
Supporting covariant return types and generics in type
relaxed weaving

Tomoyuki Aotani
Japan Advanced Institute of

Science and Technology
aotani@jaist.ac.jp

Manabu Toyama
University of Tokyo

touyama@graco.c.u-
tokyo.ac.jp

Hidehiko Masuhara
University of Tokyo

masuhara@acm.org

ABSTRACT
This paper introduces our ongoing study on type safety of
the type relaxed weaving mechanism in the presence of two
Java 5 features, namely covariant return types and generics.
We point out additional conditions that are necessary to en-
sure type safety, which can be checked by a slightly modified
type checking rules for the type relaxed weaving.

1. INTRODUCTION
The around advice is one of the unique and important fea-

tures in the aspect-oriented programming (AOP) languages
based on the pointcut and advice mechanism [9] such as
AspectJ [4, 7]. It allows us to change the receiver and ar-
gument values of method (or constructor) calls, and also to
replace operations with other operations without modifying
the source code of the program. There has been several
studies that address improving generality and/or applicabil-
ity of around advice [3, 8], as well as those design a formal
calculus for AOP languages with around advice and study
type safety [1, 2, 6].

The type relaxed weaving [8] is a bytecode-level weaving
mechanism for AspectJ family of languages that improves
applicability of around advice. It allows a piece of around
advice to have a different return type from those of the join
points where it is woven. We call such advice type-relaxing
advice in this paper. Type safety of the type relaxed weaving
is modeled and proved formally based on an object-oriented
calculus called Featherweight Java for Relaxation (FJR) [8],
which is an extension to Featherweight Java [5].

This paper introduces our ongoing study on type safety
of the type relaxed weaving in the presence of advanced lan-
guage features that FJR does not have, especially, covariant
return types and generics. The covariant return type ex-
tension allows a class to override a method with a return
type smaller (more specific) than that of the method in its
superclass. The generics feature enables us to define generic
classes and methods through type parametrization.

The contributions of the paper are as follows:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’11, March 21, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0644-7/11/03 ...$10.00.

• We point out that additional conditions are necessary
to ensure type-safety of the type relaxed weaving in
the presence of covariant return types and generics.

• We show that a small modification to the constraint
generation algorithm for the original type relaxed weav-
ing is sufficient to support covariant return types.

The rest of the paper is organized as follows. We first visit
the type relaxed weaving and see the conditions that advice
should satisfy in Section 2. Section 3 shows the problem
to support covariant return types and generics. Section 4
presents the key idea of our solution along with a rough
sketch of our type-checking algorithm. Section 6 concludes
the paper.

2. TYPE RELAXED WEAVING
The type relaxed weaving [8] is a type-safe bytecode-level

weaving mechanism for AspectJ. It allows around advice to
have a different return type from the join point shadows’ on
which it is woven. More specifically, it relaxes the typing
rule in AspectJ that restricts the return type of a piece of
around advice to either the return type of its target join
points or one of its subtypes.

Figure 1 is a simple example allowed by the type relaxed
weaving, but not allowed by AspectJ. Lines 1–9 are skele-
tons of three Java classes Object, Integer and BigInteger.
Lines 11–18 define the interface Stream and two classes In-

tegerStream and BigIntegerStream. Lines 20–26 defines a
method that creates a BigIntegerStream object, picks up
a BigInteger object from it and converts it into a String

object. The boxed string at line 23 is the signature of the
method call. Finally lines 29–31 define a piece of around
advice that replaces a BigIntegerStream object with an In-

tegerStream object upon creation.
If we ignore the static types of local variables, it is safe

to replace the expression new BigIntegerStream() at line
22 with new IntegerStream(). This is because each of the
classes is a subtype of Stream and the resulting object is
used only as a Stream object. Note that the assumption is
reasonable since local variables have no type information at
bytecode-level in Java.

