Continuation Join Points

Yusuke Endoh, Hidehiko Masuhara, Akinori Yonezawa
(University of Tokyo)

Background: Aspects are reusable in Aspectd (1)

Example: A generic logging aspect
o can log user inputs in a CUI program
o by defining a pointcut

Login

Generic Logging

id = read.l_ine(); N Aspect

N YN

Main

CUI Aspect
pointcut input():
call(readLine())

7

cmd = re.adLine(); <

logging
return value

Background: Aspects are reusable in Aspectd (2)

Example: A generic logging aspect
o can also log environment variable
o by also defining a pointcut

Q. Now, If we want to log | |
environment variable (getEnv) ...? |Generc Logging

Aspect

A. Merely concretize an aspect 7~
additionally

Env Aspect CUI Aspect
pointcut input(): pointcut input():
call(getEnv()) call(readLine())

Aspect reusability

Problem: Aspects are not as reusable as expected

Example: A generic logging aspect

o can NOT log inputs in a GUI program by defining a
pointcut

Login Generic Logging
void onSubmit(id) L Aspect

N

pointct’. input():
call(or.subn.'t(Str))

1o}

void onSubmit(cmd)u bt GUI ~=pect

logging
arguments

Why can’t we reuse the aspect?

Timing of advice execution depends on both

and pointcuts

Logging Aspect (inner)

abstract pointcut: input();

- ibout() { Log.add(s); }

unable to change to before

Generic Logging
Aspect

Workaround in Aspectd is awkward: overview

Required changes for more reusable aspect:
0 generic aspect (e.g., logging)

two abstract pointcuts, two advice decls. and an
auxiliary method

0 concrete aspects
two concrete pointcuts even if they are not needed

Workaround in AspectJ is awkward:
how to define generic aspect

1. define two pointcuts {

for before and after

2. define two advice decls./
for before and after

-

3. define auxiliary method {

Simple Logging Aspect

abstract pointcut: inputAfter();
abstract pointcut: inputBefore();

after() returning(String s)
. InputAfter() { log(s); }
before(String s)
. InputBefore() && args(s)
{1og(s); }

void log(String s) { Log.add(s); }

Workaround in AspectJ is awkward:
how to define concrete aspects

always define both pointcuts

o even If not needed

Updated
Logging Aspect

N

CUI Aspect

GUI Aspect

pointcut inputAfter() :
call(readLine());

pointcut inputBefore() :
never();

pointcut inputAfter() :
never();

pointcut inputBefore() :
call(onSubmit(Str));

Summary: Aspect Reusability Problem

Aspects are not reusable
when advice modifiers need to be changed

o CUI/GUI Is not an artificial example

stand-alone < application framework
blocking I/O < non-blocking I/O

Workaround is awkward

Cause: Timing of advice execution depends on
both advice modifiers and pointcuts

Contributions

The point-in-time join point model

PitJ: an experimental AOP language based
on the model

o completed the language design

PitA: simplified version of PitJ based on A-
calculus

0 a working interpreter
o formalized in CPS

Point-in-Time Join Point Model

Define ends of actions as different join points
from beginnings of actions
region-in-time model point-in-time model

(traditional) (proposed)
AspectJ, AspectWerkz, JBoss AOP, ...

\ I readLine(){ ‘ readLine(){
readLine();ﬂ E readLine()*v E

||} }

| call join point]| call join po.inﬂ _ _
| reception join point

PitJ: An Experimental AOP Language
Based on Point-in-Time Model

IS more reusable than AspectJ because of
point-in-time model

IS as expressive as AspectJ

base language : Java (AspectJ-like)

PitJ: Pointcuts

call(method): a call to method
reception(method): a return from method

fallure(method): an exceptional return from
method

o 1.e., exception is thrown by method
args(var): binding join point’s value to var
o call join point’s value . argument

0 reception join point’s value : return value

o failure join point’'s value : exception object

PitJ: Examples of Advice (1)

No need for advice modifiers
o advice(Str s): call(m) && args(s) { ... }
advices at call join point of the method m
In AspectJ: before(): call(m) { ...}
0 advice(Str s): reception(m) && args(s) { ... }
In AspectJ. after() returning(Str s): call(m) { ... }
o advice(Obj e): failure(m) && args(e) { ... }
In AspectJ: after() throwing(Obj e): calllm) { ... }

PitJ: Examples of Advice (2)

before and after advice can be defined in one
advice declaration

0 advice(Str s):
(call(lonSubmit(Str)) || reception(readLine())) &&
args(s){ ... }

runs at both call join point of onSubmit and a reception
join point of readLine

In AspectJ, corresponding to a pair of advice decls.
before(String s): calllonSubmit(Str)) && args(s) { ... }
after() returning(String s): call(readLine()) { ... }

Reusable Logging Aspect in PitJ

Generic Logging Aspect

abstract pointcut input();
advice(String s): input() && args(s)
{ Log.add(s); }

N

CUI Aspect GUI Aspect

pointcut input(): pointcut input():
reception(readLine()) | [call(lonSubmit(Str))

