
Aspect-Oriented Programming with
Type Classes

Martin Sulzmann National University of Singapore

Meng Wang Oxford University

Aspect-Oriented Programming with Type Classes – p.1



What’s this talk about?

Aspect-oriented programming (AOP) is an emerging
paradigm to aid the user in the modularization of
cross-cutting concerns.

Type classes are an established concept to support
ad-hoc polymorphism.

Both concepts have been so far studied in isolation.

We will see that type classes support AOP to some extent.

Main observation:

Translation of type classes
≈

Type-directed static weaving

type classes ≈ C++ templates ≈ Java interfaces

Aspect-Oriented Programming with Type Classes – p.2



Outline

AOP

Type classes in Haskell

AOP via type classes

Limitations

Conclusion and future work

Aspect-Oriented Programming with Type Classes – p.3



Our running example

We define a sorting library using the insertion sort
algorithm.

We need an insert function which inserts an
element into a sorted list.
Easy to program using object-oriented, functional
languages.

At some later stage we want to extend the library via
some efficiency and security “aspects”. For this we
need AOP.

Aspect-Oriented Programming with Type Classes – p.4



Object-oriented solution

public static <T>
void insertionSortGeneric(T[] a, Comparator<? super T> c) {
for (int i=1; i < a.length; i++) {

/* Insert a[i] into the sorted sublist */
T v = a[i];
int j;
for (j = i - 1; j >= 0; j--) {
if (c.compare(a[j], v) <= 0) break;
a[j + 1] = a[j];

}
a[j + 1] = v;

}
}

Aspect-Oriented Programming with Type Classes – p.5



Functional solution

In Haskell, we can implement insertion sort as follows.
module Sorting where

insert leq x [] = [x]
insert leq x (y:ys)
| x ‘leq‘ y = x:y:ys
| otherwise = y : insert leq x ys

insertionSort _ [] = []
insertionSort leq xs =
insert leq (head xs) (insertionSort leq (tail xs))

insert takes as an additional argument a function leq to
check for “lesser than or equal”.
Clumsy, we have to thread through leq.

Aspect-Oriented Programming with Type Classes – p.6



Type classes

Excerpts of the Haskell Prelude.
module Prelude where
class Eq a where
(==) :: a -> a -> Bool
class Eq a => Ord a where
(<=) :: a -> a -> Bool
instance Eq Int where ...
instance Eq a => Eq [a] where ...
instance Ord Int where ...
instance Ord a => Ord [a] where ...

(==) is an overloaded method belonging to the type
class Eq.

Eq t states that the type t is a member of Eq.

We declare membership via instances.

We can extend the class hierarchy by introducing
subclasses. Aspect-Oriented Programming with Type Classes – p.7



Type class solution

module Sorting where
import Prelude

insert x [] = [x]
insert x (y:ys)
| x <= y = x:y:ys
| otherwise = y : insert x ys

insertionSort [] = []
insertionSort xs =
insert (head xs) (insertionSort (tail xs))

Compare the difference to the functional solution.
Instead of leq we find <= (implicit argument).

Indeed, type inference yields

insert :: Ord a => a -> [a] -> [a]

Aspect-Oriented Programming with Type Classes – p.8



The challenge

At some stage during the implementation, we decide to add
some security and optimization aspects to our
implementation.

Efficiency aspect:
We know that only non-negative numbers are ever
sorted. Hence, if we insert 0 it suffices to cons 0 to the
input list.

Security aspect:
We want to ensure that each call to insert takes a
sorted list as an input argument and returns a sorted list
as the result.

How to do this (without “affecting” the entire program).
We only want to advise the relevant program parts.

Aspect-Oriented Programming with Type Classes – p.9



AOP Haskell example

-- sortedness aspect
N1@advice #insert# :: Ord a => a -> [a] -> [a] =

\x -> \ys ->
let zs = proceed x ys
in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"
where

isSorted xs = (sort xs) == xs
-- efficiency aspect
N2@advice #insert# :: Int -> [Int] -> [Int] =

\x -> \ys ->
if x == 0 then x:ys
else proceed x ys

The new keyword proceed indicates continuation of the
normal evaluation process.

Aspect-Oriented Programming with Type Classes – p.10



AOP Haskell

Extension of Haskell with aspect definitions of the form

N@advice #f1,...,fn# :: (C => t) = e

N is the name of the aspect. f1,...,fn refer to function
symbols (the pointcut). Each fi is referred to as a
joinpoint.

