Applying Translucid Contracts for Modular Reasoning
about Aspect and Object Oriented Events

Mehdi Bagherzadeh”
#lowa State University
{mbagherz, rdyer}@iastate.edu

ABSTRACT

The Implicit Invocation (11) architectural style improvesodularity
and is promoted by aspect-oriented (AO) languages andrdpaig
terns like Observer. However, it makes modular reasoniffig li,
especially when reasoning about control effects of thessdcode
(subject). Our language Ptolemy, which was inspired by it la
guages, uses translucid contracts for modular reasoniogt dhe
control effects; however, this reasoning relies on Ptolerayent
model, which has explicit event announcement and declareat e
types. In this paper we investigate how to apply transluoitracts
to reasoning about events in other AO languages and eveA@on-
languages like C#.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification]: Programming by con-
tract, Assertion checkers; F.3.8gecifying and Verifying and
Reasoning about Program§ Assertions, Invariant, Pre- and post-
conditions, Specification techniques

General Terms
Design, Languages, Verification

Keywords

Translucid contracts, modular reasoning, implicit invoma
aspect-oriented interfaces, grey-box specification,elftg) quan-
tified typed events, aspect-oriented events, object-@ikevents

1. INTRODUCTION

Reasoning about the control effects of aspect-oriented (AQ
grams seems difficult because: (1) join point shadows areaper
sive, and (2) advice can have interesting control effects,(#row-
ing an exception or not proceeding) which are difficult tocfye
using black-box behavioral contracts. One way to avoid tre fi
problem is to limit the application of advice to the base cotie
our previous work on Ptolemy, join point shadows are limited
the places where events are explicitly announced [13]. hegbe

Permission to make digital or hard copies of all or part of tvork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

FOAL'11,March 21, 2011, Pernambuco, Brazil.

Copyright 2011 ACM 978-1-4503-0644-7/11/03 ...$10.00.

Gary T. Leavens’

Robert Dyer”?
?University of Central Florida
leavens@eecs.ucf.edu

second problem, we proposed translucid contracts [3];etlees
grey-box based specifications limiting the behavior of eelviThe
grey-box nature of translucid contracts makes it possibleveal
some implementation details while hiding others.

In this paper we show the extent to which translucid congreah
be applied to several AO interface proposals as well as aA@n-
language (C#). That is, we separate the ideas of translooitarts
from their original context, namely the Ptolemy languagee key
features of Ptolemy that are relevant are explicitly dedagvent
types, explicit event announcement and its quantificatiecha-
nism. Ptolemy’s event announcement makes join point shedow
the base code, explicit. The quantification mechanism alistatic
computation of the set of advice at a specific place in the.code

Contributions of this work include:

e Application of translucid contracts to other AO interfaces
specifically crosscutting programming interfaces (XPR][1
aspect-aware interfaces (AAl) [9] and Open Modules [1].

e A programming idiom to apply translucid contracts to a non-
AO language with built-in support for events, C#.

In the rest of the paper, Section 2 provides background -infor
mation about translucid contracts in Ptolemy. Section 3nsho
how to apply translucid contracts to other proposals for A@r-
faces. Section 4 discusses a proposed programming idiopptp a
translucid contracts to C# events. Section 5 discusse®dehrk
and finally Section 6 concludes the paper.

2. TRANSLUCID
PTOLEMY

The canonical figure editor example in Figure 1, illustrates
translucid contracts in the Ptolemy language [13]. A figue e
mentPoi nt sets the value of its x-coordinate in methedt X.
The requirement in this example is: skip the modificationhef x-
coordinate, of the figure element point, if the figure elenigfixed
and not modifiable. This requirement could be implementéagus
event-driven programming techniques, which announce antev
whenset Xis about to modify thé?oi nt and have an event han-
dler method likeenf or ce which enforces the non-modifiability
requirement of the fixed figure element.

