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cmd = readLine();

Main

id = readLine();

Login

Background: Aspects are reusable in AspectJ (1)

Example: A generic logging aspect
can log user inputs in a CUI program
by defining a pointcut

logging
return value

Generic Logging
Aspect

pointcut input():
call(readLine())

CUI Aspect
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Background: Aspects are reusable in AspectJ (2)

Example: A generic logging aspect
can also log environment variable
by also defining a pointcut

Generic Logging
Aspect

pointcut input():
call(readLine())

CUI Aspect

pointcut input():
call(getEnv())

Env Aspect

Q. Now, if we want to log 
environment variable (getEnv) …?

A. Merely concretize an aspect 
additionally

Aspect reusability
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Example: A generic logging aspect
can NOT log inputs in a GUI program by defining a 
pointcut

Problem: Aspects are not as reusable as expected

void onSubmit(id)
{ … }

Login

void onSubmit(cmd)
{ … }

Main

logging
arguments

Generic Logging
Aspect

pointcut Input():
call(onSubmit(Str))

GUI Aspect
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Why can’t we reuse the aspect?

Generic Logging
Aspectabstract pointcut: input();

after() returning(String s)
: input() { Log.add(s); }

Logging Aspect (inner)

unable to change to before

Timing of advice execution depends on both
advice modifiers and pointcuts



6

Workaround in AspectJ is awkward: overview

Required changes for more reusable aspect:
generic aspect (e.g., logging)

two abstract pointcuts, two advice decls. and an 
auxiliary method

concrete aspects
two concrete pointcuts even if they are not needed
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Workaround in AspectJ is awkward:
how to define generic aspect

1. define two pointcuts
for before and after

2. define two advice decls.
for before and after

3. define auxiliary method

abstract pointcut: inputAfter();
abstract pointcut: inputBefore();

after() returning(String s)
: inputAfter() { log(s); }

before(String s)
: inputBefore() && args(s)
{ log(s); }

void log(String s) { Log.add(s); }

Simple Logging Aspect
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Workaround in AspectJ is awkward:
how to define concrete aspects

Updated
Logging Aspect

pointcut inputAfter() :
call(readLine());

pointcut inputBefore() :
never();

CUI Aspect
pointcut inputAfter() :
never();

pointcut inputBefore() :
call(onSubmit(Str));

GUI Aspect

always define both pointcuts
even if not needed
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Summary: Aspect Reusability Problem

Aspects are not reusable
when advice modifiers need to be changed

CUI/GUI is not an artificial example
stand-alone application framework
blocking I/O non-blocking I/O

Workaround is awkward

Cause: Timing of advice execution depends on 
both advice modifiers and pointcuts
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Contributions

The point-in-time join point model
PitJ: an experimental AOP language based 
on the model

completed the language design

Pitλ: simplified version of PitJ based on λ-
calculus

a working interpreter
formalized in CPS
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Point-in-Time Join Point Model

readLine();

readLine(){

}

readLine();

readLine(){

}

call join point
reception join point

Define ends of actions as different join points 
from beginnings of actions
region-in-time model

(traditional)
point-in-time model

(proposed)
AspectJ, AspectWerkz, JBoss AOP, …

call join point
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PitJ: An Experimental AOP Language 
Based on Point-in-Time Model

is more reusable than AspectJ because of 
point-in-time model
is as expressive as AspectJ

base language : Java (AspectJ-like)
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PitJ: Pointcuts

call(method): a call to method
reception(method): a return from method
failure(method): an exceptional return from 
method

i.e., exception is thrown by method
args(var): binding join point’s value to var

call join point’s value           : argument
reception join point’s value : return value
failure join point’s value      : exception object
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PitJ: Examples of Advice (1)

No need for advice modifiers
advice(Str s): call(m) && args(s) { … }

advices at call join point of the method m
in AspectJ:  before(): call(m) { … }

advice(Str s): reception(m) && args(s) { … }
in AspectJ:  after() returning(Str s): call(m) { … }

advice(Obj e): failure(m) && args(e) { … }
in AspectJ:  after() throwing(Obj e): call(m) { … }
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PitJ: Examples of Advice (2)

before and after advice can be defined in one 
advice declaration

advice(Str s):
(call(onSubmit(Str)) || reception(readLine())) &&
args(s) { … }

runs at both call join point of onSubmit and a reception 
join point of readLine

in AspectJ, corresponding to a pair of advice decls.
before(String s): call(onSubmit(Str)) && args(s) { … }
after() returning(String s): call(readLine()) { … }



16

Reusable Logging Aspect in PitJ

abstract pointcut input();
advice(String s): input() && args(s)
{ Log.add(s); }

Generic Logging Aspect

pointcut input():
reception(readLine())

CUI Aspect

pointcut input():
call(onSubmit(Str))

GUI Aspect
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PitJ: Around-like Advice

usages of around advice in AspectJ
1. replace the parameters to a join point with new ones
2. replace the return value to the caller of a join point
3. go back to the caller without executing a join point
4. execute a join point more than once
In PitJ, these are realized by:

