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e Now in programming?
Non-hierarchical
Universal abstraction
mechanisms:
Classification,
Composition-

Procedures & decomposition,

control statements Generalization-
specialization

Abstract data types

This looks
great, BUT!

Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

What are the key concepts of
programming languages?

(for programming in the large!)
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What are programming languages
good for?

| guess,
Problem solving by
delivering the right
program
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about problem solving..
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Problem decomposition, solution
composition & semantics!

It must be about Solution

separation of domainl
concerns, Solution
composition of domain2

concerns, and
semantics!!

olutid
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But, then, ..
what is the
right
composition
mechanism?
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Once upon atime..
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Delegation, inheritance & reflection debate

| can do
anything with
reflection
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better inheritance
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Non-invasive generalization approaches (1)

The S

ina language

point
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Dow t\
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U “interface committing to a fixed

.//
Solid_lin

—

| Dashed-line || Protection

. """-I-uhm.
N
The general idea behind
the data abstraction
model of Sina/st is that,
starting from a simple
object-based model,
one can simulate
various forms of
abstractions without

Predicates” number of alternative
abstraction techniques
such as delegation,
relations or inheritance. ‘
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Non-invasive generalization approaches (2)

The law-governed system

point

History
point

Law-governed

System
In Prolog

“Dispatch
Control”
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But, what
about the
semantics
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Then some time has passed..
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Synchronization inheritance anomalies

ComposingG
CONCURRENT
Objects

A

Lodrwijh Bergmans

MIT Press: Research directions
In concurrent OOP Bergmans PhD 94
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Synchronization BoundedBuffer
inheritance data
anomalies put
get

This is an Locker HistoryBuffer
anomaly, | have Setm
no _reuse! _ Lock put
Inheritance is unclock get
gget

useless

A

1

LockingBuffer

data

put
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Research on synchronization inheritance
anomalies attracted some attention
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Real-time inheritance anomalies
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Obstacles in object-oriented programming
included seven “crosscutting-like” problems
Inheritance

& delegation:
dispatching aspect

Synchronization
inheritance:
synchron. dispatch

Coordinated
behavior:
tangled & scattered

Arbitrary
inheritance:
Any dispatch

Multiple views:
conditional dispatch
& logical order

Associative
inheritance:
predicate dispatch

Atomic delegation:
T Atomic dispatch
& logical order
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Aspect-identification and aspect-based re-

engineering example (from OBDS'93)

| Recuimement sprcilicanion ]
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Figure 7. Identifying ACTs using (a) requirement specification and (b) object interaction
patterns.

(b
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Then some more time has passed..
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Invasive approaches
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Examples of AOP languages:
AspectJ, HyperJ and
framework-based approaches
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Clearing

Accountl Account2
House

transfer '

Pointcut
designator

[
|
|
|

—_— |

- |

|

. |
advice |
|

- — - .l._d,ep_os_it_

Call join

/ execution
point

join point

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

13



Interface-based aspect-oriented programming in Compose*:

OOPSLA’93
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concerns

) Combination of
Adapting inheritance hierarchies
interfaces (ECOOP 1992) e
according to o v i i Sl

the context e

: ; e Tt T A =T

Subject-oriented S T

: eyt
programming

(1993)

Composition of
Classes via
relational
operators

© Mehmet Aksit Interface-based programming in Compose} Ject-Oriented Languag

HyperJ (continued)
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Framework-based aspect-oriented
approaches

Supported within a platform with a number of libraries &
tools

Provides aspect weaving mechanisms as a tool

= Becoming more and more popular

Mostly implement Composition Filters like mechanisms
(using proxies/interceptors, etc.)
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AOP languages have some concerns

Being able to compose crosscutting concerns is an
additional benefit but, crosscutting concern mechanisms
are “tangled with language semantics” (language
dependent);

Extending existing languages with AOP constructs
makes the languages too complex;

Verifying semantic correctness of compositions is still
difficult;

Joinpoint level of composition is too low-level .
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How to address these problems?