Our language Ptolemy, used in the implementation of the exam
ple in Figure 1, enables event-driven programming by thedhtc-
tion of quantified, typed eventEvent typeChanged (lines 10-20)
abstracts concrete events which represent modificatiogueefiel-
ements, such as points. Context variabée(line 11) is a piece of
information communicated betwed?oi nt (subject), which an-
nouncesChanged, and its handleenf or ce (observer). The

CONTRACTS IN

Fig event Changed {

class Fig {int isFixed;} 11 Fig fe;
class Point extends Fig{ 12 requires fe != null
int x, y; 13 assumes{

1

2

3

4 Fig setX(int x) {

5 announce Changed (this) {
6 this.x = x; this else
7 }

8 } 18 }
9

ensures

[AO interface (EventType)

} fe != null

20 }

Event
Declaration

Event
Announcement

if (fe.isFixed==0)
invoke (next) Contract

establishes fe==o0ld(fe)

21 class Enforce {

22 Enforce init () {“register (this) }

23 Fig enforce (thunk Fig rest,Fig fe) {
24 if (fe.isFixed==0)

25 invoke (rest)

26 else

27 refining establishes fe==o0ld(fe) {
28 fe }

29}

30 @when Changed do enforcej

31 }

Quantification Registration

Figure 1: A translucid contract for the event type Changed

translucid contract (lines 12—-19) limits the behavior o tiefin-
ing handler methods likenf or ce using pre- and post-condition
constraints phrased inequi r es andensur es clauses (lines
12 and 19). It also limits the control effects of the refiniranh
dlers by imposing structural constraints on their impletagan
usingassunes block (lines 13-18). Subjedoi nt announces
eventChanged explicitly using anannounce expression (lines
5-7), passing the parametéri s to be mapped to the context vari-
ablef e. ObserverEnf or ce shows its interest in being notified
about announcements of evélitanged using the binding decla-
rationwhen — do (line 30), which says to run methahf or ce
whenever an event of typéhanged is announced. The subject
Enf or ce registers itself as an observer for evéhianged using
ther egi st er expression (line 22).

As mentioned earlier, translucid contracts restrict thatrb
effects of the refining handlers by imposing constraints loa t
structure of the code in their implementation. Handlers spe-
cific event should refine the translucid contract of the evéiite
assunes block (lines 13—18) contains this information. Translu-
cid contracts are more expressive compared to black-baxamia
as they can reveal some implementation details about tegir-r
ing handlers usingrrogram expressionswvhile hiding others us-
ing specification expressionBor example, the program expression
(line 14) is conveying the fact that each refining handlertreual-
uate thei f expression in its implementation as the very first ex-
pression followed by annvoke (line 15). While program expres-
sions reveal implementation details, specification exgioes (line
17) hide them, which allows for variability in the refiningridiers’
implementations. The programmer of the observer modul@dty
looking at the observer and the translucid contract, carclode
that if the figure elemerfte is not fixed then the handler method is
called, allowing the modification of the figure (lines 14-1&her-
wise the handler is skipped and the figure is not changed 1lie
i nvoke is Ptolemy’s equivalent of Aspectys oceed.

In terms of variability of the handlers, outside the scope
of this example, structural constraints in the assumeskbloc
could be as liberal asestabl i shes true which speci-
fies any handler without an invoke expression in its body
orest abl i shes ¢rue;i nvoke(next);est abl i shes true
which allows any handler, with the invoke expression sonewh
in its implementation.

Verification of the handler method’s refinement of the transl
cid contracts is carried out via a hybrid static and dynange a
proach. Static structural refinement checks for the texnatch-
ing between program expressions in the translucid coraratthe
handler implementation at the same structural positiotisércode
and the contract [3]. For example, lines 14-16 match lines 24

26. Specification expressions in the contract must be refayed
refini ng expressions carrying the same specification. For ex-
ample, line 17 is refined by the refining expression on line2&7
Runtime assertions assure that refining expressions bctatihe
the specification they claim to refine. Pre- and post-comatiof
the translucid contract are also enforced using runtiméegsan-
serted at the beginning and end of each handler and befort@nd
event announcement.

The key point to notice when applying translucid contraathie
event types in Ptolemy, is thatn Ptolemy, each handler knows
about the type of events it handles, statically at compiteeti
Thus, having the handler’'s implementation and the dedtaraif
the event type it handles, refinement of the contract by the ha
dler could be carried out modularly without any need for vehol
program analysis. This is not the case in all languages witki
event-driven mechanism such as C#. In these languaaediers
do not statically know about the type of events they mightilean
In this work, we propose a very simple programming idiom Mahic
allows the handlers to know about the type of events theylkand
which in turn enables modular verification of their refinemeh
the translucid contract of the events they handle.

