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Preface
Aspect-oriented programming is a paradigm in software engineering and

FOAL logos courtesy of Luca Cardelli

programming languages that promises better support for separation of concerns.
The Ninth Foundations of Aspect-Oriented Languages (FOAL) workshop was
held at the Ninth International Conference on Aspect-Oriented Software Devel-
opment in Rennes, France, on March 15, 2010. This workshop was designed to
be a forum for research in formal foundations of aspect-oriented programming
languages. The call for papers announced the areas of interest for FOAL as in-
cluding: semantics of aspect-oriented languages, specification and verification
for such languages, type systems, static analysis, theory of testing, theory of
aspect composition, and theory of aspect translation (compilation) and rewrit-
ing. The call for papers welcomed all theoretical and foundational studies of
foundations of aspect-oriented languages.

The goals of this FOAL workshop were to:
• Make progress on the foundations of aspect-oriented programming lan-

guages.

• Exchange ideas about semantics and formal methods for aspect-oriented
programming languages.

• Foster interest within the programming language theory and types com-
munities in aspect-oriented programming languages.

• Foster interest within the formal methods community in aspect-oriented
programming and the problems of reasoning about aspect-oriented pro-
grams.

The workshop was organized by Shmuel Katz (Technion–Israel Institute of Technology, Israel), Gary T. Leavens
(University of Central Florida, USA), and Mira Mezini (Darmstadt University of Technology, Germany). We are very
grateful to the program committee, which was chaired very ably by Klaus Ostermann.

We thank the organizers of AOSD 2010 for hosting the workshop.
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Message from the Program Committee Chair
The ninth FOAL workshop continues to be one of the primary forums for foundational work on aspect-oriented soft-
ware development. As in the past, each paper was subjected to full review by at least three reviewers. I am grateful
to the program committee members for their dedication, insightful comments, attention to detail, and the service they
provided to the community and the individual authors.

The members of the program committee were:

• Klaus Ostermann (Program Committee Chair, Philipps-Universität Marburg, Germany)

• Sven Apel (University of Passau),

• Eric Bodden (T.U. Darmstadt),

• Erik Ernst (University of Aarhus),

• David Lorenz (The Open University of Israel),

• Hidehiko Masuhara (University of Tokyo),

• Hridesh Rajan (Iowa State University),

• James Riely (DePaul University),

• Eric Tanter (University of Chile),

• Elena Zucca (University of Genoa)

The sub-reviewers, whom I also thank, were: Eugenio Moggi and Marko Rosenmueller.
I am also grateful to the authors of submitted works. Ten papers were submitted for review this year. Of these, the

program committee selected nine for presentation at the workshop and publication in the proceedings, but one paper
was later withdrawn, as the authors could not attend the workshop.

The program was rounded out with a discussion section.
Finally, I would like to thank the other members of the organizing committee of FOAL—Shmuel Katz, Gary T.

Leavens, and Mira Mezini— for their work in guiding us toward another inspiring workshop.

Klaus Ostermann
FOAL ’10 Program Committee Chair
Philipps-Universität Marburg, Germany
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ABSTRACT
A sketch of StrongRelaxAJ is presented. StrongRelaxAJ is
an extension to AspectJ with a type system for around ad-
vice that integrates the ones in RelaxAJ and StrongAspectJ.
In other words, StrongRelaxAJ employs the type-relaxed
weaving mechanism in RelaxAJ for better adaptability of
around advice, and supports type variables and explicit sig-
natures of proceed for better expressiveness without relying
on dangerous and annoying dynamic casting on the return
values from proceed.

Categories and Subject Descriptors
D.3.3 [PROGRAMMING LANGUAGES]: Language
Constructs and Features—Polymorphism

General Terms
Design, Languages

Keywords
Aspect-Oriented Programming, Around Advice, Type-Relaxed
Weaving, AspectJ, RelaxAJ, StrongAspectJ, StrongRelaxAJ

1. INTRODUCTION
Around advice is one of the unique and powerful features

of the pointcut and advice mechanism. It allows program-
mers not only to replace the operations with others without
directly modifying the source code but also to change pa-
rameters and return values of operations by using proceed.

Defining a good type system for around advice is one of
the challenges in statically typed aspect-oriented program-
ming (AOP) languages that employ the pointcut and advice
mechanism. Because a type system conservatively accepts
“safe” programs, it constrains the adaptability of around ad-
vice.

Recent studies revealed and solved problems of type-safety
and expressiveness in AspectJ [3, 5], which is one of the
widely used statically typed AOP languages.

RelaxAJ [6], which is an extension to AspectJ, improves
the adaptability of AspectJ’s around advice by relaxing the
restriction on its return type. While a piece of around advice
and its target join point on which the advice is executed must
have the same return type for type safety in AspectJ, this
is not required any more in RelaxAJ. Instead, it guarantees
type safety by ensuring that the return values of around
advice are safely used within the program.

StrongAspectJ [2] is another extension to AspectJ, which
supports type-safe generic around advice. A piece of around
advice in StrongAspectJ is safely evaluated on each target
join point. Intuitively, it is achieved by ensuring that a
piece of around advice always returns the return values of
proceed.

This position paper points out the problems of expres-
siveness in RelaxAJ as well as the problems of adaptability
in StrongAspectJ, and proposes StrongRelaxAJ as our solu-
tion. StrongRelaxAJ integrates the adaptability of RelaxAJ
and genericity of StrongAspectJ. In other words, it solves
the problems of expressiveness in RelaxAJ as well as solves
the problems of adaptability in StrongAspectJ. In the posi-
tion paper, we roughly explain its syntax and type checking
rules by using a concrete example. Its formalization and
implementation are left for future work.

The rest of the paper is organized as follows. Section 2
gives a brief overview of RelaxAJ and StrongAspectJ. Sec-
tion 3 presents examples that cannot be achieved by either
RelaxAJ or StrongAspectJ, and Section 4 shows a sketch of
StrongRelaxAJ. After discussing related work in Section 5,
Section 6 concludes the position paper and lists our future
work.

2. BACKGROUND: RELAXAJ AND STRON-
GASPECTJ

This section presents brief overviews of RelaxAJ and Stron-
gAspectJ along with a code fragment that implements a
popup window.

2.1 Base code: creating a popup window
Suppose we have an image editor in which one can manip-

ulate images by applying various filters (e.g., Gaussian blur
filters) and see a preview of the filter’s effect in a popup win-
dow. Listing 1 shows the method showPreview that creates
a popup window for previewing.
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Component

+setLocation(p:Point): void

JDialog JWindow

<<interface>>

RootPaneContainer

+getContentPane(): Container

Window

+setAlwaysOnTop(b:boolean): void

Figure 1: Relationship between Component, Window,
JDialog, JWindow and RootPaneContainer

1 void showPreview(JFrame mainWin, MyImage image){

2 JWindow popup = new JWindow(mainWin);

3 MyCanvas canvas = new MyCanvas(image);

4 JButton closeButton = new JButton("close");

5 popup.getContentPane().add(canvas);

6 popup.getContentPane().add(closeButton);

7 }

Listing 1: Popup window for previewing

It takes two parameters, namely mainWin, which is the
main window of the application, and image, which is the
processed image the user will see. MyCanvas, which is a
subclass of JPanel, draws the processed image. The popup
window popup, which is an instance of JWindow, contains a
canvas and button. If the button is clicked then the popup
window is closed.

2.2 RelaxAJ
RelaxAJ is an extension to AspectJ, which has a novel

type-checking rule for the return types of around advice. A
piece of around advice in RelaxAJ can have a return type
that is not a subtype of the target join points’ on which the
advice is executed. In AspectJ, the return type instead must
be a subtype of the target join points’.

Of course the return type cannot be any type in RelaxAJ.
It must be consistent with the types as which the return
values are used in the program.

Assume we want to create a modal dialog instead of a
simple popup window in the above example so as not to
leave previews outdated. One of the easiest ways to achieve
it is to use JDialog with the modal flag, instead of JWindow.

Listing 2 shows a piece of around advice that implements

1 RootPaneContainer around(Frame frame)

2 :call(JWindow.new(Frame))&&args(frame){

3 return new JDialog(frame, true);

4 }

Listing 2: Around advice that replaces JWindow
with JDialog

1 <T extends Component>

2 T around(Frame frame)

3 :call((JDalog||JWindow).new(Frame))&&args(frame)

4 :T proceed(Frame){

5 T popup = proceed(frame);

6 popup.setLocation(DEFAULT_LOC);

7 return popup;

8 }

Listing 3: Around advice that specifies the location
of the popup window

the idea. It simply creates a new modal JDialog object and
returns it when a JWindow object is to be created.

Note that the return type, which is RootPaneContainer,
is a supertype of the target join point’s return type, which
is JWindow. It is not valid in AspectJ because it requires the
return type is a subtype of the return types of its target join
points.

RelaxAJ accepts the advice when it is applied only to
the line 2 in Listing 1 because its return value is used only
as RootPaneContainer within the program and thus the re-
placement is safe.

2.3 StrongAspectJ
StrongAspectJ is another extension to AspectJ, which sup-

ports type-safe generic around advice. The genericity and
type-safety are achieved by using (bounded) type variables
to declare the return types of around advice and also pro-

ceed. Although AspectJ implicitly decides the return type
of proceed, StrongAspectJ does not. It is given by the pro-
grammer through a dual advice signature.

Assume a popup window is an instance of either JDialog

or JWindow, and we want to specify the location where the
window appears. This can be achieved by calling setLoca-

tion that is defined in Component.
Listing 3 is a piece of the around advice in StrongAspectJ

that catches the popup window object and calls setLoca-

tion on it. Line 1 declares the type variable T whose upper
bound is Component. It is used as the return type of the
advice. Line 4 is the dual advice signature that declares the
return and argument types of proceed: here its return type
is T and its argument type is Frame.

If the base program is type safe, the woven program is
also type safe. This is because (1) the return type of each
target join points (JDialog or JWindow) is always a subtype
of Component (see Figure 1) so that no type error occurs
within the advice, and (2) the return types of the advice and
proceed are always the same so that the values returned by
the advice can be used safely as the original values.

3. EXAMPLES THAT NEED AN INTEGRATED
LANGUAGE

By integrating RelaxAJ and StrongAspectJ, we can im-
plement more adaptive and interesting aspects. This section
presents two examples that cannot be achieved in either Re-
laxAJ or StrongAspectJ alone but can be achieved in the
integrated language.

3.1 Specifying return type of proceed in type-
relaxing advice

2



1 RootPaneContainer around(Frame frame)

2 :call(JWindow.new(Frame))&&args(frame){

3 if(POPUP_MODAL) return new JDialog(frame, true);

4 else{

5 JWindow popup=(JWindow)proceed(frame);

6 JOptionPane.showMessageDialog(popup,ALERT);

7 return popup;

8 }

9 }

Listing 4: Using dynamic casting to use return val-
ues of proceed as a JWindow

Suppose that we want to make the popup window modal
only if POPUP_MODAL is true. Otherwise, we show a message
dialog that warns danger of out-of-date previews along with
the original popup window. It can be achieved in RelaxAJ
by defining a piece of around advice shown in Listing 4

The problem here is the use of a cast operator at line
5. It is necessary because RelaxAJ simply adapts AspectJ’s
typing rule for proceed.

The return type of proceed is the same to the one of the
around advice, that is, RootPaneContainer. On the other
hand, to set popup as the parent window of the message di-
alog (JOptionPane) through showMessageDialog1, its static
type must be a subtype of Component, which is incompatible
with RootPaneContainer.

We should be able to omit dynamic casting because it
is obvious that proceed always returns a JWindow object.
One way to achieve it is to add StrongAspectJ’s dual advice
signature and the typing rules to RelaxAJ. StrongAspectJ
allows programmers to declare the return type of proceed.
JWindow is a valid return type here because it is (1) a super-
type of the return type of the target join points (JWindow
itself) and also (2) a subtype of the return type of the advice
(RootPaneContainer).

Of course StrongAspectJ does not accept such advice be-
cause its return type is invalid: it must be a subtype of the
return types of the target join points in StrongAspectJ, but
here RootPaneContainer is a supertype, not a subtype, of
JWindow.

3.2 Abstracting the return type of around ad-
vice by using type variables

RelaxAJ provides no way to write a piece of around advice
whose return value of is used as two or more types incom-
patible with each other. In other words, the return type of
a piece of around advice must be one type in RelaxAJ.

It is natural to control orders of windows in GUI pro-
grams. Listing 5 extends the base program (Listing 1) so
that the popup window stays above all other windows. Line
7 is added where popup is used as a Window because setAl-

waysOnTop, which is an instance method defined in Window,
is called on it.

The around advice declaration in Listings 2 and 4 can-
not be compiled with the above extended program. This is
because the return type cannot be relaxed to RootPaneCon-

tainer. As mentioned before, the return value is used as

1showMessage(Component,Object) is a static method in
JOptionPane

1 void showPreview(JFrame mainWin, MyImage image){

2 JWindow popup = new JWindow(mainWin);

3 MyCanvas canvas = new MyCanvas(image);

4 JButton closeButton = new JButton("close");

5 popup.getContentPane().add(canvas);

6 popup.getContentPane().add(closeButton);

7 popup.setAlwaysOnTop(true);

8 }

Listing 5: Create a popup window that stays above
all other windows

1 <T extends RootPaneContainer & Window>

2 T around(Frame frame)

3 :call(JWindow.new(Frame))&&args(frame)

4 :JWindow proceed(Frame){

5 if(POPUP_MODAL) return new JDialog(frame, true);

6 else{

7 JWindow popup=proceed(frame);

8 JOptionPane.showMessageDialog(popup,ALERT);

9 return popup;

10 }

11 }

Listing 6: Around advice in StrongRelaxAJ with an
explicit signature of proceed and type variable

not only a RootPaneContainer but also a Window.
Modifying the return type is not a solution because there

is no such a type that is a subtype of RootPaneContainer

and Window and a supertype of JDialog and JWindow.

4. STRONGRELAXAJ
We propose StrongRelaxAJ, which is a hybrid of RelaxAJ

and StrongAspectJ. StrongRelaxAJ has two additional lan-
guage features, namely explicit signature of proceed and type
variables to the type-relaxed weaving mechanism in Re-
laxAJ. An explicit signature of proceed helps us to omit
dynamic casts shown in Section 3.1. Type variables are used
to define a piece of around advice whose return values are
used as two or more incompatible types shown in Section
3.2.

This section first explains how the StrongRelaxAJ around
advice looks by showing an example. Then it explains about
explicit signature of proceed and type variables.

4.1 Around advice in StrongRelaxAJ
The syntax of around advice in StrongRelaxAJ is similar

to StrongAspectJ. A piece of around advice in StrongRe-
laxAJ has declarations of type variables and the signature
of proceed.

Listing 6 is a piece of around advice in StrongRelaxAJ. It
is a modified version of the advice in Listing 3.1 that works
with the extended base code shown in Listing 5.

Line 1 declares the type variable T whose upper bounds
are RootPaneContainer and Window. It is used as the return
type of the advice in Line 2 instead of RootPaneContainer.
Line 4 declares the signature of proceed.

Note that we does not use dynamic casting at line 7. Be-
cause the return type of proceed is JWindow, we can use its

3



return value as a JWindow object.

4.2 Explicit signature of proceed
The return type of proceed in a piece of around advice

must be (1) a supertype of the return types of the target
join points and also (2) a supertype of the return types of
around advice that may be called by proceed. In other
words, StrongRelaxAJ does not need any relationships be-
tween the return type of a piece of around advice and its
proceed unlike AspectJ, StrongAspectJ and RelaxAJ. This
does not break type-safety because proceed never calls the
around advice that encloses it.

Let’s look at the example in Section 4.1. The explicit
signature of proceed on Line 4 in Listing 6 satisfies the con-
dition. The return type JWindow is not a type variable, and
it is clearly a supertype of JWindow, which is the return type
of the target join points. Because there is no other pieces of
advice, the second condition for non variable return types
holds too.

4.3 Type variables
Type variables in StrongRelaxAJ are more expressive than

the ones in StrongAspectJ. StrongAspectJ uses type vari-
ables to ensure that the return value of proceed is the re-
turn value of the advice. For instance, if the return type
of proceed is T, which is a type variable, then the enclosing
around advice must be T.

In addition to the usage, StrongRelaxAJ uses them to
declare that the advice returns a value of some type that
satisfies the upper bounds. Listing 6 is an example. It
uses the type variable T to return JDialog and JWindow.
Because each of them is a subtype of Window and Root-

PaneContainer, StrongRelaxAJ’s type system accepts the
return statements.

Note that the return value is used as only a Window and
a RootPaneContainer within the target program, that is,
Listing 5. Therefore, type safety is preserved.

5. RELATED WORK
Adding union types to Java [4] gives another solution for

the situation in Section 3.2. If it is allowed to use union
types, we can declare the return type of the advice as JWin-
dow∨JDialog instead of using a type variable as in Listing
6. Then RelaxAJ with union types successfully accepts the
advice because JWindow and JDialog are subtypes of JWin-
dow∨JDialog and RootPaneContainer and Window are su-
pertypes of JWindow∨JDialog.

6. CONCLUSIONS AND FUTURE WORK
The position paper presented a sketch of StrongRelaxAJ,

which is a hybrid of RelaxAJ and StrongAspectJ. By us-
ing explicit signature of proceed, programmers can omit dy-
namic casting on the return values of proceed. Type vari-
ables are used not only to write generic advice but also to
declare the return type of a piece of around advice whose
return type cannot be described by using only one type.

Dealing with parameter types of proceed is one of our
future work as RelaxAJ. Formalization and implementation
are also our future work. Formalization could be done by
extending Featherweight Java for Relaxation (FJR) [6] and
StrongAspectJ [2]. Implementation would be done on top of
StrongAJ compiler or the AspectBench compiler (abc) [1].
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ABSTRACT
There is some consensus in the aspect-oriented community that
a notion of interface between joinpoints and advice may be nec-
essary for improved modularity of aspect-oriented programs, for
modular reasoning, and for overcoming pointcut fragility. Differ-
ent approaches for adding such interfaces, such as aspect-aware in-
terfaces, pointcut interfaces, crosscutting interfaces, explicit join-
points, quantified typed events, open modules, and joinpoint types
decouple aspects and base code, enhancing modularity. However,
existing work has not shown how one can write specifications for
such interfaces that will actually allow modular reasoning when as-
pects and base code evolve independently, and that are capable of
specifying control effects, such as when advice does not proceed.
The main contribution of this work is a specification technique that
allows programmers to write modular specification of such inter-
faces and that allows one to understand such control effects. We
show that such specifications allow typical interaction patterns, and
interesting control effects to be understood and enforced. We illus-
trate our techniques via an extension of Ptolemy, but we also show
that our ideas can be applied in a straightforward manner to other
notions of joinpoint interfaces, e.g. the crosscutting interfaces.

1. INTRODUCTION
In the past decade, the remarkable visibility and adoption of

aspect-orientation [28] in research and industrial settings only con-
firms our belief that new AOSD techniques provide software engi-
neers with valuable opportunities to separate conceptual concerns
in software system to enable their independent development and
evolution. This same decade of AOSD research has also witnessed
an intense debate surrounding two issues: pointcut fragility and
modular reasoning. The debate on pointcut fragility focuses on
the use of pattern matching as a quantification mechanism [48,50],
whereas that on modular reasoning focuses on the effect of AO
modularization on independent understandability and analyzability
of modularized concerns [1, 17, 26, 29]. Although the jury is still
out, in the later part of the last decade some consensus has begun
to emerge that a notion of interfaces may help address questions of
pointcut fragility and modular reasoning [1, 13, 20, 29, 41, 47, 49].

Copyright retained by authors. Submitted to FOAL 2010.

1.1 The Problems and their Importance
Although these proposals differ significantly in their syntactic

forms and underlying philosophies, the permeating theme is that
they provide some notion of explicit interface that abstracts away
the details of the modules that are advised (typically referred to
as the “base modules”) thus hiding such details from modules that
advise them (typically referred to as the “crosscutting modules”
or “aspects”). Leaving the comparison and contrast of software
engineering properties of these proposals to empirical experts, in
this paper we focus on studying the effectiveness of such interfaces
towards enabling a design by contract methodology for AOSD 1.

Design by contract methodologies for AOSD have been explored
before [49, 55], however, existing work relies on behavioral con-
tracts. Such behavioral contracts specify, for each of the aspect’s
advice methods, the relationships between its inputs and outputs,
and treat the implementation of the aspect as a black box, hiding
all the aspect’s internal states from base modules and from other
aspects. To illustrate, consider the snippets shown in Figure 1 from
the canonical drawing editor example with functionality to draw
points, lines, and a display updating functionality.

Figure 1 uses a proposal for aspect interfaces2, promoted by our
previous work on the Ptolemy language [41]. In Ptolemy, program-
mers declare event types that are abstractions over concrete events
in the program. Lines 10–16 declare an event type that is an ab-
straction over program events that cause change in a figure. An
event type declaration may declare variables that make some con-
text available. For example, on line 11, the changing figure, named
fe, is made available. Concrete events of this type are created us-
ing announce expressions as shown on lines 5–7.

A significant advantage of such interfaces is that they provide
a syntactic location to specify contracts between the aspect and
the base code [49] that is independent of both. Following previ-
ous work [49, 55], we have added an example behavioral contract
to the interface (event type Changed) (lines 12-15). This behav-
ioral contract is written in a form similar to our proposal to make
comparisons easier. This contract states that any concrete event
announcement must ensure that the context variable fe is non null
and observers (e.g. the Update class on lines 17–26) for this event
must not modify fe.

The first problem with specifying aspect interfaces using behav-
ioral contracts is that they are insufficient to specify the control
effects of advice in full generality. For example, with just the be-

1This is not to be confused with DBC using AOP, where the advice
construct is used to represent contract of a method. Rather we speak
of the contract between aspects and the base code.
2The choice is more of preference than of necessity. Other propos-
als are equally suitable for this discussion. The reader is encour-
aged to consider alternatives discussed in Section 4.
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1 class Fig { }
2 class Point extends Fig {
3 int x; int y;
4 Fig setX(int x){
5 announce Changed(this){
6 this.x = x; this
7 }
8 }
9 }

10 Fig event Changed {
11 Fig fe;
12 provides fe != null
13 requires {
14 fe == old(fe)
15 }
16 }

17 class Update {
18 Update init(){register(this)}
19 when Changed do update;
20 Display d;
21 Fig update(thunk Fig rest,
22 Fig fe){
23 d.update(fe);
24 invoke(rest)
25 }
26 }

Figure 1: A behavioral contract for aspect interfaces using Ptolemy [41] as the implementation language. See Section 2.1 for syntax.

havioral specification of the event type Changed, we cannot de-
termine whether the body of the method setX will always set the
current x coordinate to the argument. Such assertions are important
for reasoning, which depends on understanding the effect of com-
posing the aspect modules with the base code [44,49]. In Figure 1,
for example, the behavioral contract for Changed doesn’t serve
to alert us to an (inadvertently) missing invoke expression from
the Update code that would skip the evaluation of the expression
this.x = x in the method setX. In AspectJ terms this would
be equivalent to a missing proceed statement from an around
advice. Ideas from Zhao and Rinard’s Pipa language [55], if ap-
plied to AO interfaces help to some extent, however, as we discuss
in greater detail in Section 5, Pipa’s expressiveness beyond simple
control flow properties is limited.

The second problem with such behavioral contracts is that they
don’t help us in effectively reasoning about the effects of aspects
on each other. Consider another example concern, say Logging,
which logs the event Changed. For this concern different orders
of composition with the Update concern in Figure 1 could lead to
different results. In Ptolemy ordering between aspects can be spec-
ified using register expressions that activate an aspect. In As-
pectJ declare precedence serves the same purpose. In one
composition where Update runs first followed by Logging, the
evaluation of Loggingwill be skipped, whereas Loggingwould
work in the reverse order of composing these concerns. An aspect
developer may not, by just looking at the behavioral contract of the
aspect interface, reason about their aspect modules. Rather they
must be aware of the effects of all aspects that apply to that aspect
interface [1, 16, 17]. Furthermore, if any of these aspect modules
changes (i.e., if their effects change), one must reason about every
other aspect that applies to the same aspect interface.

Finally, even if programmers don’t use formal techniques to rea-
son about their programs, contracts for AO interfaces can serve as
the programming guidelines for imposing design rules [49,52]. Be-
havioral contracts for AO interfaces yield insufficiently specified
design rules that leave too much room for interpretation, which
may differ significantly from programmer to programmer. This
may cause inadvertent inconsistencies in AO program designs and
implementations, leading to hard to find errors.

1.2 Contributions to the State-of-the-art
The main contribution of this work is the notion of translucid

contracts for AO interfaces, which is based on grey box specifi-
cations [9–12]. A translucid contract for an AO interface can be
thought of as an abstract algorithm describing the behavior of as-
pects that apply to that AO interface. The algorithm is abstract in
the sense that it may suppress many actual implementation details,
only specifying their effects using specification statements. This
allows the specifier to decide to hide some details, while revealing
others. As in the refinement calculus, code satisfies an abstract al-
gorithm specification if the code refines the specification [2,36,37],
but we use a restricted form that requires structural similarity, to al-

low specification of control effects.
To illustrate, consider the translucid contract shown in Figure 2.

The classes Fig and Point in this example are the same as in
Figure 1. Contrary to the behavioral contract, internal states of the
handler methods that run when the event Changed is announced
are exposed. In particular, any occurrence of invoke expression
in the handler method must be made explicit in the translucid con-
tract. This in turn allows the developer of the class Point that an-
nounces the event Changed to understand the control effects of the
handler methods by just inspecting the specification of Changed.
For example, from lines 5–6 one may conclude that, irrespective
of the concrete handler method, the body for the method setX on
line 6 of Figure 1 will always be run. Such conclusions allow the
client of the setX to make more expressive assertions about its
control flow without considering every handler method that may
potentially run when the event Changed is announced.

1 Fig event Changed {
2 Fig fe;
3 provides fe != null
4 requires {
5 preserves fe == old(fe);
6 invoke(next)
7 }
8 }
9 class Update {

10 /* ... the same as before */
11 Fig update(thunk Fig rest, Fig fe){
12 refining preserves fe==old(fe){
13 d.update(fe);
14 } ;
15 invoke(rest)
16 }
17 }

Figure 2: A translucid contract for aspect interfaces

Making the invoke expression explicit also benefits other han-
dlers that may run when the event Changed is announced. For
example, consider the logging concern discussed earlier. Since
the contract of Changed describes the control flow effects of the
handlers, reasoning about the composition of the handler method
for logging and other handler methods becomes possible without
knowing about all explicit handler methods that may run when the
event Changed is announced. In this paper we explicitly focus
on the use of translucid contract for describing and understanding
control flow effects.

To soundly reap these benefits, the translucid contract for the
event type Changed must be refined by each conforming handler
method [2, 36, 37]. We borrow the idea of structural refinement
from JML’s model programs [45] and enhance it to support aspect-
oriented interfaces, which requires several adaptation that we dis-
cuss in the next section. Briefly the handler method update on
lines 11–16 in Figure 2 refines the contract on lines 5–6 because
line 15 matches line 6 and lines 12–14 claim to refine the spec-
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ification expression on line 5. In summary, this work makes the
following contributions. It presents:

• A specification technique for writing contracts for AO inter-
faces;

• An analysis of the effectiveness of our contracts using Ri-
nard et al.’s work [44] on aspect classification that shows that
our technique works well for specifying all classes of aspects
(as well as others that Rinard et al. do not classify);

• A demonstration that besides the AO interface proposal by
the previous work of Rajan and Leavens [41], our technique
works quite well for crosscut interfaces [49] and Aldrich’s
Open Modules [1] and a discussion of the applicability of
our technique to Steimann et al.’s joinpoint types [47], Hoff-
man and Eugster’s explicit joinpoints [21], and Kiczales and
Mezini’s aspect-aware interface [29]; and

• A comparison and contrast of our specification and verifica-
tion approach with related ideas for AO contracts.

2. TRANSLUCID CONTRACTS
In this section, we describe our notion of translucid contracts and

present a syntax and refinement rules for checking these contracts.
We use our previous work on the Ptolemy language [41] for this
discussion.3 However, as we show in Section 4 our basic ideas
are applicable to other aspect-oriented programming models. We
first present Ptolemy’s programming features and then describe the
specification features.

2.1 Program Syntax
Ptolemy is an object-oriented (OO) programming language with

support for declaring, announcing, and registering with events
much like implicit-invocation (II) languages such as Rapide [34].
The registration in Ptolemy is, however, much more powerful com-
pared to II languages as it allows developers to quantify over all
subjects that announce an event without actually naming them.
This is similar to aspect-oriented languages such as AspectJ [27].
The formally defined OO subset of Ptolemy shares much in com-
mon with MiniMAO1 [15], a variant of Featherweight Java [22]
and Classic Java [18]. It has classes, objects, inheritance, and sub-
typing, but it does not have super, interfaces, exception handling,
built-in value types, privacy modifiers, or abstract methods.

The syntax of Ptolemy executable programs is shown in Figure 3
and explained below. A Ptolemy program consists of zero or more
declarations, and a “main” expression (see Figure 1). Declarations
are either class declarations or event type declarations.
Declarations. We do not allow nesting of decls. Each class has a
name (c) and names its superclass (d), and may declare finite num-
ber of fields (field*) and methods (meth*). Field declarations are
written with a class name, giving the field’s type, followed by a
field name. Methods also have a C++ or Java-like syntax, although
their body is an expression. A binding declaration associates a set
of events, described by an event type (p), to a method [41]. An
example is shown in Figure 1, which contains a binding on line 19.
This binding declaration tells Ptolemy to run the method update
whenever events of type Changed are executed. Implicit invoca-
tion terminology calls such methods handler methods.

An event type (event) declaration has a return type (c), a
name (p), zero or more context variable declarations (form*), and
3Our descriptions of Ptolemy’s syntax and semantics are adapted
from our previous work [41].

prog ::= decl* e
decl ::= class c extends d { field*meth* binding* }

| t event p { form* contract }
field ::= t f;
meth ::= t m (form*) { e } | t m (thunk t var, form*) { e }
form ::= t var, where var 6=this
binding ::= when p do m
e ::= n | var | null | new c() | e.m( e* ) | e.f | e.f = e

| if (ep) { e } else { e } | cast c e | form = e; e | e; e
| while (ep) { e }| register( e ) | invoke ( e )
|announce p ( e* ) { e }| refining spec { e }

ep ::= n | var | ep.f | ep != null | ep == n | ep < n | ! ep | ep && ep

where

n ∈ N , the set of numeric, integer literals
c, d ∈ C, a set of class names

t ∈ C ∪ {int}, a set of types
p ∈ P, a set of event type names
f ∈ F, a set of field names

m ∈ M, a set of method names
var ∈ {this} ∪ V,V is

a set of variable names

Figure 3: Ptolemy’s Syntax [41]. Note the new expression
refining and contracts in the syntax of event types.

a translucid contract (contract). These context declarations specify
the types and names of reflective information exposed by conform-
ing events [41]. An example is given in Figure 1 on lines 10–16. In
writing examples of event types, as in Figure 1, we show each for-
mal parameter declaration (form) as terminated by a semicolon (;).
In examples showing the declarations of methods and bindings, we
use commas to separate each form.
Expressions. The formal definition of Ptolemy is given as an ex-
pression language [41]. It includes several standard object-oriented
(OO) expressions and also some expressions that are specific to an-
nouncing events and registering handlers. The standard OO expres-
sions include object construction (new c()), variable dereference
(var, including this), field dereference (e.f ), null, cast (cast t
e), assignment to a field (e1.f = e2), a definition block (t var = e1;
e2), and sequencing (e1; e2). Their semantics and typing is fairly
standard [13, 15, 41] and we encourage the reader to consult [41].

There are also three expressions pertinent to events: register,
announce, and invoke. The expression register(e) eval-
uates e to an object o, registers o by putting it into the list of ac-
tive objects, and returns o. The list of active objects is used in
the semantics to track registered objects. Only objects in this list
are capable of advising events. For example line 18 of Figure 1
is a method that, when called, will register the method’s receiver
(this). The expression announce p (v1, . . . , vn) {e} declares
the expression e as an event of type p and runs any handler meth-
ods of registered objects (i.e., those in the list of active objects) that
are applicable to p [41]. The expression invoke(e) is similar to
AspectJ’s proceed. It evaluates e, which must denote an event
closure, and runs that event closure. This results in running the first
handler method in the chain of applicable handlers in the event clo-
sure. If there are no remaining handler methods, it runs the original
expression from the event. thunk t ensures that the value of e is
an event closure with t being the return type of event closure and
hence the type returned by invoke(e).

When called from an event, or from invoke, each handler
method is called with a registered object as its receiver. The call
passes an event closure as the first actual argument to the handler
method (named rest in Figure 1 line 21). Event closures may not
be explicitly constructed in programs, neither can they be stored in
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fields. They are only constructed by the semantics and passed to
the handler methods.

There is one new program expression: refining. A refining
expression, of the form refining spec { e }, is used to imple-
ment Ptolemy’s translucid contracts (see below). It executes the
expression e, which is supposed to satisfy the contract spec.

2.2 Specification Features
The syntax for writing an event type’s contract in Ptolemy is

shown in Figure 4. In this figure, all nonterminals that are used but
not defined are the same as in Figure 3.

contract ::= provides sp requires { se }
spec ::= requires sp ensures sp
sp ::= n | var | sp.f | sp != null | sp == n

| sp == old(sp) | ! sp | sp && sp
| sp < n

se ::= sp | null | new c() | se.m( se* ) | se.f | se.f = se
| if (sp) { se } else { se } | cast c se | form = se; se
| while (sp) { se } | se; se | form = se; se | se; se
| register( se ) | invoke ( se ) | announce p ( e* ) { e }
| next | spec | either { se } or { se }

Figure 4: Syntax for writing translucid contracts

A contract is of the form provides sp requires { se }.
Here, sp is a specification predicate as defined in Figure 4 and the
body of the contract se is an expression that allows some extra
specification-only constructs (such as choice expressions).

As discussed previously, sp is the precondition for event an-
nouncement. The specification expression se is the abstract algo-
rithm describing conforming handler methods. If a method runs
when an event of type p is announced, then its implementation must
refine the contract se of the event type p. For example, in Figure 2
the method update (lines 11–16) must refine the contract of the
event type Changed (lines 5–6).

There are four new expression forms that only appear in con-
tracts: specification expressions, next expressions, abstract in-
voke expressions and choice expressions. A specification expres-
sion (spec) hides and thus abstracts from a piece of code in a con-
forming implementation [43,45]. The most general form of specifi-
cation expression is requires sp1 ensures sp2, where sp1 is a
precondition expression and sp2 is a postcondition. Such a specifi-
cation expression hides program details by specifying that a correct
implementation contains a refining expression whose body ex-
pression, when started in a state that satisfies sp1, will terminate in
a state that satisfies sp2 [43, 45]. In examples we use two sugared
forms of specification expression. The expression preserve sp
is sugar for requires sp ensures sp and establish sp is
sugar for requires 1 ensures sp [43]. Ptolemy uses 0 for
“false” and non-zero numbers, such as 1, for “true” in conditionals.

The next expression, the invoke expression and the choice
expression (either { se } or { se }) are place holders in the
specification that express the event closure passed to a handler, the
call of an event handler using invoke and a conditional expres-
sion in a conforming handler method. The choice expression hides
and thus abstracts from the concrete condition check in the handler
method. For a choice expression either { se1 } or { se2 } a
conforming handler method may contain an expression e1 that re-
fines se1, or an expression e2 that refines se2, or an expression if
( e0 ) { e1 } else { e2 }, where e0 is a side-effect free expres-
sion, e1 refines se1, and e2 refines se2.

3. ANALYSIS OF EXPRESSIVENESS
To analyze the expressiveness of translucid contracts, in this sec-

tion we illustrate their application to specify base-aspect interaction
patterns discussed by Rinard et al. in a previous work [44]. Rinard
et al. classify base-aspect interaction patterns into: direct and in-
direct interference. Direct interference is concerned about control
flow interactions whereas indirect interference refers to data flow
properties. Direct interference is concerned about calls to invoke,
which is the Ptolemy’s equivalent of AspectJ’s proceed. Direct
interference is further categorized into 4 classes of: augmentation,
narrowing, replacement and combination advices. We use the same
classification of base-advice interaction for subject-observer inter-
actions. An example, built upon the drawing editor example, is
shown for each category of direct interferences.