Intuitively, the type relaxed weaving checks such condi-
tions in a Java bytecode program. Given a piece of around
advice a and a join point jp where a is applied to, it checks
consistency between the return type of a and the operations
that use the return value from jp. The usages are a method
(or constructor) call parameter, a method call target, a re-
turn value from a method, a field access target, an assigned

1 // Skeletons of Java classes

2 class Object{ String toString(){...} }

3 class Integer extends Object{

4 String toString(){...}

5 }

6 class BigInteger extends Object{

7 String toString(){...}

8 BigInteger abs(){...}

9 }

11 // Definitions of stream classes

12 interface Stream{ Object get(); }

13 class IntegerStream implements Stream{

14 Object get(){...}

15 }

16 class BigIntegerStream implements Stream{

17 Object get(){...}

18 }

20 //in a class

21 void m(){

22 BigIntegerStream bs = new BigIntegerStream();

23 Object o = bs.get(); Object BigIntegerStream.get()

24 String s = o.toString();

25 /* s is never used below */

26 }

28 //in an aspect

29 IntegerStream around():call(BigIntegerStream.new()){

30 return new IntegerStream();

31 }

Figure 1: Streams and type-relaxing advice

value to a field, an array access target and an exception to
throw.

In the example, the return type of the advice is Inte-

gerStream. The join point is new BigIntegerStream() at
line 22. The return value from the join point is used as the
target of a method call (line 23) whose signature is Object

BigIntegerStream.get().
We can safely change the receiver’s type in the signature

to Stream because the former overrides the latter and it
does not change the behavior of the program with respect
to the semantics of invokevirtual/invokeinterface. For
the same reason, we can safely invoke Stream.get() on an
IntegerStream object.

3. PROBLEM
The type relaxed weaving is based on the Java 1.4 lan-

guage, which lacks recent features covariant return types and
generics. Supporting those features in type relaxed weaving
is not straightforward as we discuss below.

3.1 Support for covariant return types
It is not enough to care about the usage of the return

value from a join point when a class can override its super-
class’s method with a smaller return type. In this section
we assume that the language that employs the type relaxed
weaving, i.e., RelaxAJ [8], is slightly extended so that it can

1 // Redefining IntegerStream and BigIntegerStream

2 class IntegerStream{

3 Integer get(){...} //refining return type

4 }

5 class BigIntegerStream{

6 BigIntegerStream get(){...} //refining return type

7 }

8 //in a class

9 void m(){

10 BigIntegerStream s = new BigIntegerStream();

11 BigInteger i = s.get(); BigInteger BigIntegerStream.get()

12 BigInteger absi = i.abs();

13 /* s is never used */

14 }

15 /* and the same aspect*/

Figure 2: An example using covariant return types
that goes type-unsafe after the advice in Figure 1 is
woven

accept covariance of the return type of a method in the base
code.

Figure 2 is a part of the program modified from Figure 1
in which IntegerStream and BigIntegerStream override the
method get with the smaller return types, namely Integer

and BigInteger in IntegerStream and BigIntegerStream,
respectively. The method m is also changed so that it calls
abs defined in BigInteger.

The around advice shown in Figure 1 can still be wo-
ven on the join point shadow new BigIntegerStream() at
line 10 in Figure 2 because the return value from the join
point is only used as the receiver object to invoke BigIn-

tegerStream.get(), which overrides Stream.get(). Again
invoking Stream.get() on IntegerStream is safe and thus
the condition of the type relaxed weaving is satisfied.

The woven code is, however, no longer type-safe. In fact,
invoking abs at line 12 fails because the receiver s is now
an Integer object, which is the return value of get invoked
on the return value of the around advice, that is, Inte-

gerStream.

3.2 Support for generics
Relaxing return types with type parameters has the same

problem to the covariant return types case.
Figure 3 shows an example from which the type relaxed

weaving would generate type-unsafe code by applying type-
relaxing advice. Lines 3–7 define a generic Stream class,
which is intended to be used instead of the Stream class and
the classes implementing it defined in the previous exam-
ples. The method m is also modified so that it now uses the
generic Stream class instead of BigIntegerStream. It in-
vokes the method get at line 13, whose signature is Object

Stream.get().
Here we cannot know with which type the type parameter

X of Stream<X> should be replaced because such information
is erased in Java bytecode. The around advice is modified
similarly (lines 19–22), i.e., its pointcut specifies creations
of Stream objects and it returns a Stream<Int> object.

