Interface-based aspect-oriented programming in Compose*:

Interface-based aspect-oriented
programming in Compose*:
its language independency,
semantic point-cuts and
aspect-interface detection possibilities

Mehmet Aksit
Chair Software Engineering (TRESE)
Department of Computer Science
University of Twente
P.O. Box 217
7500 AE Enschede, The Netherlands
aksit@ewi.utwente.nl
trese.cs.utwente.nl/

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Table of contents

Key concepts of languages !

Composition mechanisms

Invasive AOP

Language independence !

Verification of semantic interference

Conclusions and future work !

|

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Interface-based aspect-oriented programming in Compose*:

e Now in programming?
Non-hierarchical
Universal abstraction
mechanisms:
Classification,
Composition-

Procedures & decomposition,

control statements Generalization-
specialization

Abstract data types

This looks
great, BUT!

Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

What are the key concepts of
programming languages?

(for programming in the large!)

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Interface-based aspect-oriented programming in Compose*:

What are programming languages
good for?

| guess,
Problem solving by
delivering the right
program

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

about problem solving..

Problem
analysis

— Solution
\—)\ domainl

Solution

— Problems

domain2 Solution
domain
synthesis analysis ﬁ
2
verification I\
+

solution,

solution,

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Langug

Interface-based aspect-oriented programming in Compose*:

Problem decomposition, solution
composition & semantics!

It must be about Solution

separation of domainl
concerns, Solution
composition of domain2

concerns, and
semantics!!

olutid

ming in Compose*: Foundations of Aspect-Oriented Languages 2009

But, then, ..
what is the
right
composition
mechanism?

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Interface-based aspect-oriented programming in Compose*:

Once upon atime..

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Delegation, inheritance & reflection debate

| can do
anything with
reflection

Delegation is Delegation is
better inheritance

Using Prototrpical Objects
{0 Implement Shared Behayior
‘in Ohjest Oriented Sysiems

Fenry Licherman

Sy

Delegation Is Inheritance

Lyan Andres Stein
cr aoraoey rewn Univonsit
it ey ity

Combidge.Mais. G119 U5A

Department of Computar Science
Pravidence, R1 02012

tecmanic il (Arpamet
MarcyRALL AL NI B0U, Renryb

1, Sets v protypes: » phiesogticy
with practical comsequences

srgeseqr BIERATRAY

ot i shjert siemed
b i e abject worh i s, which escod
o which

adrpesdeat o tha

map

it semtens of Sese we The chadnsance

s e, A sy e o bavi o 4.
comep. 4t new oiecn can e . of e nowiedge

e e ey, Th o sppmach s 10 bk

e

e of the msdel i

froad o oy gty
eeal, parmat

OOPSLA|87 P) OOPSLA,87

Interface-based aspect-oriented programming in Compose*:

Non-invasive generalization approaches (1)

The S

ina language

point

History B‘u{;:ed
Dow t\

a o~ -
Bh_point | “Dispatch [l
U “interface committing to a fixed

.//
Solid_lin

—

| Dashed-line || Protection

. """-I-uhm.
N
The general idea behind
the data abstraction
model of Sina/st is that,
starting from a simple
object-based model,
one can simulate
various forms of
abstractions without

Predicates” number of alternative
abstraction techniques
such as delegation,
relations or inheritance. ‘

OOPSLA’88

in Compose*: Foundations of Aspect-Oriented Languages 2009

Non-invasive generalization approaches (2)

The law-governed system

point

History
point

Law-governed

System
In Prolog

“Dispatch
Control”

OOPSLA’87

© Mehmet Aksit

Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Interface-based aspect-oriented programming in Compose*:

But, what
about the
semantics

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Then some time has passed..

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Interface-based aspect-oriented programming in Compose*:

Synchronization inheritance anomalies

ComposingG
CONCURRENT
Objects

A

Lodrwijh Bergmans

MIT Press: Research directions
In concurrent OOP Bergmans PhD 94

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Synchronization BoundedBuffer
inheritance data
anomalies put
get

This is an Locker HistoryBuffer
anomaly, | have Setm
no _reuse! _ Lock put
Inheritance is unclock get
gget

useless

A

1

LockingBuffer

data

put

Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 200! get

Interface-based aspect-oriented programming in Compose*:

Research on synchronization inheritance
anomalies attracted some attention

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Real-time inheritance anomalies