Step 1:
Separation of composition operators
from concerns
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Composition operators as dedicated
interface extensions

/

Composition | composition
language semantics
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Step 2:
Composing composition operators
with concerns
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Composition of composition operators
using “quantifiers”

Concern l
format&compose

.
Filters

superimposition

Software Software
Module 1 Module 2

Software Software
Module 3 Module 4
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e c0%® S .
oo™ The Composition-filters model

As@edya 9
* Uniform model (everything is a “concern”) ”f'»sf’@o,
» Supports strong encapsulation (“interface programr.?f%;%;)
Concern my-cancern Filters are %64’*::,7%@0
modular and _~ °’zoj:é'
_ composable 4
extensions
& manipulate
User messages
defined

Programming
language
, C++, Java,

VIETTTTET ARSTC
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First two claims of composition filters:
language independence

domain specific aspects as filters
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Simulated demonstration of the proof of
these two claims
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What we will show in the demo

= Composing aword counting ‘feature’ with the book shelf
application as a modular concern

= Composing a cache optimization concern with the word
counting concern.

= Language/platform independence
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Example: Bookshelf
Book
#title : String Chapter
#author : String #title : String
#chapters[] : Chapter #paragraphs[] : Paragraph
+getText() : String +getText() : String
+getTitle() : String 1 *  |+getTitle() : String
+getAuthor() : String +addParagraph(in par : Paragraph)
+addChapter(in cha : Chapter) +getParagraph(in index : int) : Paragraph
+getChapter(in index : int) : Chapter
1
Paragraph

#text : String
+getText() : String
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Counting words and sentences

Book
#title : String Chapter
#author : String #title : String
#chapters|[] : Chapter #paragraphs|] : Paragraph
+getText() : String +getText() : String
+getTitle() : String 1 *  |+getTitle() : String
+getAuthor() : String +addParagraph(in par : Paragraph)
+addChapter(in cha : Chapter) +getParagraph(in index : int) : Paragraph
+getChapter(in index : int) : Chapter +countWords() : int
+countWords() : int +countSentences() : int
+countSentences() : int
1
Paragraph

#text : String
+getText() : String

+countWords() : int
+countSentences() : int
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Design using Composition Filters

Book
#title : String Chapter
#author : String #title : String
#chapters|[] : Chapter #paragraphs|] : Paragraph
+getText() : String +getText() : String
+getTitle() : String 1 *  |+getTitle() : String
+getAuthor() : String +addParagraph(in par : Paragraph)
+addChapter(in cha : Chapter) +getParagraph(in index : int) : Paragraph
+getChapter(in index : int) : Chapter
1
TextMetrics
Paragraph

#text : String

+countWords() : int TgetText() - String

+countSentences() : i
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Result of using Composition Filters

Dispatch

Chapter

#para Book
+getTgHtitle : String
+getTif#fauthor : String
addPl#chapters[] : Chapter
getPd+getText() : String N
+getTitle() : String TextMetrics
+getAuthor() : String
+addChapter(in cha : Chapter)
+getChapter(in index : int) : Chapter

myBook.countWords();

myChapter.countWords();

myPar.countWords();

+countWords() : int
+countSentences() : int
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Adding Caching

Dispatch

Paragrapl

[#text S

Chapter

y Book
myBook.countWords(); T getTd#ile  Sting
+ge(-ri#author:strirégh !
addPl#chapte : Chapter
myChapter.countWords(); —+~———__ [3¥ et St -
~_"getTitle( : String TextMetrics
. +getAuth : Stril
myPar.countWords(); e Chapter(n he- Chapten)

+getChapter(in index : int) : Chapter

+countWords() : int
+countSentences() : int
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Conclusion of the first demonstration

= Composing a word counting ‘feature’ with the
bookshelf application

= Composing the caching optimization concern as a
high level concern with the word counting concern

= Composition Filters tools work on C/ .NET / Java
= BookShelf + WordCounting + Caching in Java
= Fibonacci + Caching in C

= Same concern code (Caching) reused!

e B Efficiency filters.can.he-inzlined. -=.low.overhead

The third claim of the Composition-Filters

Should be easier to verify the semantic
correctness of filter compositions since
filters are modular extensions;
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CF’s: Should be easier to verify

» Controlling the order of aspect superimpositions using
partial, advice-based priority specifications

* Resource-model based aspect-interference analysis
approach

* Graph- based aspect-interference analysis approach

advicel deps(i)g:;tlgrl = i
OfTe ==
: ompositic =
adviceN ' 5 === ==
Interface-based prof _I ‘ 3$
= iz B

