
Aspects at the crossroads of SE?!

Mario Südholt

Équipe Ascola (EMNantes-INRIA, LINA)

Keynote FOAL 2011, 21 March 2011

ECOLE DES MINES DE NANTES

Where are we?

Crosscutting as a fundamental problem of SE

AOP has its place within SE:
Integrated use of languages/frameworks/implementations

What about the foundations of AOP?

Formal methods in SE: large domain, uses generally rare but
sometimes critical domains

Do formal methods for aspects connect?

(Real) uses of formal methods for AO?

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 2 / 30

Where are we?

Crosscutting as a fundamental problem of SE

AOP has its place within SE:
Integrated use of languages/frameworks/implementations

What about the foundations of AOP?

Formal methods in SE: large domain, uses generally rare but
sometimes critical domains

Do formal methods for aspects connect?

(Real) uses of formal methods for AO?

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 2 / 30

Aspects at the crossroads

Is formal AO at the center of formal SE?
Importance of the techniques/results?
Interest in the field?

Do we go/crawl/stumble in the right direction?
Connect and apply to non-AO problems, methods, techniques

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 3 / 30

Where do we go?

(Positive) Hypothesis:

Foundations of AOP have come a long way . . .

and go (slowly) towards use and application

Some progression
From the specific (semantics for individual mechanisms),
via the general (integrated models),
to applications (property enforcement and analysis)

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 4 / 30

1. The specific

Outline

1 The specific

2 The general
Modules, components, events
Aspects and objects
Distributed aspects

3 The connected and the applied
Aspects and security
Aspect interfaces
Distributed events and patterns

4 The crossroads!?

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 5 / 30

1. The specific

1. The specific

Language and weaving mechanisms

Aspect categorizations

Aspects for concurrent and distributed languages

Influential and inspirational, building blocks, but few uses as such

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 6 / 30

1. The specific

1. The specific

Language and weaving mechanisms

Aspect categorizations

Aspects for concurrent and distributed languages

Influential and inspirational, building blocks, but few uses as such

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 6 / 30

1. The specific

Language mechanisms and properties

Semantics for specific AO constructs

First semantics for subsets of AspectJ
[Wand et al.: TOPLAS’04]

Data flow: dflow[x, x’](p) bypassing [x](p)

[Masuhara, Kiczales: ASPLAS’03]

Context-free tracecuts
[Walker, Viggers: FSE’04]

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 7 / 30

1. The specific

Aspect categorizations

Observers, assistants [Clifton, Leavens: FOAL’02]

Augmentation, replacement . . . advice [Rinard et al. FSE’04]
Definition in syntactic terms

Spectative, regulative aspects [Katz, TAOS’06]
Defined using temporal Logic

Observers, confiners, aborters, weak intruders, selectors, regulators
[Djoko Djoko, PEPM’08]
Defines corresponding language classes that enforce properties

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 8 / 30

1. The specific

Concurrent and distributed applications

Distributed AOP 6= sequential AOP on distributed infrastructures

Zoo of proposed language mechanisms: synchronization sets,
operators for concurrent composition, remote pointcuts,
(a)synchronous advice, distributed aspects with distributed state

Proposed approaches focus on a small set of features

Encoding of sequential aspects in a CSP-like calculus [Andrews,
Reflection’01]
Composition of superimpositions [Sihman and Katz, AOSD’02]
Composition of concurrent aspects [Douence et al., GPCE’06]

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 9 / 30

2. The general

Outline

1 The specific

2 The general
Modules, components, events
Aspects and objects
Distributed aspects

3 The connected and the applied
Aspects and security
Aspect interfaces
Distributed events and patterns

4 The crossroads!?

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 10 / 30

2. The general

2. The general

More general models or usage (“aspects for SE”)