3.1 Direct Interference: Augmentation
Informally an augmentation handler is allowed to call invoke

exactly once. Augmentation handler can be an after or before han-
dler. In after augmentation, after the event body the handlers are
always executed. The handler logit in observer class Logging
in Figure 5 is an example of an after augmentation. The classes
Point and Fig are the same as in Figure 1. The requirement is
“to log the changes when figures are changed”. The handler logit
causes the event body (line 13) to be run first by calling invoke
and then logs the change in figure.

1 Fig event Changed {
2 Fig fe;
3 provides fe != null
4 requires {
5 invoke(next);
6 preserve fe==old(fe)
7 }
8 }
9 class Logging extends Object {

10 when Changed do logit;
11 Log l; /* ... */
12 Fig logit (thunk Fig rest, Fig fe){
13 invoke(rest);
14 refining preserve fe==old(fe) {
15 l.logChange(fe);fe
16 }
17 }
18 }

Figure 5: Specifying after augmentation

The interaction between subject and observer is documented ex-
plicitly in the event type specification (Changed) shown on lines
3-7. Notice that the invoke expressions appears exactly once in
the event type contract. Thus the base code developers for classes
that announce this event can assume that all handlers advising this
event would have exactly one call to invoke in their implementa-
tion and therefore these handlers would be augmentation handlers.
Furthermore, invoke is called at the beginning of the contract, re-
quiring event handlers to be run after the event body. This imposes
another restriction on the implementation of handlers and conveys
to the base code developers that not only the handlers are augmen-
tation handler, but also that they will be run after the event body.

Structural similarity is one criterion to be met by handler imple-
mentation to refine event specification. In this example structural
similarity mandates the handler implementation to have exactly one
call to invoke at its beginning. This ensures that all handlers ad-
vising the event type Changed are of type after augmentation.
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3.2 Direct Interference: Narrowing
A narrowing handler calls invoke at most once, which implies

existence of a conditional statement guarding the calls to invoke.
To illustrate consider the listing in Figure 6, which shows an exam-
ple of narrowing handler for the drawing editor example. This han-
dler implements an additional requirement for the editor that “some
figures are fixed and thus they may not be changed or moved”. To
implement this additional constraint the field fixed is added to
the class Fig. For fixed figures the value of this field will be 1
and 0 otherwise. The code for the class Point is the same as in
Figure 1. To implement the constraint the handler Enforce skips
invoking the base code whenever the figure is fixed (checked by
accessing the field fixed).

1 class Fig extends Object{ int fixed; }
2 Fig event Changed {
3 Fig fe;
4 provides fe != null
5 requires {
6 if(fe.fixed == 0){
7 invoke(next)
8 preserve fe==old(fe)
9 } else {

10 preserve fe==old(fe)
11 }
12 }
13 }
14 class Enforce extends Object {
15 when Changed do check;
16 /* ... */
17 Fig check(thunk Fig rest, Fig fe){
18 if(fe.fixed == 0){
19 invoke(rest)
20 } else {
21 refining preserve fe==old(fe){
22 fe
23 }
24 }
25 }
26 }

Figure 6: Specifying narrowing with a translucid contract

The contract for the event type Changed documents the possi-
bility of a narrowing handler on lines 5–11. It does not, however,
reveal the actual code of the narrowing handler as long as the hid-
den code refines the specification on line 8 and 10.

All observer’s handler of the event type Changedmust refine its
specification. This means that the implementation of such handlers
must structurally match the contract on lines 6–11. The implemen-
tation of the handler Enforce structurally matches the contract
thus it structurally refines it. The true block of the if expression on
line 18–20 refines the true block of the if expression in the specifi-
cation on lines 6–9 because the empty expression trivially preserves
fe==old(fe). The false block of the if expression on line 20–
24 refines the false block of the if expression in the specification
on lines 9–11 because lines 21–23 claim to refine the specification.

3.3 Direct Interference: Replacement
A replacement handler omits the execution of the original event

body and instead only runs the handler body. In Ptolemy this can
be achieved by omitting the invoke expression in the handler,
equivalent to not calling proceed in an around advice in AspectJ.

Figure 7 shows an example of such handler. The example uses
several standard sugars such as += and > for ease of presentation.
In this example, the method moveX causes a point to move along
the x-axis by amount d. The handler scaleit implements the
requirement that the “amount of movement should be scaled by a

1 class Point extends Fig {
2 int x; int y;
3 Fig moveX(int d){
4 announce Moved(this,d){
5 this.x += d; this
6 }
7 }
8 }
9 Fig event Moved {

10 Point p;
11 int d;
12 provides p!=null &&
13 d>0
14 requires {
15 preserve p!=null &&
16 p.y == old(p.y)
17 }
18 }
19 class Scale extends Object {
20 when Moved do scaleit;
21 int s; /*scale factor*/
22 Fig scaleit(thunk Fig rest,
23 Point p, int d){
24 refining preserve p!=null
25 && p.y == old(p.y) {
26 p.x += s * d ; p
27 }
28 }
29 }

Figure 7: Specifying replacement with a translucid contract

scaling factor s defined in class Scale”. Specification of event
type Moved documents that a replacement handler will be run
when this event is announced by omitting the calls to invoke in
its contract. The specification also documents the invariants main-
tained by the handlers that may run when the event is announced.

One requirement when writing translucid contracts is to reveal
all calls to invoke expression. Therefore, if an event type’s con-
tract has no invoke expression, none of the event type’s handlers
are allowed to have an invoke expression in their implementa-
tion. Otherwise the structural similarity criterion of refinement is
violated. The handler scaleit correctly refines Moved’s con-
tract because its body (line 24-27) matches the specification. There
are no invoke expressions and the invariant expected by the event
type’s contract (lines 15–16) and that maintained by the body (lines
24–25) are the same.

3.4 Direct Interference: Combination
Combination handlers can evaluate the invoke expression any

number of times. In AspectJ, this would be equivalent to one or
more calls to proceed in an around advice, guarded by some
condition or in a loop. A combination handler is typically useful
for implementing functionalities like fault tolerance. We show an
example of a combination handler in Figure 8. In this example, we
extend figures in the drawing editor to have colors. This is done
by adding a field color to class Fig and by providing a method
setColor for picking the color of the figure. The class Color is
not shown in the listing. It provides a method nextCol to get the
next available color.

To illustrate combination, let us consider the requirement that
“each figure should have a unique color”. To implement this re-
quirement, an event type ClChange is declared as an abstraction
of events representing colors changes. The method setColor
changes colors so it announces the event ClChange on lines 5–
7. The body of this announce expression contains the code to ob-
tain the next color (line 6). The handler Unique implements the
uniqueness requirement by storing already used colors in a hash
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1 class Fig {
2 Color c;
3 int colorFixed;
4 Color setColor(){
5 announce ClChange(this){
6 this.c = c.nextCol()
7 }
8 }
9 }

10 Color event ClChange{
11 Fig fe;
12 provides fe!=null
13 requires {
14 while(fe.colorFixed==0){
15 invoke(next);
16 either{
17 preserve fe != null
18 } or {
19 preserve fe != null
20 }
21 }
22 }
23 }

24 class Unique {
25 HashMap colors;
26 when ClChange do check;
27 Color check(thunk Color rest,
28 Fig fe){
29 while(fe.colorFixed==0){
30 invoke(rest);
31 if(colors.get(fe.c)!=null){
32 refining preserve fe!=null{
33 colors.put(fe.c);
34 fe.colorFixed = 1;fe.c
35 }
36 }else{
37 refining preserve fe!=null{
38 fe.c
39 }
40 }
41 }
42 }
43 }

Figure 8: Specifying combination with a translucid contract

table (colors). The field colorFixed is also added to figure
class to show that a unique color has been chosen and fixed for the
figure. The initial value of this field is zero. When the handler
method check is run it checks colorFixed to see if a color has
been chosen for figure or not, if not it then invokes the event body
generating the next candidate color for the figure. If this color is al-
ready used, checked by looking it up in the hash table, event body
is invoked again to generate the next candidate color. Otherwise,
the current color is inserted in the hash table and colorFixed is
set to one.

The specification for the event type ClChange documents that a
combination handler will be run when this event is announced. This
specification makes use of our novel feature, the choice feature, on
line 16–20. To correctly refine this specification, a handler can ei-
ther have a corresponding if expression at the corresponding place
in its body or it may have an expression that runs unconditionally
and refines the either block or the or block in the specification.
By analyzing the specification, specially by while loop revealed in
the specification, the base code developers can understand that the
handlers that run when the event ClChange is announced may
run the original event body multiple times. They are, however,
not aware of the concrete details of such handlers, thus those de-
tails remain hidden. Since the handler Unique’s body structurally
matches the specification, it correctly refines the specification.

3.5 More Expressive Control Flow Properties
Rinard et al.’s control flow properties are only concerned about

calls to invoke. Their proposed analysis technique can decide
which class of interference and category of control effects each iso-
lated advice belongs to [44]. However, it could not be used to ana-
lyze possibility of two or more control flow paths each of which is
an augmentation, however, each path maintains a different invari-
ant. Figure 9 illustrates such an example. This example is adapted
from the work of Khatchadourian and Soundarajan [26].

The class Fig not shown here is the same as in Figure 1.
Khatchadourian and Soundarajan [26] implement an additional re-
quirement that “a point should always be visibly distinguished from
the origin”. To implement this requirement a scaling factor s is
added as a field to the class Point (line 2). This factor is initially
set to 1 (line 5). The additional requirement is implemented as the
class Scaling. The handler method scale in this class is run
when event Moved is announced. The handler method ensures that
if the point is close enough to the origin (vicinity condition) to vis-

1 class Point extends Fig{
2 int x; int y; int s;
3 Point init(int x,int y){
4 this.x=x; this.y=y;
5 this.s=1; this
6 }
7 int getX(){this.x*this.s}
8 int getY(){this.y*this.s}
9 Fig move(int x, int y){

10 announce Moved(this){
11 this.x=x;this.y=y; this
12 }
13 }
14 }
15 Fig event Moved{
16 Point p;
17 provides p!=null
18 requires{
19 invoke(next);
20 if(p.x<5&& p.y<5){
21 establish p.s==10
22 } else {
23 establish p.s==1
24 }
25 }
26 }
27 class Scaling extends Object{
28 when Moved do scale;
29 Fig scale(thunk Fig rest, Point p){
30 invoke(rest);
31 if(p.x<5 && p.y<5){
32 refining establish p.s==10{
33 p.s=10; p
34 }
35 } else {
36 refining establish p.s==1{
37 p.s == 1; p
38 }
39 }
40 }
41 }

Figure 9: Expressive Control Flow Properties Beyond [44]

ibly distinguish it from the origin the scaling factor is set to 10.
Thus the scaling factor only gets two values 1 or 10. The vicinity
condition is true if point’s x and y coordinates are less than 5.

The assertions we want to validate in this example are as follows:
(i) all of the handlers are after augmentation handlers, (ii) the value
of scaling factor s is either 1 or 10, and (iii) the scaling factor s it
is set to 10 if and only if the vicinity condition holds. Rinard et
al.’s proposal could be used to verify (i) and a behavioral contract
can specify (ii) but none of them could specify (iii), whereas our
approach can. On lines 19–24 is a specification that conveys to the
developers of the class Point that a conforming handler method
will satisfy all three assertions above.

In summary, in this section we have shown that translucid con-
tracts allow us to specify control flow interference between subject
and observers. Specified interference patterns are enforced auto-
matically through refinement. We are able to specify and enforce
control interference properties proposed by Rinard et al.. There are
more sophisticated control flow interplay patterns which could not
be enforced by the previous work on design by contract for aspects
whereas it could be specified as translucid contracts.

4. APPLICABILITY TO OTHER
APPROACHES FOR AO INTERFACES

In this section, we discuss the applicability of our technique
to other approaches for AO interfaces. As discussed previously,
there are several competing and often complementary proposals
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for AO interfaces. For example, Kiczales and Mezini’s aspect-
aware interfaces (AAI) [29], Gudmundson and Kizales pointcut in-
terfaces [20], Sullivan et al.’s crosscutting interfaces (XPIs) [49],
Aldrich’s Open Modules [1], Steimann et al.’s joinpoint types [47],
and Rajan and Leavens’s event types [41]. We have tried out
several of these ideas and our approach works beautifully. Since
Steimann et al.’s joinpoint types [47] and Hoffman and Eugster’s
explicit joinpoints (EJP) are similar in spirit to Rajan and Leavens’s
event types [41], which we have already discussed in previous sec-
tions, we do not present our adaptation to these ideas here. Rather
we focus on the AspectJ implementation of the XPI approach [52]
and Aldrich’s Open Modules [1] that are substantially distinct from
event types [41, Fig. 10].

4.1 Translucid Contracts for XPIs and AAIs
Sullivan et al. [49] proposed a methodology, that they call cross-

cut programming interface (XPI) for aspect-oriented design based
on design rules. The key idea is to establish a design rule inter-
face which serves to decouple the base design and the aspect de-
sign. These design rules govern exposure of execution phenomena
as joinpoints, how they are exposed through the joinpoint model of
the given language, and constraints on behavior across joinpoints
(e.g. provides and requires conditions [52]). XPIs prescribe rules
for joinpoint exposure, but do not provide a compliance mecha-
nism. Griswold et al. have shown that at least some design rules
can be enforced automatically using AspectJ’s features [52]. Cur-
rent proposals for XPIs, however, all use behavioral contracts [49].
As shown previously, use of behavioral contracts, limits the expres-
siveness of the assertions which could be made using XPI. Behav-
ioral contracts could not reveal implementation details which might
be needed for some assertions [12].

1 class Fig extends Object{ int fixed; }
2 aspect XChanged {
3 pointcut joinpoint(Fig fe): target(fe)
4 && call(void Fig+.set*(..));
5 provides fe != null
6 requires {
7 if(fe.fixed == 0){
8 proceed();
9 preserve fe==old(fe)

10 } else {
11 preserve fe==old(fe)
12 }
13 }
14 }
15 aspect Enforce {
16 Fig around (Fig fe):
17 XChanged.joinpoint(fe){
18 if(fe.fixed == 0){
19 proceed()
20 } else {
21 refining preserve fe==old(fe){
22 fe
23 }
24 }
25 }
26 }

Figure 10: Applying translucid contract to an XPI

In this section, we show that translucid contracts can also be
applied to enable expressive assertions about aspect-oriented pro-
grams that use the XPI approach. We also discuss changes in the
refinement rules that is needed to verify such programs. To illus-
trate consider the example from Section 3.2, where constraint on
movement of figures is implemented as an XPI and an aspect. An
XPI typically also contains a description of scope, which we omit

here. In the context of XPIs, the language for expressing translucid
contract is slightly adapted to use proceed instead of invoke on
line 8. Other than this change, our syntax for translucid contracts
works right out-of-the-box.

Unlike translucid contracts for event types in Ptolemy, where the
contract is thought to be attached to the type, in the AspectJ’s ver-
sion of XPI contracts are thought to be attached to the pointcut
declaration, e.g. the contract on lines 5–13 is attached to the point-
cut on lines 3–4. The variables that can be named in the contract
are those exposed by the pointcut. For example, the contract can
only use fe.

Our proposal for verifying refinement also needs only minor
changes. Unlike Ptolemy, where the event types of interest are
specified in the binding declarations, in AspectJ’s version of XPI,
aspects reuse the pointcut declarations from the XPI in the advice
declaration (lines 16–17). Our refinement rules could be added here
in the AO type system. So for an advice declaration to be well-
formed, its pointcut declaration must be well-formed, the advice
body must be well-formed, and the advice body must refine the
translucid contract of the pointcut declaration. This strategy works
for basic pointcuts, for compound pointcuts constructed using rules
such as (pcd and pcd’ or pcd or pcd’), where both pcd
and pcd’ are reused from different XPIs and thus may have inde-
pendent contracts more complex refinement rules will be needed,
which we have not explored in this paper.

Joinpoint interfaces like XPI could be computed from the im-
plementation rather than being explicitly specified given whole-
program information. Kiczales and Mezini [29] follow this ap-
proach to extract aspect-aware interfaces (AAI). A detailed dis-
cussion of the trade-offs of such interfaces is the subject of pre-
vious work [42, 49]. However, an important property of AAIs is
that advised joinpoints contain the details of the advice. An ex-
ample based on the example in Figure 10 is shown in Figure 11.
The extracted AAI for the method setX is shown on lines 3-4. An
adaptation of this extraction to include translucid contracts will be
to carry over the contract from the pointcut to the joinpoint shadow
as shown on lines 5–13.

1 Point extends Fig {
2 int x; int y;
3 Fig setX(int x): Update -
4 after returning Update.joinpoint(Fig fe)
5 provides fe != null
6 requires {
7 if(fe.fixed == 0){
8 proceed();
9 preserve fe==old(fe)

10 } else {
11 preserve fe==old(fe)
12 }
13 }
14 /* body of setX */
15 }

Figure 11: Applying translucid contract to an AAI

The syntax and refinement rules similar to XPI are applicable
here. Like AAI annotations that provide developers of Point
with information about potentially advising aspects, added contract
would provide developers of Point with richer abstraction over
the aspect’s behavior. Similar ideas can also be applied to aspect-
oriented development environments such as AJDT, which provide
AAI-like information at joinpoint shadows in an AO program.

4.2 Translucid Contracts for Open Modules
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Aldrich’s proposal on Open Modules [1] is closely related to
Ptolemy’s quantified, typed events [41]. Open modules allows a
class developer to explicitly expose pointcuts for behavioral modi-
fications by aspects, which is similar to signaling events using the
announce expressions in Ptolemy. The implementations of these
pointcuts remain hidden from the aspects. As a result, the impact
of base code changes on the aspect is reduced. However, quantifi-
cation in Ptolemy is more expressive compared to Open Modules.
In open modules, each explicitly declared pointcut has to be enu-
merated by the aspect for advising. On the other hand, Ptolemy’s
quantified, typed events significantly simplify quantification. In-
stead of manually enumerating the joinpoints of interest, one can
use the name of the event type for implicit non-syntactic selection
of joinpoints. This affects applicability of translucid contracts to
Open Modules.

1 module FigModule {
2 class Fig;
3 friend Enforce;
4 expose: target(fe) &&
5 call(void Fig+.set*(..));
6 provides fe != null
7 requires{
8 if(fe.fixed == 0){
9 proceed();

10 preserves fe == old(fe)
11 } else {
12 preserves fe == old(fe)
13 }
14 }
15 }
16 aspect Enforce {
17 Fig around (Fig fe): target(fe) &&
18 call(void Fig+.set*(...)){
19 if(fe.fixed == 0){
20 proceed()
21 } else {
22 refining preserve fe==old(fe){
23 fe
24 }
25 }
26 }
27 }

Figure 12: Applying translucid contract to Open Modules [39]

To show the applicability of translucid contracts to Open Mod-
ules, we revisit the narrowing example from Section 3.2. Figure 12
shows the implementation of the same scenario using Open Mod-
ules. In implementing the example, we use the syntax from the
work of Ongkingco et al. [39] to retain similarity with other ex-
amples in this work. In the listing constraints on the movement
of figure is encapsulated in the module Enforce. Open mod-
ule FigModule exposes a pointcut of class Fig on lines 4–
5, marked by the keyword expose. Exposed pointcut is advis-
able only by the friend aspect Enforce. Transcluid contract
on lines 6–14 states the behavior of interaction between specified
friend aspect and the exposed pointcut. The adaptations in the syn-
tax of contracts are the same as in the case of XPI discussed in
Section 4.1.

Like contracts in XPI, contracts in Open Modules are attached to
a pointcut declaration, e.g. the contract on lines 6–14 is attached to
the exposed pointcut defined on lines 4–5. The variables that can
be named in the contract are those exposed by the pointcut. For
example, the contract on lines 6–14 can only use the variable fe.

Proposed verifying refinement rules need to be modified slightly
as well. In Ptolemy, event type of interest is specified in the binding
declaration whereas in AspectJ’s version of Open Modules, aspects
could not reuse pointcuts exposed by an Open Module and need to

enumerate the pointcut in the advice declaration again (lines 17–
18). Our refinement rules could be added here in AO type system.
Well-formedness of basic and compound pointcuts follow the same
rules laid out in Section 4.1.

This example illustrates how our approach might be used as a
specification and verification technique for Open Modules. The
only challenge that we saw in this process was to match an as-
pect’s pointcut definition with the open module’s pointcut defini-
tion to import its contract for checking refinement. Like translucid
contracts for Ptolemy, in the case of Open Modules specification
serves as a more expressive documentation of the interface between
aspects and classes.

5. RELATED IDEAS
There is a rich and extensive body of ideas that are related to

ours. Here, we discuss those that are closely related under three
categories: contracts for aspects, proposals for modular reasoning,
and verification approaches based on grey box specifications.
Contracts for Aspects. This work is closest in spirit to the
work on crosscut programming interfaces (XPIs) [23, 52]. XPIs
also allow contracts to be written as part of the interfaces as
provides and requires clauses. Similar to translucid con-
tracts, the provides clause establishes a contract on the code
that announces events, whereas the requires clauses specifies
obligations of the code that handles events. However, the contracts
specified by these works are mostly informal and cannot be au-
tomatically checked. Furthermore, these works do not describe a
verification technique and contracts could be bypassed.

Skotiniotis and Lorenz [33, 46] propose contracts for both ob-
jects and aspects in their tool Cona. Rinard et al. [44] classify
the interaction of advice and method into direct and indirect inter-
actions. Direct interactions focus on control flow elements while
indirect interactions are concerned about data elements. Each of
direct and indirect interactions are further categorized into differ-
ent classes of interactions. They have developed an analysis sys-
tem that categorizes aspects and method interactions. Their clas-
sification and analysis system serves reasoning purposes. As an
analysis system, it expect developers to enforce desired properties
by informing them about classes that each aspect-method interac-
tion belongs to. There is no specification/enforcement mechanism
supported in their approach. Zhao and Rinard [55] propose Pipa
as a behavioral specification language for AspectJ. Pipa supports
specification inheritance and specification crosscutting. It relies on
textual copying of specifications for specification inheritance and
syntactical weaving of specification for specification crosscutting.
Annotated AspectJ program with JML-like Pipa’s specifications is
transformed to JML and Java code. JML-based verification tool
could be used later to enforce specified behavioral constraints. All
of these ideas use behavioral contracts and thus may not be used to
reason about control effects of advice.
Modular Reasoning. There is a large body of work on modu-
lar reasoning about AO programs on new language designs [1, 14,
17, 21, 25], design methods [23, 30, 32, 52], and verification tech-
niques [3, 24, 31, 40]. Our work complements ideas in the first and
the second category and can use ideas in the third category for im-
proved expressiveness. Compared to work on reasoning about im-
plicit invocation [4, 8, 19, 54], our approach based on structural re-
finement is significantly lightweight. Furthermore, it accounts for
quantification that these ideas do not.

Oliveira et al. [38] introduce a non-oblivious core language with
explicit advice points and explicit advice composition requiring ef-
fects modeled as monads to be part of the component interfaces.
Their statically typed model could enforce control and data flow in-
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terference properties. Their work shares commonalities with ours
in terms of explicit interfaces having more expressive contracts to
state and enforce the behavior of interactions. However, it is diffi-
cult to adapt their ideas built upon their non-AO core language, to
II, AO, and Ptolemy as they do not support quantification.

Hoffman and Eugster Explicit Joint Points [21] and Steimann
et al.’s Joint Point Types [47] share similar spirit with Rajan and
Leavan’s event types [41]. Although Steimann et al. proposed in-
formal behavioral specification, but there is no explicit notion of
formally expressed and enforced contracts, stating interactions be-
havior, in any of these approaches.
Grey Box Specification and Verification. This work builds
upon previous research on grey box specification and verifica-
tion [12]. Among others, Barnett and Schulte [6, 7] have consid-
ered using grey box specifications written in AsmL [5] for veri-
fying contracts for .NET framework, Wasserman and Blum [53]
also use a restricted form of grey box specifications for verifica-
tion, Tyler and Soundarajan [51] and most recently Shaner, Leav-
ens, and Naumann [45] have used grey box specifications for verifi-
cation of methods that make mandatory calls to other dynamically-
dispatched methods. Rajan et al. have used grey box specifications
to enable expressive assertions about web-services [43]. Compared
to these ideas, our work is the first to consider grey box specifi-
cations as a mechanism to enable modular reasoning about code
that announces events from the code that handles events, which is
a common idiom in AO and II languages.

6. FUTURE WORK
Having laid out the basic ideas behind translucid contracts we

now turn to the remaining work necessary to incorporate translu-
cid contracts in Ptolemy and other AO languages. First task would
be to define a precise formalization of when translucid contracts
are refined by the handler body and second would be give defini-
tion of how reasoning about announce expressions proceeds. We
discuss our ideas to solve these problems in some detail below.

6.1 Checking Contract Refinement
In Ptolemy a module announcing an event of type p may as-

sume that all handler methods that run when p is announced re-
fine the translucid contract of p. Each such handler method then
in turn must guarantee that it correctly refines the contract. In-
formally, showing refinement between a contract and a handler
method builds on the notion of structural refinement from the work
of Shaner et al. [45]. New ideas will be in the refinement of
invoke and either {..} or {..} expressions. The con-
tract may include specification notations (se) whereas implemen-
tations can only contain executable code, built solely from the pro-
gram constructs (e) described in Figure 3. A handler method’s im-
plementation refines a translucid contract if it meets two criteria:
first, that the code shares its structure with that given in the speci-
fication and second, that the body of every refining expression
obeys the specification it is refining.

6.2 Reasoning about Announce Expressions
A technique for verification of the code that announces events

is an important future work. The basic plan is to use the copy rule
[35] substituting the abstract program that is the specification of the
event type for the announce expression. This will be sound, due to
structural refinement.

The technical difficulty is that handlers are essentially mutually
recursive, since they can use invoke expressions to proceed to
the next handler that applies to the event. Thus in the verification,
it will be difficult to know, statically, how many times to substitute

(unfold) the abstract program for invoke when reasoning about
an announce expression. One possibility is to use predicates that
describe the state of the active object list, so that in the verification
one can do a case split, based on what handlers actually do apply
to a particular announce expression at that point in the program.

7. CONCLUSION
Many recent proposals for aspect-oriented interfaces [1, 20, 21,

29, 41, 47, 49] show promise towards improving modularity of AO
programs. An important benefit of these proposals is that they pro-
vide a syntactic location to specify contracts between the advised
and the advising code. However, behavioral contracts [49, 55] are
largely insufficient to reason about potentially important control-
flow related properties of the advising code.

We show that translucid contracts that are based on grey box
specifications [10, 11] are useful for understanding and enforcing
such properties for Ptolemy programs. A handler method conforms
with such contract, if its body refines the contract. All handler
methods for an event type p are required to conform with the con-
tract for p. We show how verification proceeds for code announcing
events. Checking the handlers and the announce expressions only
require module-level analysis. We also demonstrate the applicabil-
ity of translucid contracts to other type of AO interfaces.

Besides direction already discussed in Section 6, adding translu-
cid contracts to other AO compilers, integrating it with rich speci-
fication features in JML, and trying out larger examples would also
be part of the future activities.
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ABSTRACT
In this paper, we propose a programming language called
NextEJ. NextEJ is a smooth combination of a role-based
language EpsilonJ and context activation mechanisms pro-
vided by COP languages. It supports all the features of
the Epsilon model such as dynamic object-role binding and
unbinding, and encapsulation of collaboration of roles as a
context that can be defined as a reusable module. Further-
more, NextEJ tackles typing problem of the Epsilon model
by introducing the context activation scope inspired by COP
languages. The key ideas described in this paper are formal-
ized as a small core language FEJ that is built on top of FJ.
FEJ’s type system is proven to be sound.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.3.1 [Programming Languages]: Formal Def-
initions and Theory; D.3.3 [Programming Languages]:
Language Constructs and Features

General Terms
Languages

Keywords
Role model, Epsilon, Context-oriented Programming

1. INTRODUCTION
Context-awareness is becoming an increasingly important

feature in many types of applications, ranging from business
applications to mobile and ubiquitous computing systems.
For example, in location-based systems, the behaviors of
the provided services are situation-dependent or even deeply
personalized [6]; thus, instance-specific behavioral changes
with respect to the surrounding context are required. Un-
fortunately, current mainstream object-oriented languages
provide little explicit support for context-awareness [23].
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To explicitly support context-awareness at the program-
ming language level, several approaches have been proposed.
One of the promising methods of realizing context-awareness
is to use the Epsilon model [41, 42]. The Epsilon model pro-
vides a clear conceptual framework of role modeling and
object adaptation to collaboration fields between roles. It
also provides a good basis for developing context-aware ap-
plications. A Java-based implementation language called
EpsilonJ has also been implemented [34].

In EpsilonJ, each context is declared by a context declara-
tion statement (Figure 1). Each context consists of a set of
roles that represents collaborations performed in that con-
text. For example, Figure 1 shows collaborations between
employers and employees in a company (e.g., an employer
pays salary for the employees). Each context can be instan-
tiated by using the new expression, as in Java. An object
can participate in a context by assuming one of the role
instances belonging to that context. This can be achieved
by the newBind predefined method (Figure 2); this method
creates a role instance and binds it with the object that
is passed as an argument to newBind. An object can also
assume other role instances belonging to other contexts.

EpsilonJ supports the development of context-aware ap-
plications. We can define behavioral variations that may
vary with respect to the surrounding environment by us-
ing context declarations. In each context, we can group
related context-dependent behaviors. Each context and role
is a first-class entity that can be explicitly referred to by its
name; thus, we can explicitly invoke context-dependent be-
haviors. However, in EpsilonJ, dynamically acquired meth-
ods obtained by assuming roles have to be invoked by using
down-casting (line 6 of Figure 2); this is an unsafe operation.
This down-casting is cumbersome and error-prone, because
we always have to use it whenever we want to use role meth-
ods on a case-by-case basis. In addition, to assure that the
receiver object is actually bound with the role, we have to

context Company {

role Employer {

void pay() { Employee.getPaid(); } }

role Employee {

int save, salary;

Employee(int salary) {

this.salary = salary; }

void getPaid() { save += salary; } } }

Figure 1: Example of context in EpsilonJ
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1 Person tanaka = new Person();

2 Person komiyama = new Person();

3 Company todai = new Company();

4 todai.Employer.newBind(komiyama);

5 todai.Employee.newBind(tanaka,1000);

6 ((todai.Employer)komiyama).pay();

Figure 2: Object-role binding in EpsilonJ

investigate the source code carefully.
One of the reasons for this problem is the fact that there

is no method to control the scope of object-role binding. If
we can represent a scope that ensures that the designated
objects and roles are bound, this problem would be solved.
This scoping mechanism is similar to the one that has been
described in Context-oriented Programming (COP) [23, 13,
22]. However, COP languages do not provide the object
adaptation mechanism supported by EpsilonJ because the
binding mechanism is not object-based but class-based. Fur-
thermore, in most the statically typed COP languages, such
binding is performed statically and only the activation mech-
anism is provided. Therefore, the flexible adaptive evolution
provided by EpsilonJ is not supported by COP languages.

We have proposed a smooth combination of the Epsilon
model and COP languages that incorporates the advantages
of both. We design a new programming language called
NextEJ [28]1 that incorporates the feature of both Epsilon
model and COP. NextEJ addresses the problem of the type
unsafety of the Epsilon model by introducing a language fea-
ture, the concept of which is adopted from COP languages,
called context activation scope. In the context activation
scope, we can denote which role of an object that belongs
to an context is bound and activated within the scope. If
the designated object is not bound with the role, the role in-
stance is implicitly created and bound with the object, and
therefore it is ensured that the object always assumes the
role within the scope and no method-not-understood errors
occur at run-time. Furthermore, context activation scopes
can be nested so that multiple contexts can be activated at
a time. A role instance has a pre-defined field thisC that
refers to its enclosing context instance. In the case of multi-
ple context activations, the reference of thisC is interpreted
as a composite context whose behavior is determined by the
order of activation.

To carefully investigate the type soundness of NextEJ,
we develop FEJ, a core calculus that combines the features
of EpsilonJ and COP. This formalization is built on top of
Featherweight Java (FJ) [24] and its type system is proven
to be sound. There have been only a few reports on the
formalization of the Epsilon model and COP languages [27,
12], and there have been non on the combination of role-
based languages and COP. The formalization described in
this paper can also be considered as a theoretical basis for
similar languages such as ObjectTeams [21]. We discuss the
relationship between NextEJ and ObjectTeams in section 4.

2. NEXTEJ: SMOOTH COMBINATION OF
EPSILON AND COP

This section describes how context-awareness can be easily

1The syntax of NextEJ has been improved in this paper.

class Building {
role Guest {
void escape() { .. }

}
role Security {
void notify() {
Guest.escape(); }

}
}

class Shop {
role Customer {
void buy(Item i) {
int p = i.getPrice();
Seller.getPaid(p);

} }
singleton role Shopkeeper {
void getPaid(int price)
{ ... } } }

Figure 3: Context and role declarations

Figure 4: Structure of role instances and a context
instance

expressed by NextEJ. A design sketch of NextEJ was pre-
sented in [28]. For the sake of simplicity, we have included
this sketch in this paper.

2.1 An Example
To discuss the main features of NextEJ, we consider the

following example. This example features two contexts, build-
ing and shop. Within a building, there exist several roles
such as visitor, janitor, security agent, and owner. Similarly,
within a shop there exist some roles such as customer and
shopkeeper. When a person enters a building, she assumes
the role of a visitor. Similarly, a person assumes the role of
a customer when she enters a shop. There exist many inter-
actions among roles; e.g., a security agent notifies all visitors
in case of an emergency or a shopkeeper sells a customer an
item. When a person leaves a context (e.g., building) she
quits the role she assumes (e.g., visitor). Furthermore, shops
may be within a building; therefore a person may simulta-
neously enter multiple contexts (i.e., building and shop).

2.2 Context and Role Declarations
NextEJ is an extension of Java that provides an explicit

method to represent context-dependent behaviors and ob-
ject adaptation to contexts. Figure 3 shows an example of
context and role declarations in NextEJ. In NextEJ, each
context is declared as a normal class and each role is de-
clared within a class by using the role declaration state-
ment. In Figure 3, the context Building consists of two
roles, Guest and Security. Within roles, we can declare
methods and fields. For example, the role Guest declares
a method escape() that is called in the body of notify()

declared in Security.
A context can be instantiated by a new expression because

it is actually a normal class. On the other hand, an instance
of a role cannot be created explicitly, as described later. The
relationships among role instances and the enclosing context
instance are shown in Figure 4. A role instance is always as-
sociated with an instance of its enclosing context. A set of
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Figure 5: Structure of an object bound with role
instances

instances of a role associated with the same enclosing con-
text instance is called a role group, and it is referred by the
role name. For example, the method call Guest.escape()
is interpreted as calling the escape() methods of all Guest
instances. A role declared as singleton is called a singleton
role; this implies that at most one instance of the role with
the same enclosing context instance can be created.

A role declaration cannot contain an extends clause; how-
ever, this does not mean that a role cannot extend other
roles. The composition mechanism of contexts and roles is
discussed in section 2.5.

2.3 Object Adaptation and Context Activation
A class instance enters a context by assuming one of its

role instances. Furthermore, a class instance can be bound
with multiple role instances and can activate or deactivate
some of them (Figure 5). For example, assuming that we
have a class Person, object adaptation to a context can be
written as follows:

final Building midtown = new Building();

Person tanaka = new Person();

Person suzuki = new Person();

Person sato = new Person();

bind tanaka with midtown.Guest(),

suzuki with midtown.Guest(),

sato with midtown.Security() {

...

sato.notify(); }

The sentence beginning from the keyword bind is called
a context activation scope. Before entering the execution
scope (enclosed between braces), it creates role instances and
binds them with the corresponding class instances, if these
class instances are not bound with the corresponding roles.
If a class instance is already bound with the corresponding
role, the role instance is not created but the existing role
instance is activated. Within the parentheses following the
role name, we specify the arguments for the constructor of
the role. These arguments are used only when the class
instance is not bound with the role so that the role instance
is created.