PitJ: Around-like Advice

usages of around advice in AspectJ

1. replace the parameters to a join point with new ones
2. replace the return value to the caller of a join point
3. go back to the caller without executing a join point
4. execute a join point more than once

In PitJ, these are realized by:
o 1, 2 =» return in advice body

0 3 = new construct: skip
o 4 =» special function: proceed

return in advice body (1)

replaces join point’s value

Example: at call join point

o advice(Str s): call(m) && args(s) { return sanitize(s); }
replaces the argument of m with the sanitized one

0 In AspectJ:

around(Str s): call(m) && args(s)
{ return proceed(sanitize(s)); }

return in advice body (2)

Example: at reception join point

0 advice(Str s): reception(m) && args(s)
{ return sanitize(s); }
replaces the return value of m with the sanitized one

2 In AspectJ:

around(Str s): call(m) && args(s)
{ return sanitize(proceed(s)); }

new construct: skip

skip Is evaluated in a call join point:

0 skips subsequent advice decls. and the call itself
l.e., jumps to the corresponding reception join point

INn a reception or failure join point:
0 skips subsequent advice decls.

Example:

o advice(): call(readLine()) { skip dummy }
makes readLine always return “dummy”

0 In Aspectd:
String around(): call(readLine()) { return “dummy”; }

20

special function: proceed

proceed Is evaluated in a call join point:
o executes the action until the corresponding reception join point

In a reception or failure join point:
2 ho effect

Example:

o advice(): call(readLine) { proceed(); }
let readLine skip every other line

o advice(): call(readLine) { skip(proceed() + proceed()); }
let readLine return a concatenation of two lines

o advice(): call(readLine) { skip(proceed()); }
no effect

Summary: PitJ

No need for advice modifiers

Advice decls. are more reusable than AspectJ’s
due to the point-in-time model

PitJ Is as expressive as AspectJ’s advice
mechanism
o before : call join points

o after : reception or failure join point
o around-like : skip and proceed

Formalization of Point-in-Time Model

target: PitA
o simplified version of PitJ
o base language: untyped A-calculus

approach:

o denotational semantics in continuation-passing
style

o key idea: denote join points as applications to
continuation

Semantic Equations: Advice

4 : advice list 2 Event 2 Ctn -2 Ctn
o Event : kind of join point
o Ctn : continuation

A [A] € : return continuation that:

0 selects applicable advice decls. from A (list of
advice)

0 executes them, and

0 executes k (continuation)
e kind of join point

Semantic Equations: Expression

E . expression - Ctn - Ans

o Ctn : continuation
o AnsS : answer

E |E] x: evaluates E and executes «
0 E : expression
0 K. continuation

Sample Program in PitA

advice call(f) && args(x) 2 x+1
advice recption(f) && (X) 2> x+2 9 S
let f X = x*®n f 2

6

let T X = x*2

Semantics of Function Call (abridged)

: |II
|f 2) \Iet f X = x*2
‘ 2 R

semantics of A-calculus wittoat aispattarieahizmsm
E|Ey E;| x = E|Ey| (A E|E]
(Av. AlA] call (f (AvAlA] recept) V)
application to €orfipliadton2o kontinuation
= recepdialh jfim o mtt

we can define It in systematic way!

Advantages of Our Formalization

simpler than existing formalizations [wand '02]
[Walker "03]

2 ho need for rules for each advice modifier

o beginnings and ends of actions are represented
symmetrically

easier to support advanced features
o exception handling

0 context sensitive pointcuts (cflow)

o around advice

exception handling (sketch)

give a standard semantics

o by adding continuation that represents current
handler

identify failure join point

semantics of A-calculus with advice mechanism
E|Ey Ey] k x, = E[Ep| (Al E[E,)
(Av. alA] call (f (Av. 4|A W reception Kk Ky, V)

(Av. AlA]| fallure ®p %y, Ky V)

Ky V) Kp) Kp)

around-like advice (concept)

using idea of partial continuation [panvy '89]
o a part of the rest of computation, rather than the whole rest

B

f2" \Ietfx:x*Z

:

¢

partial continuation = skip / proceed

we currently formalized by using continuation-
composing style

Related Work

approaches based on the region-in-time model:
o Aspect SandBox[wand '02], Tucker et al. '03, MiniMAQO|Clifton ‘05],

some approaches treat beginning and end of an event

as different join points, but that have different
motivations

o Walker et al. '03: propose a low-level language that serves as
a target of translation from a high-level AOP language

o Douence et al. '04: define a formal semantics of cflow by using
calling contexts from execution history

Conclusion

a new join point model that defines
beginnings and ends of actions as different
join points

o Point-in-time vs. Region-in-time

o designed PitJ based on the model

Improves aspect reusability by enhancing
expressiveness of pointcuts

o formalized the model in continuation-passing style
simpler than some existing formalizations
easier to support advanced features

Future Work

Integrate more advanced features

o dflow pointcut [Kawauchi *03]
o first-class continuation
o tail-call elimination

Implement a compiler for PitJ language

o Java bytecode should be made without CPS
transformation