3. APPLICABILITY TO OTHER AO
TERFACES

As mentioned in Section 1, pervasive join point shadows are
one of the obstacles in the modular reasoning about AO pnagyra
AO interfaces tackle this problem by making join points @ipl
Ptolemy’s event types could be thought of as AO interfacee. W
show the applicability of translucid contracts to crossngtin-
terfaces (XPI) [17], aspect-aware interfaces (AAl) [9]daDpen
Modules [1] and discuss changes in the refinement rules nestjui
to verify such programs. Other AO interfaces such as joimtpoi
types (JPT) [16] and explicit join points (EJP) are not désad as
they are similar to Ptolemy’s event types, discussed in cenipus
work [3]. For a more detailed discussion on the applicabitit
translucid contracts to AO interfaces see our previous J&jrk

IN-

3.1 Translucid Contracts for XPls

The key idea in crosscut programming interfaces (XPIs) [§7]
to establish an interface, based on design rules, to dezdbpl
base and the aspect design. An XPI limits the exposure of join
points and also the behavior of advised and advising codgusi
black-box contracts in terms of provides and requires esusith
no mechanism to check the full compliance to the contract.

Figure 2 illustrates the applicability of translucid cats to
XPI Changed on lines 4-11, in an AspectJ implementation of
the figure editor example introduced in Section 2. XlAhnged

aspect Changed {
pointcut jp(Fig fe):
call (Fig Fig+.set*(..))&& target(fe);
requires fe != null
assumes {
if (fe.fixed == 0)
proceed (fe) ;
else
establishes fe == old(fe);
}
ensures

}

@ o U W N

il
o ©

fe != null

o
N

13
14
15
16
17
18
19
20 }
21}
22 }

aspect Enforce {

Fig around(Fig fe):
if (fe.fixed == 0)
proceed (fe) ;
else
refining establishes fe==old(fe) {

return fe;

Changed.jp (fe) {

Figure 2: Applying translucid contract to XPI

and aspedEnf or ce in Figure 2 are the counterparts of Ptolemy’s
event typeChanged and handleEnf or ce in Figure 1. The lan-
guage for expressing translucid contracts is slightly sethpp use
Aspectd'spr oceed instead of Ptolemy’s nvoke, on lines 7, 16.
Unlike Ptolemy, where the translucid contract is attachethe
event type (lines 12-19, Figure 1), in the XPI the contradtis
tached to the pointcut declaration (lines 4-11, Figure 2).the
Ptolemy example of Figure 1 only the context variab&edefined
on line 11 could be accessed in the contracts, likewise irKthle
example, only the variablee exposed by the pointcut (lines 2-3,
Figure 2) is used in the contract. In Ptolemy the event typ@-of
terest is specified by the handler in the binding declargtioa 30,
Figure 1) whereas in the XPIl example, handieif or ce reuses
the pointcut declaration in XRThanged (line 14, Figure 2). Our
refinement rules could be added here in the AO type systemanfo
ing that the advice body on lines 15-21 must refine the traitsiu
contract of the pointcut declaration on line 14. As it canders the
refinement rules are applicable to XPIs with only minor clemg

3.2 Translucid Contracts for AAls

Some AO interfaces such as XPls could be specified explicitly
whereas others such as aspect-aware interfaces (AAIY(¥d be
computed from the implementation, given whole-prograrorimfa-
tion. Figure 3 illustrates the AAI for the figure editor exdmpf
Section 2. Figure 3 shows the extracted AAI for the metbet X
on lines 3—4 along with a translucid contract on lines 5—&2ried
over from the pointcut to the join point shadow. In AAI the ad-
vised join point in method et X contain the details of the advising
advice on lines 3—4. Syntax and refinement rules similar tts XP
are applicable here. Similar ideas can also be applied tecasp
oriented development tools such as AJDT, which provide Akd-
information at each join point shadow in an AspectJ program.

3.3 Translucid Contracts for Open Modules

Open Modules [1] allow explicit exposure of pointcuts for be
havioral modifications by aspects, which is similar to slgma
events using the announce expression in the Ptolemy. Thieimp
mentations of these pointcuts remain hidden from the aspédth
in turn reduces the impact of the base code changes on thetaspe
However, in Open Modules, each explicitly declared poihttas
to be enumerated by the aspect for advising.