After entering the execution scope, it is assumed that each
class instance declared in the bind clause is bound with
the corresponding role instance. For example, in the above
code, sato is bound with a role midtown.Security() (im-
plying that sato enters the context midtown as a Security).
Within the following brace, sato acquires the behavior (and
states) declared in Building.Guest; thus, we can safely call
the method notify() declared in Building.Guest on sato.
Within the context activation scope, it is considered that

sato is a subtype of Person and Building.Guest, like mul-
tiple inheritance or mixins [9]. As described later, a context
can also be composed with another context, and a subtyping
relation exists between a context and the composite context.
To ensure type safety, all the variables referring to a context
instance have to be declared with the modifier final, be-
cause if a reference to a context instance changes during
computation, it becomes very difficult to determine the ac-
tual type of role instances belonging to the context2.

Note that outside the context activation scope, we cannot
access methods declared in roles. This does not imply that
the acquired role is discarded outside the scope. Instead,
the role instance and its states are retained but deactivated,
recovering the original behavior of the object. The retained
role instance will be reactivated if the object assumes the
same role in the same context.

The idea of activation/deactivation of role instances is
taken from ContextJ and is one of the major differences from
EpsilonJ. Within the context activation scope, it is always
assumed that the object is bound with the corresponding
role instance; thus, we can safely access the role instance
method. In EpsilonJ, on the other hand, once an object is
bound with a role instance, this role instance is activated
only through down-cast expressions. Because whether an
object is bound or unbound with the role instance cannot
be determined statically, this down-casting may result in a
cast-exception. Once the object is unbound with the role,
the role instance becomes garbage. Instead, in NextEJ, the
deactivated role instance may be activated again, preserving
its states.

In NextEJ, the context activation is dynamically scoped,
because role method invocation is based on role instances
that are dynamically bound with a class instance, and this
binding can go beyond the lexical scope (e.g., by passing the
instance as an argument to a method invocation).

2.4 Multiple Context Activation
A class instance may enter multiple contexts. For exam-

ple, there exists a case in which a shop is within a building;
in this case, a customer of the shop is also a guest of the
enclosing building. To represent such a situation (i.e., there
are multiple contexts in which the person is participating),
the context activation scope can be nested, as shown in the
following example:

final Building midtown = new Building();

Person tanaka = new Person();

bind tanaka with midtown.Guest() {

final Shop lawson = new Shop();

Person sato = new Person();

bind tanaka with lawson.Customer(),

sato with lawson.Seller() {

tanaka.buy(someItem); } ... }

In this example, tanaka first enters the context midtown as
a Guest; then, it enters the context lawson, located within

2There may be other approaches to solve this problem (e.g.,
using exact types) [10, 25]; however, we prefer to use the
approach of“final context instance,” because it simplifies the
type system and it is easy to reason about the correctness
of the program. Furthermore, we observe that the reference
to a context is inherently difficult to change (like aspects
in AOP); thus, we are not sure when “non-final” context
instances become useful.
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class Building {
String name;
Building(String name) {
this.name = name; }

void currentPosition() {
System.out.println(
" "+name);

next();
}
role Guest { ... }
role Security { ... }

}

class Shop {
String name;
Shop(String name) {
this.name = name; }

void currentPosition() {
System.out.println(
" "+name);

next();
}
role Customer { ... }
role Seller { ... }

}

Figure 6: Context method combination

midtown, as a Customer; finally, it buys someItem (and pays
to sato, as shown in Figure 3).

2.5 Referring the Enclosing Context and Com-
posite Context

Another feature of NextEJ that is not provided by Ep-
silonJ is that the enclosing context instance and its methods
can be accessed through the special field thisC that is im-
plicitly declared in all role declarations and always refers
to the enclosing context instance. Therefore, if contexts
Building and Shop are declared as shown in Figure 6, the
following code is allowed in NextEJ:

final Building midtown = new Building("Midtown");

Person tanaka = new Person();

bind tanaka with midtown.Guest() {

final Shop lawson = new Shop("Lawson");

bind tanaka with lawson.Customer() {

tanaka.thisC.currentPosition(); } }

In this code, the field thisC is accessed on tanaka; this
is allowed because tanaka is bound with role instances. Be-
cause the enclosing context instance declares a method
currentPosition (that can be statically assured by using
the information provided by the context activation scope),
we can safely call currentPosition on thisC; this prints
where tanaka reside on the standard output.

In addition, note that tanaka enters two contexts, midtown
and lawson, both of which declare the method current-

Position. Actually, on thisC, we can access a compos-
ite context of midtown and lawson. The ordering of the
composition is determined by the order of activation; the
innermost context always precedes the other contexts. In
Figure 6, the declaration of currentPosition contains a
method call next() that is similar to inner of Beta [33, 16].
It calls the next method if it exists. If the next method
does not exist, calling next() has no effects. Therefore,
currentPosition declared in Shop is first called; then, that
declared in Building is called. The above code therefore
prints a string " Lawson Midtown" on the standard output.

If each component context of a composite context has a
role with the same name, an access to the role name is also
interpreted as a composite role, and the innermost role al-
ways precedes the other contexts. This mechanism is sim-
ilar to family polymorphism [15]. Furthermore, a context
can also extend another context. If both of a context and
its derived context declare roles with the same name, the
role in the derived context implicitly inherits from the role
in the super context, and no subtyping is defined between
them. This mechanism is similar to lightweight family poly-
morphism [40]. In the case of method name conflict (i.e., a

role method overrides methods provided by both its super
role and another component role), the super role method
precedes the others (like nested inheritance [35, 36]).

2.6 Swapping Roles
As mentioned earlier, a role instance is deactivated outside

the context activation scope. This deactivated role instance
can be discarded3. Furthermore, as in EpsilonJ, another
class instance may also assume the removed role instance.
We can express it by using the bind statement (context ac-
tivation scope) followed by the from clause:

Person sato = new Person();

bind sato with lawson.Seller() from tanaka {

... }

The above code results in tanaka dropping the instance of
role lawson.Seller and sato taking it over (if tanaka is not
bound with lawson.Seller, a new instance of it is created
for sato).

2.7 Other Features Taken from EpsilonJ
NextEJ also has a few other features found in EpsilonJ.

For example, a role may declare a required interface. This
is a method of defining an interface to a role and it is
used at the time of binding with a class instance, requiring
the class instance to supply that interface, i.e., the binding
class instance should possess all the methods specified in
the interface. A required interface can be declared using the
requires clause as follows:

class Building {

role Guest requires { String name(); } {

... } }

When a required interface is declared to a role, meth-
ods can be imported from the binding class instance. For
example, supposing that Person has a method name(), in
the aforementioned bind statements, the method name() of
tanaka is imported to the Guest role instance through the
interface. The imported method can be used in the body of
the role declaration. Furthermore, the role may override the
imported method, and in the overriding method, we may
call the original (overridden) method by calling the method
with the same signature on super.

For type-checking this binding, it is only necessary for the
class to have a method that has the same name and the same
signature required by the role. In other words, the class has
to be a structural subtype of the requires interface4.

2.8 Summary
As discussed in [28], NextEJ supports all the basic re-

quirements of COP languages. Furthermore, it provides a
flexible mechanism for object adaptation that was originally
proposed by the Epsilon model. In NextEJ, each context
represents a concern so that separation of concerns is explic-
itly supported by the language. Unlike ContextJ’s layer-in-
class approach, contexts including roles can be units of reuse.
Instance-specific context-dependent behaviors are supported

3This can be achieved using the unbind predefined method
described in [28]
4A similar mechanism is also found in McJava, a Java ex-
tension with mixins [26].
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L ::= class C { T̄ f̄ ; M̄ Ā}
A ::= role R requires { M̄I }{T̄ f̄ ; M̄}
T ::= C.R | C̄.R̄ :: C

TS ::= T | { M̄I ; }
MI ::= T m(T̄ x̄)
M ::= MI { return e; }
e ::= x | e.f | e.m(ē) | new C(ē)⊕ r̄ |

bind x̄ with r̄ from ȳ { x̄ȳ.e0 }
v ::= new C(v̄)⊕ r̄
r ::= v.R(v̄)

Figure 7: Syntax

TS <: TS (S-REFL)

C <: D D <: E

C <: E
(S-TRANS)

T m(T̄ x̄);∈ M̄I ⇒ mtype(m, C) = T̄ → T

C <: {M̄I}
(S-STRUCT)

C.R :: T <: T (S-MIXINC)

C.R :: T <: C.R (S-MIXINR)

Figure 8: Subtyping

so that within the context activation scope, objects that are
not bound with the roles are not affected by the activa-
tion. As in EpsilonJ, the role-class binding is performed
at run-time. While developing a context, NextEJ does not
assume any existing code (i.e., we can design contexts in-
dependently), because the requires interface only imposes
structural subtyping on roles and classes.

Furthermore, unlike EpsilonJ, NextEJ provides a mecha-
nism for clearly defining the scope where the context-dependent
behaviors are activated. This scoping mechanism ensures
type-soundness. In the following section, we provide the
formalization of key ideas presented in this paper.

3. FEJ: CORE CALCULUS OF NEXTEJ
In this section, we formalize the core features of NextEJ

described in the previous sections as a small calculus called
FEJ. NextEJ provides a number of interesting features. In
this paper, we focus on the most relevant features for object
adaptation and context-activation mechanisms. FEJ is built
on top of Featherweight Java (FJ) [24], a functional core of
class-based object-oriented languages such as Java.

3.1 Syntax
The abstract syntax of FEJ is shown in Figure 7. The

metavariables C and D range over classes; S, T , U , and
V range over named types; M ranges over method decla-
rations; L ranges over class declarations; Q and R range
over roles; A ranges over role declarations; MI ranges over
method signatures; f and g range over fields; m and n range

over method names; TS ranges over types (including inter-
face types); b, c, d, and e range over expressions; x and y
range over variables; r and s range over role instances; and
v and w range over values.

We write M̄ as a shorthand for a possibly empty se-
quence M1 · · ·Mn, Ā as a shorthand for A1 · · ·An, and ē
as a shorthand for e1, · · · , en. We also abbreviate pairs of
sequences in a similar manner, writing T̄ f̄ ; as a shorthand
for T1 f1; · · ·Tn fn;, T̄ x̄ as a shorthand for T1 x1, · · · , Tn xn,
and C̄.R̄ as a shorthand for C1.R1 :: · · · :: Cn.Rn. We denote
an empty sequence as · and the length of sequence ē as #(ē).
Sequences are assumed to contain no duplicate names.

In FEJ, the body of class declaration consists of field dec-
larations, followed by method declarations and role decla-
rations. Similarly, the body of role declaration consists of
field declarations followed by method declarations. The in-
heritance of classes is omitted in this calculus, implying that
the family-polymorphism-like features of NextEJ is totally
excluded on FEJ. Although this feature is interesting and
very useful, it is not technically a new feature. To realize a
clear understanding of our new features provided by NextEJ,
FEJ is designed to be concentrated on the most relevant fea-
tures of object adaptation and context activation.

A named type is a class name, a role name (prefixed by a
class name), or a composite type of a sequence of roles and
a class. Named types appear in field declarations, signature
of method declarations and constructor declarations, and re-
turn type of method declarations. On the other hand, inter-
face types { M̄I} can only appear in the requires clause of
role declarations. The special variable super within the role
declaration is assumed to have an interface type appearing
in the requires clause.

A method declaration consists of the method signature
and a return type, followed by its body. The body of the
method declaration consists of just one return statement,
implying that FEJ is a purely functional calculus.

There are five kinds of expressions in FEJ: variables, field
accesses, method invocations, class instance creations, and
bind expressions. A class instance creation consists of nor-
mal Java’s new syntax and its associated role instances, which
may vary during computation. The body of a bind expres-
sion only consists of one expression. Within the body of
the bind expression, variables appearing in the bind clause
and from clause are not considered as free variables. To
explicitly denote this fact, we write x̄ȳ.e0 to imply that x̄
and ȳ are bound in e0. We assume that this and super

are special variables that are implicitly declared in method
declarations.

An FEJ program is a pair of a class table CT and an
expression e. A class table is a map from class names to class
declarations. The expression e may be considered as the
main method of the real NextEJ program. The class table
is assumed to satisfy the following conditions: (1) CT (C) =
class C · · · for every C ∈ dom(CT ) and (2) C ∈ dom(CT )
for every class name appearing in the range of CT . In the
derivation hypothesis shown below, we abbreviate CT (C) =
class C · · · as class C · · · .

Subtyping rules of FEJ are shown in Figure 8. In FEJ,
subtyping is a reflective and transitive closure of the mixin
composition (::) relation. Furthermore, a class is a subtype
of an interface if the class implements all the methods de-
clared in the interface; thus, there exists structural subtyp-
ing between classes and interfaces.
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class C { T̄ f̄ ; M̄ Ā}
fields(C) = T̄ f̄

class C { T̄ f̄ ; M̄ Ā}
role R requires { · · · }{ S̄ ḡ; · · · } ∈ Ā

fields(C.R) = S̄ ḡ

fields(C) = T̄ f̄

ftype(fi, C) = Ti

fields(C.R) = T̄ f̄

ftype(fi, C.R) = Ti

ftype(f, C.R) = S

ftype(f, C.R :: T ) = S

fields(C.R) = T̄ f̄ f 6∈ f̄

ftype(f, C.R :: T ) = ftype(f, T )

Figure 9: Field lookup

class C { T̄ f̄ ; M̄ Ā }
fvalue(fi, new C(ē)⊕ ·) = ei

(FV-CLASS)

class C { · · · Ā }
role R requires { · · · }{ T̄ f̄ · · · } ∈ Ā

fvalue(fi, new D(· · · )⊕ new C(ē).R(d̄)r̄) = di

(FV-ROLE)

class C { · · · Ā } f 6∈ f̄
role R requires { · · · }{ T̄ f̄ ; · · · } ∈ Ā

fvalue(f, new D(· · · )⊕ new C(ē).R(d̄)r̄) =
fvalue(f, new D(· · · )⊕ r̄)

(FV-ROLE1)

Figure 10: Field value lookup

3.2 Auxiliary Definitions
For the typing and reduction rules, we require a few auxil-

iary definitions. Field lookup functions are defined in Figure
9. The function fields( ), where is either C or C.R, is a
sequence T̄ f̄ of field types and names declared in C or C.R.
The function ftype(f, T ) returns the type S of field f , if f
can be accessed on T . We write f 6∈ f̄ to imply that the
field f is not included in f̄ . The definitions of both fields
and ftype are straightforward.

Figure 10 shows field value lookup rules. The function
fvalue(f, v) returns the value w of field f , if f can be accessed
on either r̄ or v. It first searches for f on the sequence of role
instances r̄. In this searching, the fields declared in the role
instance of the left-most side of r̄ are searched, followed by
the next role instance. If f is not found on r̄, fields declared
in the class instance new C(ē) are searched.

class C { T̄ f̄ ; M̄ Ā}
T m(T̄ x̄){ return e; } ∈ M̄

mtype(m, C) = T̄ → T

class C { T̄ f̄ ; N̄ Ā }
role R requires {M̄I}{· · · M̄} ∈ Ā

T m(T̄ x̄){ return e; } ∈ M̄

mtype(m, C.R) = T̄ → T

class C {T̄ f̄ ; N̄ Ā}
role R requires {M̄I}{· · · M̄} ∈ Ā

m 6∈ M̄ T m(T̄ x̄) ∈ M̄I

mtype(m, C.R) = T̄ → T

T m(T̄ x̄) ∈ M̄I

mtype(m, { M̄I }) = T̄ → T

mtype(m, C.R) = T̄ → T

mtype(m, C.R :: S) = T̄ → T

mtype(m, C.R) is undefined

mtype(m, C.R :: T ) = mtype(m, T )

Figure 11: Method type lookup

class C { T̄ f̄ ; M̄ Ā }
T m(S̄ x̄){ return e; } ∈ M̄

mbody(m, new C(ē)) = x̄.e
(MB-CLASS)

class C { · · · Ā }
role R requires { M̄I }{ · · · M̄ } ∈ Ā

T m(S̄ x̄){ return e; } ∈ M̄

mbody(m, new C(ē).R(d̄)r̄) = x̄.e, new C(ē).R(d̄)
(MB-ROLE)

class C { · · · Ā } m 6∈ M̄
role R requires { M̄I }{ · · · M̄ } ∈ Ā

mbody(m, new C(ē).R(d̄)r̄) = mbody(m, r̄)
(MB-MIXIN)

Figure 12: Method body lookup

Method lookup functions are defined in Figures 11 and 12.
The type of method invocation m at TS , written mtype(m, TS),
is a pair of a sequence T̄ of the formal parameter types and a
return type T , written as T̄ → T . We write m 6∈ M̄ to imply
that the method definition of the name m is not included
in M̄ . The definition is also quite similar to field lookup
functions; if TS matches a mixin composition type C.R :: T ,
method declarations on C.R are searched first. The body of
the method invocation m on the sequence of role instances
r̄, written as mbody(m, r̄), is a triple, written as x̄.e, r, of
the sequence of parameters x̄, body e, and role instance r
indicating where the method m is found from r̄. The body
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Bindability checking:

C <: {M̄I} class D {· · · Ā}
role R requires {M̄I}{ · · · } ∈ Ā

bindable(D.R, C)

Allowed unbinding:

T = D̄.Q̄ :: C ∀Di.Qi ∈ D̄.Q̄, Di.Qi ∈ C̄.Q̄

unbindAllowed(T, C̄.Q̄)

Figure 13: Other auxiliary functions

Well-formed role instance:

bindable(D.R, C) fields(D.R) = T̄ f̄
Γ ` ē : Ū Ū<:T̄

Γ ` roleOK(D, R, ē, C)

Expression typing:

Γ ` x : Γ(x) (T-VAR)

Γ ` e0 : S ftype(f, S) = T

Γ ` e0.f : T
(T-FIELD)

Γ ` e0 : TS Γ ` ē : S̄
mtype(m, TS) = T̄ → T S̄<:T̄

Γ ` e0.m(ē) : T
(T-INVK)

fields(C) = T̄ f̄ Γ ` ē : S̄ S̄<:T̄
ri = di.Ri(c̄i) Γ ` di : Ui

Ui<:Ci Γ ` roleOK(Ci, Ri, c̄i, C)

Γ ` new C(ē)⊕ r̄ : C̄.R̄ :: C
(T-NEW)

Γ(x̄ : C̄.R̄ :: Γ(x̄), ȳ : Γ(ȳ)/C̄.R̄) ` e0 : T
ri = di.Ri(c̄i) Γ ` x̄ : S̄

Γ ` d̄ : Ū Ū <: C̄ Γ ` roleOK(Ci, Ri, c̄i, Si)
Γ ` ȳ : V̄ Γ ` unbindAllowed(Vi, C̄.R̄)

Γ ` bind x̄ with r̄ from ȳ { x̄ȳ.e0 } : T
(T-BIND)

Figure 14: Expression typing

of the method invocation m on a class instance new C(ē),
written as mbody(m, new C(ē)), is also defined in a similar
manner.

Other auxiliary definitions regarding binding operations
are shown in Figure 13. The predicate bindable(D.R, C)
checks whether or not an instance of C can be bound with
an instance of D.R. This predicate returns true if C is a
subtype of D.R’s required interface { M̄I }. Finally, the
predicate unbindAllowed(T, C̄.R̄) checks whether all the role
types contained in T are also members of C̄.Q̄.

3.3 Typing

x̄ : T̄ , this : C ` e0 : T0

class C { · · · } C̄ ∈ dom(CT ) R̄ OK IN C̄

T0 m(T̄ x̄) { return e0; } OK IN C
(T-METHOD)

x̄ : T̄ , thisC : C, this : C.R, super : { M̄I } ` e0 : T0

class C { · · · Ā } C̄ ∈ dom(CT ) R̄ OK IN C̄
role R { M̄I ; }{ · · · } ∈ Ā

T0 m(T̄ x̄) { return e0; } OK IN C.R
(T-RMETHOD)

M̄ OK IN C.R

role R requires { M̄I }{ T̄ f̄ ; M̄ } OK IN C
(T-ROLE)

M̄ OK IN C Ā OK IN C

class C { T̄ f̄ ; M̄ Ā } OK
(T-CLASS)

Figure 15: Well-formed definitions

The typing rules for FEJ expressions are shown in Figure
14. An environment Γ is a finite mapping from variables to
types, written as x̄ : T̄ . The typing judgment for expressions
has the form Γ ` e : T , read as “in the environment Γ,
expression e has type T .”

The rules are syntax directed, with one rule for each form
of expressions. The typing rules for method invocations and
class instance creations check whether each actual parame-
ter has a type of the corresponding formal parameter. The
typing rule for class instance creations also checks that each
role instance bound with the class instance is well-formed
(i.e., each actual parameter for the role instance creation
has a type of the corresponding formal parameter) and the
class C is a subtype of each type of role instance.

The rule T-BIND is complicated. By Γ(x̄ : T̄ ), we im-
ply an environment that can be obtained by updating all
the types of x̄ contained in Γ to the corresponding types T̄ ,
respectively. By T/C.R, we imply a type generated by re-
moving C.R from T , if T is a type of the form C̄.R̄ :: C and
C.R is contained in C̄.R̄. We write x̄ : C̄.R̄ :: Γ(x̄) as a short-
hand for x1 : C1.R1 :: Γ(x1), · · · , xn : Cn.Rn :: Γ(xn), and
ȳ : Γ(ȳ)/C̄.R̄ as a shorthand for y1 : Γ(y1)/C1.R1, · · · , yn :
Γ(yn)/Cn.Rn. Thus, the first hypothesis of T-BIND indi-
cates that under the updated type environment, the body
of bind expression e0 has type T . Then, this rule inspects
the role names of r̄ and checks whether the types of x̄ are
compatible with those roles. It also checks whether role un-
binding of C̄.R̄ is allowed for ȳ.

Typing rules for method declarations, role declarations,
and class declarations are shown in Figure 15. The type
of the body of a method declaration is a subtype of the
return type. The special variable this is bound in every
method declaration, and for every method declaration in
roles, variables thisC and super are also bound; the type
of thisC is its enclosing class, and the type of super is its
required interface. A role declaration is well-formed if all
the methods declared in that role are well-formed, and a
class declaration is well-formed if all the methods and roles
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fvalue(f, new C(v̄)⊕ r̄) = w

(new C(v̄)⊕ r̄).f −→ w
(R-FIELD)

v = new C(v̄′)⊕ r̄ mbody(m, r̄) is undefined
mbody(m, new C(v̄′)) = x.e

v.m(v̄) −→ [v̄/x̄, v/this]e
(R-INVK)

v = new C(v̄′)⊕ r̄ r̄ = r̄1, w.R(w̄), r̄2

mbody(m, r̄) = x̄.e, w.R(w̄) cp(v) = new C(v̄′)⊕ r̄2

v.m(v̄) −→ [v̄/x̄, v/this, w/thisC, cp(v)/super]e
(R-RINVK)

bind v̄ with r̄ from w̄ {x̄ȳ.e0} −→ [(v̄ ⊕ r̄)/x̄, (w̄ − r̄)/ȳ]e0

(R-BIND)

e −→ e′

e.f −→ e′.f
(CR-FIELD)

e0 −→ e′0

e0.m(ē) −→ e′0.m(ē)
(CR-INVK)

ei −→ e′i

v.m(· · · , ei, · · · ) −→ v.m(· · · , e′i, · · · )
(CR-INVK-ARG)

ei −→ e′i

new C(· · · , ei, · · · ) −→ new C(· · · , e′i, · · · )
(CR-NEW)

Figure 16: Dynamic semantics

declared in that class are well-formed.

3.4 Dynamic semantics
The reduction rules of FEJ are shown in Figure 16. We use

a standard call-by-value operational semantics. There exist
four computation rules: R-FIELD, R-INVK, R-RINVK, and
R-BIND. The rest of the rules formalize the call-by-value
strategy. The reduction relation is of the form e −→ e′,
read “expression e reduces to expression e′ in one step.”

For the rule R-FIELD, the field f is searched in all the role
instances r̄ bound with the class instance new C(v̄). There
exist two rules for method invocation: one is for method
invocation declared in a class instance (rule R-INVK), and
the other is for method invocation declared in a role in-
stance (rule R-RINVK). The method invocation reduces to
the expression of the method body, substituting all the for-
mal parameters x̄ with the argument values v̄ and the spe-
cial variable this with the receiver of method invocation.
Furthermore, in R-RINVK, the special variables thisC and
super are also substituted with corresponding values; thisC
is substituted with the enclosing class instance returned by
mbody. By cp(v), we imply a fresh value whose class name
and arguments for its instance creation are identical to v. In
R-RINVK, a new value copied from the receiver of method
invocation is created and replaced with super. The bind-

ing role instances for cp(v) are also changed so that cp(v)
is bound with role instances that exist on right-hand side of
w.R(w̄) (role instance returned by mbody), which formal-
izes the method combination mechanism for role instance
compositions.

The bind expression reduces to its body. It substitutes
the free variables x̄ and ȳ with values appearing in the bind

clause and from clause, respectively. By v ⊕ r, we imply a
value obtained by adding r to the left-most side of v’s bind-
ing roles r̄. By v−r, we imply a value obtained by removing
r from the v’s binding roles. We write (v̄ ⊕ r̄)/x̄ as a short-
hand of (v1 ⊕ r1)/x1, · · · , (vn ⊕ rn)/xn. Similarly, we write
(w̄− r̄)/x̄ as a shorthand of (v1 − r1)/x1, · · · , (vn − rn)/xn.
Thus, in the resulting expression, roles r̄ are removed from
w̄ and added to v̄. Because FEJ is a purely functional calcu-
lus, both binding operations (creating a new role instance)
and context activation (activating the role instance) are ex-
pressed in one reduction rule.

3.5 Property
We show the property of FEJ, namely, every well-typed

expression evaluates to a value. In this section, we only
present a series of theorems indicating FEJ type soundness.
We provide proofs in the full version of this paper5.

Theorem 3.1 (Subject reduction). If Γ ` e : T and
e −→ e′, then Γ ` e′ : S for some S <: T .

Theorem 3.2 (Progress). If Γ ` e : T and there exist
no e′ such that e −→ e′, then e is a value.

Theorem 3.3 (FEJ Type Soundness). If ∅ ` e : T
and e −→∗ e′ with e′ a normal form, then e′ is a value v
with ∅ ` v : S and S<:T .

4. RELATED WORK
We have overviewed the main features of NextEJ and com-

pare it with those of EpsilonJ. Besides the object adaptation
mechanism of EpsilonJ, NextEJ provides the feature of con-
text activation inspired by COP languages. However, con-
text activation in NextEJ is slightly different from that of
COP languages. While COP languages provide methods for
realizing behavioral variability with respect to some contex-
tual information, NextEJ puts more emphasis on acquiring
and activating new behaviors that are not provided by the
original class.

The Epsilon model, on which this work is based, is related
to aspect-oriented programming (AOP). AOP has a useful
feature in that it enables one to add aspects dynamically as
well as statically [29]. One of the main AOP languages is
AspectJ [30], a Java-based AOP language. The main ob-
jective of writing aspects is to deal with cross-cutting con-
cerns. This implies that there already exists some structure
of module decomposition. Although efforts have been made
to design software based on the AOP principle from the be-
ginning, the normal framework of mind for thinking aspects
assumes the existing program code as a target for inserting
advices to join points. Instead, Epsilon does not assume
any existing code and designs collaboration contexts inde-
pendently. The work corresponding to designating pointcuts
and attaching advices is executed by binding objects to roles.

5http://www.l.u-tokyo.ac.jp/~kamina/nej-full.pdf
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The Epsilon model is also related to feature-oriented pro-
gramming (FOP) in that both approaches provide a method
to modularize and compose features. FeatureC++ is an
FOP extension for the C++ programming language that
provides a method for composing features statically as well
as dynamically [3, 39]. In FeatureC++, a developer can se-
lect a composition method from static binding or dynamic
binding when composing a product. Context-activation mech-
anism is not considered in FeatureC++.

In CaesarJ, a Java-based AOP language, an aspect can
be deployed and undeployed at any time [4]. This feature
is similar to context activation scope in NextEJ. However,
in NextEJ, a context is activated at the binding time. On
the other hand, in CaesarJ, the binding is specified in the
binding class. Although CaesarJ’s binding class and meth-
ods for aspect deployment provide much flexibility for aspect
composition and activation, NextEJ provides a more simple
and flexible basis for object adaptation and context activa-
tion mechanism by specifying objects and contexts at the
binding time.

ObjectTeams [21] also has a similar mechanism for role
binding. In ObjectTeams, each instance of a bound role
class internally stores a reference to its base object. This
reference cannot be changed during its lifetime. By lower-
ing (retrieving the base object from a role object) and lifting
(opposite of lowering), we can safely change the behavior of
the object at run-time. As in NextEJ, a team (a construct
of ObjectTeams corresponds to a context in NextEJ) can
be activated and deactivated. However, in ObjectTeams,
the role-class binding is declared at the class declaring time.
NextEJ and EpsilonJ provide a more flexible method to ex-
press the relationship between roles and classes by using
requires clause. Currently there exist no formalizations of
ObjectTeams.

Delegation Layers [37] provide flexible object-based com-
position of collaborations. They combine the mechanism
of delegation [31, 38] and virtual classes [32, 10], or Fam-
ily Polymorphism [15]; roles may be represented by virtual
classes, and a composition is instance-based using the del-
egation mechanism. However, this approach do not suc-
cessfully represent the object adaptation described in this
paper. For example, in NextEJ, the object can assume and
discard a role dynamically, and even the discarded role may
be assumed by another object and the state held in the role
instance is taken over by the latter object.

powerJava [5] is a language similar to NextEJ in that roles
and collaboration fields are the first class constructs, inter-
action between roles are encapsulated, and objects can par-
ticipate in the interaction by assuming one of its roles. As in
NextEJ, the type of role depends on the enclosing context in-
stance. However, powerJava lacks the feature of role groups,
a powerful mechanism for obtaining role instances associated
with the context instance reflectively. Role unbinding and
swapping, and explicit ordering of context activation that
affects method combination are also unconsidered.

There are pieces of literature that formalize the feature of
extending objects at run-time. Ghelli presented foundations
for extensible objects with roles based on Abadi-Cardelli’s
object calculi [1], where coexistence of different methods in-
troduced by incompatible extensions is considered [19]. Gi-
anantonio et al. presented a calculus λObj+[20], an exten-
sion of λObj[17] with a type assignment system that allows
a self-inflicted object extension that still statically catches

the “message not found” errors. Drossopoulou et al. pro-
posed a type-safe core language Fickle[14] that allows re-
classification of objects, a mechanism for dynamically chang-
ing object’s belonging classes that share the same “root” su-
perclass. On the other hand, FEJ focuses on a foundation of
object adaptation and context activation for Java-like lan-
guages (based on FJ). FEJ supports a notable feature of
unbinding of role instances (removing role instances from
values in from clause of bind expression).

Mixins [9] are related to roles in NextEJ in that they
form partial definitions that can be reused with a number of
classes that conform to the requirements of mixins. Several
extensions of Java with mixins have been proposed [18, 2,
26]. Although mixin composition is originally performed at
compile time, dynamic composition of mixins is also studied
in a core calculus [7], and such kind of object-level inheri-
tance is also studied as wrappers [11, 8].

5. CONCLUDING REMARKS
We have presented NextEJ, a type-safe alternative to Ep-

silon model programming language with the features of COP.
It provides a method for naturally representing context-
awareness at the programming language level. Based on the
object adaptation mechanism provided by Epsilon model,
NextEJ supports a convenient COP feature of activating/
deactivating contexts or roles. While such activation is only
supported by down-casting in EpsilonJ, NextEJ provides a
safe way for activation by the context activation scope. Fur-
thermore, in NextEJ, multiple contexts can be activated at a
time, and the behavior of the composite context generated
by such multiple context activations is determined by the
order of activations. A small core calculus FEJ provides a
solid basis for assuring its type soundness.
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ABSTRACT
Real-world applications have to deal with issues related to security,
as well as errors and crosscutting concerns. Different trace-based
mechanisms with distinctive features have been proposed to solve
these particular issues. For example, PQL matches sequence of
unordered events, and tracematches match traces expressed with
regular expressions. Despite that applications present these issues
at the same time, there is not a single trace-based mechanism that
supports the distinctive features of current mechanisms. Besides,
lack of an expressive trace-based mechanism does not permit to
include new features, therefore, developers end up “code around”
these mechanisms to satisfy particular needs. In this position paper,
we compare and relate the specific characteristics of current trace-
based mechanisms. Finally, we present a model for an open trace-
based mechanism.

1. INTRODUCTION
Nowadays, real-world applications have to deal with issues re-

lated to security, as well as errors and crosscutting concerns. Trace-
based Mechanisms (TMs for short) have shown their usefulness to
solve some of these issues [1, 3, 5, 8, 10]. A TM observes the ex-
ecution of the software at runtime and (possibly) executes a code
fragment when the TM matches a specified trace of the execution.
The researchers have proposed specific TMs to resolve these par-
ticular issues. Unsurprisingly, applications present these issues at
the same time, therefore, they need to use different TMs at the same
time, because there is not a single TM that supports the distinctive
of current mechanisms. Besides, lack of an expressive TM does
not allow developers to include new features, therefore, they end
up “code around” these mechanism in contort ways. In this posi-
tion paper, we first describe an abstract operational model of TMs
(Section 2), which we then use to relate and compare the specific
characteristics of existing TMs (Section 3). Section 4 describes
the design of an open TM based on this abstract model. The open
model is formulated in a class-based object-oriented setting and
follows the design guidelines of open implementations [7]. We il-
lustrate the range of openness of the model by describing several
concrete extensions. For example:

• Express sequences using operators, which can enjoy all the
power of the base language to be defined.

• Manage expressively the granularity of the matching, from a
particular sequence to all sequences of a TM.

• Control expressively the multiplication of sequences of a TM.

2. AN OVERVIEW OF TMS
In this section, we describe an abstract operational model of

TMs. We divide this abstract model in two parts: first, we describe
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Figure 1: A sequence in action.

the abstract model necessary to match a specified trace of execu-
tion. Later, we extend this abstract model to manage and control
the matching of several traces of executions at the same time.

2.1 Matching a Trace
Figure 1 shows that the execution of the software has generated

the trace of events a b and that the sequence has matched these
two events. According to the figure, the sequence needs to match
the c event to finish the matching. When the sequence finishes the
matching, our model executes an extra piece of code similar to an
advice in AspectJ [6]. For space reasons, we only focus on the
matching of sequences in this paper.

A sequence matches a trace of execution, which in this case is the
trace composed of events: a b c. In addition, a sequence contains
a set of linked partial sequences. A partial sequence represents
the trace of execution that the sequence need to match. The first
partial sequence represents the whole sequence and the last repre-
sents the last event that the sequence needs to match. Only active
partial sequences are only evaluated and so can match events. The
set of partial sequences represents the history of the matching of
a sequence, which we then use to support the multiple matching
of sequences. A partial sequence is composed of an Abstract Se-
quence Tree (AST), like AST for source code of a programming
language, and an environment of bindings. In this AST, selectors
are the terms and operators are combinators. Selectors match sin-
gle events of the trace of execution and operators combine partial
sequences. The environment contains a set of bindings available for
a partial sequence and for the execution of the extra piece of code
when the sequence matches. Every time that a partial sequence
matches an event, the root operator of the AST creates a new par-
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tial sequence that is based and linked with the previous one. This
new partial sequence contains a modified environment and repre-
sents the remaining sub-sequence of the sequence. A sequence can
activate and deactivate its partial sequences. For example, when the
partial sequence 2 matched the b event, the partial sequence 3 was
created; and the sequence activated the partial sequence 3 and de-
activated the partial sequence 2. Although the whole sequence did
not match with the b event, this sequence advanced because now
this sequence only has to match the c event to match entirely.

Operators can create one or more partial sequence when an event
is matched. For example, Figure 2 shows a single sequence that
has a partial sequence with the or operator over two sequences: a
c and a d. When the a event occurs, two different histories can
happen: the first or second sequence advance in the matching. It
is so because the or operator is non-deterministic and so produces
two different histories of the matching of the same sequence.