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Interface-based aspect-oriented programming in Compose*:

Obstacles in object-oriented programming
included seven “crosscutting-like” problems
Inheritance

& delegation:
dispatching aspect

Synchronization
inheritance:
synchron. dispatch

Coordinated
behavior:
tangled & scattered

Arbitrary
inheritance:
Any dispatch

Multiple views:
conditional dispatch
& logical order

Associative
inheritance:
predicate dispatch

Atomic delegation:
T Atomic dispatch
& logical order

© Mehmet Aksit

 OOPSLA'92

Composition-filters without superimposition

e o -

e,
. IEEE PDS 97 §
i Distr sync

IEEE
Software 91
Transactions

: = """" S
= _ = JPDC 96 f

I .1 . |
O(| OBDS93 ECOOP94 :
: Realtime & Sync
ﬁ ‘ Coordination Realtime Y

W NMiltinla viewe

10

Interface-based aspect-oriented programming in Compose*:

Aspect-identification and aspect-based re-

engineering example (from OBDS'93)

| Recuimement sprcilicanion]

obyeer o
identilicarion IdEN:E_Lm l idslm.nlm
. ‘ '

®ge®
@j@,ﬂ,»-@
©)

Figure 7. Identifying ACTs using (a) requirement specification and (b) object interaction
patterns.

(b

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Then some more time has passed..

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

11

Interface-based aspect-oriented programming in Compose*:

Invasive approaches

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Examples of AOP languages:
AspectJ, HyperJ and
framework-based approaches

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

12

Interface-based aspect-oriented programming in Compose*:

S —

Lecture Notes in

0O languages As P ectJ Computer Science
Reflection

(Smith 81)
MOP | ~ CLOS-MOP

(1985)

Crosscutting

Adaptive aspects (1996)

programming

Domain
specific
aspects

) ECOOP’97
AspectJ

(2001)
General

purpose
aspects

Foundations of Aspect-Oriented Languages 2009

225
ECOO P 3y 0 1 erface-based programming in Compose*:

Aspectd like models

Clearing

Accountl Account2
House

transfer '

Pointcut
designator

[
|
|
|

—_— |

- |

|

. |
advice |
|

- — - .l._d,ep_os_it_

Call join

/ execution
point

join point

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

13

Interface-based aspect-oriented programming in Compose*:

OOPSLA’93

Multiple views OO0 languages

concerns

) Combination of
Adapting inheritance hierarchies
interfaces (ECOOP 1992) e
according to o v i i Sl

the context e

: ; e Tt T A =T

Subject-oriented S T

: eyt
programming

(1993)

Composition of
Classes via
relational
operators

© Mehmet Aksit Interface-based programming in Compose} Ject-Oriented Languag

HyperJ (continued)

Classl

Class3

al
a2
ax
ay

M1
m2
mx
my

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

14

Interface-based aspect-oriented programming in Compose*:

Framework-based aspect-oriented
approaches

Supported within a platform with a number of libraries &
tools

Provides aspect weaving mechanisms as a tool

= Becoming more and more popular

Mostly implement Composition Filters like mechanisms
(using proxies/interceptors, etc.)

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

AOP languages have some concerns

Being able to compose crosscutting concerns is an
additional benefit but, crosscutting concern mechanisms
are “tangled with language semantics” (language
dependent);

Extending existing languages with AOP constructs
makes the languages too complex;

Verifying semantic correctness of compositions is still
difficult;

Joinpoint level of composition is too low-level .

15

Interface-based aspect-oriented programming in Compose*:

How to address these problems?

Step 1:
Separation of composition operators
from concerns

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

16

Interface-based aspect-oriented programming in Compose*:

Composition operators as dedicated
interface extensions

/

Composition | composition
language semantics

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Step 2:
Composing composition operators
with concerns

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

17

Interface-based aspect-oriented programming in Compose*:

Composition of composition operators
using “quantifiers”

Concern l
format&compose

.
Filters

superimposition

Software Software
Module 1 Module 2

Software Software
Module 3 Module 4

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

e c0%® S .
oo™ The Composition-filters model

As@edya 9
* Uniform model (everything is a “concern”) ”f'»sf’@o,
» Supports strong encapsulation (“interface programr.?f%;%;)
Concern my-cancern Filters are %64’*::,7%@0
modular and _~ °’zoj:é'
_ composable 4
extensions
& manipulate
User messages
defined

Programming
language
, C++, Java,

VIETTTTET ARSTC

in Compose*: Foundations of Aspect-Oriented Languages\

18

Interface-based aspect-oriented programming in Compose*:

First two claims of composition filters:
language independence

domain specific aspects as filters

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Simulated demonstration of the proof of
these two claims

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

19

Interface-based aspect-oriented programming in Compose*:

What we will show in the demo

= Composing aword counting ‘feature’ with the book shelf
application as a modular concern

= Composing a cache optimization concern with the word
counting concern.

