Aspect-Oriented Programming with
Type Classes

Martin Sulzmann National University of Singapore

Meng Wang Oxford University

What’'sthistalk about?

#® Aspect-oriented programming (AOP) is an emerging
paradigm to aid the user in the modularization of
cross-cutting concerns.

#® Type classes are an established concept to support
ad-hoc polymorphism.

°

Both concepts have been so far studied in isolation.
We will see that type classes support AOP to some extent.
Main observation:

°

Translation of type classes

a4
Y

Type-directed static weaving

type classes ~ C++ templates ~ Java interfaces

Aspect-Oriented Programming with Type Classes — p.2

© o o o @

QOutline

AOP

Type classes in Haskell
AOP via type classes
Limitations

Conclusion and future work

Aspect-Oriented Programming with Type Classes — p.3

Our running example

#® We define a sorting library using the insertion sort
algorithm.

s We need ani nsert function which inserts an
element into a sorted list.

s Easy to program using object-oriented, functional
languages.

At some later stage we want to extend the library via
some efficiency and security “aspects”. For this we
need AOP.

Aspect-Oriented Programming with Type Classes — p.4

ODbject-oriented solution

public static <T>
void insertionSortCGeneric(T[] a, Conparator<? super T> c)
for (int 1=1;, I < a.length; 1++) {
[+ Insert a[i] into the sorted sublist */
Tv =all];
Int j;
for (j =1 -1, >=0; j--) {
I f (c.conpare(a[j], v) <= 0) break;
}a[j + 1] = a[]];

a[] + 1] = v;

Aspect-Oriented Programming with Type Classes — p.5

Functional solution

In Haskell, we can implement insertion sort as follows.
nodul e Sorting where

Insert leq x [] = [X]

Insert leqg x (y:ys)

| x ‘leq" vy = X:Y:VyS

| otherw se =y : insert leg x ys

Il nsertionSort _ [] =[]
|l nsertionSort |eq xs =
I nsert leq (head xs) (insertionSort leq (tail xs))

| nsert takes as an additional argument a function | eq to
check for “lesser than or equal”.

Clumsy, we have to thread through | eq.

Aspect-Oriented Programming with Type Classes — p.6

Type classes

Excerpts of the Haskell Prelude.

nodul e Prel ude where
class Eg a where

(==) :: a -> a -> Bool
class Eq a => O'd a where
(<=) :: a ->a -> Bool

| nstance Eq Int where ...

|l nstance Eq a => Eq [a] where ...
Il nstance Od Int where ...
lnstance Od a => Od [a] where ...

(==) is an overloaded method belonging to the type
class Eq.

#® Eqg t states that the type t is a member of Eq.
We declare membership via instances.

We can extend the class hierarchy by introducing
S U b CI asses . Aspect-Oriented Programming with Type Classes — p.7

Type class solution

nodul e Sorting where
| nport Prel ude

Insert x [] = [X]
lnsert x (y:ys)

| X <=y = X:Yy:VyS

| otherwse =y . insert x ys
I nsertionSort [] = []

| nsertionSort xs =
Il nsert (head xs) (insertionSort (tail xs))

Compare the difference to the functional solution.
Instead of | eq we find <= (implicit argument).

Indeed, type inference yields
Insert :: Oda=>a->[a] -> [a]

Aspect-Oriented Programming with Type Classes — p.8

Thechallenge

At some stage during the implementation, we decide to add
some security and optimization aspects to our
Implementation.

Efficiency aspect:
We know that only non-negative numbers are ever
sorted. Hence, if we insert O it suffices to cons 0 to the
iInput list.

#® Security aspect:

We want to ensure that each call to i nsert takes a
sorted list as an input argument and returns a sorted list

as the result.

How to do this (without “affecting” the entire program).

We only want to advise the relevant program parts.

Aspect-Oriented Programming with Type Classes — p.9

AOP Haskell example

-- sortedness aspect
Nl@dvice #insert# .. Oda=>a->[a] ->[a] =
\X ->\ys ->
| et zs = proceed X ys
Ini1f (1sSorted ys) && (isSorted zs)
then zs else error "Bug"

wher e
| sSorted xs = (sort Xs) == XS
-- efficiency aspect
N2@dvice #insert# :: Int ->[Int] ->[Int] =
\X ->\ys ->

I1f x == 0 then Xx:ys
el se proceed x ys

The new keyword pr oceed indicates continuation of the
normal evaluation process.

Aspect-Oriented Programming with Type Classes — p.10

AOP Haskdll

o Extension of Haskell with aspect definitions of the form
Neadvice #f1,...,fn# . (C=>1t) =¢e

Nis the name of the aspect. f 1,...,f n refer to function
symbols (the pointcut). Each fi is referred to as a
joinpoint.