1, 2 return in advice body
3 new construct: skip
4 special function: proceed
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return in advice body (1)

replaces join point’s value

Example: at call join point
advice(Str s): call(m) && args(s) { return sanitize(s); }
replaces the argument of m with the sanitized one

in AspectJ:
around(Str s): call(m) && args(s)
{ return proceed(sanitize(s)); }
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return in advice body (2)

Example: at reception join point
advice(Str s): reception(m) && args(s)
{ return sanitize(s); }
replaces the return value of m with the sanitized one

in AspectJ:
around(Str s): call(m) && args(s)
{ return sanitize(proceed(s)); }
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new construct: skip

skip is evaluated in a call join point:
skips subsequent advice decls. and the call itself

i.e., jumps to the corresponding reception join point
in a reception or failure join point:

skips subsequent advice decls.

Example:
advice(): call(readLine()) { skip “dummy”; }
makes readLine always return “dummy”

in AspectJ: 
String around(): call(readLine()) { return “dummy”; }
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special function: proceed

proceed is evaluated in a call join point:
executes the action until the corresponding reception join point

in a reception or failure join point:
no effect

Example:
advice(): call(readLine) { proceed(); }

let readLine skip every other line
advice(): call(readLine) { skip(proceed() + proceed()); }

let readLine return a concatenation of two lines
advice(): call(readLine) { skip(proceed()); }

no effect
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Summary: PitJ

No need for advice modifiers
Advice decls. are more reusable than AspectJ’s
due to the point-in-time model
PitJ is as expressive as AspectJ’s advice 
mechanism

before : call join points
after : reception or failure join point
around-like : skip and proceed
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Formalization of Point-in-Time Model

target: Pitλ
simplified version of PitJ
base language: untyped λ-calculus

approach:
denotational semantics in continuation-passing 
style
key idea: denote join points as applications to 
continuation



24

Semantic Equations: Advice

A : advice list Event Ctn Ctn
Event : kind of join point
Ctn : continuation

A [A] ε κ: return continuation that:
selects applicable advice decls. from A (list of 
advice)
executes them, and
executes κ (continuation)

ε: kind of join point
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Semantic Equations: Expression

E : expression Ctn Ans
Ctn : continuation
Ans : answer

E [E] κ: evaluates E and executes κ
E : expression
κ: continuation
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Sample Program in Pitλ

advice call(f) && args(x) x+1
advice reception(f) && args(x) x+2
let f x = x*2 in f 2

8

f 2 let f x = x*22

3 6

8
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E E0 E1 κ E E0 λ E E1 λ κ

Semantics of Function Call (abridged)

semantics of λ-calculus without aspect mechanismsemantics of λ-calculus with advice mechanism
E E0 E1 κ E E0 λ E E1

λ κ
κ : continuation

A A

κ application to continuation
= call join point

E E0 E1 κ E E0 λ E E1
λ A A κ

E E0 E1 κ E E0 λ E E1
λ A A λ κA A

application to continuation κ
= reception join point

f 2 let f x = x*2

we can define it in systematic way!
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Advantages of Our Formalization

simpler than existing formalizations [Wand ’02] 
[Walker ’03]

no need for rules for each advice modifier
beginnings and ends of actions are represented 
symmetrically

easier to support advanced features
exception handling
context sensitive pointcuts (cflow)
around advice
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exception handling (sketch)

give a standard semantics
by adding continuation that represents current 
handler

identify failure join point 

E E0 E1 κ κh E E0 λ E E1
λ A A λ A A κ κh

λ κh
κh κh κh

semantics of λ-calculus without aspect mechanism

λ A A κh κh

semantics of λ-calculus with advice mechanism
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around-like advice (concept)

using idea of partial continuation [Danvy ’89]

a part of the rest of computation, rather than the whole rest

we currently formalized by using continuation-
composing style

f 2 let f x = x*2

partial continuation = skip / proceed
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Related Work

approaches based on the region-in-time model:
Aspect SandBox[Wand ’02], Tucker et al. ’03, MiniMAO[Clifton ‘05], 

some approaches treat beginning and end of an event 
as different join points, but that have different 
motivations

Walker et al. ’03: propose a low-level language that serves as 
a target of translation from a high-level AOP language
Douence et al. ’04: define a formal semantics of cflow by using 
calling contexts from execution history
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Conclusion

a new join point model that defines 
beginnings and ends of actions as different 
join points

Point-in-time vs. Region-in-time
designed PitJ based on the model

improves aspect reusability by enhancing 
expressiveness of pointcuts

formalized the model in continuation-passing style
simpler than some existing formalizations
easier to support advanced features
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Future Work

integrate more advanced features
dflow pointcut [Kawauchi ’03]

first-class continuation
tail-call elimination

implement a compiler for PitJ language
Java bytecode should be made without CPS 
transformation