Because the pointcut matches new Stream at line 12 and
Object Stream.get() can be invoked on a Stream<Int> ob-
ject, it is allowed to weave the advice on the shadow.

1 ...

2 // Stream class using generics

3 class Stream<X>{

4 X x;

5 Stream(X x){ this.x=x; }

6 X get(){...}

7 }

8 ...

9 //in some class

10 void m(){

11 Stream<BigInteger> s =

12 new Stream<BigInteger>(new BigInteger("0"));

13 BigInteger i = s.get(); Object Stream.get()

14 BigInteger absi = i.abs(); BigInteger BigInteger.abs()

15 /* s is never used below */

16 }

18 //in some aspect

19 Stream<Integer> around():

20 call(Stream.new(Object))&&!within(/*the aspect*/){

21 return new Stream<Integer>(new Integer("0"));

22 }

Figure 3: An example using generics that goes type-
unsafe after the advice is woven

The generated code is again no longer type-safe; it has an
invocation to abs on Integer, which always fails.

4. OUR APPROACH
This section first overviews our solution to the problems,

then gives an algorithm G+ for Featherweight Java for Relax-
ation (FJR) [8] with covariant return types, namely FJRc,
to generate subtyping constraints from a given expression
and a type environment. The algorithm is a small extension
to the constraint generation algorithm G for FJR.

4.1 Basic idea
The basic idea of our solution is to extend the consistency

checking rules so that they check the usage of the return val-
ues not only from the target join point but also the method
calls that uses values derived from it. The definition of de-
rived values is given below. If any inconsistencies are found,
the advice is rejected.

Let v and w be values. We say that a method m directly
derives v from w if w is the return value from a method call
v.m. We also say that w is derived from v if

• some method m directly derives w from v, or

• w is derived from v’ and v’ is derived from v for some
value v’.

In Figure 2, the return value from the join point new Big-

IntegerStream() at line 12 is assigned to s. We use the
variable names to denote the return values for simplicity. i

and absi are derived from s because i is directly derived
from s and absi is directly derived from i.

Our extended rules check whether the return type of the
method that directly derives i (resp. absi) and the opera-
tions that use i (resp. absi) are consistent if s is an Inte-

gerStream object. The operation s.get() directly derives i

G+(Γ, x) = (∅,Γ(x))

G+(Γ, let x = e1 in e2) =
let (R+

1 , U1) = G+(Γ, e1) in
let (R+

2 , U2) = G+((Γ, x:U1), e2) in
(R+

1 ∪R
+
2 , U2)

G+(Γ, e0.m(e1, · · · ,en)) =
let (R+

0 , U0) = G+(Γ, e0) in
let (R+

1 , U1) = G+(Γ, e1) in
...

let (R+
n , Un) = G+(Γ, en) in

let T→T = mtype(m, typeOf (e0)) in
let V =

⋃
mdeftypes(m, typeOf (e0)) in

(R+
0 ∪R

+
1 ∪ · · · ∪ R+

n ∪ {U <: T}
∪{U0 <: X, X <: V, λs.mrtype(m, sX) <: Y},

Y)
(for fresh X and Y)

G+(Γ, new C()) = (∅, C)

G+(Γ, (?e1:e2)) =
let (R+

1 , U1) = G+(Γ, e1) in
let (R+

2 , U2) = G+(Γ, e2) in
(R+

1 ∪R
+
2 , U1 ∪ U2)

Figure 4: Modified constraint generation algorithm

and its return type is Object. i.abs() at line 12 uses i and
its signature is BigInteger BigInteger.abs(), which can
be no more relaxed and inconsistent with Object. Hence
the rules rejects the around advice (lines 29–31 in Figure 1).