Each pointcut has a type annotation C => t which
follows the Haskell syntax for types.

The advice body e follows the Haskell syntax for
expressions.

#» We will apply the (around) advice if the type of a
joinpoint f i Is an instance of t such that constraints C

are satisfied (pointcuts are type directed).

We will see later how to encode AOP Haskell in Haskell.

Aspect-Oriented Programming with Type Classes — p.11

°

°

AOP Haskdll

Advice declarations may refer to overloaded methods
and we may advise overloaded methods.

Aspects must be pure.
Simple pointcut model.
Type-directed static weaving.

Aspect-Oriented Programming with Type Classes — p.12

Sample evaluation (a.k.a. weaving)

Suppose we encounter the function call

Insert b’ ['a ,’ cCc’]
We use i nsert attype instance Char - >[Char] - >[Char] .
The sortedness aspect applies (pointcuts are type-directed!).

- sortedness aspect
Nl@dvi ce #insert# :: Oda=>a->[a] ->[a] =
\X ->\ys ->
| et zs = proceed x ys
inif (isSorted ys) && (isSorted zs)
then zs el se error "Bug"
wher e
i sSorted xs = (sort xs) == Xxs

- efficiency aspect
N2@dvi ce #insert# :: Int ->[Int] ->[Int] = ...

Aspect-Oriented Programming with Type Classes — p.13

Sample evaluation (a.k.a. weaving)

Suppose we encounter the function call
Insert b’ ['a ,’ cCc’]

Hence,
Insert b’ ['a ,’ c’]

-->let zs =insert 'b ['a,’'c’]

Ini1f (1sSorted ["a’,’c’]) && (isSorted zs)
then zs else error "Bug"

—o>x ['a,’ b, e]

Aspect-Oriented Programming with Type Classes — p.14

How to type and translate AOP Haskell

Our idea: We translate AOP idioms to type classes as
supported by the Glasgow Haskell Compiler (GHC).

Specifically,
Turn advice into instances.
Instrument joinpoints with calls to a “weaving” function.

Aspect-Oriented Programming with Type Classes — p.15

Turning advice into Instances

class Advice n a where

joinpoint :: n->a->a

joinpoint _ = \x -> X -- default instance
data N1 = N1
data N2 = N2
-- Nl@dvice #insert# .. Od a =>a ->[a] ->[a] = ...
I nstance Ord a => Advice N1 (a->[a]->[a]) where ...
| nstance Advice Nl a
-- N2@dvice #insert# :: Int ->[Int] ->[Int] = ...
| nstance Advice N2 (Int->[Int]->[Int]) where ...
| nstance Advice N2 a

| oi npoi nt is the (overloaded) weaving function.
N1 and N2 are singleton types.

We will shortly discuss the overlap among the instances

Aspect-Oriented Programming with Type Classes — p.16

Turning advice into Instances

In detall,
-- sortedness aspect
Nl@dvice #insert# :: Oda=>a->[a] ->[a] =
\X ->\ys ->
| et zs = proceed X ys
Ini1f (1sSorted ys) && (isSorted zs)
then zs else error "Bug"
wher e
| sSorted xs = (sort Xs) == XS

IS turned into
I nstance Od a => Advice N1 (a ->[a] -> [a]) where
joinpoint _insert = \x ->\ys ->
l et zs = insert X ys
In1f (isSorted ys) && (isSorted zs)
then zs else error "Bug"
wher e
| sSorted xs = (sort Xs) == XS

Aspect-Oriented Programming with Type Classes — p.17

| nstrumenting joinpoints

Each call toi nsert is replaced by
joinpoint N1 (joinpoint N2 insert)
We assume here the following order among advice: N2 < N1.

If i nsert is used at the type instance a- >[a] - >[a] , then
the above gives rise to

Advice N1 (a ->[a] ->[a]),
Advice N2 (a ->[a] -> [a])

Hence, after instrumentation function i nsert has type

Insert :: (Advice N1 (a ->[a] ->[a]),
Advice N2 (a ->[a] -> [a]),
Oda) =>a->[a] ->[4a]

We need to take a look at type class resolution now.

Aspect-Oriented Programming with Type Classes — p.18

Type classresolution

In case of

|l nstance Eq a => Eq [a] where ...
| nstance Eq Int where ...

Eq [I nt] resolvesto Eq | nt via the first instance and
then subsequently to Tr ue via the second instance.

Eq [nt] refersto a use of (==) at the type instance
[Int]->[1nt]->Bool.

Hence, type class resolution tells us how to build the
concrete instance of (==) requested at the type
[Int]->[1nt]->Bool.

