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Join Points?

„A join point is a point of interest
in some artefact ... 
through which two or more concerns
may be composed“  [Crosscut 1st Issue]

„A join point is a point 
in the execution of a program ...“ 

program element

runtime event
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A Calculus for 
Pointcut Composition?

● &&, || and ! ≠ ∧, ∨ and ¬
– distributive law does not hold in AspectJ

● event negation?
– debatable semantics

● intersection of join point kinds?
– call(T C.foo()) && set(T C.bar) ??
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Outline

● Minimal AOP w/o „pointcut“
– Bottom-up construction of AOP

● economy of concepts – „pointcut“ is an expensive concept

– Terminology of „Join Point Interception“

– Meta model for join points

● The Delta
● „Pointcuts“

– Reverse methods

– Model: pointcuts as classes

– Compositionality for free
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Minimal AOP

● Join points
– elements of the program, defined by meta model

● Join point queries
– matching (wildcards etc.)  ∨  functional queries

● kind & scope & constraint

● Join point interception
– binding: aspect method ← set of join points

● before | after | replace
● possibly guarded (run-time filter)
● overridable (needs a name)

– execution of join point may trigger aspect method

advice

>

E(C)/A
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Discussion

● Powerful AOP without 
„points in the execution of a program“

– amenable to formal, static analysis

– students can implement/understand the language

● What is missing?
– Regarding AspectJ:

● cflow

– Other dynamic approaches
● stateful aspects
● trace matches
● ...

– What do these have in common?

consume multiple events
to trigger one action
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Reverse Methods

● Definition by Anti-Symmetry:

m()
 m2()

 m3()

 mx()

m2()

m3()

<client>

jp3

 PC

 trig2()

 trig3()

 trigx()

<advice>

consume one incoming call event
produce sequence of outgoing events

produce one outgoing call event
consume sequence of incoming events

Method Pointcut

return pr
oc
ee
d

jp2
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Pointcut Class

● Why invent something new?
– public team class T {

protected class R playedBy ? {
void rm() { ... }
rm <- replace PC1.fire;

}
}

       R
rm
rm <- PC1

     PC1
fire
m2() {....}
m3
m2 <- PC2
m3 <- B.m
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Compositional Pointcut Binding

● Why invent something new?
– public team class T {

protected class R playedBy ? {
void rm() { ... }
rm <- replace PC1.fire;

}
}

       R
rm
rm <- PC1

     PC1
fire
m2() {....}
m3
m2 <- PC2
m3 <- B.m

         PC2
m4
m5
fire
m4 <- bm1
m5 <- query2()

    B
rm     
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Economy

● Join point interception
– a low-cost concept

– statically determined

● Multi-event triggers
– generalized/simulated by class

– specialized syntax deferred

● Calculi
– join points: functional queries (meta model + set theory)

– aspect binding: E(C)/A + overriding

– composition as aspects-of-aspects

more details at:
www.objectteams.org/publications