4.2 Constraint generation algorithm
We design an algorithm for the extended consistency check-

ing rules on Featherweight Java for Relaxation (FJR) [8]
with covariant return types, namely FJRc. In this section
we first give the syntax rules of FJRc, which is the same to
the ones of FJR, and the typing rules that should be mod-
ified to support covariant return types. Then we give the
algorithm G+. Proving its formal correctness is not com-
pleted yet; it is left for our future work.

FJRcuses the same syntax rules to FJR:

CL ::= class C extends C implements I { M }

M ::= T m(T x) { return e; }

IF ::= interface I { S }

S ::= T m(T x);

e ::= x | e.m(e) | new C()

| let x = e in e | (?e:e)
S, T ::= C | I
U, V ::= T | U ∪ U

An overline denotes a sequence, e.g., x is shorthand for
x1,. . . ,xn. The metavariable C ranges over class names; I

ranges over interface names; m ranges over method names;
and x and y range over variables, which include the special
variable this.

CL is a class declaration, consisting of its name, a super-
class name, interface names that it implements, and methods
M; IF is an interface declaration, consisting of its name and
method headers S.

The syntax of expressions includes let expressions to il-
lustrate the cases when a value returned from around ad-
vice is used as values of different types. let is the only
binding construct of an expression and the variable x in
let x = e1 in e2 is bound in e2. It also includes non-
deterministic choice (?e:e) to handle the cases when a vari-
able contains values of different types.
S and T stand for simple types, i.e., class and interface

names, and will be used for types written down in classes
and interfaces. U and V stand for union types. For example,
a local variable of type C ∪ D may point to either an object
of class C or that of D.

To support covariant return types, we need to change
the typing rule T-Class, the predicate override and the
constraint generation algorithm G to allow each overriding
method to have a return type that is a subtype of the one
of the method in its superclass and interfaces.

The modified typing rule T-Class is given as follows:

∀m, I ∈ I.{
(mtype(m, I) = T→T0) =⇒ (mtypeC(m, C) = T→S0)
and S0<:T0

}
M OK IN C

class C extends D implements I { M } OK

(T-Class)

where mtype(m, I) and mtypeC(m, C) are the functions that
return It defines C is well-typed if all methods are well typed
and all methods declared in I are implemented in C with
signature that has a smaller return type.

The predicate override(m, C, T→T0), which checks whether
m is correctly overrides the method of the same name in C,
is modified similarly as:

(mtype(m, C) = S→S0) =⇒ S = T and S0<:T0

override(m, C, T→T0)

The modified constraint generation algorithm G+ (Figure
4) takes a type environment Γ and an expression e and re-
turns a set R+ of extended subtyping constraints and a type
U. An extended subtyping constraint is an inequality of the
form U <: V or λs.mrtype(m, sX) <: U where mrtype(m, T) re-
turns the return type of the method m in the simple type T

and λs.mrtype(m, sX) is a function that takes a substitution
S of simple types T for type variables X and returns a simple
type mrtype(m, SX). typeOf (e) denotes the simple type of a
receiver e of a method invocation. mdeftypes(m, T) collects
the set of T’s supertypes that define m.

The case for method invocations is different from the orig-
inal constraint generation algorithm G. The type variable X

stands for the receiver type, which has to be a supertype
of the expression e0. X <: V guarantees that the receiver
type has method m whose argument types are T. The type
variable Y stands for the return type, which depends on the
receiver type. λs.mrtype(m, sX) <: Y represents this fact.

Example.
The method m in Figure 2 can be written in FJRc as

Figure 5. The return type is changed from void to Object

1 Object m(){

2 return

3 let s = (?new BigIntegerStream():

4 new IntegerStream())

5 in let i = s.get() BigInteger BigIntegerStream.get()

6 in let absi = i.abs() BigInteger BigInteger.abs()

7 in new Object();

8 }

Figure 5: An example code of FJRc

because FJRc does not have it. The around advice is woven
manually to lines 3–4 by using non-deterministic choice.

