
1

Continuation Join Points

Yusuke Endoh, Hidehiko Masuhara, Akinori Yonezawa
(University of Tokyo)

2

cmd = readLine();

Main

id = readLine();

Login

Background: Aspects are reusable in AspectJ (1)

Example: A generic logging aspect
can log user inputs in a CUI program
by defining a pointcut

logging
return value

Generic Logging
Aspect

pointcut input():
call(readLine())

CUI Aspect

3

Background: Aspects are reusable in AspectJ (2)

Example: A generic logging aspect
can also log environment variable
by also defining a pointcut

Generic Logging
Aspect

pointcut input():
call(readLine())

CUI Aspect

pointcut input():
call(getEnv())

Env Aspect

Q. Now, if we want to log
environment variable (getEnv) …?

A. Merely concretize an aspect
additionally

Aspect reusability

4

Example: A generic logging aspect
can NOT log inputs in a GUI program by defining a
pointcut

Problem: Aspects are not as reusable as expected

void onSubmit(id)
{ … }

Login

void onSubmit(cmd)
{ … }

Main

logging
arguments

Generic Logging
Aspect

pointcut Input():
call(onSubmit(Str))

GUI Aspect

5

Why can’t we reuse the aspect?

Generic Logging
Aspectabstract pointcut: input();

after() returning(String s)
: input() { Log.add(s); }

Logging Aspect (inner)

unable to change to before

Timing of advice execution depends on both
advice modifiers and pointcuts

6

Workaround in AspectJ is awkward: overview

Required changes for more reusable aspect:
generic aspect (e.g., logging)

two abstract pointcuts, two advice decls. and an
auxiliary method

concrete aspects
two concrete pointcuts even if they are not needed

7

Workaround in AspectJ is awkward:
how to define generic aspect

1. define two pointcuts
for before and after

2. define two advice decls.
for before and after

3. define auxiliary method

abstract pointcut: inputAfter();
abstract pointcut: inputBefore();

after() returning(String s)
: inputAfter() { log(s); }

before(String s)
: inputBefore() && args(s)
{ log(s); }

void log(String s) { Log.add(s); }

Simple Logging Aspect

8

Workaround in AspectJ is awkward:
how to define concrete aspects

Updated
Logging Aspect

pointcut inputAfter() :
call(readLine());

pointcut inputBefore() :
never();

CUI Aspect
pointcut inputAfter() :
never();

pointcut inputBefore() :
call(onSubmit(Str));

GUI Aspect

always define both pointcuts
even if not needed

9

Summary: Aspect Reusability Problem

Aspects are not reusable
when advice modifiers need to be changed

CUI/GUI is not an artificial example
stand-alone application framework
blocking I/O non-blocking I/O

Workaround is awkward

Cause: Timing of advice execution depends on
both advice modifiers and pointcuts

10

Contributions

The point-in-time join point model
PitJ: an experimental AOP language based
on the model

completed the language design

Pitλ: simplified version of PitJ based on λ-
calculus

a working interpreter
formalized in CPS

11

Point-in-Time Join Point Model

readLine();

readLine(){

}

readLine();

readLine(){

}

call join point
reception join point

Define ends of actions as different join points
from beginnings of actions
region-in-time model

(traditional)
point-in-time model

(proposed)
AspectJ, AspectWerkz, JBoss AOP, …

call join point

12

PitJ: An Experimental AOP Language
Based on Point-in-Time Model

is more reusable than AspectJ because of
point-in-time model
is as expressive as AspectJ

base language : Java (AspectJ-like)

13

PitJ: Pointcuts

call(method): a call to method
reception(method): a return from method
failure(method): an exceptional return from
method

i.e., exception is thrown by method
args(var): binding join point’s value to var

call join point’s value : argument
reception join point’s value : return value
failure join point’s value : exception object

14

PitJ: Examples of Advice (1)

No need for advice modifiers
advice(Str s): call(m) && args(s) { … }

advices at call join point of the method m
in AspectJ: before(): call(m) { … }

advice(Str s): reception(m) && args(s) { … }
in AspectJ: after() returning(Str s): call(m) { … }

advice(Obj e): failure(m) && args(e) { … }
in AspectJ: after() throwing(Obj e): call(m) { … }

15

PitJ: Examples of Advice (2)

before and after advice can be defined in one
advice declaration

advice(Str s):
(call(onSubmit(Str)) || reception(readLine())) &&
args(s) { … }

runs at both call join point of onSubmit and a reception
join point of readLine

in AspectJ, corresponding to a pair of advice decls.
before(String s): call(onSubmit(Str)) && args(s) { … }
after() returning(String s): call(readLine()) { … }

16

Reusable Logging Aspect in PitJ

abstract pointcut input();
advice(String s): input() && args(s)
{ Log.add(s); }

Generic Logging Aspect

pointcut input():
reception(readLine())

CUI Aspect

pointcut input():
call(onSubmit(Str))