Each pointcut has a type annotation C => t which
follows the Haskell syntax for types.

The advice body e follows the Haskell syntax for
expressions.

We will apply the (around) advice if the type of a
joinpoint fi is an instance of t such that constraints C
are satisfied (pointcuts are type directed).

We will see later how to encode AOP Haskell in Haskell.

Aspect-Oriented Programming with Type Classes – p.11



AOP Haskell

Advice declarations may refer to overloaded methods
and we may advise overloaded methods.

Aspects must be pure.

Simple pointcut model.

Type-directed static weaving.

Aspect-Oriented Programming with Type Classes – p.12



Sample evaluation (a.k.a. weaving)

Suppose we encounter the function call

insert ’b’ [’a’,’c’]

We use insert at type instance Char->[Char]->[Char].

The sortedness aspect applies (pointcuts are type-directed!).

-- sortedness aspect

N1@advice #insert# :: Ord a => a -> [a] -> [a] =

\x -> \ys ->

let zs = proceed x ys

in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"

where

isSorted xs = (sort xs) == xs

-- efficiency aspect

N2@advice #insert# :: Int -> [Int] -> [Int] = ...

Aspect-Oriented Programming with Type Classes – p.13



Sample evaluation (a.k.a. weaving)

Suppose we encounter the function call

insert ’b’ [’a’,’c’]

Hence,

insert ’b’ [’a’,’c’]

--> let zs = insert ’b’ [’a’,’c’]
in if (isSorted [’a’,’c’]) && (isSorted zs)

then zs else error "Bug"

-->* [’a’,’b’,’c’]

Aspect-Oriented Programming with Type Classes – p.14



How to type and translate AOP Haskell

Our idea: We translate AOP idioms to type classes as
supported by the Glasgow Haskell Compiler (GHC).

Specifically,

Turn advice into instances.

Instrument joinpoints with calls to a “weaving” function.

Aspect-Oriented Programming with Type Classes – p.15



Turning advice into instances

class Advice n a where
joinpoint :: n -> a -> a
joinpoint _ = \x -> x -- default instance

data N1 = N1
data N2 = N2
-- N1@advice #insert# :: Ord a => a -> [a] -> [a] = ...
instance Ord a => Advice N1 (a->[a]->[a]) where ...
instance Advice N1 a
-- N2@advice #insert# :: Int -> [Int] -> [Int] = ...
instance Advice N2 (Int->[Int]->[Int]) where ...
instance Advice N2 a

joinpoint is the (overloaded) weaving function.

N1 and N2 are singleton types.

We will shortly discuss the overlap among the instances

Aspect-Oriented Programming with Type Classes – p.16



Turning advice into instances

In detail,
-- sortedness aspect
N1@advice #insert# :: Ord a => a -> [a] -> [a] =

\x -> \ys ->
let zs = proceed x ys
in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"
where
isSorted xs = (sort xs) == xs

is turned into
instance Ord a => Advice N1 (a -> [a] -> [a]) where

joinpoint _ insert = \x -> \ys ->
let zs = insert x ys
in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"
where

isSorted xs = (sort xs) == xs
Aspect-Oriented Programming with Type Classes – p.17



Instrumenting joinpoints

Each call to insert is replaced by

joinpoint N1 (joinpoint N2 insert)

We assume here the following order among advice: N2 ≤ N1.

If insert is used at the type instance a->[a]->[a], then
the above gives rise to
Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a])

Hence, after instrumentation function insert has type
insert :: (Advice N1 (a -> [a] -> [a]),

Advice N2 (a -> [a] -> [a]),
Ord a) => a -> [a] -> [a]

We need to take a look at type class resolution now.

Aspect-Oriented Programming with Type Classes – p.18



Type class resolution

In case of

instance Eq a => Eq [a] where ...
instance Eq Int where ...

Eq [Int] resolves to Eq Int via the first instance and
then subsequently to True via the second instance.

Eq [Int] refers to a use of (==) at the type instance
[Int]->[Int]->Bool.

Hence, type class resolution tells us how to build the
concrete instance of (==) requested at the type
[Int]->[Int]->Bool.

Aspect-Oriented Programming with Type Classes – p.19



Type class resolution

In detail,

instance Eq a => Eq [a] where ...
instance Eq Int where ...

translates to
data DictEq a = (a->a->Bool)
instI1 :: DictEq Int
instI2 :: DictEq a -> DictEq [a]

The dictionary instI2 instI1 provides evidence for Eq [Int].

