
the models of the instance methods.

6.3.3 Model Theory for Types with Mutable Objects

One common aspect of all the above model-theoretic approaches is that they deal
with only types with immutable objects. An object is mutable if it has an abstract
value that may vary over time.

Most OO programs contain types with mutable objects, and thus studying behav-
ioral subtyping for such types is crucial. Though the basic idea of using a coercion
relation remains valid when mutation is considered, the technical details are more
complex, because mutable objects have a unique identity, and hence coercing an
object from one type to another means not just creating a new value, but also asso-
ciating the new value with the appropriate object identity. For this reason, Dhara’s
model-theoretic study [Dha97] uses coercion relations that relate not abstract val-
ues, but entire states.

Mutation also introduces the possibility of observing aliasing among objects and
variables. In the presence of subtyping, one can create a state in which variables
of the subtype and supertype share the same object. In such a case, if the subtype
has more instance methods than the supertype, these extra methods might be able
to change the shared object, when applied to the variable that has the subtype, in
a way that is inconsistent with the supertype’s specification [LW93b, LW94]. This
problem can be dealt with in at least two ways.

Strong behavioral subtyping [LW93b, LW94] restricts the extra instance methods
of a behavioral subtype to make only those state changes that are consistent with
the state changes allowed by the supertype’s specification. Liskov and Wing gave
two different formulations of this idea. One formulation requires that each extra
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instance method of the subtype be supplied with a model program that shows how
its effect on the abstract value can be achieved using only the instance methods of
the supertype [LW93a, LW94]. Their second formulation [LW93b, LW94] requires
the specification of the supertype to provide a “history constraint,” which is a
monotonic relation between states that says how the abstract values of that type
may be changed by its instance methods; the extra instance methods of behavioral
subtypes must respect the history constraint. For example, a Mutable Point type
cannot be a strong behavioral subtype of an Immutable Point type, because the
extra instance method that change the state of a Mutable Point would not satisfy
the history constraint of Immutable Point’s specification.

However, strong behavioral subtyping allows the extra instance methods of a
subtype to mutate an instance’s state in ways that cannot be observed through a
supertype’s instance methods. For example, a Triple with two immutable compo-
nents and an added mutable component can be a strong behavioral subtype of an
Immutable Pair type.

Strong behavioral subtyping allows all forms of aliasing, and achieves soundness
of modular reasoning, because even if a supertype and subtype variable share the
same subtype object, manipulations of the object through the subtype’s variable
cannot be surprising. Using Liskov and Wing’s first formulation, this is because
any mutation done by the extra instance methods can be explained by the abstract
programs for the extra instance methods. Using their second formulation, this is
because in reasoning about what state changes may take place one is only allowed
to use the history constraint, and that must be obeyed by subtypes.

Weak behavioral subtyping [Dha97, DL95], by contrast, achieves soundness by
limiting aliasing. Direct aliasing between variables of a supertype and its subtypes
is prohibited. A weak behavioral subtype may have additional instance methods
that change the state of a subtype object in ways that could not be explained by
the supertype’s instance methods, or that would violate the supertype’s history
constraint. Of course, the supertype’s instance methods must behave similarly in
the subtype.

Because of the aliasing prohibitions of weak behavioral subtyping, a type of Mu-
table Pairs can be a weak behavioral subtype of an Immutable Pair type. This is
sound for modular reasoning because a program can only manipulate the subtype
objects through variables of one of these two types, not both. Hence, if an object
is being manipulated through a variable of the supertype, then it must act like an
instance of the supertype, since only the common methods can be used.

Weak behavioral subtyping thus allows more subtype relationships than strong
behavioral subtyping. However, the price to be paid is that the programming lan-
guage used must enforce the aliasing prohibitions described above [Dha97].
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6.3.4 Proof Theory

Meyer [Mey88] and America [Ame87, Ame91] both gave proof-theoretic definitions
of behavioral subtyping, which were described above. Both of these definitions,
however, ignored the problem of aliasing.

Cusack [Cus91] uses Z schemas in her definition of specialization, which is similar
to behavioral subtyping. She does not discuss the effects of extra instance methods
of the subtype on the invariants of the supertype and does not deal with aliasing.

As described above, Liskov and Wing [LW93b, LW94] were the first to offer
a notion of behavioral subtyping that takes aliasing into account. Although we
described it in the model theory section above, their paper actually states the
definition in proof-theoretic terms.

Dhara and Leavens made only small changes to the Liskov and Wing definition
in their paper that related the notions of specification inheritance and behavioral
subtyping [DL96]. This idea builds on the concept of specification inheritance found
in Eiffel [Mey97] and also used by Wills [Wil92] to achieve behavioral subtyping.
The idea is that subtypes inherit the specifications of instance methods of their
supertypes; Dhara and Leavens gave an account of specification inheritance for
model-based specification languages, and proved that it ensured behavioral subtyp-
ing. They also showed how different forms of specification inheritance were needed
to produce strong and weak behavioral subtypes. However, they offered no proof
that the definition of behavioral subtyping used was sound with respect to some
model theory.

