
FOAL'06 Stephan Herrmann #1

Are Pointcuts a First-Class
Language Construct?

Einführung Teil 1

Stephan Herrmann
Technische Universität Berlin

stephan@cs.tu-berlin.de

www.ObjectTeams.org

FOAL'06 Stephan Herrmann #2

Join Points?

„A join point is a point of interest
in some artefact ...
through which two or more concerns
may be composed“ [Crosscut 1st Issue]

„A join point is a point
in the execution of a program ...“

program element

runtime event

FOAL'06 Stephan Herrmann #3

A Calculus for
Pointcut Composition?

● &&, || and ! ≠ ∧, ∨ and ¬
– distributive law does not hold in AspectJ

● event negation?
– debatable semantics

● intersection of join point kinds?
– call(T C.foo()) && set(T C.bar) ??

FOAL'06 Stephan Herrmann #4

Outline

● Minimal AOP w/o „pointcut“
– Bottom-up construction of AOP

● economy of concepts – „pointcut“ is an expensive concept

– Terminology of „Join Point Interception“

– Meta model for join points

● The Delta
● „Pointcuts“

– Reverse methods

– Model: pointcuts as classes

– Compositionality for free

FOAL'06 Stephan Herrmann #5

Minimal AOP

● Join points
– elements of the program, defined by meta model

● Join point queries
– matching (wildcards etc.) ∨ functional queries

● kind & scope & constraint

● Join point interception
– binding: aspect method ← set of join points

● before | after | replace
● possibly guarded (run-time filter)
● overridable (needs a name)

– execution of join point may trigger aspect method

advice

>

E(C)/A

FOAL'06 Stephan Herrmann #6

Discussion

● Powerful AOP without
„points in the execution of a program“

– amenable to formal, static analysis

– students can implement/understand the language

● What is missing?
– Regarding AspectJ:

● cflow

– Other dynamic approaches
● stateful aspects
● trace matches
● ...

– What do these have in common?

consume multiple events
to trigger one action

FOAL'06 Stephan Herrmann #7

Reverse Methods

● Definition by Anti-Symmetry:

m()
 m2()

 m3()

 mx()

m2()

m3()

<client>

jp3

 PC

 trig2()

 trig3()

 trigx()

<advice>

consume one incoming call event
produce sequence of outgoing events

produce one outgoing call event
consume sequence of incoming events

Method Pointcut

return pr
oc
ee
d

jp2

FOAL'06 Stephan Herrmann #8

Pointcut Class

● Why invent something new?
– public team class T {

protected class R playedBy ? {
void rm() { ... }
rm <- replace PC1.fire;

}
}

 R
rm
rm <- PC1

 PC1
fire
m2() {....}
m3
m2 <- PC2
m3 <- B.m

FOAL'06 Stephan Herrmann #9

Compositional Pointcut Binding

● Why invent something new?
– public team class T {

protected class R playedBy ? {
void rm() { ... }
rm <- replace PC1.fire;

}
}

 R
rm
rm <- PC1

 PC1
fire
m2() {....}
m3
m2 <- PC2
m3 <- B.m

 PC2
m4
m5
fire
m4 <- bm1
m5 <- query2()

 B
rm

FOAL'06 Stephan Herrmann #10

Economy

● Join point interception
– a low-cost concept

– statically determined

● Multi-event triggers
– generalized/simulated by class

– specialized syntax deferred

● Calculi
– join points: functional queries (meta model + set theory)

– aspect binding: E(C)/A + overriding

– composition as aspects-of-aspects

more details at:
www.objectteams.org/publications