Controlling the order of aspect
superimpositions using partial, advice-based
priority specifications

Composing Aspects at Shared Join Points

Istvan Nagy, Lodewijk Bergmans and Mehmet Aksit

TRESE group. Dept. of Computer Science, University of Twente
.0. Box 217, 7500 AE. Enschede, The Netherlands
+31-53-489 {5682, 4271, 2638}
{nagyist, bergmans, aksit}@cs.utwentenl

Abstract. Aspect-oriented languages provide means to superimpose aspectual behavior on a given
set of join points. It is possible that not just a single. but several units of aspectual behavior need to
be superimposed on the same join point. Aspects that specify the superimposition of these units are
said to "share” the same join point. Such shared join points may give nise to issues such as
determining the exact execution order and the dependencies among the aspects. In this paper. we
present a detailed analysis of the problem. and identfy a set of requirements upon mechanisms for
composing aspecrs al shared join points. To address the identified issues, we propose a general and
declarative model for defining constraints upon the possible compositions of aspects at a shared
join point. Finally. by using an extended notion of join points, we show how concrete aspect-
oriented programming languages, particularly Aspect) and Compose®, can adopt the proposed
model,

© Mehmet Aksit NO d e1

5 erface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

24



Interface-based aspect-oriented programming in Compose*:

Resource-model based aspect-
Interference analysis approach
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Serialization-based aspect-interference
approach (continued)

From the set of filters (from multiple filtermodules), per resource a sequence
of operations is compiled, e.g.:

filters

[ F——
L 1

RRW i@

NB: not for all combinations of accept & reject a corresponding message
exists: this is filtered out

These sequences are matched with conflict patterns (defined per
resource), e.g. “R*WR

So: RR and RRRW don’t match, but RWR does match = conflict
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Serialization-based aspect-interference
approach (continued)

Aspect1 AspectN
The process:
{__ ClassZ |
! Operationt Pointcut Designator
Operatien2 Analysis
Base Program
Advices per
shared join point
Advice Behavior
ﬁ C—
Behavioral specification
sequence
per shared join point
Confilct
Detection :) Conflict Detection
Rules

@Ve rdict
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Graph-based aspect-interference
analysis
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Graph-based aspect-interface analysis
approach

Detect aspect-interference on a shared joinpoints without:
— (formally) specifying the aspect

— (formally) specifying the base program
— specifying the base language semantics

“Only analyse the aspects, not the base program.”
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Graph-based aspect-interface approach
(continued)

generate abstract syntax graph
substitute filter-types with filter-actions
construct control flow graph

create runtime state (method call)

simulation: generate state space
— Fixed production system for operational semantics

verification: analyse state space
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Graph-based aspect-interface approach

(continued) _
. S
Two kinds of ' = &L = “
non-determinism: &
— Assignment of _— = =
unknown runtime ) = X
values (conditions) el 2
— Selection of filter e I
module order T T T
EE
= ; tborthctions

Conclusions about the semantic interference
detection

= Prioritization of compositions is sometimes necessary.
Prioritization must be based on partial specifications.
This is integrated in filters.

= Well-defined interfaces of concerns (filters) and/or
concerns with well-defined semantics (domain specific
concerns) make it easier to analyze & verify semantic
interference among concerns (for example by using
graph-based verification)

= In case of large state spaces, concerns can be abstracted
as semantic signatures (related to a resource model) and
be analyzed based on the references to the resource-
model.
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Our future work

Define larger set of filters (filter library) identified from
practical needs

Work further on semantic composition also for not shared
joinpoints

Composition patterns

Higher-level compositions
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Larger set of explicit composition operator

| l

Software Software Software
Module 1 Module 1 Module 2
(@)

(b)
protocol
Software Software Software Software
Module 1 Module 2 Module 1 Module 2
(c)

(d)
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Conclusions

= Non-invasive AOP has some advantages; language
independence, semantic verification, etc.

= Non-invasive AOP must be supported with a high-level
compositional language.

= |Invasive AOP is probably good for applications like run-
time verification kind of applications, but the ideal level of
detail of the joinpoints is difficult to determine.
Open joinpoint models can be the answer!
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