Abadi and Leino [AL97] extend a structural type system [Car88] by behavioral
specification information to the types. They present a sound axiomatic semantic se-
mantics and provide practical guidance on reasoning about OO programs. However,
their approach is not modular.

Poetzsch-Heffter and Müller give a sound Hoare-logic for a sequential subset of
Java, which handles recursion, class and interface types, subtyping, inheritance, and
encapsulation [PHM99]. Their work is explained further in chapter 7 of this volume.

Lewerentz and his colleagues [LLRS95] use refinement calculus for OO modeling
based on observations of types. They use coercion on attributes of their language,
to relate the effect constructors and methods on the states of subtype and supertype
objects. They do not consider aliasing or interference.

Utting [UR92, Utt92] defined behavioral subtyping using the refinement calculus.
The refinement calculus offers a way to prove behavioral subtyping in this setting.
His definition does not, however, allow for change of data representations.

The work of Mikhajlova and her coauthors [BMvW97, MS97, Mik98b] allows the
sound verification of OO programs in a refinement calculus framework. The key
concept is that of class refinement (called correct subclassing) which (as described
above) is stronger than behavioral subtyping, since it involves class methods. Class
refinement, in addition to providing the same guarantee against surprising behavior
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when objects of subclasses are manipulated, also allows one to verify programs that
use class methods (and even expressions denoting class objects) to create new in-
stances. However, treating subclasses as subtypes and behavioral subtypes collapses
the distinctions shown in Figure 6.5. This restricts both subclass and subtype rela-
tionships. For example, treating subclasses as subtypes restricts the use of binary
methods [BCC+95]. Conversely, treating subclasses as behavioral subtypes limits
certain uses of inheritance; for example, Doubly-Ended Queue could otherwise be
a subtype of Stack, even though it is more convenient for Stack to inherit from
Doubly-Ended Queue [Sny86].

6.4 Behavioral Subtyping for Components

A common theme in work on behavioral subtyping is that objects of behavioral
subtypes should be able to be manipulated without surprises, where surprises are
defined relative to the specification of the supertype. Hence this method of modu-
lar reasoning method is called supertype abstraction [LW95]. Therefore, if we wish
to reason about the correctness of component-based systems using supertype ab-
straction, the key issue is the notion of behavioral subtyping for such systems. To
sketch this, we propose looking at their specifications and making an analogy to
OO programs.

In Section 6.1.2, we saw that, in general, model programs were needed to fully
specify components. We can also consider the usual pre- and post-condition style
specifications to be a special case of model programs, since such a specification can
be considered to be a model program with a single specification statement.

Our approach for defining behavioral subtyping is based on refinement of these
model programs. For both strong and weak behavioral subtyping the key idea is
that the common instance methods of the subtype and each supertype must be
such that each such method’s model program in the specification of the subtype
refines its specification in that supertype. This, and requirements that the invariant
and history constraint (for the common methods) of the subtype imply those in
each supertype, is enough for weak behavioral subtyping. For example, the type
Directory is a weak behavioral subtype of RODirectory. (We hope to formally
relate this to an extension of the refinement calculus [Mor94, MV94, Woo91] as
future work.)

For strong behavioral subtyping, one approach is to require that the history con-
straint (for all the methods) of the subtype must imply that of each supertype
[DL96, LW93b, LW94]. This limits what the extra methods can do in terms of mu-
tation of the objects of the subtype, but does not place any limits on what events
they may signal. Thus Liskov and Wing’s other approach, of requiring a program
that explains the effect of each additional instance method of the subtype in terms of
the supertype’s methods [LW93a, LW94], has more promise. Indeed, the refinement
calculus paradigm makes it clear what must be verified to prove strong behavioral
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subtyping; that is, that for each additional instance method, m, of the subtype,
there must be some model program, pm, such that pm is expressed only using the
methods of the supertype, and the specification of m refines pm.

Using the second form of strong behavioral subtyping, the type Directory is not a
strong behavioral subtype of the type RODirectory, because the type RODirectory
has a mapping, from names to files that is visible to clients, but this mapping is
modified by the instance methods of Directory. However, RODirectory is a strong
behavioral subtype of DirObserverKeeper, as RODirectory just adds to the model
fields of DirObserverKeeper.

6.5 Conclusions

In this chapter we have discussed the specification of component-based systems.
We noted that a combination of model variables [Lei95] and model programs (as
in the refinement calculus) seem adequate for specification of callbacks that occur
in such systems [BS97]. Our notion of behavioral subtyping for components is
based on these specifications, in that we require that behavioral subtypes obey the
specifications of the instance methods of their supertypes. We sketched both weak
and strong behavioral subtyping.

Clearly we have only given a sketch of what behavioral subtyping should be
for component-based systems. Much work remains in fleshing out the details and
proving that such notions permit sound modular reasoning.
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Bançilhon, F. and Buneman, P., editors, Advances in Database Programming
Languages, pages 75–96. Addison-Wesley, Reading, Mass., August 1990.

