
1

Assurances vs. Capabilities as a
Basis for Dispatch

William Harrison
Trinity College Dublin

2

The Problem:
In common OO clients have to know where the implementation is.

Several effects in client code:
Syntactic distortion to distinguish “target”

target.method(p1,…pn)

Finding the implementation object
t = find(“600484”); …; t.method(p1…pn)

All the (target) method implementations must be in the same object
the “aspect-oriented” issue – mix behavior from separate aspects

The Problem

It is desirable for a client to be unaware of the structure of the services
implementing its calls because this allows the cliend to be used with more different
service implementation.

Common object-oriented languages employ a structure for method-call in which the
client finds a “target” object and sends a method call to that object. object to have
the service performed. The syntax reflects the knowledge of which object
implemented the method. In the first instance the target is given a distinct syntactic
position in the call. In the second instance the client must contain code to find the
target object. The code for doing this can be located far away from the call. In fact, it
may have occurred long before with the result stored in a state variable for the
interim. In the third instance, the client assumes that all of the methods described by
the interface used for the target are implemented in one object. This rules out
implementations in which they reside in several.

3

The Problem:
In common OO clients have to know where the implementation is.

Several effects in client code:
Syntactic distortion to distinguish “target”

target.method(p1,…pn)
Use symmetric multimethods [doesn’t solve apportionment to parameters]

client passes method as if in p3, implementation expects it in p2
Finding the implementation object

t = find(“600484”); …; t.method(p1…pn)
Permit references based on non-pointer data

All the (target) method implementations must be in the same object
the “aspect-oriented” issue – mix behavior from separate aspects
Separate assurance of callability from referenced object

Some Solutions

There are some solutions that can be applied to these problems. The local syntactic
distortion can be alleviated by using symmetric multimethods. But this still leaves
what might be called the “apportionment problem”. The apportionment problem
arises when the client assumes that some capability is passed by one parameter,
say p3, while the implementation expects the assurance to be passed via p2. We
can avoid having the client find the object by allowing it to use the non-pointer data
directly instead of requiring it to use the data to get a pointer first. And we can
remove the presumption of which object’s pointer carries the implementation by
separating the assurance from the object referenced.

4

Separate assurance of callability from referenced object

Change meaning of declaration: {f(); g();} t

Some Solutions

target object implements
f(), g() if t not null

servicer

client

capability dispatcher

dispatcher can find
f(), g() if t not null

servicer

client

servicer

assurance

We remove the presumption that the reference tells about the target object by
slightly changing the meaning of a declaration. When we declare t as pointing, if it’s
not null, to an object that implements f() and g(), we say that, if not null, it points
some objects and guarantees that the dispatcher can find the methods f() and g().

5

Consequences:

1. Interfaces are (recursive) structural types instead of nominal types

2. Permit recombinance (assurances can re-associate)

3. Type-safety of method call can be supported by any parameter

Recombinance

the same as:

method m(s {f(),h()}, t {e(),g()})

Places greater emphasis on declaring necessary vs. supplementary variables

If s, t not null, then type system should treat:

method m(s {f(),g()}, t {e(),h()})

An important difference that this change in interpretation yields can be highlighted
when we have two references, BOTH of which are not null. In this case we know
that all the indicated methods can be safely called. The fact that they are all true
means we can recombine those assurances, assign them differently among other
variables. For example knowing that h() and g() can be called means that they are
assured with respect to ANY variable available for assignment at the time that fact
is known.

This effect, called recombinance, points us in the direction of using recursive
structural comparisons for interfaces, instead of simply comparing them by name,
and allows the assertion that a method call is safe if it is assured by any of the
parameters, and not just by a distinguished target parameter. But exploitation of
recombinance places greater emphasis on knowing declaratively that parameters
may not be null, to enable their recombination.

6

iff

same name & signature (other than assurances)
each assurance in a qi conforms to an assurance in a pj

Conformity
method m(p1, …, pn) conforms to method m(q1, …, qn)

This gives us a new conformance rule, which we can illustrate with a small example.

7

Conformity
SoleTrader Interfaces

Interface Empty{};
Interface Ordering {

reorder (Empty store);
}
Interface Sales {

sell (Ordering item,
Empty customer);

}

SoleTrader Client Code

Ordering item = … initialization …;
Sales store = … initialization …;
Empty customer = … initialization …;
store.sell (item, customer);
item.reorder (store);

Superstore Interfaces

Interface Empty{};
Interface SuperOrdering {

reorder (Empty store);
}
Interface TheBusiness {

reorder (Empty store);
sell (Empty item, Empty customer);

}

Consider the case of a small store, a sole trader, which implements its software in
the way implied by the sole-trader interfaces at the upper-left of this diagram, and
that some client written for it as shown in the lower part of this diagram. If the sole
trader is bought-out by a superstore which has used instead the interfaces at the
upper right, its client code still matches those interfaces. This is not a simple effect
arising from the fact that the superstore put all its functions in the same object which
implements both interfaces. It arises because the declarations of the “sell” methods
are, in fact, different, as illustrated by the highlighted first parameter to “Sell” but
arises because of the changed conformance rules.