2.2 Matching Several Traces
Now, we extend this abstract model to manage and control the

matching of several sequences inside a TM. Figure 3 shows a new
scenario and two new components of our model: sequence man-
ager and multiplexer. In the figure, the trace of execution has gen-
erated the events a a b c and the sequence manager has received
and sent these events to the two sequences, which has matched.

The sequence manager manages the matching of all sequences
inside a TM. For instance, this components permits to abort or reset
the matching of all or a specific group sequences. In this case, the
sequence manager only sends the events to sequences.

The multiplexer controls the multiplication of sequences. When
a sequence generate an equivalent partial sequence the multiplexer

decides if this equivalent partial sequence becomes in a new se-
quence. For example, Figure 3 shows that a sequence is multi-
plexed into two, which end up matching. This double matching is
due to four reasons: i) the trace of execution generates twice the
a event, ii) the sequence 1 always has the partial sequence 1 acti-
vated, iii) the multiplexer decides to create a new sequence when
the sequence 1 matches the second a event and creates an equiva-
lent partial sequence 2, iv) and when the trace of execution gener-
ates finally the events b and c, sequences 1 and 2 advance up to the
matching. In other words, when the execution of the software gen-
erates the second a event, the partial sequence 1, which is activate,
matches the event, therefore, creates a new partial sequence 2. As
there are two equivalent partial sequences, the multiplexer decides
to create another sequence with the second partial sequence 2.

It is important to note that the nondeterminism differs from the
multiplication of sequences because the first generates different his-
tories of the same sequence using the same event; instead the sec-
ond generates different histories in different sequences using dif-
ferent events.

In this section, we appreciate six components of TMs: envi-
ronments, selectors, operators, sequences, sequence managers, and
multiplexers. In next section, we will compare and relate the ex-
pressiveness of these components in existing TMs.

3. THE EXPRESSIVENESS OF TMS
TMs [1, 3, 5, 8, 10] vary in their expressiveness in terms of envi-

ronments, selectors, operators, sequences, sequence managers, and
multiplexers. In this section, we relate and compare the expressive-
ness of these components.

Environment. An environment of bindings represents the contex-
tual information associated to the sequence. The expressiveness of
environments allows developers to match more precisely a trace of
execution and to provide more contextual information (values) to
the execution of the code fragment when the sequence matches. In
tracematches [1], the manipulation of environments is limited be-
cause it only permits to bind information related to the event and
compare implicitily this information using the equality operator.
Environments of Alpha [10] can only contain information related
to events. Halo [5] allows developers to contain contextual infor-
mation from any source (not only from the event), and then com-
paring this information explicitly.

Selector. A selector matches single events. The precision to match
events depends on the granularity of the event model of the base
language and the expressiveness to define selectors. Although this
expressiveness varies, most of current TMs [1, 3, 5, 8, 10] cannot
use the power of the base language to define selectors. For instance,
in tracematches and Halo, selectors are pointcuts defined in a dedi-
cated declarative language1. Selectors of Alpha are Prolog queries,
which differs from the base language (a Java subset). In PTQL [3],
selectors are fields of a register of a data base.

Operator. An operator relates selectors and/or operators, therefore,
it permits to define partial sequences. The expressiveness to define
operators varies according to TMs. For example, the expressive-
ness of selectors of Alpha is enough to express operators because
it can express sequences using Prolog queries2. In Halo, operators

1In tracematches, a selector is really a symbol that is composed of
a pointcut and a modifier of the event.
2To be more precise, the selectors are facts and the operators are
rules.
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are Lisp functions defined by the def-rule construct. The opera-
tors of PTQL are SQL operators like or and and. Tracematches
match traces of execution using regular expression operators. For
example, if the alphabet is {sa,sb} and the regular expression of
the sequence is sa sa sa and the regular expression of the trace of
execution is sa sa sb sa, so tracematches do not match this trace
because the sb symbol of the execution is not in the regular expres-
sion of the sequence. In a nutshell, the regular expression of the
trace of execution must happen exactly as the sequence is defined.

Sequence. Although an environment and an AST of the sequence
define a partial sequence, they do not define entirely the process
of matching of a sequence. A sequence handles the set of partial
sequences to carry out the matching and the history of this match-
ing. Sadly, to the best of our knowledge, there is no TM that allows
developers to reason or reflect about of the matching of a particu-
lar sequence. Reasoning about a sequence permits, for example, to
abort or reset the matching of a particular sequence if some condi-
tion is satisfied. Concretely, consider the familiar example for AOP
community: autosave. A document is automatically saved if it is
edited a number of times (e.g. say three) without being saved. The
wanted sequence should match when the trace of execution gen-
erates three events of edition, but this sequence should abort if it
matches the sequence composed of the save event because the doc-
ument has already saved.

Sequence manager. The sequence manager manages the matching
of all sequences inside a TM. To the best of our knowledge, there
is no TM that permits to manage this component. Reason about
the matching of sequences permits, for example, to abort or reset
the matching of all sequences if some condition is satisfied. Con-
cretely, controlling the sequence manager can be useful in areas
like security. For instance, a sequence that represents a protocol of
light security could change to heavy security whenever another se-
quence matches. This example shows that controlling the sequence
manager permits to obtain behavior similar to morphing aspects [4]
in TMs.

Multiplexer. The multiplexer controls the multiple matching of se-
quences. In most of these mechanisms [3, 5, 8, 10], the sequence
are always multiplexed. Tracematches are a particular case be-
cause a sequence is only duplicated when two equivalent partial se-
quences have environments of bindings with different values. The
multiple matching is used, for example, in tracematches resolve to
the problem of the observer pattern [2] because this TM matches
multiple sequences that binds different values in the subject and
observer.

4. A MODEL FOR AN OPEN TM
This section presents the design of an open TM, which is based

on the abstract operational model presented in Section 2. The model
follows the design guidelines of the open implementations [7] be-
cause this model allows developers to control its implementation
strategy by the an expressive use of environments, selectors, oper-
ators, sequences, sequence managers, and multiplexers. In similar
way to Section 2, this model is split into two: partial sequence
and sequence manager. The first model permits define sequences
by the use of environments, selectors, and operators. The second
model permits to describe sequence managers, which are used to
manage and control the multiple matching of the sequences.

4.1 Defining a Partial Sequence
As mentioned in Section 2.1, a partial sequence represents the

PartialSequence

Selector Operator

Concat Choice Plus Star AnyOrder ...

+match(event)
+env()
+advanced()
+next() 

+addNext(ps,env)

Concrete operators

Environment

+bind(id,value)
+get(id)

Figure 4: The class diagram of a partial sequence.

trace of execution that the sequence need to match. A partial se-
quence is a structure composed of an environment and an AST of
the sequence. This AST settles the relationships between selec-
tors and operators. The environment of bindings defines the set
of values available in a partial sequence. In this model, the ex-
pressiveness of selectors depends on the event model of the base
language, but the expressiveness of the operators depends on the
base language, which is generally Turing Complete.

Figure 4 shows the class diagram of a partial sequence. This
diagram uses the composite pattern [2] between PartialSequence,
Selector, and Operator. The Selector class represents selectors that
only match single events. The Operator class represents operators
that match compositions of partial sequences. This class is an ab-
stract class, which is used to implement sub-classes that provide
specific and diverse kinds of operators. For example, Figure 4
shows five operators: four to match regular expressions and one
to match traces in any order. The Environment class represents en-
vironments that permit to bind and get values.

The match method takes an event and returns true or false whether
it matches or not a single event (in the selector case) or a partial
sequence (in the operator case). The env method returns the en-
vironment that contains the bound values until this point of the
sequence. If a partial sequence does not match but advance (like
Figure 1), the advanced method returns true. The next method re-
turns the next partial sequence. Finally, the addNext method of the
Operator class adds the next partial sequence (ps) with the associ-
ated environment (env). This latter method determines which is the
next partial sequence in the process of matching of a sequence.

The protocol of use is the following: when a PartialSequence ob-
ject sets the next partial sequence with itself, we will say the match-
ing of the sequence did not advance. Instead, when a PartialSequence
object sets or adds the next partial sequences with different objects,
we will say the matching of the sequence advanced. As examples,
we present the implementation of the Concat and AnyOrder classes.

Figure 5 shows the Concat class, which represents the opera-
tor that matches the sequence of two traces, where both traces are
matched by the left and right partial sequences. The match method
adds right as the next partial sequence if left matches with the event.
However, if left does not match, it could have advanced in its match-
ing. In this case, match adds as next a new Concat object that con-
tains the left.next() as left and right as right. A new Concat object
is created to maintain the history of the matching of the sequence
through the two different partial sequences (before and after the
event).

It is important to note, the match method of Concat class always
returns false because the responsibility of the matching is delegated
to the right partial sequence.

The following code is useful if we want to match the sequence
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class Concat extends Operator {
PartialSequence lef t , r ight ;
Seq(PartialSequence lef t ,PartialSequence right ) { . . . }

boolean match(Event event) {
Env env = env( ) ;
l e f t .setEnv(env) ;
i f ( l e f t .match(event ) ) { / / l e f t matched , continue with right

addNext( right , l e f t .env( ) ) ;
}
else i f ( l e f t .advanced( ) ) { / / l e f t only advanced

addNext(new Seq( le f t . next ( ) , r ight ) , l e f t . next ( ) .env( ) ) ) ;
}
else {

addNext( this ,env) ;
}
return false ;

} } ;

Figure 5: The Concat class.

composed of a b c events, where events are calls to functions a, b,
and c:
Concat concat = new Concat(new Concat(sa,sb),sc);
The sa, sb, and sc objects are selectors that match the calls to afore-
mentioned functions. The concat object is a partial sequence that
represents the matching of the wanted sequence.

The anyOrder operator matches an unordered sequences of traces,
where these traces are matched by a set partial sequences. This op-
erator is non-deterministic like the or operator (Section 2) because
the two or more partial sequences can match or advance with the
same event, therefore, generating different histories of the match-
ing. Figure 6 shows the implementation of the AnyOrder class that
represents the AnyOrder operator. The match method, first, verifies
if there is only a partial sequence and tries to match this last partial
sequence. The match method returns true if the ps matches, but
returns false otherwise. However, if ps only advanced, the match
method adds ps.next() as next, which has the responsibility to finish
the matching of the unordered sequences of traces.

When there are two or more partial sequences in the pss ar-
ray, the match method tries to match every partial sequence (ps)
of the pss array. The method adds a new AnyOrder object with
the same pss array without ps if it matched; instead match adds a
new AnyOrder object with the same pss array, but exchanges ps for
ps.next() if ps only advanced.

The following code is useful if we want to match the unordered
sequence composed of the events a, b, and c:
AnyOrder anyOrder = new AnyOrder(new PartialSequence[]{sa,sb,sc});
The anyOrder object is a partial sequence that represents the match-
ing of the disorderly aforementioned events.

4.2 Defining a Sequence Manager
The previous section showed how to build partial sequences. In

this section, we describe our sequence manager model, which takes
a partial sequence to manage and control the matching and the mul-
tiplication of sequences generated from this partial sequence.

Figure 7 shows the class diagram of our sequence manager. In
this diagram, three classes are the core: Sequence, Multiplexer,
and SequenceManager. The Sequence class represents a sequence,
which contains a set of (active and inactive) partial sequences. The
Multiplexer class controls the multiplication of sequences. Finally,
the SequenceManager class manages the matching of sequences.

4.2.1 Sequence
A sequence can be declared using the following code:

Sequence s = new Sequence(ips,as);

class AnyOrder extends Operator {
PartialSequence [ ] pss;
AnyOrder(PartialSequence [ ] pss) { . . . }

boolean match(Event event) {
Env env = env( ) ;
i f (pss. length == 1) { / / only one part ial sequence remains

PartialSequence ps = pss[0 ] ;
ps.setEnv(env) ;
i f (ps.match(event ) ) { / / las t part ial sequence matched

setEnv(ps.env( ) ) ;
return true ;

} else i f (ps.advanced( ) ) { / / delegate the matching to ps . next ( )
addNext(ps.next ( ) ,ps.next ( ) .env( ) ) ;
return false ;

} }

for ( in t i = 0; i < pss. length ; ++i ) {
PartialSequence ps = pss[ i ] ;
ps.setEnv(env) ;
i f (ps.match(event ) ) { / / ps[ i ] matched

addNext(new AnyOrder(pss.remove( i ) ) ,ps.env( ) ) ;
} else i f (ps.advanced( ) ) { / / ps[ i ] advanced

addNext(new AnyOrder(pss. set ( i ,ps.next ( ) ) ,ps.next ( ) .env( ) ) ;
} }

i f ( !advanced( ) ) { / / no part ial sequence matched nor advanced
addNext( this ,env) ;

}

return false ;
} } ;

Figure 6: The AnyOrder class.

where ips is the initial partial sequence of the sequence and as is an
ActivationStrategy object that represents the activation strategy of
partial sequences. Every ActivationStrategy object has the activate
method that is parameterized by a ps partial sequence. This method
returns true if ps must active, otherwise the method returns false.
We provide three default strategies:

Object Strategy It permits to ...
FIRSTANDLAST First and last partial se-

quences are only active.
begin more than
one sequence at the
same time.

LAST Last partial sequence is
only active.

begin only one se-
quence at the same
time.

ALL all partial sequences are
active.

multiplex sequences
at any time.

4.2.2 Multiplexer
The multiplexer controls the multiplication of the sequences. The

class diagram of Figure 7 shows the Multiplexer abstract class. This
class is used to implement sub-classes that provide specific strate-
gies of multiplication of sequences. In this paper, we provide two
sub-classes: Multiple and Tracematch. The objects of Multiple class
always multiplexes a sequence when it finds an equivalent partial
sequence. A case more refined is the Tracematch class because it
emulates the behavior found in tracematches [1].

The multiplex method takes a s sequence and a pss array of equiv-
alent partial sequences found in s. The goal of this method is to
decide which partial sequences of pss become sequences, which
are returned in an ArrayList object. As examples, we present the
implementation of the Multiple and Tracematch classes.

Figure 8 shows the Multiple class. The multiplex method creates
new sequences of all equivalent partial sequences of pss with ALL
object as activation strategy.

The semantic of multiplication of tracematches always permits to

28



Multiplexer

+multiplex(s,pss)

SequenceManager
+ips

+manage(event)

Dependent
+anotherSM

SwitchNoneIf

Multiple Tracematch

Concrete classes

Concrete classes

PartialSequence

Sequence

+Sequence(ips,as)

. . .

. . .

Figure 7: The class diagram of a sequence manager.

class Multiple extends Multiplexer {

ArrayList multiplex (Sequence s,PartialSequence [ ] pss) {
ArrayList ss = new ArrayList ( ) ;
for ( in t i = 0; i < pss. length ; ++i )

ss.add(new Sequence(pss[ i ] , ActivationStrategies .ALL) ) ;
return ss;

} }

Figure 8: The Multiple class.

begin a new sequence, and this semantics multiplexes a sequence if
two equivalent partial sequences differ in the values of their envi-
ronments. Figure 9 shows the TraceMatch class. The compareEnvs
method verifies if two environments have the same set of values.
The getEquivalents method gets all equivalent partial sequences of
ps in s. The previousIsFirstOfSeq method verifies if pss[i] is linked
to the first partial sequence of the sequence. The multiplex method
represents the same semantic of tracematches. The method gets all
equivalents partial sequences of every element of pss, and for every
equivalent pair, multiplex creates a new sequence if both equivalent
partial sequences have different set of values in their environments.
A new sequence is also created if pss[i] represents the initial partial
sequence of the sequence.

4.2.3 Sequence Manager
The SequenceManager class defines how to manage the match-

ing of all sequences inside a TM. In Figure 7, we can see that
SequenceManager has the instance variable ips, which represents
the initial partial sequence of the sequence. In addition, this vari-
able is used as a seed to create sequences that begin from the outset.
The manage method manages the matching of all sequences. This
method takes an event and returns an ArrayList object with the envi-
ronments of the matched sequences. This class has the Dependent
abstract class, which refines the behavior of the manage method
for that depending on a specified trace of execution. Besides, this
abstract class is used to implement sub-classes that provide spe-
cific strategies to manage matching of sequences. For example, the
NoneIf class removes all sequences if it matches another trace of
execution, or the Switch class that removes all sequences and uses
a different initial partial sequence as a seed if it matches another
trace of execution. As example, we explain the NoneIf class.

Figure 10 shows the NoneIf class. The manage method, first,

class Tracematch extends Multiplexer {
boolean compareEnvs(Env env1,Env env2) { . . . }
PartialSequence [ ] getEquivalents(Sequence s,PartialSequence pt ) { . . . }
boolean previousIsFirstOfSeq(PartialSequence ps) { . . . }

ArrayList multiplex (Sequence s, PartialSequence [ ] pss) {
ArrayList ss = new ArrayList ( ) ;
for ( in t i = 0; i < pss. length ; ++i ) {

PartialSequence [ ] epss = getEquivalents( t ,pss[ i ] ) ;
for ( in t j = 0; j < epss. length ; ++j )

i f ( !compareEnvs(epss[ j ] .env() ,pss[ i ] .env( ) ) | |
previousIsFirstOfSeq(pss[ i ] ) )
ss .add(new Sequence(pss[ i ] , ActivationStrategies .ALL) ) ;

}
return ss;

} } ;

Figure 9: The Tracematch class.

class NoneIf extends Dependent {

ArrayList manage(Event event) {
ArrayList envs = new ArrayList ( ) ;
ArrayList ss = getSequences( ) ;
i f ( !anotherSM.match(event ) )

return super .manage(event ) ;

ss . removeAll ( ) ;
ss .add(new Sequence( ipt , . . . ) ) ;
return new ArrayList ( ) ;

} } ;

Figure 10: The NoneIf class.

verifies whether anotherSM matches or not with the event. In the
case that anotherSM matches, the manage method removes all se-
quences and create a new sequence from ips. If anotherSM does not
matches, this method calls the manage method of the super class.

5. CONCLUSION
In this position paper, we described an abstract operational model

of TMs and use this abstract model to relate and compare the spe-
cific characteristics of existing TMs like PQL, PTQL, Halo, and
Alpha. Later, we presented the design of an open TM based on
this abstract model. The open model is formulated in a class-based
object-oriented setting and follows the design guidelines of open
implementations. This model is split into partial sequence and se-
quence manager model. The first model defines sequences and the
second model, taking a partial sequence, defines how to manage
and control the matching and multiplication sequences. Both mod-
els allows developers to specific strategies of implementation. We
showed the openness of our model through concrete and expressive
extensions.

Our model has different kinds of challenges. Some challenges
are related to its practical adoption. For this reason, as future work,
we plan to extend AspectScript [11], an AOP extension of JavaScript,
to develop real-world applications that need our model to solve dif-
ferent the issues mentioned in the introduction. Other challenges
are related to the understanding of relationships between sequences,
multiplexers, and sequence managers. For example, there is a cou-
pling between multiplexers and sequences because a multiplexer
needs that sequences uses certain activation strategies to multiplex.
Finally, some challenges are related to the static analysis of the
sequences due to the highly dynamicity of their operators, e.g. con-
sider the random operator that always returns a random partial se-
quence as next.
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ABSTRACT
In this paper we present Dependency State Machines, an
annotation language that extends AspectJ with finite-state
machines that define the order in which pieces of advice must
execute to have a visible effect. Dependency State Machines
facilitate the automatic verification and optimization of as-
pects, but also program understanding.

In this work we present the syntax and semantics of De-
pendency State Machines and one possible use case of De-
pendency State Machines: program understanding. We ex-
plain how a set of three static program analyses can ex-
ploit the information that Dependency State Machines carry
to remove advice-dispatch code from program locations at
which dispatching the advice would have no effect. Depen-
dency State Machines hereby help to abstract from the con-
crete implementation of the aspect, making the approach
compatible with a wide range of aspect-generating monitor-
ing tools.

Our extensive evaluation using the DaCapo benchmark
suite shows that our approach can pinpoint to the user ex-
actly the program locations at which the aspect’s execution
matters in many cases. This is particularly useful when
the aspect’s purpose is to identify erroneous execution se-
quences: in these cases, the program locations that our anal-
ysis pinpoints resemble possible points of program failure.
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1. INTRODUCTION
Pieces of advice are often inter-dependent in the sense

that the execution of one piece of advice will only have
an effect before or after the execution of another. This is
especially true when the aspect that declares these pieces
of advice expresses a state-based runtime monitor. For in-
stance, consider the example aspect in Figure 1, which is-
sues an error message when writing to a disconnected con-
nection. The pieces of advice in this aspect (lines 4–18)
monitor disconnect, reconnect and write events on a con-
nection object. The aspect issues an error message when a
connection is disconnected and then written to without an
intervening reconnect. Figure 2 shows the monitor that this
aspect implements in the form of a finite-state machine that
issues the error message when reaching its accepting state.
It is important to realize that the three pieces of advice
in this aspect are inter-dependent: the effect of executing

1 aspect ConnectionClosed {
2 Set closed = new WeakIdentityHashSet();
3

4 dependent after disconnect(Connection c) returning:
5 call(∗ Connection.disconnect()) && target(c) {
6 closed .add(c);
7 }
8

9 dependent after reconnect(Connection c) returning:
10 call(∗ Connection.reconnect()) && target(c) {
11 closed .remove(c);
12 }
13

14 dependent after write(Connection c) returning:
15 call(∗ Connection.write (..)) && target(c) {
16 if (closed .contains(c))
17 error(”May not write to ”+c+”, as it is closed !”);
18 }
19

20

21 dependency{
22 disconnect, write, reconnect;
23 initial connected: disconnect −> connected,
24 write −> connected,
25 reconnect −> connected,
26 disconnect −> disconnected;
27 disconnected: disconnect −> disconnected,
28 write −> error;
29 final error : write −> error;
30 }
31 }

Figure 1: Monitoring aspect “ConnectionClosed”, annotated
with Dependency State Machine
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connectedstart disconnected error

disconnect
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disconnect,
reconnect, write

write

disconnect write

Figure 2: Finite-state machine for “ConnectionClosed” expl.

one piece of advice depends on whether or not other pieces
of advice executed already. For instance, the write advice
will issue an error message for a connection c if and only if
disconnect executed on c already, and reconnect was not
executed in between. Further, line 17 is the only line that
has an effect that is visible outside the aspect.

When weaving such aspects into a program with modern
aspect compilers like ajc [1] and abc [4], the compilers will
report to the user all the joinpoint shadows at which the
individual pointcuts that the pieces of advice in this aspect
refer to could potentially match a joinpoint at runtime. As
our experiments show, the sheer number of shadows that
such compilers report makes it very hard for programmers
to reason about the effect of these aspects. In the Connec-
tionClosed example, a programmer would have a hard job
trying to determine through manual inspection whether or
not the program can violate the ConnectionClosed property.

Fortunately, as we show in this work, many of these shad-
ows are “irrelevant” in the sense that, when an irrelevant
shadow matches a joinpoint at runtime, then the dispatch
of the piece of advice that induced this shadow will never
have any effect at this program point. For instance, in the
ConnectionClosed example, assume a write shadow at a
program point at which it is known that the connection that
the shadow refers to must be in state “connected”. As the
state machine in Figure 2 and the aspect code show, the
write shadow will have no effect in this state. In the state
machine, the write transition loops, in the aspect code, exe-
cuting the write advice will do nothing because the if-check
that the body contains must evaluate to false.

In this work, we present Dependency State Machines, an
annotation language that extends AspectJ and which makes
such inter-advice dependencies explicit. In particular, a De-
pendency State Machine describes the order in which pieces
of advice have to execute so that the execution of these pieces
of advice, in combination, has an effect that is visible out-
side the aspect itself. Lines 21–30 in Figure 1 show the
appropriate Dependency-State-Machine annotation for the
ConnectionClosed example. As the reader can see, we de-
liberately kept the syntax simple: the annotation directly
encodes the appropriate finite-state-machine representation
(Figure 2) in a textual format. Line 22 enumerates the al-
phabet which this state machine is defined over. Every sym-
bol name in this line refers to a named “dependent” piece of
advice in the same aspect. Lines 23–29 enumerate all states,
along with their outgoing transitions.

If a programmer knows the transition structure of their
monitoring aspect, then the programmer can write these an-
notations by hand. However, many programmers use runtime-
monitoring tools to generate such aspects automatically from
formal property specifications. In this case, the formal speci-
fications often contain enough information already such that
the aspect-generating monitoring tool can automatically gen-
erate the appropriate dependency annotations, too. Many

monitoring tools use finite-state machines as an internal
monitor representation [3, 13, 7, 21], which makes generating
the annotations even easier. In the future, researchers could
also develop tools that generate Dependency State Machines
directly from aspects. However, note that this would involve
analyzing Turing-complete aspect code. Therefore, such ap-
proaches would always only be able to generate Dependency
State Machines for a subset of well-structured aspects.

Once an aspect has been enriched with dependency anno-
tations, tools can exploit the annotations for different pur-
poses. We believe that Dependency State Machines poten-
tially enable a wide range of static analyses and optimiza-
tions. In this work, however, we focus on using Dependency
State Machines to improve program understanding. We
present a flow-sensitive static whole-program analysis, called
“Nop-shadows Analysis”, that can tell apart irrelevant shad-
ows (“nop shadows”) from relevant shadows in many cases.
The Nop-shadows Analysis builds on two flow-insensitive
analyses that we published previously. These earlier analy-
ses had no information about the order in which pieces of
advice must execute, which makes them less precise. In this
paper, we show that the Nop-shadows Analysis significantly
improves over the results of the earlier analyses and that the
combination of all three analyses can significantly reduce the
number of shadows that a programmer has to consider when
attempting to reason about the aspect’s effect.

We validated our approach by applying all three analyses
to the 120 combinations of twelve AspectJ aspects (anno-
tated with Dependency State Machines) with ten bench-
mark programs of the DaCapo Benchmark Suite [6]. As our
results show, our analysis successfully identifies a large frac-
tion of shadows as irrelevant. In combination with our two
previously published analyses, our novel analysis success-
fully identified 36020 of 39194 shadows in our benchmark
set as irrelevant, i.e., a fraction of 92%. In other words,
after applying our analyses, on average, a user would only
have to consider about 8% of all shadows to determine where
the aspect may have a visible effect. For more than half of
the combinations, our analyses were able to show that the
aspect has no effect at all on the program’s execution. Be-
cause our aspects detect erroneous executions, we expect
them to have no effect for correct programs. To summarize,
this paper presents the following original contributions:

• The syntax and semantics of Dependency State Ma-
chines, a novel AspectJ language extension that en-
codes the order in which pieces of advice must execute
to have a visible effect.

• The idea of using Dependency State Machines to im-
prove program understanding by identifying and elim-
inating irrelevant joinpoint shadows, and a static pro-
gram analysis that implements these concepts.

• A set of experiments that show that this program anal-
ysis can significantly reduce the number of joinpoint
shadows that programmers need to consider when try-
ing to reason about their aspects’ effects.

Section 2 explains the syntax of Dependency State Ma-
chines. In Section 3 we explain our semantics of Depen-
dency State Machines. Section 4 outlines three static analy-
ses that exploit these semantics to identify “irrelevant” join-
point shadows. We present benchmark results in Section 5,
discuss related work in Section 6 and conclude in Section 7.
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2. SYNTAX OF DEPENDENCY STATE
MACHINES

Figure 1 already demonstrated our language extension us-
ing the ConnectionClosed example. Line 22 establishes the
alphabet that the state machine is evaluated over. Every
symbol in the alphabet refers to a named “dependent” piece
of advice in the same aspect. In our language extension, only
pieces of advice that are declared as “dependent” can have
names. Other pieces of advice have no names and execute
with AspectJ’s standard semantics. Lines 23–29 enumer-
ate all states in the state machine in question, and for each
state enumerate further a (potentially empty) list of out-
going transitions. An entry “s1: l -> s2” reads as “there
exists an l-transition from s1 to s2”. In addition, a program-
mer can mark states as initial or final, i.e., accepting. We
give the complete syntax for Dependency State Machines in
Figure 3, as a syntactic extension to AspectJ.

According to the semantics that we will give to Depen-
dency State Machines, the dependency declaration in the
ConnectionClosed example states that any piece of discon-
nect, write or reconnect advice must execute on a con-
nection c whenever not executing this piece of advice on c

would change the set of joinpoints at which the Dependency
State Machine reaches its final state on c. (More on the
semantics later.) Note, however, that the advice references
in line 22 omit the variable name c of the connection: we
just wrote disconnect, write, reconnect. We can do so
because, by default, a dependency annotation infers variable
names from the formal parameters of the advice declarations
that it references (lines 4, 9 and 14 in the example). This
means that the alphabet declaration in line 22 is actually
a short hand for the more verbose form disconnect(c),

write(c), reconnect(c).
The semantics of variables in dependency declarations is

similar to unification semantics in logic programming lan-
guages like Prolog [14]: The same variable at multiple loca-
tions in the same dependency refers to the same object. For
each advice name, the dependency infers variable names in
the order in which the parameters for this advice are given
at the site of the advice declaration. Variables for return
values from after returning and after throwing advice
are appended to the end. For instance, the following advice
declaration would yield the advice reference createIter (c, i ).

dependent after createIter(Collection c) returning(Iterator i):
call(∗ Collection . iterator ()) {}

We decided to allow for this kind of automatic inference
of variable names because both code-generation tools and
programmers frequently seem to follow the convention that
equally-named advice parameters are meant to refer to the
same objects. That way, programmers or code generators
can use the simpler short-form as long as they follow this
convention. Nevertheless the verbose form can be useful in
rare cases. Assume the following piece of advice:

dependent before detectLoops(Node n, Node m):
call(Edge.new(..)) && args(n,m) {
if (n==m) { System.out.println(”No loops allowed!”); }}

This advice only has an effect when n and m both refer to
the same object. However, due to the semantics of AspectJ,
the advice cannot use the same name for both parameters—
the inferred annotation would be detectLoops(n,m). The ver-
bose syntax for dependent advice allows us to state nev-

ertheless that for the advice to have an effect, both pa-
rameters actually have to refer to the same object, say k:
dependency{detectLoops(k,k); ... }.

2.1 Type-checking Dependency State Machines
After parsing, we impose the following semantic checks:

• A piece of advice carries a name if and only if it carries
also a dependent modifier.

• Every advice must be referenced only by a single dec-
laration of a Dependency State Machine.

• The state machine must have at least one initial and
at least one final state.

• The listed alphabet may contain every advice name
only once, i.e., declares a set.

• The names of states must be unique within the depen-
dency declaration.

• Transitions may only refer to the names of advice that
are named in the alphabet of the dependency declara-
tion, and to the names of states that are also declared
in the same dependency declaration.

• Every state must be reachable from an initial state.

• If the verbose form for advice references is used:

– The number of variables for an advice name equals
the number of parameters of the unique advice
with that name, including the after-returning or
after-throwing variable. (inference ensures this)

– Advice parameters that are assigned equal names
have compatible types: For two advice declara-
tions a(A x) and b(B y), with a(p) and b(p)

in the same dependency declaration, A is cast-
convertible [18, §5.5] to B and vice versa.

– Each variable should be mentioned at least twice
inside a dependency declaration. If a variable v is
only mentioned once we give a warning because
in this case the declaration states no dependency
with respect to v. The warning suggests to use the
wildcard “*” instead. Semantically, * also gener-
ates a fresh variable name. However, by stating
* instead of a variable name, the programmer ac-
knowledges explicitly that the parameter at this
position should be ignored when resolving depen-
dencies.

Note that these checks are very minimal and allow for a
large variety of state machines to be supplied. For instance,
we do allow multiple initial and final states. We also allow
the state machine to be non-deterministic. The state ma-
chine can have unproductive states from which no final state
can be reached, and the state machine even does not have
to be connected, i.e. it may consist of multiple components
which are not connected by transitions. In this case, the
state machine essentially consists of multiple state machines
that share a common alphabet. Note that we forbid mul-
tiple dependency declarations to reference the same piece
of advice: because these dependency declarations could use
different alphabets the semantics would be unclear.
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Modifier ::= “public” | “synchronized” | . . . | “dependent”

AdviceDecl ::= Modifier* [RetType] BefAftAround AdviceName

“(” [ParamList ] “)” [AftRetThrow ] “:” Pointcut Block

AdviceName ::= ID

AspectMemberDecl ::= AdviceDecl | . . . | DependencyDecl | DependencySMDecl

DependencySMDecl ::= “dependency”“{” AdviceRefList “;” StateList “;” “}”

AdviceRefList ::= AdviceRef | AdviceRef “,” AdviceRefList

AdviceRef ::= AdviceName | AdviceName “(” VarList “)”

VarList ::= VarName | VarName “,” VarList

VarName ::= ID | “*”

StateList ::= State | State StateList

State ::= StateModifier∗ Identifier [“:” TransitionList ] “;”

StateModifier ::= “initial” | “final”

TransitionList ::= Transition | Transition “,” TransitionList

Transition ::= Identifier “->” Identifier

Figure 3: Syntax of Dependency State Machines, as extension (shown in boldface) to the syntax of AspectJ

3. SEMANTICS OF DEPENDENCY STATE
MACHINES

We define the semantics of a Dependency State Machine
as an extension to the usual advice-matching semantics of
AspectJ [19]. Let A be the set of all pieces of advice and J
be the set of all joinpoints that occur on a given program run.
Consistent with our previous work on Dependent Advice [9],
we model advice matching in AspectJ as a function match

that we regard as given by the underlying AspectJ compiler:

match : A×J → {β | β : V ⇀ O} ∪ {⊥}.

For each pair of advice a ∈ A and joinpoint j ∈ J , match

returns ⊥ in case a does not execute at j. If a does execute
then match returns a variable binding β, a mapping from
a’s parameters to objects ({ } for parameter-less advice).

Based on this definition, we informally demand for any
dependent piece of advice a, that a only has to execute when
it would execute under AspectJ’s semantics and when not
executing a at j would change the set of joinpoints at which
the Dependency State Machine reaches its final state for a
binding “compatible” with β. (We define this term later.)

3.1 Semantics by example
Figure 4 contains a small example program that we use

to explain the intuition behind this semantics. The example
program violates the ConnectionClosed property in lines 5
and 7 by first disconnecting the connection o(c1) and then
writing to o(c1). (For any variable v, we use o(v) to refer to
the object that v references.) The joinpoint shadows [23] at
these two lines are also the only two shadows in the program
that the ConnectionClosed monitoring aspect from Figure 1
must monitor so that this aspect correctly issues its error
message at runtime. In particular, since the monitor starts
off in its initial state “connected”, the write event at line 4
has no impact on the monitor’s state: the monitor loops
on state “connected”, and hence we call the write shadow
at this line “irrelevant”. Similarly, at line 6, the monitor is
guaranteed to be in the “closed” state. Monitoring further

1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[0]),
3 c2 = new Connection(args[1]);
4 c1.write(args [2]); //write(c1)
5 c1.disconnect (); //disconnect(c1)
6 c1.disconnect (); //disconnect(c1)
7 c1.write(args [2]); //write(c1)
8 c1.disconnect (); //disconnect(c1)
9 c2.write(args [2]); //write(c2)

10 }

Figure 4: Example program

disconnect events does not change the automaton state in
this situation either. Hence, the disconnect shadows at this
line is irrelevant as well. The disconnect event at line 8 does
cause a state change (from “connected” to “closed”), but this
state change does not matter: because no write event ever
follows on o(c1), this state change cannot impact the set of
future joinpoints at which the Dependency State Machine
reaches its final state (because there are none), and hence
cannot impact the set of joinpoints at which the runtime
monitor will have a visible effect, i.e., will issue its error
message. This is true even though another write event fol-
lows at line 9. This latter write event occurs on c2 and not
on c1. Because we know that c2 cannot possibly reference
the same object as c1, i.e., o(c1) 6= o(c2), this write event
is not what we call “compatible” with the disconnect event
at line 8.

3.2 Formal semantics
In our view of AspectJ, pieces of advice are matched against

“parameterized traces”, i.e., traces that are parameterized
through variable bindings. The semantics of state machines
are usually defined using words over a finite alphabet Σ. In
particular, state machines as such have no notion of variable
bindings. In the following, we will call traces over Σ, which
are given as input to a Dependency State Machine “ground
traces”, as opposed to the parameterized trace that the pro-
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gram execution generates. We will define the semantics of
Dependency State Machines over ground traces. We obtain
these ground traces from the parameterized execution trace
by projecting each parameterized event onto a set of ground
events. This yields a set of ground traces—one ground trace
for every variable binding.