Aspect-Oriented Programming with Type Classes – p.20



Overlapping instances resolution

In case of

instance Ord a => Advice N1 (a->[a]->[a]) -- (A1)
instance Advice N1 a
instance Advice N2 (Int->[Int]->[Int]) -- (A2)
instance Advice N2 a
and
Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a])
we cannot deterministically resolve the above type class
constraints. Hence, we leave them unresolved.

However, in case a=Int we can apply the “best-fit” strategy
strategy. Advice N2 (Int->[Int]->[Int]) is resolved
via instance (A1).
Advice N1 (Int->[Int]->[Int]) resolves to
Ord Int which then resolves to True.

Aspect-Oriented Programming with Type Classes – p.21



Type classes vs type-directed weaving

Assume we use (the instrumented program)
insert :: (Advice N1 (a -> [a] -> [a]),

Advice N2 (a -> [a] -> [a]),
Ord a) => a -> [a] -> [a]

at type instance Int->[Int]->[Int].

Type class resolution will then replace the calls to the
“weaving” function joinpoint with calls to the appropriate
advice bodies.

We assume here type classes as supported by the
Glasgow Haskell Compiler (GHC).

We conclude
Translation of type classes

≈
Type-directed static weaving

Aspect-Oriented Programming with Type Classes – p.22



Limitations

Assume the instrumented program carries a type annotation.
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys)
| x <= y = x:y:ys
| otherwise =

y : (joinpoint N1
(joinpoint N2 insert)) x ys --(1)

GHC’s type class resolution mechanism will “eagerly”
resolve the constraints

Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a])

which arise from location (1) via
instance Ord a => Advice N1 (a->[a]->[a]) --(A1)
instance Advice N2 a
Unexpected behavior.

Aspect-Oriented Programming with Type Classes – p.23



Limitations

We need to manually change type annotations.

Replace
insert :: Ord a => a -> [a] -> [a]
by
insert :: (Advice N1 (a -> [a] -> [a]),

Advice N2 (a -> [a] -> [a]),
Ord a) => a -> [a] -> [a]

Clumsy and even impossible in case of polymorphic
recursive functions, see paper for details.

But the approach works for Hindley/Milner + type classes.

Aspect-Oriented Programming with Type Classes – p.24



Related work

Work on the semantics of AOP:
Chen, Dantas, Dutchyn, Khoo, Kiczales, Krishnamurthi,
Lämmel, Ligatti, Tucker,Walker, Wand, Wang,
Washburn, Weirich, Zdancewic
[DWWW05, Läm02, TK03, WZL03, WKD04, WCK06b]

Work on AOP in the context of ML style languages:
Dantas, Ligatti, Masuhara,Tatsuzawa, Walker,
Washburn,Weirich,
Yonezawa,Zdancewic [WZL03, DWWW05, MTY05]

Work on type class encoding tricks:
Kiselyov, Lämmel,
Peyton Jones,Schupke [LP03, KLS04]

Aspect-Oriented Programming with Type Classes – p.25



Conclusion

AOP GHC Haskell: A light-weight form of AOP with
GHC style overlapping instances.

Syntax-directed translation scheme from AOP GHC
Haskell to GHC Haskell.

Limitation: We cannot advise programs which contain
type annotations (but the approach works for
Hindley/Milner + type classes).

AOP GHC Haskell can deal with all examples
from [WCK06b, WCK06a].

Observation: Type-directed static weaving is closely
related to type class resolution – the process of typing
and translating type class programs.

Aspect-Oriented Programming with Type Classes – p.26



Future work

Towards a framework for type classes and aspects.

Key observations:

Type classes are open.
Type class resolution via forward chaining

Aspects are closed.
Type class resolution via backward chaining/search

We are currently working on a core calculus to study type
classes and aspects. The two key ingredients are (1) a
type-directed translation scheme from a calculus with type
classes and aspects to a variant of Harper and Morrisett’s
λ

ML

i
calculus, and (2) a type inference scheme for type

class and aspect resolution based on Stuckey and the first
author’s overloading framework.

Aspect-Oriented Programming with Type Classes – p.27



A more principled approach

insert :: Ord a => a -> [a] -> [a]
insert x [] = []
insert x (y:ys) =

if x <=y then x:y:ys else y : insert x ys
N1@advice #insert# :: Ord a => a -> [a] -> [a] =
N2@advice #insert# :: Int -> [Int] -> [Int] =

insert carries now a type annotation (to translate
using overlapping type classes we need to manually
rewrite type annotations).