Aspect-Oriented Programming with Type Classes — p.19

Type classresolution

In detall,

|l nstance Eq a => Eq [a] where ...
| nstance Eq Int where ...

translates to

data DictEq a = (a->a->Bool)
instll :: DictEq Int

Iinstl2 :: DictEq a -> DictEg [a]

The dictionary i nst12 instl 1 provides evidence forEq [Int].

Aspect-Oriented Programming with Type Classes — p.20

Overlapping instances resolution

In case of

I nstance Od a => Advice N1 (a->[a]->[a]) -- (Al)
| nst ance Advice N1 a
| nstance Advice N2 (Int->[Int]->[Int]) -- (A2)
| nst ance Advice N2 a

and

Advice N1 (a ->[a] ->[a]),

Advice N2 (a ->[a] ->[a])

we cannot deterministically resolve the above type class
constraints. Hence, we leave them unresolved.

However, in case a=I nt we can apply the “best-fit” strategy
strategy. Advice N2 (Int->[Int]->[Int]) isresolved
via instance (Al) .

Advice N1 (Int->[Int]->Int]) resolvesto

O d | nt which then resolves to Tr ue.

Aspect-Oriented Programming with Type Classes — p.21

Type classes vs type-directed weaving

Assume we use (the instrumented program)
Insert :: (Advice N1 (a ->[a] ->[a]),
Advice N2 (a ->[a] -> [a]),
Oda) =>a->[a] ->[4a]
attype instance I nt->[Int]->[Int].

Type class resolution will then replace the calls to the
“weaving” function j oi npoi nt with calls to the appropriate
advice bodies.

We assume here type classes as supported by the
Glasgow Haskell Compiler (GHC).

We conclude
Translation of type classes

(a4
Y

Type-directed static weaving

Aspect-Oriented Programming with Type Classes — p.22

L imitations

Assume the instrumented program carries a type annotation.
insert :: Oda=>a->[a] ->[a]
Insert x [] = [X]
lnsert Xx (y:ys)
| X <=y = X:Y:yS
| otherw se =
y : (joinpoint N1
(Joinpoint N2 insert)) x ys --(1)
GHC'’s type class resolution mechanism will “eagerly”
resolve the constraints
Advice N1 (a -> [4a]
Advice N2 (a -> [4a]
which arise from location (1) via
I nstance Od a => Advice N1 (a->[a]->[a]) --(Al)
| nstance Advice N2 a

Unexpected behavior.

-> [a]),
-> [a])

Aspect-Oriented Programming with Type Classes — p.23

L imitations

We need to manually change type annotations.

Replace

Insert :: Oda=>a->[a] ->[a]

by

Insert :: (Advice N1 (a ->[a] ->[a]),

Advice N2 (a -> [a] -> [a]),
Oda) =>a->[a] ->[a]

Clumsy and even impossible in case of polymorphic
recursive functions, see paper for details.

But the approach works for Hindley/Milner + type classes.

Aspect-Oriented Programming with Type Classes — p.24

Related wor k

® Work on the semantics of AOP:
Chen, Dantas, Dutchyn, Khoo, Kiczales, Krishnamurthi,
Lammel, Ligatti, Tucker,Walker, Wand, Wang,
Washburn, Weirich, Zdancewic
[IDWWWO05, Lam02, TK03, WZL03, WKD04, WCKO06Db]

Work on AOP in the context of ML style languages:
Dantas, Ligatti, Masuhara, Tatsuzawa, Walker,
Washburn,Weirich,

Yonezawa,Zdancewic [WZL03, DWWWO05, MTY05]

Work on type class encoding tricks:
Kiselyov, Lammel,
Peyton Jones,Schupke [LP03, KLS04]

Aspect-Oriented Programming with Type Classes — p.25

Conclusion

AOP GHC Haskell: A light-weight form of AOP with
GHC style overlapping instances.

Syntax-directed translation scheme from AOP GHC
Haskell to GHC Haskell.

Limitation: We cannot advise programs which contain
type annotations (but the approach works for
Hindley/Milner + type classes).

AOP GHC Haskell can deal with all examples
from [WCKO06b, WCKO064a].

Observation: Type-directed static weaving is closely
related to type class resolution — the process of typing
and translating type class programs.

Aspect-Oriented Programming with Type Classes — p.26

Future work

Towards a framework for type classes and aspects.

Key observations:
Type classes are open.

Type class resolution via forward chaining

#® Aspects are closed.

Type class resolution via backward chaining/search

We are currently working on a core calculus to study type
classes and aspects. The two key ingredients are (1) a
type-directed translation scheme from a calculus with type
classes and aspects to a variant of Harper and Morrisett’s
AML calculus, and (2) a type inference scheme for type

class and aspect resolution based on Stuckey and the first
author’s overloading framework.