Further, we will define the semantics of Dependency State
Machines in terms of“events”, not joinpoints. Joinpoints dif-
fer from events in that joinpoints describe regions in time
while events describe atomic points. A joinpoint has a be-
ginning and an end, and code can execute before or after the
joinpoint (i.e., at its beginning or end) or instead of the join-
point. In particular, joinpoints can be nested. For instance,
a field-modification joinpoint can be nested in a method-
execution joinpoint. Pieces of advice, even “around advice”,
execute at atomic events before or after a joinpoint. Because
these events are atomic, they cannot be nested. Joinpoints
merely induce these events1.

Event. Let j be an AspectJ joinpoint. Then j induces
two events, jbefore and jafter which occur at the beginning
respectively end of j. For any set J of joinpoints we define
the set E(J ) of all events of J as:

E(J ) :=
[

j∈J

{jbefore, jafter}.

In the following we will often just write E instead of E(J ),
if J is clear from the context.

For any declaration of a Dependency State Machine, the
set of dependent-advice names mentioned in the declaration
of the Dependency State Machine induces an alphabet Σ,
where every element of Σ is the name of one of these de-
pendent pieces of advice. For instance, the alphabet for
the ConnectionClosed dependency state machine from Fig-
ure 1 would be Σ = {disconnect, write, reconnect}. Match-
ing these pieces of advice against a runtime event e results in
a (possibly empty) set of matches for this event, where each
match has a binding attached. We call this set of matches
the parameterized event ê.

Parameterized event. Let e ∈ E be an event and Σ
be the alphabet of advice references in the declaration of a
Dependency State Machine. We define the parameterized
event ê to be the following set:

ê :=
[

a∈Σ

{(a, β) | β = match(e, a) ∧ β 6= ⊥}.

Here, match(e, a) is the “usual” matching function that the
original AspectJ semantics provides, overloaded for events.

We call the set of all parameterized events Ê :

Ê :=
[

e∈E

{ê}

It is necessary to consider sets of matches because multiple
pieces of advice can match the same event. While this is
not usually the case, we decided to cater for the unusual
cases, too. As an example, consider the Dependency State
Machine in the UnusualMonitor aspect in Figure 5a. The
aspect defines a dependency between two pieces of advice a

and b. Note that the pointcut definitions of a and b overlap,
i.e. describe non-disjoint sets of program events. The advice

1Our notion of events is essentially the same as the notion
of joinpoints in the point-in-time joinpoint model that Ma-
suhara, Endoh and Yonezawa proposed earlier [22].

1 aspect UnusualMonitor {
2 dependency{
3 a, b;
4 //transitions omitted from example
5 }
6

7 dependent before a(Object x):
8 call(∗ ∗(..)) && target(x) { ... }
9

10 dependent before b(Object x):
11 call(∗ foo (..)) && target(x) { ... }
12 }

(a) UnusualMonitor aspect with overlapping pointcuts

1 SomeClass v1 = new SomeClass();
2 SomeClass v2 = new SomeClass();
3 v1.foo (); v1.bar(); v2.foo ();

(b) Example program

Figure 5: UnusualMonitor aspect and example program

b executes before all non-static calls to methods named foo.
The advice a executes before these events too, because, by
its definition, it executes before any non-static method call.

Next, assume that we apply this aspect to the little exam-
ple program in Figure 5b. We show the program’s execution
trace in the first row of Figure 6 (to be read from left to
right). This execution trace naturally induces the parame-
terized event trace that we show in the second row of the
figure: this trace is obtained by matching at any event every
piece of advice against this event.

Next we explain how we use projection to obtain “ground
traces”, i.e. Σ-words, from this parameterized event trace.

Projected event. For every ê ∈ Ê and binding β we
define a projection of ê with respect to β:

ê ↓ β := {a ∈ Σ | ∃(a, βa) ∈ ê such that compatible(βa, β)}

Here, compatible is is a relation over bindings as follows:

compatible(β1, β2) :=
∀v ∈ (dom(β1) ∩ dom(β2)) . β1(v) = β2(v)

In this equation, dom(βi) denotes the domain of βi, i.e.,
the set of all variables that βi assigns a value. This means
that β1 and β2 are compatible as long as they do not assign
different objects to the same variable.

Parameterized and projected event trace. Any fi-
nite program run induces a parameterized event trace t̂ =
ê1 . . . ên ∈ Ê

∗. For any variable binding β we define a set of
projected traces t̂ ↓ β ⊆ Σ∗ as follows. t̂ ↓ β is the smallest
subset of Σ∗ for which holds:

∀t = e1 . . . en ∈ Σ∗ :
if ∀i ∈ N with 1 ≤ i ≤ n : ei ∈ êi ↓ β then t ∈ t̂ ↓ β

We call traces like t, which are elements of Σ∗, “ground”
traces, as opposed to parameterized traces, which are ele-
ments of Ê∗.

For our example, the third and fourth row of Figure 6
show the four ground traces that result when projecting this
parameterized event trace onto the variable bindings x =
o(v1) and x = o(v2). For x = o(v1) we obtain the two
traces “aa” and “ba”, for x = o(v2) we obtain the two traces
“a” and “b”.

A Dependency State Machine will reach its final state (and
the related aspect will have an observable effect, e.g., will is-
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execution trace v1.foo(); v1.bar(); v2.foo();

parameterized trace t̂ {(a, x = o(v1)), {(a, x = o(v1))} {(a, x = o(v2)),
(b, x = o(v1))} (b, x = o(v2))}

projected ground traces a a

for t̂ ↓ x = o(v1) b a

projected ground traces a

for t̂ ↓ x = o(v2) b

Figure 6: Traces resulting from code in Figure 5; note that o(v1) 6= o(v2)

sue an error message) whenever a prefix of one of the ground
traces of any variable binding is in the language described
by the state machine. This yields the following definition.

Set of non-empty ground traces of a run. Let t̂ ∈ Ê∗

be the parameterized event trace of a program run. Then we
define the set groundTraces(t̂) of non-empty ground traces
of t̂ as:

groundTraces(t̂) :=

0

@

[

β∈B

t̂ ↓ β

1

A ∩ Σ+

We intersect with Σ+ to exclude the empty trace. This is be-
cause the empty trace cannot possibly cause the monitoring
aspect to have an observable effect.

The semantics of a Dependency State Machine
We define the semantics of Dependency State Machines as
a specialization of the predicate match(a, e), which models
the decision of whether or not the dependent advice a ∈ A
matches at event e ∈ E , and if so, under which variable bind-
ing. As noted earlier, this predicate match is given through
the semantics of plain AspectJ. We call our specialization
stateMatch and define it as follows:

stateMatch : A× Ê∗ × N → {β | β : V ⇀ O} ∪ {⊥}

stateMatch(a, t̂, i) =
let β = match(a, e) in

8

>

<

>

:

β if β 6= ⊥ ∧ ∃t ∈ groundTraces(t̂)

such that necessaryShadow(a, t, i)

⊥ else

As we can see, stateMatch takes as arguments not only the
piece of advice for which we want to determine whether it
should execute at the current event, but also the entire pa-
rameterized event trace t̂, and the current position i in that
event trace. Note that t̂ contains also future events that
are yet to come. This makes the function stateMatch unde-
cidable. This is intentional. Even though there can be no
algorithm that decides stateMatch precisely, we can derive
static analyses that approximate all possible future traces.
The function necessaryShadow mentioned above is a param-
eter to the semantics that can be freely chosen, as long as
it adheres to a certain soundness condition that we define
next. We say that a static optimization for Dependency
State Machines is sound if it adheres to this condition.

Soundness condition.
The soundness condition will demand that an event needs

to be monitored if we would miss a match or obtain a spu-
rious match by not monitoring the event. A Dependency
State Machine M matches, i.e., causes an externally ob-
servable effect after every prefix of the complete execution
trace that is in L(M), the language that M accepts.

Set of prefixes. Let w ∈ Σ∗ be a Σ word. We define the
set pref(w) as:

pref(w) := {p ∈ Σ∗ | ∃s ∈ Σ∗ such that w = ps}

Matching prefixes of a word. Let w ∈ Σ∗ be a Σ word
and L ⊆ Σ a Σ language. Then we define the matching
prefixes of w (with respect to L) to be the set of prefixes of
w in L:

matchesL(w) := pref(w) ∩ L

We will often write matches(w) instead of matchesL(w) if L
is clear from the context.

As before, the predicate necessaryShadow can be freely
chosen, as long as it adheres to the following soundness con-
dition:

Soundness condition. Let L := L(M). For any sound
implementation of necessaryShadow we demand:

∀a ∈ Σ ∀t = t1 . . . ti . . . tn ∈ Σ+ ∀i ∈ N :
a = ti ∧

matchesL(t1 . . . tn) 6= matchesL(t1 . . . ti−1ti+1 . . . tn)
−→ necessaryShadow(a, t, i)

The soundness condition hence states that, if we are about
to read a symbol a, then we can skip a if the monitoring
aspect would have an observable effect when processing the
complete trace t just as often (and at the same points in
time) as it would when processing the partial trace where
ti = a is omitted.

4. IDENTIFYING RELEVANT JOINPOINT
SHADOWS

In this section, we outline how we use Dependency State
Machines to identify “relevant joinpoint shadows”, i.e., shad-
ows that may cause the aspect to have a visible effect at
runtime. We first explain how our novel flow-sensitive anal-
ysis, the Nop-shadows Analysis, identifies “nop shadows”:
shadows that have no such effect. The “relevant” shadows
are then all shadows that the analysis does not classify as
“nop shadows”. In Section 4.2 we then describe how the
Nop-shadows Analysis improves over two analyses that we
published previously, and we explain the added benefit of
Dependency State Machines over our earlier approach. Sec-
tion 4.3 gives the most important implementation details.

4.1 Nop-shadows Analysis
We based the Nop-shadows Analysis entirely on our se-

mantics of Dependency State Machines. This semantics
states that a dependent advice must be dispatched on some
variable binding β if not dispatching the advice would alter
the set of events (or joinpoints) at which the monitor reaches
its final state for a binding that is compatible with β. The
Nop-shadows Analysis exploits this definition by computing
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an equivalence relation between states of the Dependency
State Machines. This relation allows the analysis to identify
“nop shadows” as shadows that only switch between equiva-
lent states. We say that two states q1 and q2 are equivalent
at a joinpoint shadow s, and write q1 ≡s q2 if, given all pos-
sible execution paths that may lead up to s and all possible
continuations of the execution after s, the fact whether the
monitor is in state q1 or in state q2 at s does not impact
when the Dependency State Machines reaches its final state
on these possible continuations. The analysis uses points-
to and alias information to disambiguate states for different
variable bindings.

Given this equivalence relation, we can then identify shad-
ows s that only switch between “equivalent” states on all
possible executions that lead through s. By definition of
our semantics of Dependency State Machines we know that
dispatching a piece of advice a at such a shadow s would
have no effect. We exploit this fact in two different ways.
Firstly, we filter the shadow from the list of shadows that
is displayed to the user after weaving. This aids the pro-
grammer in reasoning about the effects that the aspect may
have. Secondly, we remove all advice-dispatch code from
this shadow, potentially speeding up the execution of the
woven program.

Consider again the example that we gave in Figure 4. We
first focus on the write shadow at line 4. Given the only pos-
sible execution path that leads up to this line, we know that
the Dependency State Machine must be in state “connected”
when reaching the line. We also know that a write tran-
sition leads from “connected” back to “connected” only, i.e.,
the transition loops. State “connected” is obviously equiva-
lent to itself: q1 = q2 implies q1 ≡s q2. Therefore, the Nop-
shadows Analysis can safely disable the advice dispatch at
the shadow at line 4. When identifying such a “nop shadow”
and disabling the advice dispatch at this shadow, we re-
iterate the Nop-shadows Analysis, this time under the new
assumption that no advice will be dispatched at the shadow.
During this re-iteration, the analysis will disable the write

shadow at line 9, and either of the disconnect shadows at
line 5 or 6, depending on which one is analyzed first, and the
disconnect shadow at line 8. This last shadow at line 8 is
interesting in the sense that it switches between equivalent
states that are not equal, i.e., we have q1 ≡s q2 although
q1 6= q2. At this shadow, the non-deterministic Dependency
State Machine is simultaneously in states “connected” and
“error”. From these states, the disconnect transition moves
into state “disconnected”. Although this is definitely not the
same internal state, the state “disconnected” is equivalent to
both other states given all possible continuations, i.e., given
all executions that could follow line 8.

Computing the appropriate equivalence relation requires
both a forward and a backward-analysis component: the
forward component computes equivalencies between states
“with respect to the past”, while the backward analysis com-
putes equivalencies “with respect to the future”, i.e., with
respect to the possible continuations. The forward-analysis
component works by propagating through the program the
states of a determinized version of the original Dependency
State Machine M. The backward-analysis component is
an exact dual of the forward one: it propagates backwards
through the program the states of a determinized version
of the inverted state machine of M. To obtain an efficient
implementation, our analysis uses flow-sensitive information

on an intra-procedural, i.e., per-method level only, and uses
a coarse grain flow-insensitive abstraction at method bound-
aries. Space limitations prevents us from explaining the
Nop-shadows Analysis any further. The author’s disserta-
tion [8, Section 5.2] explains the analysis in all detail.

4.2 Dependent Advice and previously
published analysis stages

In previous work [9], we proposed “Dependent Advice”,
an AspectJ language extension that, similar to Dependency
State Machines, expresses inter-dependencies between pieces
of advice. Although both approaches share some ideas, De-
pendency State Machines improve over Dependent Advice in
several ways. The most important improvement is that De-
pendency State Machines, unlike Dependent Advice, encode
the order in which pieces of advice are meant to execute. The
Nop-shadows Analysis from above makes heavy use of this
information by propagating the state of Dependency State
Machines through the program according to their transition
tables, which expresses the execution order.

Our earlier approach, Dependent Advice, encoded no such
information: a correct Dependent-Advice declaration for our
ConnectionClosed example property would be the following.

dependency{ strong disconnect, write; weak reconnect; }

This declaration follows the syntax that we proposed in ear-
lier work. The declaration states that disconnect and write

share a “strong” dependency. This means that disconnect

only needs to execute (on a connection c) if there is a chance
of write executing (on c) as well, and the other way around.
The additional “weak” reference to reconnect states that,
if the strong dependency is fulfilled, i.e., if both discon-

nect and write may execute on the same connection c then
reconnect has to be enabled on c as well, but not the other
way around.

In our earlier work, we presented two flow-insensitive static
program analyses that make use of this information. The
first analysis, the Quick Check, uses syntactic information
only, that we can obtain directly through the weaving pro-
cess. In our example, if the analysis finds that a program
disconnects and reconnects connections but never writes to
any connection, i.e., there is no write shadow, then this
program cannot fulfil the dependency, and hence the entire
aspect can have no visible effect for this program.

The second analysis stage, the Orphan-shadows Analy-
sis, performs the same check, but on a per-object basis.
This stage uses a flow-insensitive, context-sensitive points-to
analysis [26] to disambiguate pointer references. This allows
the analysis to decide which joinpoint shadows could po-
tentially refer to the same objects. The analysis then uses
this information as follows. In our example, if the program
disconnects a particular connection c but never writes to c,
then for this c the dependency is not fulfilled and therefore
one does not need to monitor any disconnect, reconnect
or write events on this connection.

We specifically designed Dependency State Machines in
such a way that they are backward compatible to Dependent
Advice in the following way. In our previous work we de-
scribed an algorithm“genDeps”, which generates Dependent-
Advice declarations from any given finite-state machine. We
took care to define the semantics of Dependency State Ma-
chines in such a way that one can apply genDeps directly to
any Dependency State Machine to obtain a set of Dependent-
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Advice declarations. The flow-insensitive analyses that we
proposed earlier can then directly operate on these declara-
tions. This means, that for our ConnectionClosed example,
one could obtain the Dependent-Advice declaration that we
mentioned above simply by applying the genDeps algorithm
to the Dependency State Machine from Figure 1.

In our view, Dependency State Machines are easier to un-
derstand than Dependent Advice because their semantics
follow the semantics of finite-state machines, which are well
understood. Especially, it is safe to assume that most pro-
grammers are familiar with the basic semantics of finite-state
machines. For Dependent Advice, the semantics are less ob-
vious. Therefore, Dependency State Machines combine two
advantages: they encode richer information, and neverthe-
less they are potentially easier to use.

4.3 Implementation
The flow-insensitive Quick Check and the Orphan-shadows

Analysis generally finish faster than the more involved flow-
sensitive Nop-shadows Analysis. Therefore, it is a good idea
to apply the Nop-shadows Analysis only after the Quick
Check and the Orphan-shadows Analysis have been applied
first.

We implemented Dependency State Machines as an exten-
sion to the AspectBench Compiler [4] (abc) that builds on
exactly these ideas. Our abc extension first extracts Depen-
dency State Machines from the aspect definitions. Then it
uses the genDeps algorithm to generate Dependent-Advice
declarations from these Dependency State Machines. Next,
we instruct abc to weave all aspects (whether they contain
dependency declarations or not) into the given program.
Our extension then applies both the Quick Check and the
Orphan-shadows Analysis from previous work. These anal-
yses only access the generated flow-insensitive Dependent-
Advice declarations, no Dependency State Machines. If po-
tentially relevant shadows remain after applying these two
stages, then our extension invokes the Nop-shadows Analy-
sis. This analysis is flow-sensitive, and therefore it accesses
the Dependency State Machines to extract the information
about the advice-execution ordering that the state machine’s
transition structure expresses. Every analysis stage may
identify “irrelevant” shadows. In the end, our extension in-
structs abc to un-weave and re-weave the program, this time
with all “irrelevant shadows” disabled.

Our abc extension contains two front-ends that both cre-
ate an internal representation of the Dependency State Ma-
chines that the given program contains. One front end is
implemented as an extension to the abc-internal parser. We
use this front end to parse AspectJ source files that con-
tain declarations of Dependency State Machines. The sec-
ond front end that we provide creates the internal repre-
sentation of the Dependency State Machines directly from
a given set of tracematches [3]. Tracematches is another
AspectJ language extension that allows programmers to de-
fine an AspectJ-based runtime monitor in a declarative way,
using a regular-expression syntax. The aspects that abc
generates from tracematches are never written to disc. abc
instead generates these aspects in the form of Jimple [28]
three-address code, an internal representation of the com-
piler, and then weaves the aspects into the designated pro-
gram directly on this representation. Our tracematch front
end therefore extracts the state machine directly from abc’s
internal representation of the tracematch.

5. EXPERIMENTS
To validate our approach, we defined a set of twelve mon-

itoring aspects as tracematches. All aspects monitor for vi-
olations of safety properties. Table 1 explains the properties
that these aspects monitor. We then applied the twelve as-
pects to ten benchmark programs of the DaCapo benchmark
suite [6]. This lead to 120 aspect/benchmark combinations.

We were interested in answering two research questions.
The first question evaluates how much our approach im-
proves over previous work: (1) How effective is the Nop-
shadows Analysis in identifying irrelevant shadows when
compared to our two previously published static analyses
that consider flow-insensitive dependency information from
Dependent Advice only? The second question evaluates our
approach from the user’s point-of-view: (2) How effective is
the overall approach, i.e., the combination of all three anal-
ysis stages (Quick Check, Orphan-shadows Analysis and our
novel Nop-shadows Analysis) in telling apart irrelevant shad-
ows from potentially relevant shadows.

To answer both questions, we decided to compare the
number of shadows that our approach fails to identify as ir-
relevant, i.e., the number of potentially relevant shadows, to
two different baselines: (1) the number of shadows that re-
main potentially relevant after applying the first two analysis
stages, and (2) the total number of shadows that a compiler
that is unaware of our dependency annotation and conducts
no static analysis would present to the user. Table 2 sum-
marizes our analysis results with respect to both baselines.

5.1 Analysis precision compared to previously
published analyses

Table 2a shows the fraction of shadows that the Nop-
shadows Analysis identified as irrelevant, where the base-
line of this fraction is the number of potentially relevant
shadows after applying the Quick Check and the Orphan-
shadows Analysis. From this table we omitted those entries
(and, where applicable, entire lines) for which the number
of potentially relevant shadows was zero already after just
applying these two analysis stages. The fraction of shadows
that the Nop-shadows Analysis identified as nop shadows
appears in white. For some combinations where only few
shadows remained enabled after applying the analysis, we
inspected these shadows manually. In gray we show the
fraction of shadows that we manually determined to be rel-
evant. The remaining black slices represent shadows that
remain active even after analysis, either due to analysis im-
precision or because they are actually relevant although they
were not manually confirmed to be relevant. For the combi-
nation fop-FailSafeIterMap (1374 shadows to analyze), our
Nop-shadows Analysis ran out of memory although we had
provided abc with three gigabytes of heap space. As a re-
search prototype, our analysis is currently not optimized
towards low memory consumption.

For 18 out of these 43 combinations (41%), our novel Nop-
shadows Analysis was able to identify all shadows as irrel-
evant. Because our aspects monitor safety properties, this
means that, in these 18 cases, the analysis proved that the
given program cannot possibly violate the given property.
These cases appear as all-white circles. In four other cases,
shadows remained enabled, but only because they do trigger
a property violation. These cases appear as circles that only
contain gray or white but no black slices. In other words, the
analysis gave exactly the correct result, with no false posi-
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property name description
ASyncContainsAll synchronize on d when calling c.containsAll(d)) for synchronized collections c and d
ASyncIterC only iterate a synchronized collection c when owning a lock on c
ASyncIterM only iterate a synchronized map m when owning a lock on m
FailSafeEnum do not update a vector while iterating over it
FailSafeEnumHT do not update a hash table while iterating over its elements or keys
FailSafeIter do not update a collection while iterating over it
FailSafeIterMap do not update a map while iterating over its keys or values
HasNextElem always call hasMoreElements before calling nextElement on an Enumeration
HasNext always call hasNext before calling next on an Iterator
LeakingSync only access a synchronized collection using its synchronized wrapper
Reader do not use a Reader after its InputStream was closed
Writer do not use a Writer after its OutputStream was closed

Table 1: Relevant typestate properties and their names

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

FailSafeEnum
0

3

6

7

44

47

0

5

0

10

FailSafeEnumHT 26

30

3

3

61

76

0

15

0

5

FailSafeIter
830

922

149

160

112

116

0

27

16

36

287

302

FailSafeIterMap
444

446

49

49 OOME
133

151

204

314

HasNextElem 0

86

0

8

0

6

34

47

0

16

0

6

0

6

1

3

HasNext 452

565

48

82

0

8

24

31

0

12

0

22

184

250

Reader
0

14

3

3

4

4

0

24

Writer
35

44

15

19

10

10

0

7

(a) Potentially relevant shadows as fraction of shadows that remain after first two analysis stages

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

ASyncContainsAll
0

71

0

6

0

31

0

18

0

18

0

10

ASyncIterC
0

1621

0

498

0

146

0

33

0

128

0

149

0

149

0

671

ASyncIterM 0

1684

0

507

0

176

0

39

0

138

0

152

0

152

0

718

FailSafeEnum
0

76

0

3

0

1

6

18

0

120

44

110

0

61

0

61

0

21

0

222

FailSafeEnumHT
26

133

0

102

0

44

0

205

3

114

61

153

0

37

0

37

0

100

0

319

FailSafeIter 0

23

830

1394

149

510

0

288

0

112

112

253

0

217

16

217

287

546

0

158

FailSafeIterMap
0

130

444

1180

49

374 OOME
0

252

133

250

0

136

0

136

204

583

0

540

HasNextElem
0

117

0

4

0

12

0

53

34

64

0

22

0

22

0

11

1

63

HasNext
452

849

48

248

0

72

0

16

24

63

0

74

0

74

184

346

LeakingSync 0

170

0

1994

0

920

0

2347

0

528

0

1082

0

629

0

629

0

986

0

1005

Reader
0

50

0

7

0

65

0

102

3

1216

4

139

0

226

0

226

0

102

0

106

Writer
35

171

15

563

0

70

0

429

10

1378

0

462

0

146

0

146

0

62

0

751

(b) Potentially relevant shadows as fraction of total shadows after weaving

Table 2: Irrelevant vs. potentially relevant shadows. White slices represent shadows that the Nop-shadows Analysis identified
as irrelevant. Black slices represent shadows that we fail to identify as irrelevant, due to analysis imprecision or because the
shadows are relevant. Gray slices represent shadows that we confirmed to be relevant, through manual inspection. The outer
rings represent the aspect’s runtime overhead after optimizing the advice dispatch. Solid: overhead ≥ 15%, dashed: overhead
< 15%, dotted: no overhead. OOME = OutOfMemoryException during static analysis
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tives, in half of the cases. In three cases, the analysis failed
to identify any nop shadow (black circles). In the remain-
ing 18 cases, the analysis identified a sometimes significant
amount of irrelevant shadows, but not all.

Our analysis works well on the antlr, fop, hsqldb, luin-
dex, lusearch and xalan benchmarks. Most of the potential
false positives (black in the figure) appear only because the
benchmarks use reflection. Due to a known deficiency [2],
Java’s Cloneable interface contains no public declaration
of a clone() method. Therefore, Java’s type system may
prevent clients from calling clone() even on Cloneable ob-
jects. chart uses reflection to call the clone() method on
objects that implement the Cloneable interface. Because
chart clones collections, our points-to analysis has to safely
assume that the collections could be of any type, including
EmptySet, which, as a singleton object, is stored in a static
field, causing our analysis to lose all context information.
bloat, jython and pmd cause similar problems.

There appear to be only few cases where our analysis is too
imprecise because of its design. For example, two actually ir-
relevant final shadows remain enabled in hsqldb with Reader
and Writer. These false positives occur because xalan uses
different methods to open, close and write to streams. Our
current implementation of the Nop-shadows Analysis uses
flow-sensitive information on an intra-procedural level only,
and therefore cannot possibly produce precise analysis re-
sults in this context. In the future, we plan to extend the
Nop-shadows Analysis into a fully inter-procedural version
that will treat these cases more precisely.

DaCapo’s benchmarks load classes using reflection. Static
analyses like ours have to be aware of these classes so that
they can construct a sound call graph. We wrote an AspectJ
aspect that would print at every call to forName and a few
other reflective calls the name of the class that this call loads
and the location from which it is loaded. We further double-
checked with Ondřej Lhoták, who compiled such lists of dy-
namic classes earlier. We then provided the abc-internal
call-graph analysis with this information. The resulting call
graph is sound for the program runs that DaCapo performs.
A limitation of our approach is that obtaining a call graph
that is sound for all runs may be challenging for programs
that use reflection.

For eclipse we were unable to determine where dynamic
classes are loaded from. eclipse loads classes not from JAR
files but from “resource URLs”, which eclipse resolves in-
ternally, usually to JAR files within other JAR files. abc
currently cannot load classes from such URLs and that is
why we omit eclipse in our experiments. The jython bench-
mark generates code at runtime, which it then loads. We did
not analyze this code and so made the unsound assumption
that this code would not invoke any dependent advice.

5.2 Fraction of potentially relevant shadows
over number of all shadows after weaving

Table 2b shows the fraction of shadows that the Nop-
shadows Analysis identified as irrelevant, where the baseline
of this fraction is the number of all shadows that a compiler
without any of our static analysis would usually report to the
user. This fraction shows to what extend users can benefit
through the use of Dependency State Machines in general,
when applying all three of our static analyses in combina-
tion, compared to not using Dependency State Machines at
all. Opposed to Table 2a, this table shows the important

piece of information that, in many cases, the Quick Check
and the Orphan-shadows Analysis manage to identify many
irrelevant shadows already. Often, these analyses are even
sufficient to identify that all shadows are irrelevant, i.e., that
the aspect will never have a visible effect. The high amount
of white and gray in this table shows that our overall static-
analysis approach is very effective in pinpointing to the user
the relevant shadows that will cause the aspect to have a
visual effect at runtime.

5.3 Reduction of runtime overhead
An added benefit of our analysis is that we can use the

analysis result to optimize the advice dispatch, which may
reduce the aspect’s runtime overhead. Table 2 gives qualita-
tive information about the optimized aspect’s runtime over-
head through the ring that surround each circle. (The au-
thor’s dissertation [8] gives the full data.) Interestingly, the
number of remaining shadows does not necessarily corre-
spond directly to the resulting runtime overhead. For in-
stance, only 15 out of 563 shadow remain in bloat-Writer,
but these shadow executes so often that they cause a run-
time overhead of more than 15%. chart-FailSafeIterMap,
on the other hand, contains 49 residual shadows, but there
is no observable overhead. Altogether, after applying the
Nop-shadows Analysis, only nine combinations remain that
have a significantly perceivable overhead of more than 15%.
Most combinations show zero overhead, five combinations
show an overhead of below 15%, which seems negligible in
many cases.

6. RELATED WORK
We compare our work to the most related static program

analyses and to aspect-oriented model-checking approaches.
In addition, we discuss tools that generate AspectJ aspects
from high-level specifications and whether these tools could
generate Dependency State Machines as well.

6.1 Static program analysis
Whole-program analysis of tracematches. Trace-

matches [3] is an AspectJ language extension that allows
programmers to express finite-state properties using a high-
level language that is based on regular expressions. Like
Dependency State Machines, tracematches are implemented
on top of the AspectBench Compiler. During compilation,
the compiler internally reduces tracematches to“normal”As-
pectJ aspects. Several people [10, 11, 24], including our-
selves, have proposed static analyses that exploit the infor-
mation that tracematches contain to optimize advice dis-
patch. The Quick Check and the Orphan-shadows Anal-
ysis, that we discussed in Section 4, are generalized ver-
sions of two similar analyses that we previously implemented
specifically for tracematches [10]. The Nop-shadows Anal-
ysis that we presented in this paper is defined directly in
terms of Dependency State Machines, and we never im-
plemented a tracematch-specific version for it (although we
could have). The advantage of Dependency State Machines
is not that they improve the analyzability of tracematches
or similar formalisms, but rather that Dependency State
Machines make existing analyses applicable to aspects in
general, no matter whether the aspects were generated from
tracematches, from any other high-level specification or even
written by hand.
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Monitor optimizations. Avgustinov et al. [5] proposed
optimizations to the monitoring aspect itself: Leak elimi-
nation discards monitoring state for objects that have been
garbage collected. Indexing provides for fast access to par-
tial matches. These optimizations are crucial to make run-
time monitoring feasible at all and therefore we enabled
them in our experiments when generating aspects from trace-
matches. JavaMOP [13] and PTQL [17] implement weaker
variants of these optimizations.

One big advantage of Dependency State Machines is that
they allow researchers to de-couple the optimizations of run-
time monitors, i.e., the code that “goes into the advice bod-
ies”, from analyzing and optimizing the advice dispatch,
based on the order in which these pieces of advice should
execute. In theory it would be possible to determine an as-
pect’s transition structure directly through static analysis,
without requiring an explicit dependency annotation. How-
ever, general AspectJ code is Turing complete, which makes
this analysis problem generally undecidable. In particular,
the optimizations that aspect-generating monitoring tools
conduct can lead to arbitrarily complex aspect code, much
more complex than the code that we showed in Figure 1.
This makes it very hard for static analyses to re-discover
the transition structure directly from the code. Dependency
State Machines elegantly solve this problem by simply spec-
ifying the transition structure directly in a machine readable
format.

6.2 Model Checking
Goldman and Katz [16] propose a model-checking ap-

proach that can “once and for all” verify an aspect “relative
to its specification”, i.e., independently of any specific pro-
gram that this aspect may be woven into. The authors devel-
oped the MAVEN tool that implements this modular aspect-
verification mechanism. Like ourselves, the authors assume
that the aspect’s internal structure can be represented as
a finite-state machine. However, unlike us, Goldman and
Katz do not state how programmers would communicate
this transition structure to the model checker. Our pro-
posed syntax, Dependency State Machines, closed this gap.
Another restriction of Goldman and Katz’s approach is that
the authors assume that one can represent the non-aspect
parts of the program as a finite-state machine as well. This
is necessary, because the authors model the weaving process
through a series on transformations on state machines. In
our approach, we make no such assumption. We leave the
weaving semantics to standard AspectJ.

It would be an interesting piece of future work to deter-
mine whether the semantics that we gave to Dependency
State Machines is compatible with the finite-state-machine
semantics that Goldman and Katz’s approach requires. If
so, it should be easily possible to integrate MAVEN with
our abc extension.

6.3 Aspect-generating tools
JavaMOP. JavaMOP [13] is an open research frame-

work for generating AspectJ monitoring aspects from several
kinds of formal specifications, including Extended Regular
Expressions, Past-time and Future-Time Linear Temporal
Logic. In previous work [9], Feng Chen has modified the
JavaMOP implementation so that it internally generates a
finite-state machine from all these formal specification, re-
gardless of the formalism that is used. JavaMOP can di-

rectly benefit from Dependency State Machines by annotat-
ing the generated aspects with these state machines.

Association aspects and relational aspects. Sakurai
et al. [25] proposed association aspects, an AspectJ language
extension that allows programmers to restrict advice execu-
tion to joinpoints involving objects that the programmer ex-
plicitly associated with an aspect. A programmer associates
an object o with an aspect A by calling A.associate(o),
and releases the association via A.release(o). In earlier
work [12] we showed that one can implement relational as-
pects, a variant of association aspects, via a syntactic trans-
formation into tracematches. abc implements relational as-
pects that way, and the implementation automatically ben-
efits from our extension: The optimizations proposed in this
paper remove advice dispatch code for an advice contained
in an aspect A from locations where the objects involved are
known to be either not yet associated with A or to already
have been released from A.

S2A, M2Aspects and J-LO. Maoz and Harel proposed
S2A, a tool [21] to generate executable AspectJ code from
Live Sequence Charts [15] (LSCs). An LSC and its gener-
ated aspects can either implement functional aspects of a
system, or they can be used for runtime monitoring, report-
ing error messages when they match. Some of the aspects
that S2A generates are history-based, and in fact even imple-
ment a finite-state machine. We confirmed with Maoz that
S2A could, in principle, generate dependency annotations
for these aspects and that they could lead to optimization
potential similar to what we observed in our experiments,
at least when LSCs are used to specify forbidden scenarios,
implemented as runtime monitors. M2Aspects [20] gener-
ates AspectJ aspects from scenario-based software specifica-
tions, denoted as Message Sequence Charts (MSCs). MSCs
are less expressive than LSCs. Hence we believe that one
could also modify M2Aspects to generate dependent advice.
J-LO, the Java Logical Observer [7, 27] generates AspectJ
aspects from formulae written in a special future-time linear
temporal logic with free variables. Internally, J-LO repre-
sents the formulae using alternating automata. There ex-
ists a standard algorithm to convert alternating automata
into finite-state machines. J-LO could therefore easily ben-
efit from Dependency State Machines by implementing this
conversion and annotating the generated aspect with the
appropriate Dependency-State-Machine declaration.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented Dependency State Ma-

chines, a language extension to AspectJ that expressed the
order in which pieces of advice have to occur, so that these
pieces of advice, in combination have an effect that is visible
outside the declaring aspect. We have shown how to use
the information that Dependency State Machines provide
to facilitate program understanding. We have outlined a
set of static analyses that can identify “irrelevant” joinpoint
shadows with high precision. When trying to determine the
effects that their aspects may have, programmers do not
need to consider such irrelevant shadows.

Nevertheless, we believe that also in fields different from
program understanding, Dependency State Machines offer
the potential for a lot of exciting research opportunities that
researchers could address in the near future. One interesting
field of research could be the inference of Dependency State
Machines. Our current approach assumes that Dependency
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State Machines are present in aspect code, i.e., that either
the programmer or some aspect generating tool supplied the
state-machine declaration. In many cases, it could be pos-
sible to infer these declarations automatically from aspect
code or from dynamic executions.