1 class Point extends Fig {

2 int x, y;

3 Fig setX(int x): Enforce -

4 after returning Changed.jp (Fig fe)
5 requires fe != null

6 assumes {

7 if (fe.fixed == 0)

8 proceed (fe) ;

9 else

10 establishes fe == old(fe);
11 }

12 ensures fe != null

13 /* body of setX */

14 }

Figure 3: Applying translucid contract to AAI

1 module Changed{

2 class Fig;

3 expose to Enforce: call(Fig Fig+.set*(..));
4 requires fe != null

5 assumes {

6 if (fe.fixed == 0)

7 proceed (fe) ;

8 else

9 establishes fe == old(fe);

10}

11 ensures fe != null

12}

13
14
15
16
17
18
19
20
21}
22}
23}

aspect Enforce {

Fig around (Fig fe): target(fe)
call (Fig Fig+.set*(..));
if(fe.fixed == 0)
proceed (fe) ;
else

refining establishes fe==old(fe) {
return fe;

&&

Figure 4: Applying translucid contract to Open Modules

Figure 4 illustrates the applicability of translucid cats, lines
4-11, to Open Modul€hanged in the figure editor example of
Section 2. To retain similarity with other examples in thega
syntax from Ongkingccet al's Aspectd implementation [12] is
used in the example. Compare Open Mod@dlenged and as-
pectEnf or ce with event typeChanged and handleEnf or ce
in Figure 1. Open Modul€hanged in Figure 4 exposes a point-
cut ofcl ass Fi g on line 2 which is only advisable by the aspect
Enf or ce marked byexpose t o, line 3. The translucid contract
on lines 4-11 limits the the interaction betweenf or ce and the
pointcut exposed on line 3.

Like contracts in XPIs, in Open Modules the contract on lines
4-11 is attached to the pointcut declaration on line 3. #eifie
named in the contract is the one exposed by the pointcut en lin
3, again like XPls. The proposed rules for verifying refineme
need to be modified slightly. In Ptolemy, the event type ofriest
Changed is specified in the binding declaration (line 30, Figure 1),
whereas in the AspectJ implementation of Open Modules H<2],
pects cannot reuse pointcuts exposed by the Open Modulesaad n
to enumerate the pointcut in the advice declaration agaies 14—
15. Refinement rules could be added here in the AO type system.
The same adaptations in the syntax and refinement rules &lsf X
are applicable to Open Modules. The challenge is to matobcasp
Enf or ce pointcut definition on lines 14-15, with the Open Mod-
ule one on line 3 to pull out its contract for refinement chegki

4. APPLICABILITY TO NON-AO LAN-
GUAGES

Section 3 discussed the application of translucid corgractO
interfaces rather than Ptolemy’s event types. But the ealpility
of translucid contracts is not limited to just AO languagbsthis
section we discuss their applicability to a non-AO languag#,
with built-in support for event announcement and handling.

4.1 Problem

As discussed earlier in Section 1, Ptolemy’s key featurefor
plicability of translucid contracts is that for any specliendler the
set of potential events it handles is statically known. hleotvords,
for each event type in Ptolemy, it is pretty straightforwardleter-
mine the set of its potential handlers using Ptolemy’s gfieation
mechanism. Thus the translucid contract for the handleiddoe
easily pulled out and refinement can be checked in a modughr fa
ion using only the handler implementation and the contract.

In languages with built-in event announcement and hangdling
such as C#, the set of handlers for an event is not easily kistatn
ically. In C# the event model relies on type-safe method teoin
(delegates) which could be used to dynamically register thode
as a handler for a specific event. The signature of the haaottkar
only includes the context variable and does not indicatspleeific
type of event being handled, such as:

Fig enforce (Fig fe);

This handler could handle multiple events, as long as thetsve
pass in the context variabiee of typeFi g. To determine the spe-
cific event being handled by each handler, we propose a spnple
gramming idiom whiclrequires the event type to be passed as an
argument to the handler methotlsing this idiom, by only look-
ing at the handler method’s signature, the type of eventritites
can be easily determined. The idiom resembles the quatitifica
mechanism in Ptolemy, as in line 30 in Figure 1.

4.2 Translucid Contracts for C#

In this section event declaration, announcement and hanafi
C# is illustrated and compared with Ptolemy using the figule e
itor example in Figure 1. The C# example is more verbose than
needed in order to provide handlers with bnvoke statement
which causes the next applicable handler to run, like itstenpart
the invoke expression in Ptolemy. This section also disgiise
proposed programming idiom. All our proposal requires ipdss
into the handler the event type it handles, as a formal paeme

10 class Changed:EventType <Fig,
11 class Context{

Changed.Context> {

12 Fig fe;

13 Context (Fig fe){ this.fe = fe;}
14 Fig contract() {

15 Contract.Requires (fe != null);

16
17
18
19
20
21
22 }
23 }}}

Contract.Ensures (fe != null);
if (fe.isFixed==0)

return new Changed () .Invoke() ;
else {

Translucid
Contract
Contract.Assert (1==1) ;

Contract.Assert (fe==Contract.0ldValue(fe)) ;

Figure 5: Applying translucid contract to C#

Figure 5 illustrates declaration of event tyBaanged, simi-
lar to Changed in Figure 1, with return typé=i g, line 10, and
the context variabld e, defined on line 12 and set on line 13.