[Car88] Cardelli, L. A semantics of multiple inheritance. Information and Computation,
76(2/3):138–164, February/March 1988. A revised version of the paper that appeared
in the 1984 Semantics of Data Types Symposium, LNCS 173, pages 51–66.

[Cas97] Castagna, G. Object-Oriented Programming: A Unified Foundation. Progress in
Theoretical Computer Science. Birkhauser, Boston, 1997.

[Coo89] Cook, W. R. A proposal for making eiffel type-safe. The Computer Journal,
32(4):305–311, August 1989.

[Cus91] Cusack, E. Refinement, conformance, and inheritance. Formal Aspects of
Computing, 3:129–141, January 1991.

[Dha97] Dhara, K. K. Behavioral subtyping in object-oriented languages. Technical Report
TR97-09, Department of Computer Science, Iowa State University, 226 Atanasoff
Hall, Ames IA 50011-1040, May 1997. The author’s Ph.D. dissertation.

[Dij76] Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1976.

[DL95] Dhara, K. K. and Leavens, G. T. Weak behavioral subtyping for types with
mutable objects. In Brookes, S., Main, M., Melton, A., and Mislove, M., editors,
Mathematical Foundations of Programming Semantics, Eleventh Annual Conference,
volume 1 of Electronic Notes in Theoretical Computer Science. Elsevier, 1995.
http://www.elsevier.nl/locate/entcs/volume1.html.

[DL96] Dhara, K. K. and Leavens, G. T. Forcing behavioral subtyping through
specification inheritance. In Proceedings of the 18th International Conference on
Software Engineering, Berlin, Germany, pages 258–267. IEEE Computer Society
Press, March 1996. A corrected version is Iowa State University, Dept. of Computer
Science TR #95-20c.



130 Leavens & Dhara

[DW99] D’Souza, D. F. and Wills, A. C. Objects, Components, and Frameworks with
UML: The Catalysis Approach. Object Technology Series. Addison Wesley, Reading
Mass., 1999.

[EHL+94] Edwards, S. H., Heym, W. D., Long, T. J., Sitaraman, M., and Weide, B. W.
Part ii: Specifying components in RESOLVE. ACM SIGSOFT Software Engineering
Notes, 19(4):29–39, Oct 1994.

[EHMO91] Ernst, G. W., Hookway, R. J., Menegay, J. A., and Ofgen, W. F. Modular
verification of Ada generics. Computer Languages, 16(3/4):259–280, 1991.

[FGJM85] Futatsugi, K., Goguen, J. A., Jouannaud, J.-P., and Meseguer, J. Principles of
OBJ2. In Conference Record of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, pages 52–66. ACM, January 1985.

[FJ92] Feijs, L. M. G. and Jonkers, H. B. M. Formal Specification and Design, volume 35
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, UK, 1992.

[GHG+93] Guttag, J. V., Horning, J. J., Garland, S., Jones, K., Modet, A., and Wing, J.
Larch: Languages and Tools for Formal Specification. Springer-Verlag, New York,
N.Y., 1993.

[GHJV95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

[GM87] Goguen, J. A. and Meseguer, J. Order-sorted algebra solves the
constructor-selector, multiple representation and coercion problems. In Symposium
on Logic in Computer Science, Ithaca, NY, pages 18–29. IEEE, June 1987.

[GM94] Gardier, P. H. B. and Morgan, C. A single complete rule for data refinement. In
Morgan and Vickers [MV94], pages 111–126.

[Gog84] Goguen, J. A. Parameterized programming. IEEE Transactions on Software
Engineering, SE-10(5):528–543, September 1984.

[Hes92] Hesselink, W. H. Programs, Recursion, and Unbounded Choice, volume 27 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
New York, N.Y., 1992.

[Hoa69] Hoare, C. A. R. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–583, October 1969.

[Hoa72] Hoare, C. A. R. Proof of correctness of data representations. Acta Informatica,
1(4):271–281, 1972.

[Jon90] Jones, C. B. Systematic Software Development Using VDM. International Series in
Computer Science. Prentice Hall, Englewood Cliffs, N.J., second edition, 1990.

[LBR99] Leavens, G. T., Baker, A. L., and Ruby, C. Preliminary design of JML: A
behavioral interface specification language for Java. Technical Report 98-06f, Iowa
State University, Department of Computer Science, July 1999.

[Lea88] Leavens, G. T. Verifying Object-Oriented Programs that use Subtypes. PhD thesis,
Massachusetts Institute of Technology, December 1988. Published as
MIT/LCS/TR-439 in February 1989.

[Lea90] Leavens, G. T. Modular verification of object-oriented programs with subtypes.
Technical Report 90-09, Department of Computer Science, Iowa State University,
Ames, Iowa, 50011, July 1990. Available by anonymous ftp from ftp.cs.iastate.edu,
and by e-mail from almanac@cs.iastate.edu.

[Lea91] Leavens, G. T. Modular specification and verification of object-oriented programs.
IEEE Software, 8(4):72–80, July 1991.

[Lei95] Leino, K. R. M. Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

[LG86] Liskov, B. and Guttag, J. Abstraction and Specification in Program Development.
The MIT Press, Cambridge, Mass., 1986.
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