Modules, components and events

Aspects and objects

Distributed aspects

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 11 / 30

2. The general Modules, components, events

Modules, components and events

Modules

Trade-off invasiveness and strong encapsulation
Modular property verification

Components

Aspects for black, gray and white boxes
AO over interaction protocols

Events

Explicit vs. implicit announcement
Integration with event-based approaches in SE

Wide range of complementary models, clearly relevant to SE

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 12 / 30

2. The general Modules, components, events

Modules, components and events

Modules

Trade-off invasiveness and strong encapsulation
Modular property verification

Components

Aspects for black, gray and white boxes
AO over interaction protocols

Events

Explicit vs. implicit announcement
Integration with event-based approaches in SE

Wide range of complementary models, clearly relevant to SE

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 12 / 30

2. The general Modules, components, events

Modular aspect definitions

Large variety of formal and semi-formal models

Applicability conditions [Douence et al.: AOSD’04]: restrict aspect
application by means of regular pointcuts

Open modules [Aldrich: ECOOP’05]: advice only on external and
exported calls

Demeter interfaces [Skotiniotis et al.: ECOOP’06]: constraints on call
graphs

Aspect-aware interfaces [Kiczales, Mezini: ICSE’05]: full access but
“external” pointcut specifications

Range from limited to farreaching invasiveness

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 13 / 30

2. The general Aspects and objects

Aspects and objects

Integration (partially) obvious: use OO features if possible

Advice similar to method calls
(Some) pointcuts realized by advanced dispatch mechanisms

Keep remaining features of AOP

Few formal approaches

What’s essential to AOP?

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 14 / 30

2. The general Aspects and objects

Aspects and objects

Integration (partially) obvious: use OO features if possible

Advice similar to method calls
(Some) pointcuts realized by advanced dispatch mechanisms

Keep remaining features of AOP

Few formal approaches

What’s essential to AOP?

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 14 / 30

2. The general Aspects and objects

The A calculus: seamless AO-OO integration

Principles

Essentiality criterion: relevance to type safety

Many mechanisms, e.g. pointcuts, are not

Enable reuse using standard OO features

Support large space of pointcut and advice mechanisms

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 15 / 30

2. The general Aspects and objects

The A calculus: integration of AO features

Closures to replace advice incl. proceed: enables reuse

Next, Section 2 gives an example-driven overview of the calculus. We present
our calculus formally in Section 3. We state the safety properties in Section 4
and discuss the proofs that we have developed for these properties. Related work
is discussed in Section 5. We conclude and present future work in Section 6.

2 Overview of the A Calculus by Example

This section presents the A calculus, its concepts and language mechanisms based
on a number of examples. Along the way we demonstrate how the A calculus
covers a larger part of well-known aspect-oriented features than is obvious from
the syntax. In this section, we have extended the calculus with a number of
pragmatic features, e.g., the primitive type int, thus avoiding excessive verbosity
in the examples. These extensions are listed in detail at the end of the section.

1 class C { int m1(int i, int j) { return i+j; }}

2 class D { void m2(int x, String s, int y) { System.out.println(x*y); }}

3 aspect A {

4 pointcut p(int a, int b):

5 execution(int C.m1(int,int)) && args(a,b) ||

6 execution(void D.m2(int,String,int)) && args(a,*,b);

7 Object around(int a, int b): p(a,b) { return proceed(a+1,b-1); }

8 }

Fig. 1. AspectJ example

1 class C { int m1(int i, int j) { return i+j; }}

2 class D { void m2(int x, String s, int y) { System.out.println(x*y); }}

3 class A {

4 int m((int,int)->int proceed, int a, int b) { return proceed(a+1,b-1); }

5 around1: execution(int C.m1(int a, int b)) { return m(proceed,a,b); }

6 around2: execution(void D.m2(int a, String s, int b)) {

7 m((int a, int b => proceed(a,s,b); return 0),a,b); }

8 }

Fig. 2. A example

First-class closures and proceed. Consider the AspectJ example in Fig. 1, which
compiles without errors or warnings in AspectJ version 1.6.4. It demonstrates
a few issues with the current mainstream approach to aspect typing. AspectJ
typing will verify that the advice behavior is compatible with the join points to