First key idea: We use the standard dictionary-passing
translation scheme for type classes but use a
type-passing scheme for aspects.

Aspect-Oriented Programming with Type Classes – p.28



A more principled approach

The translation yields
insert = Λ a. λ d:DictOrd a. λ x:a. λ xs:[a].
case xs of

[] → [x]
(y:ys) →

if (d (<=)) x y then x:y:ys -- (1)
else y : (

(joinpoint N1 (a->[a]->[a]) d -- (2)
((joinpoint N2 (a->[a]->[a]))
(insert a d))) x ys)

joinpoint = Λ n. Λ a.
typecase (n,a) of

(N1,a->[a]->[a]) → λ d:DictOrd a. ...--(3)
(N1, ) → ...
(N2,Int->[Int]->[Int]) → ...
(N2, ) → ...

Aspect-Oriented Programming with Type Classes – p.29



A more principled approach

Second key idea: Type class resolution may now involve a
search (because aspects are closed).

We employ Constraint Handling Rules (CHRs) to reason
about advice declarations. The advice declarations of our
running example translate to the CHRs
Advice N1 (a->[a]->[a]) <==> Ord a
Advice N1 b <==> b /=(a->[a]->[a]) | True
Advice N2 (Int->[Int]->[Int]) <==> True
Advice N2 b <==> b /= (Int->[Int]->[Int]) | True

insert’s annotation provides Ord a and the
(instrumented) program text demands
Ord a, Advice N1 (a->[a]->[a]), Advice N2 (a->[a]->[a])
Perform case analysis, i.e. solving by search.

Aspect-Oriented Programming with Type Classes – p.30



References

[DWWW05] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich.

PolyAML: a polymorphic aspect-oriented functional program-

ming language. In Proc. of ICFP’05, pages 306–319. ACM

Press, 2005.

[KLS04] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed het-

erogeneous collections. In Haskell ’04: Proceedings of the

2004 ACM SIGPLAN workshop on Haskell, pages 96–107.

ACM Press, 2004.

[Läm02] R. Lämmel. A semantical approach to method-call intercep-

tion. In AOSD ’02: Proceedings of the 1st international confer-

ence on Aspect-oriented software development, pages 41–55.

ACM Press, 2002.

[LP03] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a

practical approach to generic programming. In Proc. of ACM

SIGPLAN Workshop on Types in Language Design and Imple-

mentation (TLDI 2003), pages 26–37. ACM Press, 2003.

[MTY05] H. Masuhara, H. Tatsuzawa, and A. Yonezawa. Aspectual

caml: an aspect-oriented functional language. In Proc. of

ICFP’05, pages 320–330. ACM Press, 2005.

[TK03] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice in

higher-order languages. In Proc. of AOSD’03, pages 158–167.

ACM Press, 2003.

[WCK06a] M. Wang, K. Chen, and S.C. Khoo. On the pursuit of staticness

and coherence. In FOAL ’06: Foundations of Aspect-Oriented

Languages, 2006.

30-1



[WCK06b] M. Wang, K. Chen, and S.C. Khoo. Type-directed weaving

of aspects for higher-order functional languages. In Proc. of

PEPM ’06: Workshop on Partial Evaluation and Program Ma-

nipulation, pages 78–87. ACM Press, 2006.

[WKD04] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice

and dynamic join points in aspect-oriented programming. ACM

Trans. Program. Lang. Syst., 26(5):890–910, 2004.

[WZL03] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In

Proc. of ICFP’03, pages 127–139. ACM Press, 2003.

30-2


	What's this talk about?
	Outline
	Our running example
	Object-oriented solution
	Functional solution
	Type classes
	Type class solution
	The challenge
	AOP Haskell example
	AOP Haskell
	AOP Haskell
	Sample evaluation (a.k.a.~weaving)
	Sample evaluation (a.k.a.~weaving)
	How to type and translate AOP Haskell
	Turning advice into instances
	Turning advice into instances
	Instrumenting joinpoints
	Type class resolution
	Type class resolution
	Overlapping instances resolution
	Type classes vs type-directed weaving
	Limitations
	Limitations
	Related work
	Conclusion
	Future work
	A more principled approach
	A more principled approach
	A more principled approach