= Language/platform independence

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009
Example: Bookshelf
Book
#title : String Chapter
#author : String #title : String
#chapters[] : Chapter #paragraphs[] : Paragraph
+getText() : String +getText() : String
+getTitle() : String 1 * |+getTitle() : String
+getAuthor() : String +addParagraph(in par : Paragraph)
+addChapter(in cha : Chapter) +getParagraph(in index : int) : Paragraph
+getChapter(in index : int) : Chapter
1
Paragraph

#text : String
+getText() : String

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

20

Interface-based aspect-oriented programming in Compose*:

Counting words and sentences

Book
#title : String Chapter
#author : String #title : String
#chapters|[] : Chapter #paragraphs|] : Paragraph
+getText() : String +getText() : String
+getTitle() : String 1 * |+getTitle() : String
+getAuthor() : String +addParagraph(in par : Paragraph)
+addChapter(in cha : Chapter) +getParagraph(in index : int) : Paragraph
+getChapter(in index : int) : Chapter +countWords() : int
+countWords() : int +countSentences() : int
+countSentences() : int
1
Paragraph

#text : String
+getText() : String

+countWords() : int
+countSentences() : int

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Design using Composition Filters

Book
#title : String Chapter
#author : String #title : String
#chapters|[] : Chapter #paragraphs|] : Paragraph
+getText() : String +getText() : String
+getTitle() : String 1 * |+getTitle() : String
+getAuthor() : String +addParagraph(in par : Paragraph)
+addChapter(in cha : Chapter) +getParagraph(in index : int) : Paragraph
+getChapter(in index : int) : Chapter
1
TextMetrics
Paragraph

#text : String

+countWords() : int TgetText() - String

+countSentences() : i

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

21

Interface-based aspect-oriented programming in Compose*:

Result of using Composition Filters

Dispatch

Chapter

#para Book
+getTgHtitle : String
+getTif#fauthor : String
addPl#chapters[] : Chapter
getPd+getText() : String N
+getTitle() : String TextMetrics
+getAuthor() : String
+addChapter(in cha : Chapter)
+getChapter(in index : int) : Chapter

myBook.countWords();

myChapter.countWords();

myPar.countWords();

+countWords() : int
+countSentences() : int

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Adding Caching

Dispatch

Paragrapl

[#text S

Chapter

y Book
myBook.countWords(); T getTd#ile Sting
+ge(-ri#author:strirégh !
addPl#chapte : Chapter
myChapter.countWords(); —+~———__ [3¥ et St -
~_"getTitle(: String TextMetrics
. +getAuth : Stril
myPar.countWords(); e Chapter(n he- Chapten)

+getChapter(in index : int) : Chapter

+countWords() : int
+countSentences() : int

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

22

Interface-based aspect-oriented programming in Compose*:

Conclusion of the first demonstration

= Composing a word counting ‘feature’ with the
bookshelf application

= Composing the caching optimization concern as a
high level concern with the word counting concern

= Composition Filters tools work on C/ .NET / Java
= BookShelf + WordCounting + Caching in Java
= Fibonacci + Caching in C

= Same concern code (Caching) reused!

e B Efficiency filters.can.he-inzlined. -=.low.overhead

The third claim of the Composition-Filters

Should be easier to verify the semantic
correctness of filter compositions since
filters are modular extensions;

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

23

Interface-based aspect-oriented programming in Compose*:

CF’s: Should be easier to verify

» Controlling the order of aspect superimpositions using
partial, advice-based priority specifications

* Resource-model based aspect-interference analysis
approach

* Graph- based aspect-interference analysis approach

advicel deps(i)g:;tlgrl = i
OfTe ==
: ompositic =
adviceN ' 5 === ==
Interface-based prof _I ‘ 3$
= iz B

Controlling the order of aspect
superimpositions using partial, advice-based
priority specifications