Call/execution advice: static/dynamic closures

Type safety determines ordering of call/execution advice

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 16 / 30

2. The general Aspects and objects

The A calculus: support for mechanisms

Rich pointcut languages through transformation and advice selection
strategies

Calculus parametrization support advice selection strategies

Ex.: flat login sessions

18 · Bruno De Fraine et al.

logged:
[[f]]�_,login� = if !f thenf = true

getCAdvice(f,_,_, v.login,_) = if f then � else •
getCAdvice(f,_,_,_.login,_) = •

getEAdvice(_,_,_,_,_) = •
where the advice � does nothing and, in particular, stops proceeding. In the defi-
nition, the second case, specifically the requirement that the receiver is a value in
v.login, ensures that the advice applies directly at the call to login, thus ensuring
that a successful login is executed. The definition has to be complemented by one
that clears the flag once the user logs out. These definitions can be easily com-
plemented so that the totality and compatibility conditions of Requirement 3.2 are
satisfied.

Our calculus parameterization can be used to generalize this example in different
ways, e.g.,:

– Use and manage an execution history consisting in an array of flags to impose
flat sessions on groups of users that are either characterized statically, e.g.,by
belonging to a set of predefined (sub-)types, or dynamically by testing the
runtime type of a user.

– Use an array of sets of types (and its subtypes) in order to represent domains
and subdomains into which users may or may not login, possibly in a nested
fashion.

Imagine that once we enter a certain context we want to confine logins to that part
(or less critical parts). Such a context (and less critical parts) may by represented
by a type SecCtx (and its subtypes). We then have to keep track of whether we
entered such a context and verify that the receiver type of a login operation for
execution advice is a subtype of type SecCtx. (The static type might indicate a
more critical context that should not be accessible.)

In this case, the history update function tracks the runtime types of invocation
expressions

[[c]]�e0,m�[] = type(e0)
where the function type returns the runtime type of the target expression.

Logins would then be restricted to a set of secure context (SecCtx and its sub-
types), e.g.,also based on the exact runtime type:

getCAdvice(_,_,_,_,_) = •
getEAdvice(c, e0,_, login,_) = if c <: SecCtx ∧ e0 �<: SecCtx then � else •

3.3 Static Semantics
The static semantics of the A calculus consists principally of a definition of subtyp-
ing, term typing and declaration typing.

3.3.1 Preliminaries. Fig. 11 presents subtyping, advice compatibility, and type
well-formedness. Subtyping is reflexive and transitive, and includes subclassing and
standard function type rules for closures (rule SubRefl through rule SubDcl). Type
variables are related to their bounds (SubUp and SubLow). Advice compatibility
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 17 / 30

2. The general Distributed aspects

A general basis for distributed aspects

Aspect Join Calculus [Tabareau, AOSD’10]

Objects, Concurrency, Distribution

Remote pointcuts, distributed advice and aspects, migration

Accommodates features of many proposed languages

Ex.: cache replication

Pc ::= Pointcuts
rule(c.M) call, arguments
Pc ∧ Pcopt conjunction

Pcopt ::= Optional Pointcuts
flow(l) control on flow
host(H) control on host
¬Pcopt negation
Pcopt ∧ Pcopt conjunction

Ad ::= Advice bodies
. . . other process definitions
proceed(�v) proceed

A ::= Advice and aspects
Pc {Ad} advice definition
aspect a = C init P intercept (Pci {Adi})i∈I aspect definition

Figure 5: Syntax for distributed aspects

the aspect bufferRepl. In our setting, using the definition of
the class buffer given in Section 2.1, we can write a similar
aspect:

�ϕ aspect bufferRepl =
intercept : rule(buffer.(put(n) & empty())) ∧ ¬ host(ϕ)
{obj b = buffer init b.empty() in(b.put(n) & proceed(n))}