Aspect-Oriented Programming with Type Classes — p.27

A more principled approach

Insert :: Oda=>a->[a] ->[a]
lnsert x [] =[]
lnsert x (y:ys) =

If X <=y then x:y:ys elsey : insert X ys
Nl@xdvice #insert# .. Oda=>a->[a] ->[a] =
N2@dvice #insert# :: Int ->[Int] ->[Int] =

i nsert carries now a type annotation (to translate
using overlapping type classes we need to manually
rewrite type annotations).

o First key idea: We use the standard dictionary-passing
translation scheme for type classes but use a
type-passing scheme for aspects.

Aspect-Oriented Programming with Type Classes

-p.28

A more principled approach

The translation yields

insert = Aa. MNd:DctOda. X x:a. X xs:[a].
case xs of

[1 — [X]

(y:ys) —
1f (d (<=)) x y then x:y:ys -- (1)
elsey : (

(joinpoint N1 (a->[a]->[a]) d -- (2)
((joinpoint N2 (a->[a]->[a]))
(insert a d))) x ys)
joinpoint = A n. A a.
t ypecase (n,a) of

(N1, a->[a]->[a]) — A d:DctOd a. ...--(3)

(N1,) — ...

(N2, Int->[Int]->[Int]) — ...

(N2,) — ...

Aspect-Oriented Programming with Type Classes — p.29

A more principled approach

Second key idea: Type class resolution may now involve a
search (because aspects are closed).

We employ Constraint Handling Rules (CHRS) to reason

about advice declarations. The advice declarations of our
running example translate to the CHRs

Advice N1 (a->[a]->[a]) <==> Od a

Advice N1 b <==> b /=(a->[a]->[a]) | True
Advice N2 (Int->[Int]->[Int]) <==> True

Advice N2 b <==> b /= (Int->[Int]->[Int]) | True

| nsert’s annotation provides O d a and the
(instrumented) program text demands

Od a, Advice N1 (a->[a]->[a]), Advice N2 (a->[a]->[a])

Perform case analysis, i.e. solving by search.

Aspect-Oriented Programming with Type Classes — p.30

References

[DWWWO05] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich.

[KLS04]

[L4MO2]

[LPO3]

[MTYO05]

[TKO3]

[WCKO06a]

PolyAML: a polymorphic aspect-oriented functional program-
ming language. In Proc. of ICFP’05, pages 306-319. ACM
Press, 2005.

O. Kiselyov, R. Lammel, and K. Schupke. Strongly typed het-
erogeneous collections. In Haskell '04: Proceedings of the
2004 ACM SIGPLAN workshop on Haskell, pages 96-107.
ACM Press, 2004.

R. LAmmel. A semantical approach to method-call intercep-
tion. In AOSD '02: Proceedings of the 1st international confer-
ence on Aspect-oriented software development, pages 41-55.
ACM Press, 2002.

R. Lammel and S. Peyton Jones. Scrap your boilerplate: a
practical approach to generic programming. In Proc. of ACM
SIGPLAN Workshop on Types in Language Design and Imple-
mentation (TLDI 2003), pages 26-37. ACM Press, 2003.

H. Masuhara, H. Tatsuzawa, and A. Yonezawa. Aspectual
caml: an aspect-oriented functional language. In Proc. of
ICFP’05, pages 320-330. ACM Press, 2005.

D. B. Tucker and S. Krishnamurthi. Pointcuts and advice in
higher-order languages. In Proc. of AOSD’03, pages 158-167.
ACM Press, 2003.

M. Wang, K. Chen, and S.C. Khoo. On the pursuit of staticness
and coherence. In FOAL '06: Foundations of Aspect-Oriented
Languages, 2006.

30-1

[WCKO6b]

[WKDO04]

[WZL03]

M. Wang, K. Chen, and S.C. Khoo. Type-directed weaving
of aspects for higher-order functional languages. In Proc. of
PEPM '06: Workshop on Partial Evaluation and Program Ma-
nipulation, pages 78-87. ACM Press, 2006.

M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice
and dynamic join points in aspect-oriented programming. ACM
Trans. Program. Lang. Syst., 26(5):890-910, 2004.

D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In
Proc. of ICFP’03, pages 127-139. ACM Press, 2003.

30-2

	What's this talk about?
	Outline
	Our running example
	Object-oriented solution
	Functional solution
	Type classes
	Type class solution
	The challenge
	AOP Haskell example
	AOP Haskell
	AOP Haskell
	Sample evaluation (a.k.a.~weaving)
	Sample evaluation (a.k.a.~weaving)
	How to type and translate AOP Haskell
	Turning advice into instances
	Turning advice into instances
	Instrumenting joinpoints
	Type class resolution
	Type class resolution
	Overlapping instances resolution
	Type classes vs type-directed weaving
	Limitations
	Limitations
	Related work
	Conclusion
	Future work
	A more principled approach
	A more principled approach
	A more principled approach