GUI Aspect

17

PitJ: Around-like Advice

usages of around advice in AspectJ
1. replace the parameters to a join point with new ones
2. replace the return value to the caller of a join point
3. go back to the caller without executing a join point
4. execute a join point more than once
In PitJ, these are realized by:

1, 2 return in advice body
3 new construct: skip
4 special function: proceed

18

return in advice body (1)

replaces join point’s value

Example: at call join point
advice(Str s): call(m) && args(s) { return sanitize(s); }
replaces the argument of m with the sanitized one

in AspectJ:
around(Str s): call(m) && args(s)
{ return proceed(sanitize(s)); }

19

return in advice body (2)

Example: at reception join point
advice(Str s): reception(m) && args(s)
{ return sanitize(s); }
replaces the return value of m with the sanitized one

in AspectJ:
around(Str s): call(m) && args(s)
{ return sanitize(proceed(s)); }

20

new construct: skip

skip is evaluated in a call join point:
skips subsequent advice decls. and the call itself

i.e., jumps to the corresponding reception join point
in a reception or failure join point:

skips subsequent advice decls.

Example:
advice(): call(readLine()) { skip “dummy”; }
makes readLine always return “dummy”

in AspectJ:
String around(): call(readLine()) { return “dummy”; }

21

special function: proceed

proceed is evaluated in a call join point:
executes the action until the corresponding reception join point

in a reception or failure join point:
no effect

Example:
advice(): call(readLine) { proceed(); }

let readLine skip every other line
advice(): call(readLine) { skip(proceed() + proceed()); }

let readLine return a concatenation of two lines
advice(): call(readLine) { skip(proceed()); }

no effect

22

Summary: PitJ

No need for advice modifiers
Advice decls. are more reusable than AspectJ’s
due to the point-in-time model
PitJ is as expressive as AspectJ’s advice
mechanism

before : call join points
after : reception or failure join point
around-like : skip and proceed

23

Formalization of Point-in-Time Model

target: Pitλ
simplified version of PitJ
base language: untyped λ-calculus

approach:
denotational semantics in continuation-passing
style
key idea: denote join points as applications to
continuation

24

Semantic Equations: Advice

A : advice list Event Ctn Ctn
Event : kind of join point
Ctn : continuation

A [A] ε κ: return continuation that:
selects applicable advice decls. from A (list of
advice)
executes them, and
executes κ (continuation)

ε: kind of join point

25

Semantic Equations: Expression

E : expression Ctn Ans
Ctn : continuation
Ans : answer

E [E] κ: evaluates E and executes κ
E : expression
κ: continuation

26

Sample Program in Pitλ

advice call(f) && args(x) x+1
advice reception(f) && args(x) x+2
let f x = x*2 in f 2

8

f 2 let f x = x*22

3 6

8

27

E E0 E1 κ E E0 λ E E1 λ κ

Semantics of Function Call (abridged)

semantics of λ-calculus without aspect mechanismsemantics of λ-calculus with advice mechanism
E E0 E1 κ E E0 λ E E1

λ κ
κ : continuation

A A

κ application to continuation
= call join point

E E0 E1 κ E E0 λ E E1
λ A A κ

E E0 E1 κ E E0 λ E E1
λ A A λ κA A

application to continuation κ
= reception join point

f 2 let f x = x*2

we can define it in systematic way!

28

Advantages of Our Formalization

simpler than existing formalizations [Wand ’02]
[Walker ’03]

no need for rules for each advice modifier
beginnings and ends of actions are represented
symmetrically

easier to support advanced features
exception handling
context sensitive pointcuts (cflow)
around advice

29

exception handling (sketch)

give a standard semantics
by adding continuation that represents current
handler

identify failure join point

E E0 E1 κ κh E E0 λ E E1
λ A A λ A A κ κh

λ κh
κh κh κh

semantics of λ-calculus without aspect mechanism

λ A A κh κh

semantics of λ-calculus with advice mechanism

30

around-like advice (concept)

using idea of partial continuation [Danvy ’89]

a part of the rest of computation, rather than the whole rest

we currently formalized by using continuation-
composing style

f 2 let f x = x*2

partial continuation = skip / proceed

31

Related Work

approaches based on the region-in-time model:
Aspect SandBox[Wand ’02], Tucker et al. ’03, MiniMAO[Clifton ‘05],

some approaches treat beginning and end of an event
as different join points, but that have different
motivations

Walker et al. ’03: propose a low-level language that serves as
a target of translation from a high-level AOP language
Douence et al. ’04: define a formal semantics of cflow by using
calling contexts from execution history

32

Conclusion

a new join point model that defines
beginnings and ends of actions as different
join points

Point-in-time vs. Region-in-time
designed PitJ based on the model

improves aspect reusability by enhancing
expressiveness of pointcuts

formalized the model in continuation-passing style
simpler than some existing formalizations
easier to support advanced features

33

Future Work

integrate more advanced features
dflow pointcut [Kawauchi ’03]

first-class continuation
tail-call elimination

implement a compiler for PitJ language
Java bytecode should be made without CPS
transformation