The join point now relies on the interception of the syn-
chronization pattern put(n) & empty() of the class buffer.
The advice body makes an explicit use of the keyword proceed.
This is because Before advice does not exist in the aspect
join calculus. Indeed, in a asynchronous setting, there is no
notion of before or after the execution of a method body,
so the only possible advice is something that looks like the
Around advice of AspectJ. Note that it might seem unsat-
isfactory to define an aspect by explicitly mentioning the
channel empty. This can be handled with a careful manage-
ment of privacy that we don’t want to consider here. The
basic idea is to say that an aspect should only mention pub-
lic labels and will be implicitly quantified over all private
labels. In that setting, the pattern of interest for the advice
aspect above would simply be defined by rule(buffer.put(n)).

The condition ¬ host(ϕ) guarantees that the replication
does not hold when the reaction is taking place on a sub-
location of the location where the aspect has been hosted.
In particular, this prevents the aspect to be deploy on its
own invocation of method put.

So this single aspect behaves as a single aspect Buffer-

Replication. Nevertheless, if one tries to define such an
aspect on each host of interest, then the aspects will in-
terfere and recursively copy the buffer copied by the other
aspect. In AWED, the way we can prevent this livelock to
append is by the use of within. Unfortunately, this notion
of “within the execution of an aspect” makes no sense in an
asynchronous setting. Nevertheless, we will see later that
within can be encoded with flow when we are in a fully
synchronous setting.

3.1 Syntax
Figure 5 presents the syntax for distributed aspects in the

objective join calculus. We use a countable set of identifiers
for aspect names a ∈ A,

An aspect aspect a = C init P intercept (Pci {Adi})i∈I con-

sists in a class definition C, an initialization process P and
a list of advice Pci {Adi}. The class C and process P are
here to define inner fields and methods of an aspect seen as
an object. Advice is defined by a pointcut Pc and an advice
body Ad.

A pointcut is defined by a term rule(c.M) that selects any
reaction rule that has the pattern M of the class c as left
hand part. A pointcut can also be defined by conditions on
the history of reaction rule (flow), on the host where the
join point has been selected (host). Finally, a pointcut can
be constructed by negations and conjunctions of those two
conditions. Note that in contrast to AspectJ, we do not need
to type the intercepted pattern in rule(c.M) as we explicitly
mention the class to which M belongs.

An advice body Ad is a process to be executed when the
rule is intercepted. This process may contain the special
keyword proceed. Definition of processes are extended with
advice and aspects.

3.2 Semantics
Figure 6 presents the semantics of aspects. All rules of

Figure 3 are conserved, expect for Rule Red that is split in
two rules. Rule Asp describes the introduction of an aspect.
It is similar to Rule Obj. Rule Adv corresponds to the
activation of an advice. Note that activation of advice is
asynchronous.

Rule Red/Asp defines the modification of Rule Red in
presence of aspects. If an advice definition Pc {Ad} has a
pointcut Pc that is satisfied, then the advice Ad is applied
while substituting the process P for the keyword proceed.
Note that all pieces of advice that have a satisfied point-
cut are executed in parallel. Another choice, maybe more
natural with respect to the join calculus, would have been
to choose one advice non-deterministically. We have cho-
sen this definition because it offers the possibility to define
a weaving algorithm that produces a configuration which is
bisimilar to the original configuration (see Section 4), a very
strong connection. With the non-deterministic version, we
can only get a coupled bisimulation, which is weaker and
would have lead to useless complications in this article.