Like Ptolemy, in C# the contracts are attached to the everd,ty
lines 15-21. Methoctont ract on lines 14-22 is the place-
holder for the translucid contract. Lines 15-16 state pred a
post-conditions of the contract using the Embedded Cotsttzm-
guage [6]. Lines 17-22 illustrate the body of tassunes
block of Figure 1 lines 13-18. Lines 20-21 in Figure 5 are the
equivalent of the specification expression of line 17 in Fegl.
Specificationest abl i shes fe == ol d (fe) is the sugar for
requi res true ensures fe == old (fe). Thelnvoke
method on line 18 causes the next applicable handler to tus. |
provided by the clasBvent Type in the C# library for Ptolemy,
which is not shown here.

1 class Fig { int isFixed; }

2 class Point:Fig {

3 int x, y;

4 woid setX(int x) {

5 Changed.Announce (new Changed.Context (this), ()=>{
6 this.x = x;

7 return this;});

8 }

9}

Figure 6: Event announcement with event types in C#

Figure 6 illustrates the subjefoi nt. Compare it with class
pointin Figure 1. On line FPoi nt announces the eve@hanged
using theChanged. Announce method, similar to event an-
nouncement on line 5 of Figure 1. The receiver of the announce
method is the event type being announced and the event body is
provided as an anonymous lambda statement, lines 6—7. The co
text variablef e is created and set on line 5 by creating the object
Changed. Cont ext .

24 class Enforce {

25 Enforce init (Changed.Register (enforce);}

26 Fig enforce (EventType<Fig, Changed.Context next) {
27 Contract.Requires(fe != null);

28 Contract.Ensures (fe != null);

29 if (next.fe.fixed == 0)

30 return next.Invoke () ;

31 else {

32 Contract.Assert (1==1);

33 return next.context () .fe;

34 Contract.Assert (next.Context.fe ==
35 Contract.0ldValue (next.Context.
36

fe));
b}

Figure 7: Event handler in C#

Figure 7 illustrates the handler methedf or ce on lines 26—
36. Compare it with thenf or ce in Figure 1. Event registration
is done via the call to theegi st er method on the event type,
line 25. Thel nvoke statement is similar to Ptolemy’s invoke ex-
pression, allowing the next applicable handler to be calledes
32-35 are the equivalent of Ptolemy’s refining expressiotire@s
27-28 of Figure 1. Assertion statements on lines 32 and 34r85
run time probes added to enforce the specification stategdxy- s
ification expression on lines 20-21 of Figure 5. Ptolemy'argu
tification mechanism is simulated in C# by the proposed idadm
passing the event type to the handler as a parameter, orgine 2

4.3 Discussion

As previously mentioned in Section 2, runtime assertiossi@s
that each handler method refines the pre- and post-condititive
event type it handles. They also check that Ptolemg6i ni ng
expression actually refines the specification it claims. #iC
means the insertion of runtime probes on lines 27-28 of Eigur
to enforce the contract’s pre- and post-conditions, statetines
15-16 of Figure 5. Also, the addition of assertions on lin2e3d
34-35 to make sure the specification expression on linesl26f2
Figure 5 is not violated by any program expression whicheaio
refine it, line 33 of Figure 7. Insertion of runtime probes aivic-
tural refinement of the contract by handlers could be camigd
by a simple source to source transformation. The transfioma
also makes sure that the refining handler methods and eaeh cod
block constrained by a specification expression have origeixit
to avoid unreachable code (line 33, Figure 7) . Structurailarity
is crucial to structural refinement [3, 14].

5. RELATED WORK

This work, especially the internals of the translucid caats,
relates to works which propose: (1) behavioral contractagpects
and (2) modular reasoning techniques for AO interfaces.

Behavioral contracts for Aspects:.Use of behavioral contracts
to limit the behavior of aspects for the ease of reasoning iaca
cepted approach, exercised in the works such as cross@rapre
ming interfaces (XPI) [8, 18], Pipa [19] and Cona [10, 15] ago
the others. XPI's informal contracts in terms of constraiior the
advised and the advising code, Pipa’s JML-like annotatiamd
Cona’s contracts for both aspects and objects are all batshvi
contracts, which makes them incapable of specifying anyrobn
effect of interest. Furthermore, there is no verificatiorchanism
proposed for XPI contracts.