Our algorithm G+ correctly rejects the program as follows.
Applying G+ to lines 3–4, we get to know that the type of
s is BigInteger∪Integer. At line 5, G+ generates the con-
straints: BigIntegerStream ∪ IntegerStream <: X1,

X1 <: BigIntegerStream ∪ Stream,
λs.mrtype(get, sX)<:Y1

Because BigIntegerStream∪Stream can be reduced to Stream,
Stream is the only candidate for X1. We can also reduce the
constraint for Y1 and get Object<:Y1, which indicates that
Y1 must be Object.

The constraints for i.abs() are:{
Y1 <: X2, X2 <: BigInteger, λs.mrtype(abs, sX2)<:Y2

}
It is clearly satisfiable if Y1 <: X2 <: BigInteger is satisfi-
able, but it is not satisfiable because Y1 must be Object.

5. RELATED WORK
Featherweight Aspect GJ (FAGJ) [6] is a small calculus

based on Featherweight GJ [5], which supports covariant
return types and generics. Its focus is on studying the in-
corporation of generic types in AspectJ family of languages,
i.e., the authors discuss about typeability and type safety
of aspect-oriented programs with generics for the case when
the information about type parameters is not available (as
in Java bytecode) as well as when it is (as in source code).

StrongAspectJ [3] is another calculus based on Feather-
weight Java, which focuses on improving generality of ad-
vice in a type-safe manner. It supports covariant return
types and generics, as FAGJ.

Our study can be seen as a first attempt to connect these
work and the type relaxed weaving.

6. CONCLUSIONS AND FUTURE WORK
In order to support the Java 5 features such as the covari-

ant return types and the generics, the type relaxed weaving
should be extended to check, in addition to the type us-
ages of the return value from a target join point, those of
the derived values from the return value. The additional
checks are straightforwardly incorporated into the type re-
laxed weaving by slightly modifying a rule for overriding a
method.

We also gave an extended constraint generation algorithm
to the Featherweight Java for Relaxation (FJR) for support-
ing covariant return types. Although the paper does not in-
clude the formalization of the generics support, we presume
that no special extension is needed with respect to the con-
sistency checks of the derived values. As well as proving the

correctness of our constraint generation algorithm and im-
plementing the compiler, generics is left for our future work.
An interesting technical challenge is to find a type param-
eters from an object creation expression in Java bytecode,
which employ the type-erasure strategy for generics.

7. REFERENCES
[1] Curtis Clifton and Gary T. Leavens. MiniMAO1: An

imperative core language for studying aspect-oriented
reasoning. Science of Computer Programming,
63(3):321–374, 2006.

[2] Bruno De Fraine, Erik Ernst, and Mario Südholt.
Essential AOP: the A calculus. In Proceedings of
ECOOP’10, pages 101–125, 2010.

[3] Bruno De Fraine, Mario Südholt, and Viviane Jonckers.
StrongAspectJ: Flexible and safe pointcut/advice
bindings. In Proceedings of AOSD’08, pages 60–71,
2008.

[4] Erik Hilsdale and Jim Hugunin. Advice weaving in
AspectJ. In Proceedings of AOSD’04, pages 26–35,
2004.

[5] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. TOPLAS, 23(3):396–450, 2001.

[6] Radha Jagadeesan, Alan Jeffrey, and James Riely.
Typed parametric polymorphism for aspects. Science of
Computer Programming, 63(3):267–296, 2006.

[7] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. In Proceedings of ECOOP’01,
pages 327–353, 2001.

[8] Hidehiko Masuhara, Atsushi Igarashi, and Manabu
Toyama. Type relaxed weaving. In Proceedings of
AOSD’10, pages 121–132, 2010.

[9] Hidehiko Masuhara and Gregor Kiczales. Modeling
crosscutting in aspect-oriented mechanisms. In
Proceedings of ECOOP’03, pages 2–28, 2003.