The side condition of this rule is that Pc1, . . . , P cn are
all the pointcuts that are satisfied at this join point. For

139

Pc ::= Pointcuts
rule(c.M) call, arguments
Pc ∧ Pcopt conjunction

Pcopt ::= Optional Pointcuts
flow(l) control on flow
host(H) control on host
¬Pcopt negation
Pcopt ∧ Pcopt conjunction

Ad ::= Advice bodies
. . . other process definitions
proceed(�v) proceed

A ::= Advice and aspects
Pc {Ad} advice definition
aspect a = C init P intercept (Pci {Adi})i∈I aspect definition

Figure 5: Syntax for distributed aspects

the aspect bufferRepl. In our setting, using the definition of
the class buffer given in Section 2.1, we can write a similar
aspect:

�ϕ aspect bufferRepl =
intercept : rule(buffer.(put(n) & empty())) ∧ ¬ host(ϕ)
{obj b = buffer init b.empty() in(b.put(n) & proceed(n))}

The join point now relies on the interception of the syn-
chronization pattern put(n) & empty() of the class buffer.
The advice body makes an explicit use of the keyword proceed.
This is because Before advice does not exist in the aspect
join calculus. Indeed, in a asynchronous setting, there is no
notion of before or after the execution of a method body,
so the only possible advice is something that looks like the
Around advice of AspectJ. Note that it might seem unsat-
isfactory to define an aspect by explicitly mentioning the
channel empty. This can be handled with a careful manage-
ment of privacy that we don’t want to consider here. The
basic idea is to say that an aspect should only mention pub-
lic labels and will be implicitly quantified over all private
labels. In that setting, the pattern of interest for the advice
aspect above would simply be defined by rule(buffer.put(n)).

The condition ¬ host(ϕ) guarantees that the replication
does not hold when the reaction is taking place on a sub-
location of the location where the aspect has been hosted.
In particular, this prevents the aspect to be deploy on its
own invocation of method put.

So this single aspect behaves as a single aspect Buffer-

Replication. Nevertheless, if one tries to define such an
aspect on each host of interest, then the aspects will in-
terfere and recursively copy the buffer copied by the other
aspect. In AWED, the way we can prevent this livelock to
append is by the use of within. Unfortunately, this notion
of “within the execution of an aspect” makes no sense in an
asynchronous setting. Nevertheless, we will see later that
within can be encoded with flow when we are in a fully
synchronous setting.

3.1 Syntax
Figure 5 presents the syntax for distributed aspects in the

objective join calculus. We use a countable set of identifiers
for aspect names a ∈ A,

An aspect aspect a = C init P intercept (Pci {Adi})i∈I con-

sists in a class definition C, an initialization process P and
a list of advice Pci {Adi}. The class C and process P are
here to define inner fields and methods of an aspect seen as
an object. Advice is defined by a pointcut Pc and an advice
body Ad.

A pointcut is defined by a term rule(c.M) that selects any
reaction rule that has the pattern M of the class c as left
hand part. A pointcut can also be defined by conditions on
the history of reaction rule (flow), on the host where the
join point has been selected (host). Finally, a pointcut can
be constructed by negations and conjunctions of those two
conditions. Note that in contrast to AspectJ, we do not need
to type the intercepted pattern in rule(c.M) as we explicitly
mention the class to which M belongs.

An advice body Ad is a process to be executed when the
rule is intercepted. This process may contain the special
keyword proceed. Definition of processes are extended with
advice and aspects.

3.2 Semantics
Figure 6 presents the semantics of aspects. All rules of

Figure 3 are conserved, expect for Rule Red that is split in
two rules. Rule Asp describes the introduction of an aspect.
It is similar to Rule Obj. Rule Adv corresponds to the
activation of an advice. Note that activation of advice is
asynchronous.

Rule Red/Asp defines the modification of Rule Red in
presence of aspects. If an advice definition Pc {Ad} has a
pointcut Pc that is satisfied, then the advice Ad is applied
while substituting the process P for the keyword proceed.
Note that all pieces of advice that have a satisfied point-
cut are executed in parallel. Another choice, maybe more
natural with respect to the join calculus, would have been
to choose one advice non-deterministically. We have cho-
sen this definition because it offers the possibility to define
a weaving algorithm that produces a configuration which is
bisimilar to the original configuration (see Section 4), a very
strong connection. With the non-deterministic version, we
can only get a coupled bisimulation, which is weaker and
would have lead to useless complications in this article.