Another interesting research question would be how De-
pendency State Machines can be used to verify or check
an aspect’s execution. According to the semantics that we
gave in this paper, a Dependency State Machine expresses
the order in which pieces of advice must execute to have
a visible effect. One could give different semantics to De-
pendency State Machines, e.g. that a Dependency State
Machine describes the order in which pieces of advice are
allowed to be called by the surrounding context, i.e., the
program which the pieces of advice are woven into. Static
or runtime verification could then try to determine, for a
particular execution context, whether this context fulfils the
aspects execution requirements.
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ABSTRACT
When multiple aspects can share a join-point, they may,
but do not have to, semantically interfere. We present an in
depth analysis of aspect semantics and mutual influence of
aspects at a shared join-point, in order to enable program-
mers to distinguish between potential and actual interfer-
ence among aspects at shared join-points. An interactive
semi-automatic procedure for specification refinement is de-
scribed, that will help users define the intended aspect be-
havior more precisely. Such a refined specification enables
modular verification and interference detection among as-
pects even in the presence of shared join-points.

Keywords
Aspect interference, semantics, specification, shared join-
points

1. INTRODUCTION
Multiple aspects, when woven into the same base system,
might happen to have common join-points. This possibility
gives rise to many important questions and problems, from
understanding how the potentially applicable advice pieces
should be woven at such a common join-point (as they can-
not be applied all at the same time), to conflict detection
and resolution, since application of one advice might inter-
fere with the computation or even applicability of another.

In this paper we consider this question in depth, for as-
pects and systems modeled as state transition diagrams,
with specifications given as linear temporal logic (LTL) as-
sumptions and guarantees. As a solution to aid in under-
standing the implications of shared join-points, we describe
an easily automatizable interactive procedure that will help
users specify their intentions for aspect behavior in a spe-
cific system more precisely, and check whether there is ac-
tual interference with respect to this specification. Based
on the answers to a series of questions to the user, the LTL
specifications of the aspects are automatically augmented.
The state transition model is also modified to handle shared

join-points. Then the verification and automatic interfer-
ence checks from [10] can be used to detect subtle cases of
interference at shared join-points, or establish that there is
no such interference, using the augmented specifications.

Ways to detect shared join-points are described in [14, 15].
Several works study shared join-points as a source of possible
conflicts, some (e.g., [14]) even see common join-points as
the main source of interference among aspects. A language
independent technique [8] makes it possible to check whether
an undesired order of aspect application at a shared join-
point is possible, where the list of undesired orders has to
be explicitly provided by the user. It is implemented in the
“Secret” tool for Compose* [2, 13]. However, presenting
the undesired orders list requires a thorough analysis of the
system by the user, and also might not be able to reflect
all the intended behaviors, as at different states different
orders of application might be possible. In [1] another tool
for checking potential interference at common join-points is
described, applicable for the Compose* language. It checks
all the possible orders of aspect applications at a common
join-point, and declares a conflict if different orders result
in different resulting states. This method is fully automatic,
but may lead to many false positives (some of which are
described later in this paper). An additional tool for aspect
interference detection, performing dataflow checks to find
out whether one aspect affects variables used in another, is
presented in [17]. It can also be used to check interactions at
shared join-points, though its scope is broader. Interactions
found by this tool are also only potentially harmful.

Weaving techniques for conflict resolution at shared join-
points appear in [14, 6, 7]. In [14], a first analysis of types
of mutual influence of aspects applied at a shared join-point
appears. This analysis is extended in our paper, though
used for a different purpose.

The intended semantics of weaving several aspects at a com-
mon join-point in a pre-defined order is addressed in papers
on the semantics of aspects, such as [16, 4, 5].

However, as described in [12], not all the conflicts at shared
join-points can be resolved by a clever weaving. Thus it is
important for the user to be able to detect the conflicts and
differentiate between real problems and false alarms. Below
we show the possible influences of multiple aspects on each
other at a join-point, and classify them according to the way
they affect the specification of the aspect.
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The paper is organized as follows: Our analysis of aspect se-
mantics and types of mutual influence at shared join-points
appears in Section 2. In Section 3 we show the questions
the answers to which can be automatically processed to add
appropriate predicates to a temporal logic specification. Sec-
tion 4 gives examples of applying the questions. We conclude
in Section 5.

2. SEMANTICS OF ASPECT BEHAVIOR AT
A COMMON JOIN POINT

In AspectJ, the aspects at a common join-point are applied
one after another, and each time before performing an ad-
vice the pointcut condition is re-checked. As a result of
such a semantics, when a base system arrives at a join-point
matched by an aspect A, it is not necessarily the case that
the advice of A is immediately executed. It might be the
case that other aspects are present in the system that also
match this join-point, and it might thus happen that some
other advices are executed before the advice of A, changing
the state of the system in which A will be applied. More-
over, A’s advice might not be executed at all, in case one
of the previously executed aspects left the system in a state
which is not a join-point of A any more.

Thus the execution of the woven system from the moment
it arrives at a join-point matched by some of its aspects is
determined not only by the set of matching aspects, but
also by the order of their application at this point. So if
this order of application is not explicitly prescribed by the
user, the non-determinism of aspect application may result
in different states.

However, the fact that different orders of advice application
lead to different resulting states does not necessarily mean
that the aspects semantically interfere. Let us consider the
following example, presented in [1]: Several aspects are de-
fined for systems in which messages of type String are sent
between objects. Two of these aspects are Logging and En-
cryption. Both aspects are applied at the same join-points -
when a message is sent in the system - and different orders
of their application will result in different states of the sys-
tem. If Logging is executed before Encryption, the logged
message will be the original one, otherwise it will be the en-
crypted message produced by the Encryption aspect. In [1]
such a situation is considered interference between the two
aspects, but in fact the decision on whether it is interfer-
ence or not should depend on the aspects’ specifications. In
our example, the goal of the Encryption aspect is to en-
crypt every message before it is sent to the server. Consider
the following possible specifications of the Logging aspect,
described more formally in Section 4:

1. The log should record all the messages as they were
originally attempted to be sent by the user, so that
the user will be able to view the list of messages (s)he
sent.

2. The log should record all the messages as they were
actually sent to the server in order to compare the
sent messages to the received ones (as received) and
verify that no messages got lost or garbled.

3. The goal of the Logging aspect is to measure the net-

work activity of the system. Thus, though the contents
of the messages are written to the log, they are of no
importance to the user, and what matters is only the
number of messages sent and their frequency, e.g. the
times of the messages sent and the number of lines in
the log.

4. The logging records all the attempts to send a message,
even if they are aborted for whatever reason. It logs
each message as it was attempted to be sent by the
user.

All the cases above can happen in our example system, and
different order of application of the two aspects at their com-
mon join-point will lead to different resulting states, but
not in all the cases above do the aspects interfere. The re-
quirements from the Encrypting aspect are never violated
by Logging, no matter in what order they are executed, but
in variants (1), (2) and (4) the aspects may interfere: in vari-
ants (1) and (4), the goal of Logging will not be reached if
the Encrypting aspect is applied first, and in variant (2), ap-
plying Encrypting after Logging will cause a problem. How-
ever, in variant (3) applying the aspects in any order will
not violate the requirements from Logging or from Encrypt-
ing, thus there will be no interference. As will be shown
later, an Authorization aspect can also be applied, further
complicating the situation.

The above example shows the need to analyze possible se-
mantic effects of sharing a join-point more deeply. We con-
sider the AspectJ operational semantics, where first all the
places in the code of the base program that are matched
by the static part of some aspect’s pointcut, are identi-
fied. Such places are called shadow join-points. Note that a
shadow join-point is usually defined by a place in the code
of the program, but sometimes can contain additional infor-
mation. After shadow join-point identification, at each such
join-point the weaving order of the potentially applicable
aspects is defined (an aspect is considered potentially appli-
cable if the static part of its pointcut matches the current
shadow join-point). The weaving order does not have to be
defined statically, it can be determined upon arrival of the
computation at the join-point. At last, when a computation
arrives at a join-point, each of the potentially applicable as-
pects, one by one and in the previously defined order, is
checked for full applicability and immediately executed if
indeed applicable (i.e., if both static and dynamic parts of
the pointcut are matched by the current state). All the rest
of the paper refers to this semantics, and if a different se-
mantics is chosen, different reasoning might be needed. This
operational semantics shows the need to reason about the
part of computation between the first moment it arrives at
some shadow join-point and the moment it leaves this join-
point, which includes all the aspect applications performed
at the join-point. We need some new terminology to make
this reasoning easier. First of all, we need a name for the
period of interest:

Definition 1. A sequence of states s1, . . . , sk in a com-
putation of the woven system is called a pointcut occurrence
of aspect A if s1 is the state when a join-point of A is first
reached (that is, s1 is matched by the full pointcut descriptor
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of A, and the previous state is not), and sk is the state when
the computation is about to leave the corresponding shadow
join-point, after application of all the appropriate aspect ad-
vices according to the current weaving policy (that is, sk is
matched by the static part of the pointcut descriptor of A,
and the next state is not).

Two aspects share a join-point if they have at least one over-
lapping pointcut occurrence. Note that overlapping pointcut
occurrences do not have to coincide, as it might be a case
that an execution arrives at a state s matched by the point-
cut descriptor of aspect B, and by the static part of pointcut
descriptor of A and B, but not matched by the dynamic part
of A’s pointcut descriptor, and only the execution of aspect
B at s will result in a state in which both static and dynamic
parts of A’s pointcut hold. In such a case the pointcut oc-
currence of A will be contained in the pointcut occurrence
of B, but not vice versa. For example, consider the case of
aspects A and B applied to a grades managing system. Let
aspect B be responsible for giving bonuses and factors to
grades, and let aspect A be in charge of enforcing a required
grades format, by rounding non-integer grades and replacing
all the grades above 100 by 100. Both aspects are applied
before the publication of the grades, so the static parts of
their pointcuts are the same. However, aspect A should be
applied only if the grade to be published is not an integer
or exceeds 100. Clearly, a computation might arrive at a
place before grade publishing with an integer grade below
100, thus matched by the dynamic part of B’s pointcut only
(and not of A’s), but as a result of B’s modifications, a non-
integer grade or a grade above 100 is obtained, bringing the
computation to a state that is matched by A’s pointcut as
well.

Previously, two kinds of join-points have been examined:
shadow join-points and actual join-points. A shadow join-
point of aspect A, as mentioned above, is a place in the
code of the base program that is matched by the static part
of A’s pointcut. An actual join-point of A is a state in
a computation of the system at which the advice of A is
actually applied. However, for the purpose of our analysis,
a third type, arrival join-points, is needed:

Definition 2. A state s in a computation of the woven
system is called an arrival join-point of aspect A if s is the
first state of a pointcut occurrence of A - the state when a
join-point is first reached in that occurrence.

Note that an arrival join-point differs from a shadow join-
point because it is matched also by the dynamic part of A’s
pointcut descriptor. It also differs from an actual join-point:
when the case of shared join-points was not possible, every
arrival join-point reachable in the woven system became an
actual join-point, but now it does not have to be so, because
other aspects can intervene.

Note also that the pointcut of A identifies states either be-
fore or after some events of interest, but the definitions above
are applicable for both cases. And if A is an around advice,
it either has a proceed, and then can be viewed as a com-
bination of two advice pieces - one before, and one after the
corresponding event, or A has no proceed, and then can be

viewed as a before advice, one of the effects of which is a
change in the program counter of the base system. If indeed
A’s advice changes the program counter of the base system,
the end of its execution is also the end of the current point-
cut occurrence - both according to our intuition and to the
definitions above.

Now let a state s be a join-point matched by aspect A,
that appears inside pointcut occurrence π. We distinguish
between four possible cases of other aspects’ behavior that
can influence the result of weaving A into a system:

1. Aspect B executed before A in π changes a value of
some variable used by A as an input to its computa-
tions.

2. Aspect C executed after A in π changes a value of some
variable updated by a computation of A.

3. Aspect D executed before A in π brings the system to
a state s′ which is not a join-point of A any more.

4. Aspect E executed after A in π invalidates the condi-
tion on which the join-point predicate depended, thus
removing a join-point of A after A has already been
executed at it.

The following analysis enables us to determine whether the
above described influences actually cause an interference:
Let the semantics of A be given by the assumption-guarantee
pair (PA, RA), where RA is the guarantee of A that must
hold in any woven system containing A, provided the system
into which A has been woven satisfied the assumption of A,
PA. Note that A can be woven into a system that does not
satisfy PA, but then RA is not guaranteed to hold in the
resulting system. We denote by Vin(A) a set of variables A
uses as input to its computations, and by Vout(A) - a set of
variables in which A stores the result of its computations.

Case 1. Change Before (CB). In case an aspect B executed
before A at s changes a value of a v ∈ Vin(A), the
result of A’s calculations might differ from the one we
would get if the value of v has not been changed from
the moment the computation arrived at s till the mo-
ment the advice of A was executed. If the guarantee
of A contains a requirement for A’s correctness, and
this requirement is formulated in terms of a specific
connection between the value of v when we arrive at a
join-point and the value of v after the computation of
A is finished, RA will be violated in this case. (This
can happen, for instance, in variant (1) of the Logging
and Encrypting example above: we anticipate that the
message string written to the log is the one created by
the user and readable by the user, but if Encrypting is
executed before Logging, what we actually get in the
log is the encrypted message, because the contents of
the message was changed by the Encrypting aspect.)
Note that if the requirement for correctness of A’s cal-
culations binds the values at the end of A’s execution
only to the values at the beginning of execution of A
(as in variants (2) and (3) of the Logging and Encrypt-
ing example, with Encryption before Logging), it will
not be violated in this case.
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Case 2. Change After (CA). In case some aspect C executed
after A at s changes a value of a v ∈ Vout(A), the guar-
antee of A will be violated if it required preservation of
the result of A’s computation till some future point in
the execution where the value of v is used. (As in vari-
ant (2) of the example, when Logging occurs before
Encryption). Otherwise, as in variant (3) of the ex-
ample with Logging before Encryption, the guarantee
of A will not be influenced. If, indeed, a requirement
for preservation of the value of v till some state use v
is part of A’s guarantee, then part of A’s assumption
should be that in the base system the value of v is not
modified from the actual place of application of A’s
advice till arrival to the use v state.

Case 3. Invalidation Before (IB). In this case there is no
state in A’s pointcut occurrence at which A is exe-
cuted. Such a situation happens, for example, with
Logging and Authorization aspects from Section 4 when
the Authorization aspect is applied before Logging and
the authorization of the user fails, thus preventing mes-
sage sending, and removing the join-point of the Log-
ging aspect. In variant (4) of the Logging specification,
this leads to violation of the guarantee of Logging, as
a message was prepared for sending and should have
been logged, but the Logging aspect never has a chance
to be applied, because the authorization failure finishes
the pointcut occurrence.

Case 4. Invalidation After (IA). In this case A is executed
at some point at which it shouldn’t have been applied,
because when arriving to the point of interest, the
weaver “does not know” that the reason for A’s ap-
plication will be removed by one of the aspects com-
ing after A. If the specification of A requires that it
is applied only if followed by some event in the fu-
ture, and this following event is removed by another
aspect, then the specification of A is violated. This is
the case, for example, in variants (1), (2) and (3) if
the Authorization aspect is applied after Logging and
the authorization of the user fails. Note that in variant
(4), on the other hand, the guarantee of Logging is not
violated if Logging precedes Authorization.

3. SPECIFICATION OF ASPECTS WITH POS-
SIBLY SHARED JOIN-POINTS

3.1 Guided Specification Construction
In order to be able to detect situations in which application
of other aspects at a common join-point may contradict the
specification of the examined aspect, the specification of the
aspect must be expressive enough. The LTL specifications
include:

• “G ϕ” (“Globally”) - meaning that the formula ϕ is
true from the current state on.

• “F ϕ” (“Finally”) - from the current state a state in
which ϕ holds can be reached.

• “O ϕ” (“Once”) - dual to “Finally”: a state satisfying
ϕ occurred earlier in the computation.

• “ϕ U ψ” (“Until”) - a state in which ψ holds is reached
later in the computation, and until then ϕ holds.

• “ϕ W ψ” (“Weak Until”) - almost like “Until”, but a
state in which ψ holds does not have to be reached. In
this case ϕ holds from now on forever.

We say that a computation satisfies an LTL formula if this
formula holds in its first state. From the analysis in Section 2
the need for the following predicates arises:

• at(ptc): assuming that ptc is the predicate defining A’s
pointcut, the predicate at(ptc) means that the compu-
tation has just arrived at a join-point of A. It is useful
for reasoning about what happened in the computa-
tion after the moment it arrived at a possibly shared
join-point. In fact, this is the predicate marking the
arrival join-points of A.

• after prev asp(A): this predicate becomes true at the
moment the weaver has applied all the aspects that
preceded A at the current shadow join-point, accord-
ing to the algorithm of the current weaver. The usage
of this predicate is twofold: First, the user has to refine
the definition of A’s pointcut by taking into considera-
tion the new predicate, after prev asp(A), because now
A should only be applied at states satisfying both ptc
and after prev asp(A), so the pointcut of A becomes
ptc∧after prev asp(A) (which matches the definition
of the set of all the actual join-points of A). Second, the
predicate is used in assumptions added to A’s speci-
fication when the cases of “change before”, “change
after” and “invalidation before” presented in Section 2
are possible, to be able to reason about the behavior
of the base system from the moment its computation
arrives at a join-point of A till the moment A’s advice
is actually executed.

• promise ful(A): this flag is used by the weaver in order
to give each of the aspects sharing a shadow join-point
exactly one chance to be applied at it, as is explained
later in Section 3.2. The flag promise ful(A) is false
when the computation arrives at a shadow join-point,
becomes true at the moment the execution of A’s ad-
vice begins, and remains true until the computation
leaves this shadow join-point.

• asp ret(A): this predicate describes the possible return
states of the aspect. This is needed for some of the
cases below. Typically, the aspect return state has the
same control location as the join-point state (the val-
ues can change, but not the program counter of the
join-point). For the Logging aspect, for example, the
base state is actually not changed, and only the log
(local to the aspect) is modified. However, it does
not have to be so in general. Thus in order to define
the asp ret(A) predicate, the user is proposed a de-
fault predicate, automatically constructed by the sys-
tem as described in [11]. The idea of construction is to
create a system containing representations of all the
possible computations of an aspect from all its pos-
sible initial states, without actually applying the as-
pect to any specific base system (this is done using the
MAVEN tool [9] and some built-in functionality of the
NuSMV [3] model-checker), and then to build a predi-
cate describing all the states of this system that satisfy

46



the return conditions of the aspect. This default pred-
icate can then be manually modified.

Using the above predicates, all the requirements mentioned
in Section 2 can be expressed, though not all the predicates
are needed for all the cases of specification : sometimes some
of them can be abstracted out without loss of precision of
modeling and of subsequent verification. Below we present
a way to express each of the additional requirements.

The construction of the refined specification can be auto-
matic, but user-guided: several guiding questions will be
presented to the user, and the answers to these questions
will determine the new requirements. The construction pro-
cess will thus be as follows:

Step 1. Here we will treat the dependency of our aspect,
A, on its input variables, in order to find out whether the
values of the input variables need to be preserved between
the arrival and the actual join-points of A (in order to be
able to treat the “change before” case from Section 2). The
user is asked the following question:

Q. 1: Are there any input variables of A for which the advice
of A depends on the value as it is at the arrival join-
point and not as it is when the advice of A actually
starts its execution?

• If yes, the user should provide a list of variables for
which such a dependency exists.

• For each variable v in the list, we add the following CB
(for “Change Before”) statement to the assumption of
A:

CB(v) = G[(at(ptc) ∧ v = V ) →
((v = V W (after prev asp(A) ∧ v = V ))]

where V is a logical variable keeping the value of v as
it was at the arrival to the join-point.

• If there are no variables in the list, nothing is added
to the specification of A at this step.

Step 2. Here we treat the case when part of the effect of
the aspect is modification of some state variables, and this
effect should be preserved till some point in the future of
the computation. This is important for the “change after”
case from Section 2. The questions asked here are:

Q. 2: Are there any state variables of the system into which
A is woven the value of which should be preserved af-
ter A’s execution is finished? (For example, variables
modified by A, or variables that are semantically con-
nected to A’s local variables.)

• If yes, the user is asked to fill in a table with two
columns: the first column is the name of the variable,
v, and the second is a state predicate use v describing
the state of the woven system until which the value of

v should be preserved. For example, for variant 2 of
the Logging aspect, that logs messages as they are sent
to the server, the message should not change between
the moment it has been logged and the moment it is
actually sent. Thus the use v predicate will describe
the moment of actual sending of the message (see Sec-
tion 4 for more details). After the table is filled out,
for each variable v with state predicate use v in the
table, we add the following CA (for “Change After”)
statement to the assumption of A:

CA(v) = G[(asp ret(A) ∧ v = V ) →
(v = V W (use v ∧ v = V ))]

where V is a logical variable keeping the value of v as
it was at the end of the execution of A’s advice.

• If there are no variables in the list, nothing is added
to the specification of A at this step.

Step 3. In this step we construct requirements correspond-
ing to the “invalidation before” case in Section 2. Before
the problem of common join-points in modular verification
was considered, there existed an implicit assumption that all
the arrival join-points of an aspect are its actual join-points.
But when a join-point might be shared, this is not neces-
sarily so, because the join-point can be invalidated; thus an
additional explicit assumption of this possibility is needed.
The user is asked the following question:

Q. 3: Does it have to be that each time an arrival join-point
of A is reached, A is eventually executed at it? That is,
is it an error if previously executed aspects invalidate
the condition for A’s application?

• If no, nothing is added to the assumption of A in this
step.

• If the answer was “yes”, the following IB (for “Invali-
dation Before”) statement is added to the assumption
of A:

IB , G[at(ptc) → (ptc W (after prev asp(A) ∧ ptc))]

Step 4. The goal of this step is to enable the verification
process to treat the case of “invalidation after” from Sec-
tion 2. We ask the user the following questions:

Q. 4.1: Does the reason for a state to be A’s join-point lie
in the future of the computation? That is, does A’s
pointcut descriptor refer to any event following the
join-point? For example, is the advice of A a “before”
advice?

• If no, nothing is added to the assumption of A in this
step.

• If the answer was “yes”, the next question is asked:

Q. 4.2: Is it an error if the advice of A is performed, but the
presumably-following event does not follow? (For ex-
ample, because the future computation was changed
by other aspects)
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• If the answer is “no”, nothing is added to A’s assump-
tion in this step.

• If the answer is “yes”, the user is required to pro-
vide a state predicate, foll event, meaning that the
desired following event has just occurred. The user
is then prompted to provide some optional restric-
tions on the values immediately after A’s execution,
the values at the moment the desired event occurs,
and the connections between them (including, for ex-
ample, value preservation). The restrictions should be
given in the form of two predicates: vals after asp and
vals at foll event. The default value for both predi-
cates is true.

• The following IA (for “Invalidation After”) statement
is then added to the assumption of A:

IA , G[(asp ret(A) ∧ vals after asp)

→ F (foll event ∧ vals at foll event)]

After the above automatic modifications, the specification
constructed both captures the requirements of the user re-
garding the desired effect of aspect application, and contains
sufficient assumptions to make the modular verification re-
sults applicable to systems with aspects sharing join-points.

3.2 Influence on aspect modeling
For the purpose of automatic modular verification of aspects
( [9, 11]) and interference detection ( [10]), the following
corrections to the modeling process are performed in order
to obtain a correct weaving of advice models into the generic
representations of suitable base systems:

• As follows from the discussion in Step 3 of Section 3.1
(treating the case of “invalidation before”), the point-
cut definition of A should be refined to be ptc′ = ptc∧
after prev asp(A), so that ptc′ marks actual and not
arrival join-points of A, because only at these points
the advice of A is now executed. This change of the
aspect model is done automatically.

• In order to model an aspect with possibly shared join-
points, we need to be able to model returning of the ad-
vice to the join-point from which its execution started,
so that the same advice will not be applied again at
this point, but the other aspects will be able to ex-
ecute. When several aspects can share a join-point,
the weaver has to give them all exactly one chance
to be applied at it. This can be viewed as fulfilling
a promise to each one of these aspects. Thus a flag
promise ful(A) is added to the variables of the weaver
for each aspect A.

3.3 Full Specification and Verification Process
Given a library of aspects, two things are important for its
usage: correctness of each aspect alone with respect to its
assume-guarantee specification, and interference detection
among the aspects. The question of possibly shared join-
points is already important when the specification of indi-
vidual aspects is defined. At this stage one of the tools for
detection of potential interference at common join-points

detection can be run, e.g. [1], and only if a potential inter-
ference is detected the specification refinement described in
Section 3.1 has to be performed for the potentially interfer-
ing aspects. (If no tool for potential interference detection is
run, all the aspect specifications should undergo the process
from Section 3.1, to ensure the soundness of the verification
process.)

After all the aspects in the library are specified and aug-
mented as described above, existing tools for modular aspect
verification ( [9, 11]) and interference detection ( [10]) should
be run. Modularity of verification here means that the cor-
rectness of the individual aspects and of their combinations
is verified independently of any concrete base system, thus
dividing the whole verification process into two independent
parts: whenever an aspect, or a collection of aspects, are to
be actually woven into a base system, one part of verification
is to check that the base system satisfies the assumptions of
all the aspects given, and the other part is to ensure that all
the aspects are correct w.r.t. their assume-guarantee spec-
ifications, and do not interfere. Such a modularity enables
us to check the correctness and interference-freedom of the
library of aspects off-line and once and for all, and not each
time some aspects are actually woven into a given base sys-
tem, thus the verification effort is very much reduced. An-
other advantage of modular verification is that the models
verified are smaller, as we never need to actually examine a
woven system, and this enhances the model-checking process
(and sometimes even makes it possible).

4. EXAMPLES
We illustrate our analysis and verification approach on a
collection of aspects that can be a part of a communication-
aspects library. The aspects presented here are applicable
for systems with message-passing, and they are variants of
the aspects used as an example in [1]. They are also men-
tioned in Section 2.

Logging aspect (L) logs the message - sending in the sys-
tem. As described earlier, there are four variants of the
logging aspect in the library:

L1: Logging all the sent messages as the user originally
attempted to send them.

L2: Logging all the messages that were actually sent to the
server (the message is logged as it was sent).

L3: Logging the frequency of message sending.

L4: Logging all the attempts to send a message (the mes-
sage is logged as it was originally attempted to be sent
by the user).

Now we need to construct the specifications for the above
variants of Logging aspect. The following predicates and
variables definitions will be used in the construction:

• msg to send : a predicate which is true when a message
is about to be sent, that is, when message sending is
attempted. That is the moment before the message-
sending procedure is actually called, and the parame-
ters to the method call are represented by the variables
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msg c and msg t, containing the two parts of the mes-
sage to be sent: the contents and the creation time,
respectively.

• msg send : a predicate which is true at the moment a
message (with contents msg c and creation time msg t)
is sent.

• in log (< str >) : a predicate that is true if the string
”str” appears in the log.

The pointcut of all the variants of the aspect is the moment
before the message-sending procedure is called. More for-
mally, ptc = msg to send. The guarantees of the aspects
emerge in the usual way from the purpose of each of them,
and are written more formally below. If there would be no
possibility of sharing join-points, the assumption of all the
logging aspect variants would be that if a message is sent,
there indeed was an attempt to send this message (i.e., this
very same message has been passed as a parameter to the
message-sending procedure). More formally,

PL , G([msg send ∧msg c = C ∧msg t = T ]

→ O[msg to send ∧msg c = C ∧msg t = T ])

However, we are aware of the possibility of each of the as-
pects to share a join-point with other aspects, such as En-
cryption and Authorizatoin, thus additional assumptions for
the aspects are constructed according to the procedure from
Section 3.1.

Specification for L1:. A possible guarantee for L1 is:

RL1 , G([at(msg to send) ∧msg c = C∧
msg t = T ∧ F (msg send)]

↔ [F(in log(< X, T >))])

meaning that messages that appear in the log are all the
sent messages, but as they were first attempted to be sent
by the user. (Note that the fact that each message is accom-
panied by creation time information ensures a one-to-one
correspondence between messages and lines in the log.)

The answers for the assumption-construction questions for
L1 are as follows:

Q.1: “Yes”. The aspect depends on the contents and time
information of the message as they were at the join-
point, thus the values of the variables msg c and msg t
should be preserved. Thus, substituting into the tem-
plate CB(v), the following statements are added to the
assumption of L1:

CB(c) = G[(at(msg to send) ∧msg c = C) →
((msg c = C)

W (after prev asp(L1) ∧msg c = C))]

and

CB(t) = G[(at(msg to send) ∧msg t = T ) →
((msg t = T )

W (after prev asp(L1) ∧msg t = T ))]

Q.2: “Yes”. The time information of the message should
be kept intact till the moment the message is actually
sent. There is one entry in the table: the variable
msg t, matched by the msg send predicate. Thus the
addition to the aspect assumption at this stage is:

CA(t) = G[(asp ret(L1) ∧msg t = T ) →
((msg t = T ) W (msg send ∧msg t = T ))]

Q.3: “No”. If the message will not be sent, it should not
appear in the log, thus the advice of L1 should not be
applied for it. Nothing is added to the assumption of
L1 at this stage.

Q.4.1: “Yes”. The advice of L1 is a “before” advice.

Q.4.2: “Yes”. It is an error if a message that is not sent
and will not be sent appears in the log. The desired
following event is the event of sending the message (de-
fined by its creation time only, as that is what matters
for the purpose of L1). Thus foll event = msg send,
vals after asp = (msg t = T ) and vals at foll event =
(msg t = T ). Substituting into the IA template, we
obtain the following addition to L1’s assumption:

IA = G[(asp ret(L1) ∧msg t = T ) →
F (msg send ∧msg t = T )]

Specification for L2:. A possible guarantee for L2 is:

RL2 , G([F(msg send ∧msg t = T ∧msg c = C)] ↔
[F(in log(< C, T >))])

meaning that a message appears in the log if and only if it
has been, or will be, sent.

The construction of the assumption for L2 is performed sim-
ilarly to that of L1, with only two differences: An additional
variable, msg c, should be preserved after the aspect finishes
its computation (affecting the CA(v) and IA statements),
and no values from arrival join-point should be kept (mak-
ing CB(v) true). Together we obtain that the addition to
the assumption of L2 as a result of the guided specification
construction procedure consists of the following statements:

CA(c) = G[(asp ret(L2) ∧msg c = C) →
((msg c = C) W (msg send ∧msg c = C))]

CA(t) = G[(asp ret(L2) ∧msg t = T ) →
((msg t = T ) W (msg send ∧msg t = T ))]

and

IA = G[(asp ret(L2) ∧
msg c = C ∧msg t = T ) →
F (msg send ∧msg c = C ∧msg t = T )]

Specification for L3:. A possible guarantee for L3 is:

RL3 = G([F(msg send ∧msg t = T )] ↔
[F(in log(< T >))])
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meaning that the log contains all the creation-times of the
sent messages.

The construction of the assumption for L3 is almost the
same as for L2, except for the fact that the value of msg ts c
need not be preserved after the aspect finishes its computa-
tion (thus giving the same CA(t) and IA statements as for
L1). Thus the addition to the assumption of L3 is

CA(t) = G[(asp ret(L3) ∧msg t = T ) →
((msg t = T ) W (msg send ∧msg t = T ))]

and

IA = G[(asp ret(L3) ∧msg t = T ) →
F (msg send ∧msg t = T )]

Specification for L4:. A possible guarantee for L4 is:

RL4 , G([at(msg to send) ∧msg c = C ∧msg t = T ]

↔ [F(in log(< C, T >))])

meaning that the log contains exactly the messages attempted
to be sent by the user.

The construction of the assumption for L4 is almost the
same as for L1, with the following differences only:

• The answers to Question 2.1 and Question 4.1 are neg-
ative, as the logged message does not have to be sent,
so CA = true and IA = true in this case.

• The answer to Question 3 is positive, as all the message
sending attempts should be logged, including those
aborted because of authorization failure.

Thus the additions to the assumption of L4 are:

CB(c) = G[(at(msg to send) ∧msg c = C) →
((msg c = C) W

(after prev asp(L4) ∧msg c = C))]

CB(t) = G[(at(msg to send) ∧msg t = T ) →
((msg t = T ) W

(after prev asp(L4) ∧msg t = T ))]

and

IB = G[at(msg to send) → (msg to send W

(after prev asp(L4) ∧msg to send))]

Encrypting aspect (E) is responsible for encrypting mes-
sages before sending. E should guarantee that each time a
message is sent, it is encrypted. In fact, there is more to E:
each time a message is received, it is decrypted. But this
part is irrelevant to our example, so we’ll ignore it here. E’s
guarantee can be written as:

RE , G(msg send → encrypted(msg c))

where the predicate encrypted(msg c) means that the con-
tents of the sent message are encrypted. The assumption

of E, constructed by the procedure in Section 3.1, emerges
from the fact that the encrypted message value should be
preserved till (and if) it is actually sent:

PE = CA(msg c) = G[(asp ret(E) ∧msg c = C) →
(msg c = C W (msg send ∧msg c = C))]

Authorization aspect (A) ensures that a message is sent
to the server only if the current user has the needed permis-
sions to communicate with the server. A’s guarantee can
be

RA , G(msg send → permit usr send)

where the predicate permit usr send means that the user has
enough permissions to send the message. When constructing
the assumption of A, all the answers to the questions asked
happen to be negative, thus A does not need to assume
anything about the base system, and we can take

PA , true

After the aspects are specified as above, if the usual verifi-
cation procedure is applied, several cases of interference will
be detected, as shown in Figure 1. A cell in the table cor-
responding to aspects pair < M ; N > can have one of the
following values:

• “—” means that there is no interference when weaving
first M and then N into any appropriate system;

• “X” - if the check is irrelevant, for example, we do not
check interference among the aspect and itself. In our
case we also do not check interference between different
variants of the logging aspect, because we assume that
only one of these aspects is woven into a system each
time.

• Otherwise, there is interference among the two aspects
if M is woven before N, and the cause of the interfer-
ence is written in the cell, according to the classifica-
tion from Section 2: “CB” stands for Change Before,
“CA” - for Change After, “IB” - for Invalidation Be-
fore, and “IA” - for Invalidation After.

   second 
 
first 

E A L1 L2 L3 L4 

E X --- CB --- --- CB 
A --- X --- --- --- IB 
L1 --- IA X X X X 
L2 CA IA X X X X 
L3 --- IA X X X X 
L4 --- --- X X X X 

 

Figure 1: Interference checks summary.

For example, the cell < E, L1 > is marked by CB, mean-
ing that the Encryption aspect, if woven first, invalidates
the assumption of the first variant of Logging, and that the
violated part of the assumption is related to the “change
before” case from Section 2: changing parameter values be-
tween arrival and actual join-points of L1. And the cell
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< L1, A > is marked by IA as the Authorization aspect,
when woven after the first variant of Logging, invalidates
the part of Logging specification related to the “Invalida-
tion After” case from Section 2: removing a join-point of
the aspect after its advice has already been applied.

5. CONCLUSIONS
This paper has concentrated on a problematic issue of as-
pect semantics: the possible interference that can arise from
shared join-points. As an aid to programmers, an inter-
active semi-automatic augmentation of the specification is
suggested. The questions asked and the results of formal
verification should help the user understand the fine points
of such interactions, and how they could affect the correct-
ness of their aspect systems.
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ABSTRACT
Abstraction is an operation of software specifications widely
used in formal development and verification. One of the
desirable features of the operation is compositionality. It
would make abstraction easier to deal with if a system can
be abstracted by composing the individual abstractions of
the components of the original system. It is considered
that compositional abstractions of aspect-oriented software
would be useful because the base system and the aspects
can be individually abstracted. However, there are only a
few research results dealing with these operations consis-
tently because the relation between abstraction and aspect
weaving is logically too complicated. This paper proposes
a formal model to solve the difficulty of compositional ab-
straction of aspect-oriented software. Our model is based
on an enhanced version of the equational abstraction ap-
proach in rewriting logic that is an algebraic specification
framework. We first validate our model by applying it to an
example of state machine and next describe our approach to
compositional abstraction.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—object-oriented design methods; D.2.4 [Software En-

gineering]: Software/Program Verification—formal meth-
ods; F.3.2 [Logics and Meanings of Programs]: Seman-
tics of Programming Languages—algebraic approaches to se-
mantics

General Terms
Design, Theory, Verification

Keywords
Abstraction, State Machines, Rewriting Logic, Composi-
tionality

1. INTRODUCTION

Aspect-oriented software development (AOSD) is spread-
ing quickly and widely these days. It is considered as pro-
viding a modularization facility to large-scale practical pro-
grams from a direction different from the traditional ap-
proaches such as structured, object-oriented, and component-
based ones. In AOSD, cross-cutting concerns are extracted
from the specifications of both the static structures and the
dynamic behaviors and are encapsulated as aspects. In this
paper, we focus on behavioral specifications. The behaviors
of aspect-oriented software are so complicated that it is not
easy to inspect such software manually if it has a practical
scale and complexity. This is because formal models and for-
mal verification techniques for aspect-oriented software are
desired and many approaches [9, 1, 10, 20, 22, 21, 5, 13, 12,
11] are proposed.