Modular Reasoning for AO Interfaces:. Frequent join point
shadows are one of the obstacles in modular reasoning afiout A
programs. Open Modules [1], explicit join points [7], joimipt
types [16] and Ptolemy [13] tackle this problem by limitinfget
number of join point shadows as we have done in this work. How-
ever they do not provide any concrete specification and eatifin
mechanism for reasoning.

Understanding the control effects of the advice is anotheb-p
lem in modular reasoning. “Harmless” advice [5] assumeg@sp
with no side effects. Categorizing the aspects as assg@nspec-
tators) [4], which can(not) enhance the behavior of the lcaske
helps with reasoning. EffectiveAdvice [11] proposes eipkhd-
vice points and composition and its typed model enforcesrabn
and data flow properties. However, its non-AO core makedfit di
cult to adapt it to I, AO and Ptolemy as it lacks quantificatio

6. CONCLUSION

Although implicit invocation (II) improves modularity, inakes
modular reasoning difficult especially reasoning aboutrobref-
fects. In the previous work [3] translucid contracts werepgmsed
to enable modular reasoning in Ptolemy. In this work, we show
that translucid contracts are independent of their origioatext,
Ptolemy, and are applicable to other AO interfaces. We alse p
pose a simple programming idiom to enable application ofsia
cid contracts to C#. The basic requirement when applyingstta
cid contracts is: for each handler, it should be possibléaticsilly
tell which event types it handles. The proposed idiom mdess t
requirement. The idiom is simple and general and can beeappli
to other OO languages. Using the idiom makes it possible davkn
what events a handler method can handle. In summary, t@dslu

contracts are independent of Ptolemy and are applicabiebadit
AO and explicit OO event announcement models.

Acknowledgments

Bagherzadeh and Dyer were supported in part by NSF grant CCF-
10-17334. The work of Leavens was supported in part by NSF
grant CCF-10-17262.

7. REFERENCES

[1] J. Aldrich. Open modules: Modular reasoning about aglvic

In ECOOP’05

M. Bagherzadeh, H. Rajan, and G. T. Leavens. Translucid

contracts for aspect-oriented interfacesFDAL ’10.

M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney.

Translucid contracts: Expressive specification and madula

verification for aspect-oriented interfacesA@SD "11

C. Clifton, G. T. Leavens, and J. Noble. Ownership and

effects for more effective reasoning about Aspects. In

ECOOP 07

D. S. Dantas and D. Walker. Harmless adviceP@PL'06

M. Fahndrich, M. Barnett, and F. Logozzo. Embedded

contract languages. SAC '10.

K. J. Hoffman and P. Eugster. Bridging Java and AspectJ

through explicit join points. IPPPJ'07.

K. J. Sullivanet al. Information hiding interfaces for

aspect-oriented design. ESEC/FSE’05

G. Kiczales and M. Mezini. Aspect-oriented programming

and modular reasoning. ICSE’05

D. H. Lorenz and T. Skotiniotis. Extending design by

contract for aspect-oriented programmi@pRR

abs/cs/0501070, 2005.

B. Oliveira, T. Schrijvers, and W. R. Cook. Effectiveack:

Disciplined advice with explicit effects. IAOSD’10Q

N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren,

0. de Moor, and G. Sittampalam. Adding Open Modules to

Aspectd. IPAOSD’6

[13] H. Rajan and G. T. Leavens. Ptolemy: A language with
quantified, typed events. ECOOP’08

[14] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular
verification of higher-order methods with mandatory calls
specified by model programs. @OPSLA'07

[15] T. Skotiniotis and D. H. Lorenz. Cona: Aspects for caets
and contracts for aspects. GOPSLA'04

[16] F. Steimann, T. Pawlitzki, S. Apel, and C. Kastner. Typed
modularity for implicit invocation with implicit
announcemenfTOSEM 20(1), 2010.

[17] K. J. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai,
M. Shonle, and N. Tewari. Modular aspect-oriented design
with XPIs. TOSEM 20(2), 2009.

[18] W. G. Griswoldet al. Modular software design with
crosscutting interface$EEE Software’06

[19] J. Zhao and M. Rinard. Pipa: A behavioral interface
specification language for AspectJ.HASE’03

(2]
(3]
(4]
(5]
(6]
(7]
(8]
9]

[10]

[11]

[12]