The side condition of this rule is that Pc1, . . . , P cn are
all the pointcuts that are satisfied at this join point. For

139

Translation into the standard join calculus: correctness proof of
weaving

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 18 / 30

3. The connected and the applied

Outline

1 The specific

2 The general
Modules, components, events
Aspects and objects
Distributed aspects

3 The connected and the applied
Aspects and security
Aspect interfaces
Distributed events and patterns

4 The crossroads!?

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 19 / 30

3. The connected and the applied

The connected and the applied

Connect and apply to non-AO problems

Aspects and security

Property-aware aspect interfaces

Event-based aspects patterns for distribution

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 20 / 30

3. The connected and the applied Aspects and security

Aspects and security

Security: paradigmatic crosscutting functionality

Formalization critical
Many different properties

High-level: authorization, authentication, confidentiality, . . .
Low-level: information-flow, control-flow, . . .

Formal models needed for base program, aspect/aspect weaving and
security properties

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 21 / 30

3. The connected and the applied Aspects and security

Ex.: aspects for secure service compositions

Context: horizontal and vertical service compositions
(choreography/orchestration and service implementation)

Ex.: regulatory changes entail changes to both composition types
(use case: SAP)

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 22 / 30

3. The connected and the applied Aspects and security

Secure service compositions: base, aspect models

Base program

Collaboration model for choreography
π-based processes for vertical implementation

Aspects: need to represent multiple features

Horizontal comp.: distribution features
Vertical comp.: sequential model

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 23 / 30

3. The connected and the applied Aspects and security

Secure service compositions: secure interactions

Security properties defined based on session types
[Honda, Vasconcales et al.]

Expressive model of interaction

Multiparty
Asynchronous and synchronous communication
Event-based interactions
Dynamic (multi)roles

Global protocol for system understanding

Projection: per-site protocols used for implementation and type-based
verification

Type safety, refinement and progress properties

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 24 / 30

3. The connected and the applied Aspect interfaces

Property-aware aspect interfaces

Restrict aspects by properties on external and internal events

Structural conditions
History-based pointcuts
Data-flow or possibly even information flow
Other more expressive properties

Generalization of existing approaches to aspects and modules

Flexible model of black box to (guarded) white box compositions
Corresponding notions of refinement?

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 25 / 30

3. The connected and the applied Distributed events and patterns

Distributed events and patterns

Relevant for numerous distributed applications
Service compositions, Cloud (virtualization, map-reduce) . . .

Distributed event models are tricky

Complex event definitions
Grouping, scope and lifetime of events
Ordering causal relationships
Efficient implementation

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 26 / 30

3. The connected and the applied Distributed events and patterns

Distributed aspects

Many crosscutting uses of events

Low-level definition in terms of event groups, scopes, casual
relationships

High-level abstraction: distribution, interaction patterns

High-level properties?

Exclusion of race conditions in pattern compositions
Interactions between patterns that involve the same sites or even
computations

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 27 / 30

4. The crossroads!?

Outline

1 The specific

2 The general
Modules, components, events
Aspects and objects
Distributed aspects

3 The connected and the applied
Aspects and security
Aspect interfaces
Distributed events and patterns

4 The crossroads!?

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 28 / 30

4. The crossroads!?

4. The crossroads?

Initial questions revisited

Formal AO at the center of SE problems?

Not yet! Close?

Right direction?

Yes! More work on connection with and applications to other fields.
Pace of progress?

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 29 / 30

4. The crossroads!?

Conclusion

More work on connection and application

Important means: general models and properties

But work on the foundations for aspects (only) is still worthwhile . . .
especially to look for holy grails (e.g., “The theory of crosscutting”)
:)

M. Südholt (Ascola) Aspects at the crossroads?! FOAL’11, 21 Mar. 11 30 / 30

	The specific
	The general
	Modules, components, events
	Aspects and objects
	Distributed aspects

	The connected and the applied
	Aspects and security
	Aspect interfaces
	Distributed events and patterns

	The crossroads!?