The desirable features of formal models of modularization
approaches include facilities of modular or compositional
reasoning and verification. We mean by the word “com-
positional” that if we check some property for each module
individually we can conclude that the entire system satisfies
the same or another property. In this paper, we focus on the
abstraction relation between behavioral specifications used
in efficient model checking, which is a verification technique.
Abstraction means the existence of a mapping between the
state spaces of two state-transition behavior models that
preserves the transition relations and some properties satis-
fied by the states. The model of the target of the mapping is
called the abstract model. The significance of this relation
comes from the following fact. If an abstract model satisfies
a property written in some temporal logic, the refined model
also satisfies the property. From this viewpoint, any exist-
ing approaches are insufficient. Only Jagadeesan et al. [11]
deal with the (bi)simulation relation between specifications
that is relevant to abstraction in a compositional manner.
However, it is not easy to see if two given specifications have
the relation or not.

In this paper, we propose a formal model of aspect-oriented
software based on an algebraic specification framework called
rewriting logic [14]. We also present an approach to specify
abstraction relations on the basis of the notion of equational
abstraction [15]. Rewriting logic is a logical framework in
which we can derive equality and rewriting relations between
terms from a set of axioms called a rewrite theory consisting
of equations and rewrite rules. As a computation model, a
state of a system is represented by an equivalence class of
terms with respect to the equality, and transitions are repre-
sented by rewriting relations between the terms. Equational
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abstraction is a very simple framework to create an abstract
model by adding a set of equations. The projection func-
tion from the terms representing the system state to their
equivalence classes is the abstraction mapping. In our ap-
proach, the behaviors of the base system and the aspect are
individually modeled by the rewriting relations of the state
terms of each system in one rewrite theory. We can create
the rewrite theory that models the system in which the as-
pects are woven into the base system. Then the union of the
sets of equations between the base systems and the aspects,
respectively, can produce an abstraction mapping between
the entire systems in a consistent way. As a result, for exam-
ple, our approach enables us to carry out abstraction of an
aspect-oriented system specifications by abstracting the base
system and the aspect specifications individually as shown in
Figure 1. This feature would be especially useful for aspect-
oriented software because the entire specifications tend to
become much larger and much more complicated than the
base system and the aspect specifications. Our approach
would reduce the cost of abstracting the entire system to
the total of the costs of abstracting each components.

Figure 1: Individual Abstraction of Base System and

Aspect

This paper is organized as follows. In Section 2 we sum-
marize the background information of our approach consist-
ing of the state machine model of aspects for compositional
model checking and rewriting logic. Section 3 presents our
aspect modeling method and justify of our model by demon-
strating that we can model an existing formal model cor-
rectly. Section 4 describes the equational abstraction in our
approach and shows that our model can realize composi-
tional abstraction. Section 5 compares our proposal with
the related research efforts. Section 6 presents some con-
cluding remarks and future work.

2. BACKGROUNDS
In this section, we summarize the background informa-

tion of our approach consisting of the state machine model
of aspects for compositional model checking and rewriting
logic.

2.1 State Machine Model of Aspects
A state machine M is a tuple (S,S0,→, L) consisting of

the set of the states S, the set of the initial states S0 ⊆ S, the
transition relation →⊆ S × S, and the labeling function L :

S → 2AP where AP is the finite1 set of atomic propositions.
We assume that different truth values can be assigned to
each atomic proposition in AP at different states in S. For
any state s, L(s) is the set of atomic propositions that are
true at s. This definition of a state machine corresponds
to a Kripke structure in the literature [7] enhanced with
the initial states. “→” must be total, that is, ∀s ∈ S ∃s′ ∈
S (s → s′). For general binary relation →⊆ S × S that is
not total, we can create a total relation →•=→ ∪{(s, s)|s ∈
S,¬∃s′ (s → s′)} that is an extension of →.

The following definitions form a simplified version of Katz
and Katz [12].

Definition 1. An aspect machine A over a set of atomic
propositions AP is a tuple (SA, SA

0 , SA
ret ,→A, LA) where SA

is the set of the states, SA
0 ⊆ SA is the set of the initial

states, →A⊆ SA × SA is the transition relation, LA : SA →
2AP is the labeling function, and SA

ret ⊆ SA is the set of re-
turn states such that ∀s ∈ SA

ret∀s
′ ∈ SA (s → s′ implies s =

s′).

Definition 2. A pointcut descriptor ρ over a set of atomic
propositions AP is a predicate on finite sequences of labels.
This means that ρ(λ) is a boolean value for each λ = l0l1 . . . ln
where li ⊆ AP (i = 0, . . . , n).

Definition 3. For a state machine M = (S, S0,→, L)
and a (finite or infinite) state sequence s0s1 . . . (sn),
label(s0s1 . . . (sn)) is a label sequence L(s0)L(s1) . . . (L(sn)).
A pointcut descriptor ρ matches a finite state sequence
s0s1 . . . sn if and only if ρ(label(s0s1 . . . sn)) is true .

Definition 4. Let B = (SB , SB
0 ,→B, LB) be a state ma-

chine over a set of atomic propositions APB, ρ be a point-
cut descriptor over APB, and “pointcut” be a symbol that
is not an element of APB. Another state machine Bρ =
(SBρ , SBρ

0 ,→Bρ , LBρ) is said to be a pointcut-ready ma-
chine for B and ρ if and only if the following conditions
hold.

• SBρ ⊇ SB

• LBρ : SBρ → 2(APB∪{pointcut})

• ∀s0, . . . , sk ∈ Bρ (s0 →Bρ s1 →Bρ . . . →Bρ sk and s0 ∈

SBρ

0 implies (ρ(label(s0s1 . . . sk)) if and only if pointcut ∈
LBρ(sk)))

• ∀l ∈ (2APB )ω ((∃πBρ : path in Bρ (label(πBρ) = l)) if
and only if (∃πB : path in B (label(πB) = l)))

where for a set S, Sω is the set of infinite sequences of
elements of S.

Definition 5. Suppose the following constructs are given.

• An aspect machine A = (SA, SA
0 , SA

ret ,→A, LA) over
AP

• A pointcut descriptor ρ over AP

• A state machine B = (SB, SB
0 ,→B , LB) called a base

machine over APB ⊇ AP and its pointcut-ready ma-
chine Bρ = (SBρ , SBρ

0 ,→Bρ , LBρ)

1AP may be an infinite set in general. However, we deal with
only finite sets as AP in order to enable M to be represented
in rewriting logic.
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Then we define as follows the augmented machine B̃ =

(SB̃ , SB̃
0 ,→B̃, LB̃) in which the aspect machine is woven into

the base machine.

• SB̃ = SBρ ∪ SA

• SB̃
0 = SBρ

0

• →B̃= {(s, t) ∈→Bρ |pointcut /∈ LBρ(s)}∪ →A

∪{(s, t) ∈ SBρ × SA
0 |pointcut ∈ LBρ (s),

LBρ(s) ∩AP = LA(t)}
∪{(s, t) ∈ SA

ret × SBρ |LA(s) = LBρ(t) ∩ AP}

• LB̃ = LBρ ∪ LA as sets of pairs

Note that we omitted the treatment of fair states because
we do not mention model checking in this paper.

2.2 Rewriting Logic
Next we explain rewriting logic. It can be summarized as

follows.

• The most primitive construct of rewriting logic is a
term that is a syntactic representation of a data or
a state. Each term may have sorts representing data
types.

• A logical formula of rewriting logic is an equality rela-
tion or a rewriting relation between terms. An equiv-
alence class of terms represents a state of a system. A
transition between states is represented by the rewrit-
ing relation between equivalence classes induced from
the one between terms. For example, suppose [t1] and
[t2] represent two states where [t] denote the equiv-
alence class t belongs to. Then a rewriting relation
between terms t1 → t2 induces [t1] → [t2] representing
a transition from [t1] to [t2].

A term is composed by symbols for constants, variables,
and operators that represent primitive data, placeholders for
terms used to express generic equations or rewrite rules, and
data structure constructors or operations on data, respec-
tively. A constant symbol is usually treated as an operator
symbol with no arguments. For example, f(a, x) is a term
if a is a constant symbol, x is a variable symbol, and f is an
operator symbol with two arguments. Mixfix operators such
as “+ − × /” for numbers can be treated by the placeholder
symbol “ ”. For example, + (2, 3) can also be written as
2 + 3 by replacing the two “ ”s with the two arguments 2
and 3. A term is said to be closed if it includes no variable
symbols.

Rewriting logic usually deals with sorts representing data
types. It can be decided if a term has a sort or not. If a
term t has a sort s, we call t a term of the sort s. Although
it is recently usual to assign multiple sorts to one term at
the same time, we do not deal with such cases in this paper
only for simplicity. However, it would be not difficult to
extend our approach to such general cases. The assignment
of sorts to terms is derived from the initial assignment of
sort information to the variable and the operator symbols.
As for the example of the term f(a, x) above, if a and x
has the sorts s1 and s2 respectively and f is defined as an
operator producing a term of the sort s from two arguments
with the sorts s1 and s2, f(a, x) has the sort s. We write
these definitions as a : s1, x : s2, and f : s1 × s2 → s. We

also write Term(s) for the set of the terms having the sort
s.

The logical formulae of rewriting logic are equality re-
lations or rewriting relations between terms. They respec-
tively are expressed by the symbols“=”and“→”and derived
from axioms of equality and rewriting relations according to
some inference rules. Each type of axioms is called equations
and rewrite rules respectively. A (conditional) equation is a
logical formula “t = t′ if t1 = t′1, . . . , tn = t′n” where t, t′,
ti, and t′i(i = 1, . . . , n) are terms. A (conditional) rewrite
rule is a formula “t → t′ if t1 ⇒ t′1, . . . , tn ⇒ t′n” where
t etc. are terms in the similar way and ⇒ denotes = (the
equality symbol) or → (the rewriting relation symbol). The
both sides of each “=” and “→” need to have the same sort.
The inference rules are described as follows.

Reflexivity: For any term t, t ⇒ t

Symmetry: For any two terms t, t′, if t = t′, t′ = t

Congruence: For any operator f , t1 ⇒ t′1, . . ., and tn ⇒ t′n
altogether imply f(t1, . . . , tn) ⇒ f(t′1, . . . t

′
n), where all

⇒’s coincide (= or →).

This rule expresses that each subterm can be rewritten
individually.

Replacement: For any axiom“t(x1, . . . , xn) ⇒ t′(x1, . . . , xn)
if s1 ⇒ s′1, . . . , sn ⇒ s′n”,

s1(w̄/x̄) ⇒ s′1(w̄/x̄), . . ., and sn(w̄/x̄) ⇒ s′n(w̄/x̄)
altogether imply t(w̄/x̄) ⇒ t′(w̄/x̄), where w̄ denotes
a sequence of terms w1, . . . , wn and w̄/x̄ denotes the
componentwise substitution of xi’s to wi’s.

This rule produces relations instantiated from the ax-
iom by substituting the variables x̄ to terms w̄ if wi’s
satisfy the conditions.

Note that the original Replacement rule in the litera-
ture such as [14] follows from the above rule, the Con-
gruence rule, and the Transitivity rule.

Equality and Transitivity: t1 ⇒ t2 and t2 ⇒ t3 alto-
gether imply t1 ⇒ t3, where all ⇒’s coincide (Transi-
tivity), or one of the ⇒’s in the premise is = and the
other two are →’s (Equality). Note that the original
Equality rule is derived by applying the above Equality
rule twice for both sides of →.

An axiomatic system of rewriting logic is called a rewrite
theory. A rewrite theory is a tuple (S, Σ, V, E, R) where
each component represents the set of sorts, the signature
(the initial assignments of the operator symbols to their sort
information), the initial assignments of the variable symbols
to the sorts, the set of equations, and the set of rewrite rules,
respectively.

In order to describe concrete rewrite theories, we use the
notation of the Maude language [8] in which sorts, signa-
tures, variable symbols, equations, and rewrite rules are de-
clared with the keywords sort, op, var, eq, and rl2, or their
plural forms such as sorts, respectively. The following de-
scriptions illustrate an example of rewrite theory.

2We also use eq and rl for conditional axioms instead of
ceq and crl used in the literature for simplicity.
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sorts S1, S2 .

vars x, y : S1 .

op c : -> S1 .

op f : S1 -> S2 .

op g : S1 S2 -> S2 .

eq g(c, f(c)) = f(c) .

rl g(x, f(y)) -> f(y) if f(x) = f(c) .

Then we explain the relationship between the state ma-
chine model and rewriting logic below as the basis of equa-
tional abstraction.

In fact, a rewriting relation of rewriting logic does not ex-
actly correspond to a transition of a state machine model
because of the Transitivity inference rule allowing compo-
sitions of rewriting relations. Therefore we need a precise
counterpart concept for a transition in rewriting logic. We
define a one-step rewriting relation t →1 t′ as a rewriting
relation limited to one of the following cases.

• The last inference rule used in deriving the relation is
either Equality or Replacement. The condition part of
Replacement may contain any rewriting relations.

• The last inference rule used in deriving the relation
is Congruence where only one assumption ti → t′i is
one-step and all the others consist of identical terms
(tj = t′j for any j 6= i).

For a sort s, we write →1 ∩(Term(s)× Term(s)) as →1
s.

We can create a state machine from a rewrite theory as
follows. Let R be a rewrite theory including the following
information.

• The following theory BOOL:

sort Bool .

ops true, false : -> Bool .

op not_ : Bool -> Bool .

op _and_ : Bool Bool -> Bool .

as well as the equations about boolean algebras. For
example,

var X : Bool .

eq not(false) = true .

eq X and false = false .

• The specifications of the initial states and the labeling
operator:

sorts State, AP .

op init : State -> Bool .

op _|=_ : State AP -> Bool .

where State and _|=_ can be replaced with any sort
and any similar operator respectively. For a term rep-
resenting a state s, init(s) = true means that s rep-
resents an initial state.

In addition, we assume that there are only a finite number of
closed terms for the sorts State and AP. Then the state ma-
chine K(R, State, _|=_) is defined as (Term(State)/=, S0,
(→1

State)
•, L_|=_), where:

• S0 = {[s] (the equivalence class to which the term s
belongs) |s : closed term of the sort State and init(s)
= true}.

• L_|=_([s]) = {p : closed term of the sort AP | ( s |=

p ) = true}.

3. ASPECT MODEL IN REWRITING LOGIC
We define the model of aspect-oriented behavioral speci-

fications in rewriting logic in the following direction.

• We first define a behavioral specification rewrite the-
ory (BSRT) to model behavioral specifications in gen-
eral. A BSRT treats the behaviors as evolutions of
terms called configurations by the rewriting relations.
A configuration consists of an environment and a con-
tinuation. An environment is an assignment of values
to the variables of the specifications (not the variable
symbols of the rewrite theory) at each moment. A
continuation is an expression of a behavioral specifi-
cation representing the behaviors to be executed just
after the moment.

For example, suppose (x : 0) and (x = 1) are terms
representing an environment and a continuation re-
spectively. The former term means that the value 0

is assigned to the variable x. Note that x is treated
as a constant symbol in rewriting logic as well as 0

and 1. The latter denotes the behavior that stores
the value 1 to x and terminates. Then the config-
uration config((x : 0), (x = 1)) is rewritten to
config((x : 1), end) in which end denotes the ter-
mination of the behaviors.

• We then define an aspectual rewrite theory (ART) as
a BSRT specifying the base system and the aspects.
The behavioral specifications of the base system and
the advices are separately defined in one ART.

• An ART consists of terms called augmented configura-
tions. An augmented configuration represents a state
of the entire system in which the aspects are woven
into the base system. Each augmented configuration
consists of the following three elements: (1) the cur-
rent system state, (2) the current continuation of the
entire system, and (3) the data indicating either the
aspect whose advice is currently executed or the fact
that the base system is currently executed. The part
of the current continuation of the entire system may
be a behavioral specification of the base system or one
of the advices.

• The actual specifications of the entire system in which
the aspects are woven are given by an extension of the
ART, called augmented ART. The extended part con-
sists of rewrite rules. Some of them specify the behav-
iors at the beginnings of and at the ends of the advice
executions. The remaining rules are those transformed
from the specifications of the base system and the ad-
vice behaviors.

• An ART defines the join points by specifying the start-
ing point of an advice execution and the point at which
the advice execution finishes and the control returns to
the base system. Many aspect-oriented languages in-
cluding AspectJ specifies join points by pointcuts and
advice types (before, after, around, etc.).

• The system specified by an ART can have multiple
aspects. However, we assume that the system can ex-
ecute only one advice at a time. Thus we do not deal
with aspect compositions. On the other hand, multi-
ple aspects may be woven at the same join point. Our
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model assume that the order of weaving is nondeter-
minisitic. This may lead to some type of the aspect
interference issues [16]. We assume these restrictions
to make our model as simple as possible and able to
deal with the approach of [12]. As described in Sec-
tion 6, it would be possible to relax this restriction so
as to, for example, make the model deal with aspect
compositions.

• In order to represent the dynamic join point model, an
ART specifies the conditions to detect the join points
by boolean-valued functions over a list of augmented
configurations representing an execution trace.

We define BSRTs as follows.

Definition 6. A rewrite theory R satisfying the follow-
ing conditions is called a BSRT.

• R protects BOOL. The word protects means that R add
no other terms and no other equality relations than
those inferred only from BOOL.

• R has the following sorts.

– ENV for environments.

– BEH for behavioral specifications.

– CONFIG for configurations. A configuration here
consists of a pair of an environment and a behav-
ioral specification representing the current contin-
uation.

• R has the operator config : ENV BEH -> CONFIG that
is the only operator producing a term of the sort CONFIG.
In addition, R is CONFIG-encapsulated [15], meaning
that CONFIG only appears as the codomain of a single
operator (in this case, config as shown above) and
does not appear as an argument in any operator in R.

As the opposite direction of creating K(R, State, | = )
from R, we can create a rewrite theory R(M) from a state
machine M = (S, S0,→, L) as follows.

• R(M) include BOOL.

• R(M) include the following constructs.

sorts MState, AP, APS, Env, BEH, CONFIG .

var S, S’ : MState .

var P : AP .

op initState : MState -> Bool .

op member : AP APS -> Bool .

op lbl : MState -> APS .

op d : -> Env .

op beh : MState -> BEH .

op config : Env BEH -> CONFIG .

op _|=_ : CONFIG AP -> Bool .

op trans : MState MState -> Bool .

eq (config(d, beh(S)) |= P) = member(P, lbl(S)) .

rl config(d, beh(S)) -> config(d, beh(S’))

if trans(S, S’) = true .

where

– The newly introduced sorts represent the states
of the machine
(MState) and the sets of atomic propositions (APS),
respectively. We use only meaningless values (usu-
ally only one constant d) as environments. This
is because the actual states are stored in the sec-
ond argument of config. However, we can also
use a meaningful sort or even MState as the en-
vironment sort instead of Env. If we use MState,
the environment and the behavior part of the con-
figuration changes simultaneously like config(S,

beh(S)) -> config(S’, beh(S’)).

– The operators represent the initial state predi-
cate (initState), the membership function for
APS (member), a representative dummy environ-
ment (d), the system configuration constructor
(config), the labeling function (_|=_), and the
transition relation (trans) respectively.

• For each state s ∈ S, each atomic proposition p, and
each set of atomic propositions ps, constant symbols
(operator symbols with no arguments) op s :

-> MState, op p : -> AP, and op ps : -> APS, re-
spectively, are included in R(M).

• For each atomic proposition p and each set of atomic
propositions ps, the equation eq member(p, ps) = true

or = false for the same left-hand side (LHS) accord-
ing to the membership relation, is included in R(M).
Note that we need only a finite number of these equa-
tions because the number of atomic propositions, and
therefore the number of the sets of them, are finite.

• For each state s ∈ S and each set of atomic proposi-
tions ps, the equation eq lbl(s) = ps is included in
R(M), if L(s) = ps.

• For each transition s → s′, an equation eq trans(s, s′)
= true . is included in R(M).

It is straightforward to see that R(M) is a BSRT and
K(R(M), CONFIG, _|=_) is equivalent to M .

Next, we define ARTs as a specific type of BSRTs.

Definition 7. An ART is a BSRT satisfying the follow-
ing conditions.

• An ART has the following sorts.

– ASP for aspects and a constant indicating the base
system.

– AC for augmented system configurations. An aug-
mented system configuration consists of a tuple of
the terms of the sorts ENV, BEH, and ASP, respec-
tively.

– LAC for lists of augmented system configurations.
In detail,R includes the operations op nil : ->

LAC and op [_|_] : AC LAC -> LAC. A list is
treated as an execution trace used to judge the
point in which an aspect is woven.

– TRC for encapsulated terms of the sort LAC.

• An ART also has the following operators.
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– base : -> ASP is the constant indicating that
the base system is currently executed when it is
used in an augmented configuration.

– isBase : ASP -> Bool is the predicate that be-
comes true if and only if the argument is base. If
this is false, the argument is treated as an actual
aspect. Therefore such a term must not be equal
to base.

– adv : ASP -> BEH produces the behavioral spec-
ification of the advice included in the aspect.

– as : LAC ASP -> Bool is a predicate that be-
comes true in the following two cases. In the first
case, the second argument is an aspect whose ad-
vice can be started immediately after the base
system execution represented by the trace that is
the first argument. In the second case, the second
argument is base and no advices should be started
immediately. as stands for “aspect selection”.

– rtn : CONFIG -> Bool is a predicate that be-
comes true when the argument is a state in which
the advice execution finishes and the system re-
turns to the base system execution (rtn stands
for “return”).

– rstrt : LAC BEH -> Bool becomes true if and
only if the second argument represents a base sys-
tem continuation after the advice execution is fin-
ished (rstrt stands for “restart”).

– ac : ENV BEH ASP -> AC is the only operator
producing the terms of the sort AC.

– trc : LAC -> TRC is the only operator produc-
ing the terms of the sort TRC.

• Any term t of the sort CONFIG satisfying rtn(t) =

true cannot be rewritten without using the Equality
inference rule. This means that the advice cannot be
executed beyond the point to return to the base sys-
tem.

• There are no equations and no rewrite rules of the
terms of the sorts AC and LAC.

We can add the constructs of the behavioral specifications
needed to the entire system in which the aspect is woven into
the base systems.

Definition 8. Let R be an ART. We define R+ as a
rewrite theory in which the following constructs are added to
R.

• The following specifications.

var E : ENV .

vars B, B’ : BEH .

var A : ASP .

rl trc(L)

-> trc([ac(E, B’, base) | L])

if L = [ac(E, B, A) | _],

isBase(A) = false,

rtn(config(E, B)) = true,

rstrt(L, B’) = true .

rl trc(L)

-> trc([ac(E, adv(A), A) | L])

if L = [ac(E, B, base) | _],

as(L, A) = true,

isBase(A) = false .

• The following rewrite rules for each rewrite rule
“config(e, b) -> config(e′, b′) if c”(c is the sequence
of conditions) in R:

rl trc(L) -> trc([ac(e′, b′, base) | L])

if L = [ac(e, b, base) | _],

as(L, base) = true, c .

rl trc(L) -> trc([ac(e′, b′, A) | L])

if L = [ac(e, b, A) | _],

isBase(A) = false, rtn(config(e, b)) = false,

c .

In this definition, the system behaviors are represented by
the rewriting relation between execution traces encapsulated
by the operator trc. However, because each rewriting step
only adds a new term of the sort AC to the head of the list
(representing the last of the trace), the step can be seen as a
rewriting step for the augmented system configuration. The
aim of dealing with the traces is the detection of the join
points.

The four different types of the rewriting relations described
in the above definition represent the following behavior types
respectively: (1) restarting the base system behavior execu-
tion immediately after the advice execution is finished, (2)
starting to execute the advice, (3) continuing the base sys-
tem execution, and (4) continuing the advice execution.

The theorem below justifies our model with respect to
the state machine model via the construction of the rewrite
theory R(M) from a state machine M .

Definition 9. Suppose B be a state machine, ρ be a
pointcut descriptor, both of which are over a set of atomic
propositions APB, and A be an aspect machine over AP⊆APB.
We define an ART A(B, ρ,A) by adding the needed specifi-
cations to R(B). The details are presented in Appendix A.

Theorem 10. In addition to the assumptions of Defini-
tion 9, suppose Bρ

0 be a pointcut-ready machine for B and
ρ. Then we have a pointcut-ready machine Bρ and the aug-
mented machine B̃ for Bρ and A satisfying the following

condition if we write ˜̃B for K(A(B, ρ,A)+, TRC, | = ).

∀l ∈ (2APB )ω ((∃πB̃ : path in B̃ (label(πB̃) = l)) if and

only if (∃π ˜̃B
: path in ˜̃B (label(π ˜̃B

) = l)))

An outline of the proof is given in Appendix B.

4. EQUATIONAL ABSTRACTION IN ASPECT
MODEL

Meseguer et al. proposed the equational abstraction ap-
proach as a model of abstraction for efficient model checking
of rewriting logic specifications. This notion of abstraction
is given in [6].

If we have a state machine M = (SM , SM
0 →M , LM ) and

an equivalence relation ≡ on SM , we can create a quotient

state machine M/ ≡= (SM/≡, S
M/≡
0 ,→M/≡, LM/≡) by the

following definitions. We write [s] ∈ SM/ ≡ as the equiva-
lence class of s ∈ SM .
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• S
M/≡
0 = SM

0 / ≡

• For s, s′ ∈ SM , [s] →M/≡ [s′] if and only if there exist
s0 ∈ [s] and s′0 ∈ [s′] satisfying s0 →M s′0.

• LM/≡([s]) = ∩s0∈[s]LM (s)

We say that ≡ is strict if s ≡ s′ ∈ SM implies LM (s) =
LM (s′). The projection mapping [·] : SM → SM/ ≡ is called
an abstraction mapping from M to M/ ≡. An abstraction
mapping in the sense of [6] is a strict one. In this case,
the satisfaction relation of some temporal logic is preserved
by M/ ≡, if we define the satisfaction relation in the usual
way presented in [6]. If M ′ = (SM′ ,→M′ , LM′) is a state
machine isomorphic to M/ ≡, that is, there is a bijection
between A′ and SM/ ≡ preserving the transition relations
and the labeling function, we also say M ′ is an abstract
structure of M .

Then we describe the notion of equational abstraction that
is a simplified version of [15].

Theorem 11. Let R = (S, Σ, V, E, R) be a rewrite theory
including the specifications needed to create K(R, State, | = ).
In addition, let E′ be a set of conditional equations of the
terms of the sort State and R ∪ E′ = (S, Σ, V, E ∪ E′, R).
We define an equivalence relation ≡E′ on Term(State)/ =R

by
[t] ≡R [t′] if and only if t = t′ in R∪E′

Then, if the following conditions hold, K(R, State, | = )/ ≡R
is equivalent to K(R ∪E′, State, | = ).

• R is State-deadlock free, that is, (→1
State)

• =→1
State.

In other words, there is at least one one-step rewriting
starting from any term of the sort State.

• R is State-encapsulated.

• R ∪ E′ protects BOOL.

Then we apply equational abstraction to our aspect model.
Suppose thatR is an ART with the sort of the atomic propo-
sitions AP and the satisfaction relation predicate op _|=_ :

TRC AP -> Bool. It is clear that R+ and R+ ∪ E′ is TRC-
encapsulated. Therefore, ifR+ is TRC-deadlock free, E′ leads
to an abstraction of K(R+, TRC, | = ).

The compositionality of the equational abstraction of our
aspect model is expressed by the following fact.

Theorem 12. R+ ∪E′ and (R∪E′)+ are the same.

The proof is straightforward by observing that augmentation
from R to R+ does not affect the equations.

Let ≡ be the equivalence relation induced by E′. If we
create Term(TRC)/ ≡ and →1

TRC from R+ ∪E′, we can com-
plete a state machine for the abstraction of the entire system
by adding a labeling operator _|=_. Term(CONFIG)/ ≡ and
→1

CONFIG created from R∪E′ lead to a state machine includ-
ing the abstract base system behaviors and the abstract ad-
vice behaviors separately. Therefore the coincidence of the
two rewrite theories means the weaving and the abstraction
operation are commutative. This fact represents the com-
positionality of abstraction in our approach.

5. RELATED WORK
There are many research efforts about formal behavior

models of aspects [9, 1, 10, 20, 21, 5, 13, 12, 11, 4]. Some

of them deal with some features of the approach of this pa-
per. [13, 9, 12] treat finite state machine models of aspect-
oriented systems mainly for the purpose of applying model
checking. In addition, [9, 12] focus on compositional ver-
ification in which it is sufficient to verify the base system
and the advice individually in order to verify the entire sys-
tem. However, they only handle a single system at one time
and do not consider relationships between systems includ-
ing abstraction. [11] treats an aspect model based on the
untyped lambda calculus. The main feature of this model
is that it can model the (bi)simulation relation between two
system expressions in a compositional way, that is, this re-
lation is preserved under the weaving operation. However,
as the literature admits, it is not easy to verify if two ex-
pressions have the (bi)simulation relation. Our model has
limitations such as the first-order nature of algebraic specifi-
cations (while the untyped lambda calculus is higher-order)
and our abstraction relation is a mapping. This enables us
to create abstraction mappings easily. Although other for-
mal models provide various viewpoints to aspect-oriented
systems, they do not treat relationships between two sys-
tems either. [3] proposes an algebraic framework of feature-
oriented development that may include AOSD. It also deals
with stepwise refinement that can be considered as the in-
verse operation of abstraction. However, this paper does not
discuss the formal correctness of the refinement. Recently,
Braga [4] proposed an application of a formal framework
called a constructive approach to modular structural opera-
tional semantics (constructive semantics) to aspect-oriented
software. Although it does not deal with pointcuts depend-
ing on execution traces, it is promising to extend it with our
approach to deal with traces.

There are also many researches about (semi-)automatic
transformations of semiformal aspect behavior models mainly
written in UML in the context of MDA (Model-Driven
Architecture) [2, 23, 24, 17, 19, 18]. We can regard most
of the transformations treated there as a generalization of
the refinement relation in our approach. While we cannot
discuss the correctness of the transformations in these ap-
proaches rigorously, they can treat practical situations with
realistic scales and complexity. Therefore it is interesting
to model them formally in our framework and evaluate the
practical feasibility of our approach.

6. CONCLUSIONS
In this paper, we proposed a formal model of aspect-

oriented systems based on rewriting logic and an approach
of compositional equational abstraction for our model. Be-
cause our approach realizes a highly compositional way of
establishing abstraction relation between aspect-oriented be-
havioral specifications, it is promising as a theoretical foun-
dation of efficient AOSD methodologies.

In our approach, there are many limitations to be re-
laxed in the future. First, our model is too complicated
and rather specific. The details of the configurations could
be abstracted to the more general notion of states. Such ab-
straction would make our model much simpler. Our current
model based on configurations could be obtained by refin-
ing the states back. The expressiveness of our approach is
weak in comparison with the higher-order approaches. We
also omitted the treatment of fair states. We are planning
to treat aspect compositions by extending the aspect infor-
mation in augmented configuration terms. We need to make
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clear the limitations by trying to express various examples.
Such trials will also enable us to evaluate the practical fea-
sibility of our approach.

We need to apply our approach to concrete case studies to
estimate how our approach can reduce the costs of reasoning
about aspect-oriented systems. Such reasoning tasks include
verification and model transformations.

Acknowledgments
This work was supported by the Ministry of Education, Cul-
ture, Sports, Science and Technology, Grant-in-Aid for Sci-
entific Research (B). The authors would also like to thank
the members of Ohsuga Lab., Honiden Lab., and GRACE
center., especially Mr. Hiroyuki Nakagawa, Prof. Nobukazu
Yoshioka, and Prof. Kenji Taguchi, for their enthusiastic
discussions with us.

7. REFERENCES
[1] J. H. Andrews. Process-algebraic foundations of

aspect-oriented programming. In Proc. of Reflection
’01, pages 187–209. Springer-Verlag, 2001.

[2] U. Aßmann and A. Ludwig. Aspect weaving with
graph rewriting. In Proc. of GCSE ’99, pages 24–36,
London, UK, 2000. Springer-Verlag.

[3] D. Batory. Feature-oriented programming and the
AHEAD tool suite. In Proc. of ICSE 2004, pages
702–703, Washington, DC, USA, 2004. IEEE
Computer Society.

[4] C. Braga. A constructive semantics for basic aspect
constructs. In Semantics and Algebraic Specification,
pages 106–120, 2009.

[5] G. Bruns, R. Jagadeesan, A. S. A. Jeffrey, and
J. Riely. muABC: A minimal aspect calculus. In Proc.
Concur, volume 3170 of Lecture Notes in Computer
Science, pages 209–224. Springer-Verlag, 2004.

[6] E. M. Clarke, O. Grumberg, and D. E. Long. Model
checking and abstraction. ACM TOPLAS,
16(5):1512–1542, September 1994.

[7] Edmund M. Clarke, Orna Grumberg, and A. Peled.
Model Checking. MIT Press, 1999.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln,
N. Mart́ı-Oliet, J. Meseguer, and J. F. Quesada.
Maude: Specification and programming in rewriting
logic. Theoretical Computer Science, 285(2):187–243,
2002.

[9] M. Goldman and S. Katz. MAVEN: Modular aspect
verification. In Proc. of TACAS’07, pages 308–322,
2007.

[10] R. Jagadeesan, A. S. A. Jeffrey, and J. Riely. A
calculus of untyped aspect-oriented programs. In Proc.
of ECOOP ’03, pages 415–427. Springer-Verlag, 2003.

[11] R. Jagadeesan, C. Pitcher, and J. Riely. Open
bisimulation for aspects. In Proc. of AOSD ’07, pages
107–120, New York, NY, USA, 2007. ACM.

[12] E. Katz and S. Katz. Modular verification of strongly
invasive aspects. In Languages: From Formal to
Natural, pages 128–147, 2009.

[13] S. Krishnamurthi and K. Fisler. Foundations of
incremental aspect model-checking. ACM Trans.
Softw. Eng. Methodol., 16(2):7, 2007.

[14] J. Meseguer. Conditional rewriting logic as a unified
model of concurrency. Theoretical Computer Science,
96:73–155, 1992.

[15] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet.
Equational abstractions. Theoretical Computer
Science, (403):239–264, 2008.

[16] I. Nagy, L. Bergmans, and M. Aksit. Composing
aspects at shared join points. In Proc. of Intl. Conf.
on NetObjectDays, pages 69–84. Springer, 2005.

[17] P. Sánchez, L. Fuentes, D. Stein, S. Hanenberg, and
R. Unland. Aspect-oriented model weaving beyond
model composition and model transformation. In
Proc. of MoDELS ’08, pages 766–781, Berlin,
Heidelberg, 2008. Springer-Verlag.

[18] D. Simmonds, R. Reddy, R. France, S. Ghosh, and
A. Solberg. An aspect oriented model driven
framework. In Proc. of EDOC ’05, pages 119–130,
Washington, DC, USA, 2005. IEEE Computer Society.

[19] D. Stein, S. Hanenberg, and R. Unland. Expressing
different conceptual models of join point selections in
aspect-oriented design. In Proc. of AOSD ’06, pages
15–26, New York, NY, USA, 2006. ACM.

[20] David Walker, Steve Zdancewic, and Jay Ligatti. A
theory of aspects. In Proc. ACM SIGPLAN
International Conference on Functional Programming,
Uppsala, Sweden, 2003. ACM.

[21] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. ACM Trans. Program. Lang. Syst.,
26(5):890–910, 2004.

[22] Mitchell Wand, Gregor Kiczales, and Christopher
Dutchyn. A semantics for advice and dynamic join
points in aspect-oriented programming. TOPLAS,
26(5):890–910, 2004.