Composing Aspects at Shared Join Points

Istvan Nagy, Lodewijk Bergmans and Mehmet Aksit

TRESE group. Dept. of Computer Science, University of Twente
.0. Box 217, 7500 AE. Enschede, The Netherlands
+31-53-489 {5682, 4271, 2638}
{nagyist, bergmans, aksit}@cs.utwentenl

Abstract. Aspect-oriented languages provide means to superimpose aspectual behavior on a given
set of join points. It is possible that not just a single. but several units of aspectual behavior need to
be superimposed on the same join point. Aspects that specify the superimposition of these units are
said to "share” the same join point. Such shared join points may give nise to issues such as
determining the exact execution order and the dependencies among the aspects. In this paper. we
present a detailed analysis of the problem. and identfy a set of requirements upon mechanisms for
composing aspecrs al shared join points. To address the identified issues, we propose a general and
declarative model for defining constraints upon the possible compositions of aspects at a shared
join point. Finally. by using an extended notion of join points, we show how concrete aspect-
oriented programming languages, particularly Aspect) and Compose®, can adopt the proposed
model,

© Mehmet Aksit NO d e1

5 erface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

24

Interface-based aspect-oriented programming in Compose*:

Resource-model based aspect-
Interference analysis approach

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Serialization-based aspect-interference
approach (continued)

From the set of filters (from multiple filtermodules), per resource a sequence
of operations is compiled, e.g.:

filters

[F——
L 1

RRW i@

NB: not for all combinations of accept & reject a corresponding message
exists: this is filtered out

These sequences are matched with conflict patterns (defined per
resource), e.g. “R*WR

So: RR and RRRW don’t match, but RWR does match = conflict

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

25

Interface-based aspect-oriented programming in Compose*:

Serialization-based aspect-interference
approach (continued)

Aspect1 AspectN
The process:
{__ ClassZ |
! Operationt Pointcut Designator
Operatien2 Analysis
Base Program
Advices per
shared join point
Advice Behavior
ﬁ C—
Behavioral specification
sequence
per shared join point
Confilct
Detection :) Conflict Detection
Rules

@Ve rdict

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Graph-based aspect-interference
analysis

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

26

Interface-based aspect-oriented programming in Compose*:

Graph-based aspect-interface analysis
approach

Detect aspect-interference on a shared joinpoints without:
— (formally) specifying the aspect

— (formally) specifying the base program
— specifying the base language semantics

“Only analyse the aspects, not the base program.”

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Graph-based aspect-interface approach
(continued)

generate abstract syntax graph
substitute filter-types with filter-actions
construct control flow graph

create runtime state (method call)

simulation: generate state space
— Fixed production system for operational semantics

verification: analyse state space

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

27

Interface-based aspect-oriented programming in Compose*:

Graph-based aspect-interface approach

(continued) _
. S
Two kinds of ' = &L = “
non-determinism: &
— Assignment of _— = =
unknown runtime) = X
values (conditions) el 2
— Selection of filter e I
module order T T T
EE
= ; tborthctions

Conclusions about the semantic interference
detection

= Prioritization of compositions is sometimes necessary.
Prioritization must be based on partial specifications.
This is integrated in filters.

= Well-defined interfaces of concerns (filters) and/or
concerns with well-defined semantics (domain specific
concerns) make it easier to analyze & verify semantic
interference among concerns (for example by using
graph-based verification)

= In case of large state spaces, concerns can be abstracted
as semantic signatures (related to a resource model) and
be analyzed based on the references to the resource-
model.

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

28

Interface-based aspect-oriented programming in Compose*:

Our future work

Define larger set of filters (filter library) identified from
practical needs

Work further on semantic composition also for not shared
joinpoints

Composition patterns

Higher-level compositions

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Larger set of explicit composition operator

| l

Software Software Software
Module 1 Module 1 Module 2
(@)

(b)
protocol
Software Software Software Software
Module 1 Module 2 Module 1 Module 2
(c)

(d)

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

)

Interface-based aspect-oriented programming in Compose*:

Conclusions

= Non-invasive AOP has some advantages; language
independence, semantic verification, etc.

= Non-invasive AOP must be supported with a high-level
compositional language.

= |Invasive AOP is probably good for applications like run-
time verification kind of applications, but the ideal level of
detail of the joinpoints is difficult to determine.
Open joinpoint models can be the answer!

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

30