[23] J. Whittle, A. Moreira, J. Araújo, P. Jayaraman,
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APPENDIX

A. DEFINITION OF A(B, ρ, A)

We describe the definition again. Suppose B be a state
machine, ρ be a pointcut descriptor, both of which are over a
set of atomic propositions APB, and A be an aspect machine
over AP⊆APB. We define an ARTA(B, ρ, A) by adding the
needed specifications to R(B).

• The constructs needed to an ART such as the specifi-
cations of ASP and adv.

• The following constructs corresponding to A.

sorts State’, MSSeq .

var S, S1, S2 : State .

var S’, S1’, S2’ : State’ .

var M, M’ : MSSeq .

var L : LAS .

var P : AP .

var A : ASP .

op beh’ : State’ -> BEH .
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op lbl’ : State’ -> APS .

op asp : State’ -> ASP .

op nilS : -> MSSeq .

op [[_|_]] : State MSSeq -> MSSeq .

op adl : State -> Bool .

op pc, pm : MSSeq -> Bool .

ops _==B_ : APS APS -> Bool .

op msSeq : LAS -> MSSeq .

op path : MSSeq -> Bool .

op _|=_ : TRC AP -> Bool .

op trans’ : State’ State’ -> Bool .

eq isBase(asp(_)) = false .

eq adv(asp(S’)) = beh’(S’) .

eq msSeq([ac(_, beh’(S’), asp(_)) | L]) = nilS .

eq msSeq([ac(_, beh(S), base) | L]) = nilS

if adl(S) = true .

eq msSeq([ac(_, beh(S), base) | L])

= [[S | msSeq(L)]]

if adl(S) = false .

eq path([[S]]) = initState(S) .

eq path([[S2 | M]]) = true

if M = [[S1 | _]], trans(S1, S2) = true .

eq append([[]], M) = M .

eq append([[S | M]], M’) = [[S | append(M, M’)]] .

eq pc(M) = true

if path(M’) = true, pm(M’) = true,

M’ = append(M, _) .

eq as([ac(_, _, base) | L], base)

= not pc(msSeq(L)) .

eq as(L, asp(S’)) =

pc(msSeq(L)) and (lbl(S) ==B lbl’(S’)) .

eq rstrt([ac(_, beh’(S’), _) | _], S)

= (lbl(S) ==B lbl’(S’)) .

eq trc([ac(_, beh(S), base) |_] |= P)

= member(P, lbl(S)) .

eq trc([ac(_, beh’(S’), A) |_] |= P)

= member(P, lbl’(S’))

if isBase(A) = false .

rl config(d, beh’(S1’)) -> config(d, beh(S2’))

if trans(S1’, S2’) = true .

• For each state s of A, a constant symbol op s : ->

State’.

• For each transition s → t of A, an equation eq trans’(s, t)
= true .

• We provide additional states and transitions as follows
to cope with the case of strongly invasive aspects in [12].
An aspect is said to be strongly invasive if it resumes
to an unreachable state of the pointcut-ready machine.

– For each label P ⊆ AP , a constant op sAP : ->

State representing an additional state and the spec-
ification of its label eq lbl(sAP) = P .

– For each additional state constant sAP and a con-
stant t of the sort State, an equation representing a
transition between them eq trans(sAP , t) = true

.

• For each constant s of the sort State, an equation eq

adl(s) = true . or = false . if s is an additional
one or a state of B, respectively.

• The equations specifying the semantics of pm that satis-
fies pm(m) = true if and only if the pointcut descriptor

ρ matches the inverse of the machine state sequence
m3.

• For each state s and each set of elements of AP ps, eq
lbl’(s) = ps . if and only if L′(s) = ps. Note that ps
can be represented by a constant of the sort APS with
respect to APB because AP ⊆ APB .

• For each pair of constant symbols of the sort APS rep-
resenting a set of atomic propositions ps1 ⊆ APB and
ps2 ⊆ AP , the equation eq (ps1 ==B ps2) = true . or
= false . according to if ps1 ∩AP = ps2 or not.

• For each state s of the aspect machine A, the equation
eq rtn(config(d, beh’(s))) = true . or = false

. according to if s is a return state (s ∈ RA) or not.

Some constructs are explained in detail as follows.

• Because the initial state from which the aspect machine
execution starts varies according to the last state of the
base machine, we specify an aspect term other than
base by encapsulating an aspect machine state repre-
senting the initial state with the operator asp. Thus we
also specify eq isBase(asp(_)) = false . The ad-
vice extraction operator adv takes out the encapsulated
state by eq adv(asp(S’)) = S’ .

• Although [12] treats only one aspect machine at a time,
we can see that the framework of the literature implic-
itly deals with multiple aspects by the above obser-
vation. In addition, [12] specifies transitions between
states of the base system and the advice that have the
same label (the set of atomic propositions satisfied at
a state). We can model these situations by adding the
following constructs to the rewrite theory.

– The sort MSSeq of sequences of the base machine
states. Terms of this sort is used to detect the join
points by checking them with the pointcut descrip-
tor ρ. Such terms are extracted from the execution
traces. Accordingly, we add the specification of the
extraction operator msSeq and the pointcut pred-
icate pc : MSSeq -> Bool that produces true if
and only if the pointcut descriptor matches the
state sequence.

– Specifications of the equality operator _==_ on the
sort APS and as.

• For a machine state sequence m, pc(m) = true if and
only if the inverse of m is a latter part si+1 . . . sn of a
path π = s0s1 . . . sn, includes only the states of B, si is
not a state of B (that is, a state of A or an additional
state), and is matched by ρ. As we show in the proof
of the main theorem, we can consider the last state of
the path as a pointcut state.

• path produces true if and only if its argument repre-
sents a finite path of B starting form an initial state.

B. PROOF OUTLINE OF THEOREM 10
First we construct Bρ from Bρ

0 by adding the following
constructs.

• For each label P ⊆ AP , an additional state s′ satisfying
LBρ (s′) = P .

3We assume that such algebraic specifications of ρ exists
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• For each additional state s′ introduced above and each
state s of Bρ, a transition s′ → s. The latter state may
be an additional one or one originally in Bρ

0 .

Because all the additional states are unreachable in Bρ, it
is easy to see that Bρ is also a pointcut-ready machine for
B and ρ.

Next the transitions of ˜̃B are classified by the following
lemma.

Definition 13. We write e, s, a, l ⇉ e′, s′, a′, l′ for a one-
step rewriting relation in an augmented ART R+ trc([ac(e,
beh(s), a) | l] →
trc([ac(e′, beh(s′), a′) | l′], or beh’ instead of beh if its
argument s or s′ is a state of A.

Lemma 14. A transition of ˜̃B is obtained from either one
of the following four types of one-step rewriting relations.

1. d, s, asp(s′), l ⇉ d, t, base, l′ for a return state s of A
and a state t of B where LA(s) = LB(t) ∩ AP or an
additional state t where LA(s) = LB(t).

2. d, s, base, l ⇉ d, t, asp(t), l′ for a state s of B and an
initial state t of A where LB(s) ∩ AP = LA(t) and
pc(msSeq([[s|l]])) = true.

3. d, s, base, l ⇉ d, t, base, l′ for two states s and t of B
where not pc(msSeq([[s|l]])) = true.

4. d, s, base, l ⇉ d, t, base, l′ for an additional state s and
a constant t of the sort State.

5. d, s, asp(s′), l ⇉ d, t,asp(s′), l′ for two states s and t of
A where s is not a return state.

Proof: This lemma can be proven by the fact that a one-
step rewriting relation of A(M, ρ, A)+ can be obtained only
by applying either one type of the rewrite rule in Definition 8
and each corresponding pair of conditions are equivalent. 2

Fix an l ∈ (2APB )ω. Because the proofs of the two direc-
tions of “if and only if” are almost symmetric, we show only
the “only if” part below. Thus we also fix a path πB̃ of B̃

where label(πB̃) = l and try to create a path π ˜̃
B

of ˜̃B with
the same label.

Lemma 15. Let πB̃ be a path satisfying the left-hand side.
Then we can decompose this path into the fragments π0, π1, . . .
(, πn) satisfying either one of the following two conditions,
where each fragment is a finite path except the last one πn

if it exists.

1. πi starts from an state s of Bρ (s ∈ SBρ

0 ), ends with
a pointcut state s′ of Bρ, that is, a state satisfying
pointcut∈ LBρ(s′), if πi is finite. Every other state
is in SBρ and not a pointcut state.

2. πi starts from an initial state s of A (s ∈ SA
0 ), ends

with a return state s′ of A, if πi is finite. Every other
state is in A and not a return state.

Proof: It is straightforward to define πi’s by induction on i
by taking the longest fragments satisfying the two conditions
alternately. 2

Let l ∈ (2APB )ω be a label, πB̃ be a path of B̃ satisfying
label(πB̃) = l, and π0, π1, . . . (, πn) be a decomposition of πB̃

as in Lemma 15. We can create a path π ˜̃B
of ˜̃B by compos-

ing the fragments π′0, π′1, . . . (, π′n) shown in the following
lemma.

Lemma 16. Under the above assumptions, there is a se-
quence of path fragments π′0, π′1, . . . (, π′n), where each frag-
ment is finite except the last one π′n if it exists, satisfying
label(πi) = label(π′i) for each i, and the following two con-
ditions.

1. If πi satisfies the conditions 1 of Lemma 15, π′i starts
from d, s, base, l, where s is a state of B or an ad-
ditional state. If πi is finite, it also ends with d, s′,
base, l′, where pc(msSeq(l′)) = true. In addition, ev-
ery other state is in SB or an additional state constant.

2. If πi = s0s1 . . . (sn) (sn exists only if πi is finite-length)
satisfies the conditions 2 of Lemma 15, π′i is d, s0,
asp(s0), l0 ⇉ d, s1, asp(s0), l1 ⇉ d, s2, asp(s0), l2 ⇉

. . . (⇉ d, sn, asp(s0), ln).

Proof: We can prove this by induction on i.

• If π0 = π, this is an infinite path of Bρ. By the defini-
tion of Bρ, there is an infinite path of B with the same
label as π. It is easy to obtain the desirable π′0.

• If π0 = s0s1 . . . si0 is finite, it can be extended to an
infinite path π∗0 because of the totality of →Bρ . Then
there is an infinite path of Bρ with the same label as
π∗0 . It is easy to obtain the desirable π′0 by limiting the
length of this path.

• To examine the cases for general i, we divide the follow-
ing three cases: (1) πi is infinite, (2) πi is finite-length
and satisfies the condition 1 of Lemma 15, and (3) πi is
finite-length and satisfies the condition 2 of Lemma 15.
In case (1), we need not to proceed any more. In case
(2), we can obtain π′i+1 by finding the next state of
π′i confirming the all the conditions of the case 2 of
Lemma 14 and extending the path from it by connect-
ing the transitions of the case 5 of the Lemma 14. In
case (3), we need to be careful because πi+1 may start
from an unreachable state. We explain this part of the
proof in detail. Note that the last state s of πi+1 is
reachable because it is a pointcut state by Lemma 15
and therefore there is a path that ends with s and is
matched by ρ. Let s0 be the first reachable state of
πi+1 and π+ be the path composed by a path from an
initial state to s0 and the latter part of πi+1 starting
from s0. By the totality of →Bρ , we can extend π+ to
an infinite path π++ by adding transitions after s. By
the definition of Bρ, we have an infinite path π′++ of
B such that label(π++) = label(π′++). Let the state
of π′++ corresponding to s0 and s be s′0 and s, respec-
tively, and s′0s

′
1 . . . s be the subsequence of π′++. If

we also let s′−ks′−k+1 . . . s′−1 be the sequence of addi-
tional state constant of A(B, ρ, A) that has the same
label as s−ks−k+1 . . . s−1 that is the initial segment of

πi+1 before s0, we have the following path of ˜̃B: d,
s′−k, base, l0 ⇉ d, s′−k+1, base, l1 ⇉ . . . d, s′−1, base,
lk−1 ⇉ d, s′0, base, lk ⇉ d, s′1, base, lk+1 ⇉ . . . ⇉

d, s′, base, l, where the initial part until s′0 consists of
the additional transitions. It is straightforward to see
that the execution trace makes the pc operator true be-
cause label(π++) = label(π′++) implies that ρ matches
the both paths and the latter part of the trace is also
a latter part of π′++. 2
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ABSTRACT 
A framework for formal analysis of aspect-oriented software 
development (AOSD) is proposed. AOSD is treated as enriching 
formal models of programs by traceable refinements that produce 
their systemic interfaces. Category-theoretic construction of 
architecture school is employed to formalize this approach. 
Aspect weaving and separation of concerns are defined as 
universal constructions. Aspect-oriented scenario modeling is 
discussed as an example. 

Categories and Subject Descriptors 
F.3.1 [Logics and Meanings of Programs]: Specifying and 
Verifying and Reasoning about Programs—Specification 
techniques 

General Terms 
Design, Theory 

Keywords 
Aspect Oriented Software Development, Architecture School, 
Traceability, Aspect Weaving 

1. INTRODUCTION 
Aspect oriented software development (AOSD) [2] aims at 
explicit separating and composing concerns elaborated in 
response to particular requirements. Concerns are usually much 
tangled and scattered across software modules due to 
intermingling and conflicting nature of requirements. 
Modularizing them or at least keeping them clearly 
distinguishable throughout the development process can 
drastically improve software maintainability. However, AOSD 
has gained lower level of adoption in software production than 
modular design up to now. As argued in [15], although the 
community agrees on what AOSD is good for, there are no 
common paradox-free understanding of what AOSD actually is. 
This is partly caused by lack of a sound uniform metamodel 
capable to elucidate handling of aspects within modular software        
** 

development paradigms in a natural way. 

We present an attempt to create such metamodel. It is based on 
the concept of tracing development process steps, since 
traceability is most compromised by tangling. Concerns are 
treated as sources of traceable refinements that eventually 
produce software artifacts. Attaching these refinements to 
program models allows identifying, composing (weaving), and 
separating concerns in the course of the development process. In 
order to provide formal semantics of these operations that doesn’t 
rely on some specific development paradigm we employ category 
theory. It allows characterizing (mathematical) objects by their 
interrelations with other objects, avoiding appeal to their 
“interiors” (by which software artifacts created with different 
technologies much vary). Constructions in categories produce 
objects that satisfy extensional (“systemic”) criteria: universality 
(existence and uniqueness of interrelation with similar objects), 
naturality (independence of multistep interrelation on the way it is 
traced), and so on. Such objects are usually determined uniquely 
up to an isomorphism, viz. appropriate abstraction of inessential 
difference. Visual diagrammatic notation is routinely used to 
specify constructions. 

This motivates employing category theory as paradigm-
independent formal tool to reason on software design. The very 
notion of modularity (the Holy Grail of AOSD) is captured as a 
class of diagrams that satisfy certain structural properties. 
Augmenting it with concepts of an interface and of a refinement 
(expressed in category-theoretic terms) leads to fundamental 
notion of an architecture school that provides uniform general 
representation of software design (see [4]). In this setting, we 
formally present enhancing a design technology by aspects as 
natural labeling of school constituents by concerns. 

We employ scenario modeling as principal example of applying 
this construction to specific technology. On the one hand, it 
properly captures operational semantics of aspect-oriented 
programming that essentially consists in augmenting base 
program execution scenario with woven aspects. On the other 
hand, it is a widely used requirements engineering technique 
empowered with methods for transforming models to 
architectures, including those based on category theory [14]. 
Enhancing domain engineering of large-scale distributed systems 
with aspect-oriented capabilities facilitates rapid incremental non-
invasive development [9]. 

2. ARCHITECTURE SCHOOLS 
Category-theoretic approach to formalizing software systems 
design is being developed since 1970s. According to it, formal 
models (descriptions) of programs are represented as objects, and 
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actions of integrating (models of) individual components into 
(models of) systems are represented as morphisms. Composition 
of morphisms represents multistep integration; identity 
morphisms represent trivial integrating descriptions into 
themselves by “doing nothing”. Resulting category of 
descriptions is denoted as c-DESC. An example can be found in 
the area of object-oriented design: classes (formally presented on 
UML) can be considered as objects in category-theoretic sense, 
with inheritance relations as morphisms. Another example, 
particularly pertaining to the topic of this paper, is modeling 
software systems by execution scenarios. The basic mathematical 
representation of a scenario is a partially ordered set (poset) [13]. 
Its elements are atomic events occurred during execution, 
partially ordered by causal dependence. Actions of scenarios 
integration are precisely homomorphisms of posets since neither 
events nor interactions shall be “forgotten” at integration. Hence 
category Pos of all posets and all their homomorphisms plays the 
role of c-DESC. 
A system built from multiple components is represented as a 
c-DESC-diagram that consists of the components and their 
interconnections. Recall that a diagram is a functor of the kind 
∆ : X → c-DESC, where X is a small category (called a schema of 
∆). A diagram can be “visualized” as a directed graph of a 
category X whose points are labeled by c-DESC-objects and 
arrows are labeled by c-DESC-morphisms. In order to facilitate 
category-theoretic reasoning on systems design decisions, we 
consider diagrams as objects of appropriate category (the 
(covariant) “super-comma category”, see [11]). First, recall that 
all diagrams with schema X comprise a category, denoted 
c-DESCX, whose morphisms are called natural transformations. 
Recall that a natural transformation from a diagram 
∆ : X → c-DESC to a diagram Σ : X → c-DESC is a map 
ε : Ob X → Mor c-DESC that satisfies the following naturality 
condition. For every X-objects A, B, and every X-morphism 
f : A → B the equality Σ(f) ◦ εA = εB ◦ ∆(f) holds (in particular, we 
have εA : ∆(A) → Σ(A) for every X-object A). A natural 
transformation ε can be visualized as a “prism” with graphs of ∆ 
and Σ as bases, and arrows εA, A ∈ Ob X, as lateral edges. 
Naturality condition ensures that composition induces minimal 
amount of auxiliary arrows that cross lateral faces of the prism, 
i.e. that component-wise integration of a system represented by ∆ 
into a system represented by Σ established by ε respects every 
interconnection. 
A notion of a natural transformation admits straightforward 
extension to diagrams with different schemas, by adding a functor 
that adjusts schemas. So a morphism from a diagram 
∆ : X → c-DESC to a diagram Σ : Y → c-DESC is a pair 〈ε, fd〉 
consisting of a functor fd : X → Y and a natural transformation 
ε : ∆ → Σ ◦ fd. If ε consists of identities (implying that ∆ = Σ ◦ fd) 
and fd is injective, then ∆ is called a subdiagram of Σ (graph of ∆ 
is a labeled subgraph of graph of Σ). 
Each object A forms a singleton diagram whose graph consists of 
the single point labeled by A. Morphisms between singleton 
c-DESC-diagrams are precisely c-DESC-morphisms between 
objects they constitute (in category theory it is said that c-DESC1, 
where 1 is a singleton category, is isomorphic to c-DESC). A 
morphism from an arbitrary diagram ∆ to a singleton diagram is 
called a cocone. It can be visualized as a diagram in form of a 
“pyramid” with base ∆ and edges directed from points of ∆ to the 

distinct point called the vertex. A colimit of ∆, denoted colim ∆, 
is a cocone that is universal in a sense that every cocone δ over ∆ 
factors through colim ∆ uniquely (i.e. there exists a unique 
c-DESC-morphism c, called a colimit arrow, such that 
δ = 〈c, 11〉 ◦ colim ∆). Obviously a colimit is determined uniquely 
up to an isomorphism. Its vertex (called a colimit object) can be 
thought of as the least “container” that encapsulates all objects of 
∆ via edges respecting structure of their interconnections. For 
example, a colimit of a discrete diagram (i.e. the one whose 
schema has no morphisms except identities) is precisely a 
coproduct of its objects, which includes all of them (preserving 
their identity) and nothing more. Even an empty diagram may 
have a colimit, whose object is precisely an initial object (there 
exists exactly one morphism from it to any other object). An 
initial object represents a “componentless” system that can be 
uniquely integrated into every system (for example, “pure” 
integration middleware). 
These considerations motivate employing a notion of a colimit as 
category-theoretic abstraction of system synthesis [10]. Existence 
of a colimit is a necessary condition for a c-DESC-diagram to 
represent a valid system. Clearly it is not sufficient, since various 
structural rules usually apply (e.g. type constraints in object-
oriented design). Diagrams that actually produce systems are 
called well-formed configurations, and constitute class denoted as 
Conf. In scenario modeling, although any Pos-diagram has a 
colimit, a configuration is considered as well-formed only if its 
target system scenario is included into it explicitly, without 
employing any structural computations beyond constructing a 
coproduct. Such situation is common at requirements engineering 
where the analyst haven’t yet collected enough information to 
establish powerful structural rules over requirement models. So 
the class CPos of all disjoint unions of Pos-cocones is used for 
Conf. Every discrete Pos-diagram is well-formed; it represents a 
disjoint union of parallel (non-interacting) scenarios. To see that 
“many” other diagrams are ill-formed, consider a pair of Pos-
morphisms {a < b} ← {a, b} → {a > b}, where arrows denote 
bijections a → a, b → b. This diagram exposes a and b as 
concurrent events, so it is impossible to include both conflicting 
orderings into the single scenario. In particular, the diagram’s 
colimit object, which is a singleton poset, fails to represent 
integration result (as well as any other poset). 
It is well known that integration capabilities of a component are 
completely determined by its specially devised “part” called an 
interface. Interfaces of formal models comprise a category 
denoted SIG; extracting an interface is expressed as a signature 
functor sig : c-DESC → SIG. Although it shouldn’t be injective 
(different components can have the same interface), it is required 
to be faithful, i.e. injective on each hom-set Mor(A, B) that 
consists of all c-DESC-morphisms with domain A and codomain 
B (otherwise it would fail to distinguish different ways to 
integrate a component A into a system B). Realizability of every 
interface is ensured via existence of a functor 
sig* : SIG → c-DESC that produces a “default” implementation of 
every interface I. Specifically, sig*(I) has I as an interface (i.e. 
sig ◦ sig* = 1SIG) and supports all integration capabilities of I (i.e. 
functor sig surjectively, hence bijectively, maps a hom-set 
Mor(sig*(I), A) to Mor(I, sig(A)) for every c-DESC-object A). In 
category-theoretic terms functor sig* is called left adjoint to sig. 
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There exists a natural correlation between interfaces and 
configurations. First, conditions ∆ ∈ Conf and sig ◦ ∆ = sig ◦ Σ 
shall imply Σ ∈ Conf for any c-DESC-diagrams ∆, Σ. This 
requirement establishes a kind of logical non-contradiction law 
for interfaces: no interface integration schema can be produced by 
both systems and illegal conglomerates of components. Second, 
interface extraction shall be natural with regard to composing 
systems: every colimit of SIG-diagram sig ◦ ∆ equals to 
sig ◦ colim ∆ for each ∆ ∈ Conf. In other words, functor sig lifts 
colimits of diagrams from Conf. Naturality is actually two-fold: 
requirements enlisted above imply that functor sig preserves 
colimits of diagrams from Conf. 
In scenario modeling, an interface of a scenario is a set of 
occurred events obtained by forgetting their order. Indeed, in 
order to identify an execution scenario of a component in a 
scenario of a system, it is necessary and sufficient to identify all 
events occurred within the component. So the canonical forgetful 
functor |–| : Pos → Set, where Set is a category of all sets and all 
maps, is used for sig. It is easy to see that it satisfies all 
requirements above. In particular, default realization of an 
interface is represented by a functor |–|* : Set → Pos that turns a 
set S into a discretely ordered poset 〈S, =〉 that seamlessly 
integrates into any scenario. 
In addition to system composition, software development process 
contains steps of modeling individual components known as 
refinements. The process is commonly viewed as moving along 
two dimensions: horizontal structuring induced by “component-
of” relationships and vertical structuring induced by “refined-by” 
relationships [10]. All descriptions and all refinements comprise a 
category, denoted r-DESC, with the same class of objects as 
c-DESC. A (trivial) example of a refinement is an isomorphism, 
so a subcategory of c-DESC that contains of all descriptions and 
all c-DESC-isomorphisms is required to be a subcategory of 
r-DESC. The naturality of refinement with regard to composing 
systems is imposed in the form that a collection of refinements of 
components constituting a system shall induce a refinement of the 
system. This can be formally expressed in terms of natural 
r-DESC-transformations, given that every discrete c-DESC-
diagram is simultaneously an r-DESC-diagram. An arbitrary 
collection of refinements of objects of a c-DESC-diagram ∆ is 
precisely a natural r-DESC-transformation ϕ : |∆| → Σ, where |∆| 
is discrete diagram that consists of all objects from ∆, and Σ is a 
discrete diagram consisting of all refinements results. If ∆ ∈ Conf, 
then a diagram ∆ ⊕ ϕ ∈ Conf shall exist, that has Σ as a 
subdiagram (and possibly extra points and arrows), and an 
r-DESC-morphism from a colimit object of ∆ to a colimit object 
of ∆ ⊕ ϕ. 
In scenario modeling, refinement of a scenario consists in 
replacing atomic events with subscenarios in such a way that the 
order is fully inherited [5]. Formally, a refinement of a poset X to 
a poset A is identified with a surjective map f : A → X that 
satisfies the condition ∀x ∀y f(x) ≤ f(y) ⇔ (x ≤ y ∨ f(x) = f(y)). 
Notice the swap of source and destination: as we will see below, it 
is a key to smooth aspect orientation. We will denote the category 
of all posets and all scenario refinements by r-Pos. 

A tuple 〈c-DESC, Conf, sig, r-DESC〉, that satisfies all conditions 
enlisted above, is called an architecture school, and various 
examples of schools are considered, in [4]. Of particular interest 

are schools “over” Set, in which c-DESC is a concrete category 
over Set in the following sense. Descriptions are sets equipped 
with some structure (e.g. algebraic structures, topological spaces, 
etc), integration actions are maps that respect the structure, and 
sig is canonical functor |–| that forgets the structure. Scenario 
modeling architecture school SM = 〈Pos, CPos, |–|, r-Pos〉 is an 
example of an architecture school over Set. 

3. ENHANCING DESIGN WITH ASPECTS 
Our model of AOSD rests upon representing emergence of 
aspects in a software design technology as formal transformation 
of architecture schools. Indeed, AOSD can be generally 
considered as equipping software artifacts with certain labeling 
conveniently identifying concerns handled by their constituents. 
Original motivation of AOSD creators [7] stems from the fact that 
programming languages are too concise to allow tracing 
intermingled fragments of source code to their ultimate “goals”. 
Different flavours of AOSD [2] greatly vary in labeling 
techniques (among which modularization is most welcome) but 
agree in pursuing transparent traceability, viz. ability to determine 
exactly what each fragment of a model is included into it for. 
A metamodel of traceability proposed in [16] formally 
demonstrates that tracing is routinely compromised by 
refinement. A refinement may change the very “nature” of a 
model, e. g. when implementing a specification by means of a 
programming language. On the contrary, system composition is 
able to provide at least partial tracing back to components; 
difficulties arise at tracing concerns that crosscut boundaries of 
modular architecture (such as security). So ability to trace result 
of a refinement to its source means that reversing its direction (i.e. 
category-theoretic dualization) produces a c-DESC-morphism, 
called its trace. In order to preserve traceability in subsequent 
integration of a result into a system, a trace shall have right 
inverse at the level of interfaces. Indeed, if a refinement r : X → A 
satisfies a condition sig(rop) ◦ s = 1sig(X) for some SIG-morphism 
s : sig(X) → sig(A), then SIG-morphism sig(f) ◦ s identifies sig(X) 
in sig(S) for every c-DESC-morphism f : A → S. 
Obvious example of traceable refinement is a c-DESC-
isomorphism (recall that a dual to an isomorphism is identified 
with its inverse which is an isomorphism as well). Non-trivial 
traceable refinements are obtained as r-DESC-morphisms that 
coherently behave as duals to c-DESC-morphisms. Denote by cr-
DESC the intersection of all such maximal common subcategories 
of c-DESC and r-DESCop that contain all c-DESC-isomorphisms. 

Definition 1. A cr-DESC-morphism t is called a trace provided 
that sig(t) is a retraction (i.e. has right inverse). A sig-image of a 
trace is called a labeling. A dual to a trace is called a traceable 
refinement. □ 
In an architecture school over Set every labeling is a surjective 
map, so a traceable refinement r : X → A is a total antifunctional 
binary relation that is conservative with regard to structure. Its 
action can be described as expansion of points of |X| to sets that 
comprise partitioning of |A|, projecting structural constraints 
defined on points of |X| to some (possibly none) members of their 
expansion results. A point of |X| can be considered as a concern 
that is elaborated by expansion, in accordance with intuitive 
notion of refinement. For example, in scenario modeling school 
SM r-Posop is a subcategory of Pos; every refinement is traceable, 
and literally determines a labeling of its target by points of its 
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source. Moreover, refinements allow tracing inclusions of 
components, viz. integration actions that leave inner structures of 
components intact. Inclusions are represented by regular Pos-
monomorphisms; capability to trace them means that for every r-
Pos-morphism r : X → A and inclusion i : M → X there exists an 
inclusion i' : M → A such that rop ◦ i' = i. 
Observe that traceable refinements particularly tolerate 
configurations. Consider a diagram, called a push of ∆ by ϕ, that 
consists of a diagram ∆ ∈ Conf and a family ϕ of arrows directed 
from distinct points outside of ∆ to points of ∆. Obviously a push 
has a colimit with the same object as ∆. Comprising ϕ from traces 
(so that ϕop is a natural r-DESC-transformation from |∆| to a 
discrete subdiagram of a push), we see that traceable refinements 
are non-invasive with respect to system composition: if a push 
belongs to Conf, then it can be taken for ∆ ⊕ ϕop, and appropriate 
isomorphism for a refinement of colimit objects. Non-invasive 
refinements are much appreciated within the context of AOSD. 
For example, this is obviously the case for scenario modeling 
school. 
These considerations suggest that the AOSD objective can be 
achieved by equipping descriptions with traceable refinements 
that produce them, at least at the interface level. Such equipping 
is precisely the desired aspect labeling. We employ the construct 
of comma category (see [11]) to formalize it. We will work in 
specific comma category denoted as sig ↓ SIG. Recall that its 
objects are pairs 〈A, a : sig(A) → X〉, where A ∈ Ob c-DESC and 
a ∈ Mor SIG. A morphism from an object 〈A1, a1〉 to an object 
〈A2, a2〉 is such pair 〈f : A1 → A2, b : codom a1 → codom a2〉 that 
b ◦ a1 = a2 ◦ sig(f). Denote by AO full subcategory of sig ↓ SIG 
whose objects are all pairs 〈A, a〉 in which a is a labeling. 

In an architecture school over Set aspect labeling a : |A| → X of a 
description A consists in assigning each point of |A| a point of set 
X that denotes the “name” of the aspect it belongs to. The labeling 
is essentially (up to an AO-isomorphism) an equivalence relation 
on |A|, equivalence classes representing individual aspects. Every 
such relation turns A into a valid aspect-oriented model, so 
aspects needn’t respect its “modular” structure in any way. AO-
morphisms are precisely such c-DESC-morphisms that preserve 
this additional equivalence relation. As we will see below, there 
exists a functor that turns AO into a concrete category over Set. 
Objects of various categories that comprise AO can serve as 
interfaces of AO-descriptions, contributing to turning AO into 
full-scale architecture school. Specifically, the software designer 
have freedom to choose interfaces of aspect-oriented models to be 
either: 
- original non-aspect-oriented models, obtained by functor 

mod that takes an AO-object 〈A, a〉 to a c-DESC-object A, for 
modular design tasks; 

- aspect labelings, obtained by functor asp that takes 〈A, a〉 to 
a, for design and analysis of aspect structure; 

- original model interfaces, obtained by functor 
int = sig ◦ mod, for specification purposes. 

Other options that refine (i.e. can be naturally transmuted to) 
original interfaces may be available in particular schools. 
Refinements and well-formed configurations of aspect-oriented 
models are constructed by appropriate enrichment of modular 

“material”. Let tr-AO be the subcategory of AO that consists of all 
AO-objects and all such AO-morphisms f that mod(f) is a trace. 
Further, denote by str functor that takes 〈A, a〉 to codom a. Notice 
that, given an AO-diagram ∆, a diagram |asp ◦ ∆| that consists of 
labelings of all objects of ∆ can be viewed as a natural 
transformation of int ◦ ∆ to str ◦ ∆, i.e. γ ◦ 〈|asp ◦ ∆|, 1dom ∆〉 is a 
cocone over int ◦ ∆ for each cocone γ over str ◦ ∆. Bearing this in 
mind, we will call a class I-Dia of SIG-diagrams aspect-closed if 
for any Σ ∈ I-Dia an AO-diagram ∆ satisfies the following 
conditions provided that int ◦ ∆ = Σ: 

- mod ◦ ∆ ∈ Conf; 

- SIG-diagram str ◦ ∆ has a colimit; 

- every colimit arrow c∆, such that 
colim (str ◦ ∆) ◦ 〈|asp ◦ ∆|, 1dom ∆〉 = 〈c∆, 11〉 ◦ colim (int ◦ ∆), 
is a labeling; 

- for every natural tr-AO-transformation ϕ : Σ → |∆| there 
exists an AO-diagram ∆ ⊕ ϕ, such that Σ is its subdiagram, 
int ◦ (∆ ⊕ ϕ) ∈ I-Dia, and there exists a tr-AO-morphism 
t : 〈C⊕, c∆ ⊕ ϕ〉 → 〈C, c∆〉,  where C⊕ is a colimit object of 
mod ◦ (∆ ⊕ ϕ) and C is a colimit object of mod ◦ ∆. 

Denote by AO-Int the union of all aspect-closed classes of SIG-
diagrams. It allows determining all configurations that retain 
modularization when constituent components gain labeling by 
aspects. 

Definition 2. Given an architecture school AR = 〈c-DESC, Conf, 
sig, r-DESC〉, functor ai is said to generate an aspect-oriented 
architecture school (AO-school) from AR, if a tuple 

AOai(AR) = 〈AO, {∆ | int ◦ ∆ ∈ AO-Int}, ai, tr-AOop〉 
is an architecture school, and there exists such functor si that 
si ◦ ai = int. □ 
Theorem 3. Functors 1AO, mod, asp, int generate AO-schools. □ 
The proof of the theorem consists in checking that AOai(AR) 
satisfies all conditions for an architecture school whenever one of 
enlisted functors is taken for ai. In particular, functor mod*, 
which is left adjoint to mod and defines inclusion of c-DESC into 
AO, takes a c-DESC-object A to an AO-object 〈A, 1sig(A)〉. It 
represents the first step in enhancing a modular design technology 
by aspects: seed aspect structure coincides with an integration 
interface. AO-descriptions with non-trivial aspect structures 
emerge upon refining them in the course of AOSD process. 
In scenario modeling school SM, aspects appear to be precisely 
labels that, being attached to elements, turn posets into 
pomsets [13]. Labels can be considered as event “names” 
denoting  concerns  they  handle.  Class  AO-Int  coincides  with 
|–| ◦ CPos, which means that all configurations admit aspect 
orientation. Since every refinement is traceable, all of them are 
used at constructing tr-AOop. Functor mod* endows the discrete 
labeling on a scenario, equipping each event with a unique label 
(actually itself). 

4. WEAVING AND SEPARATING 
ASPECTS 
Elementary building blocks of aspect-oriented models are known 
as aspects. In an architecture school over Set, an aspect is 
precisely an AO-object whose str-image is a singleton set, i.e. a 
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terminal Set-object (there exists exactly one map from any other 
set to it). For example, an aspect in scenario modeling is precisely 
a pomset with all elements labeled with the same label. In order to 
generalize to arbitrary AO-school, observe that every morphism 
directed from a terminal object has left inverse (that typically is a 
trace, so aspects particularly tolerate tracing). 
Definition 4. An AO-description A is called an aspect if str(f) has 
left inverse for every AO-morphism f : A → X. □ 
Proposition 5. If c-DESC has a terminal object 1, then A is an 
aspect iff str(A) = sig(1). □ 
Aspect-oriented program synthesis and decomposition techniques 
can be formalized as universal constructs in category AO. For 
example, weaving an AO-object W (advice) into an AO-object B 
(base) is represented as follows. Weaving rules determine join 
points in base B at which W is called through appropriate entry 
points. For example, a program written on an aspect-oriented 
extension of an object-oriented language, such as AspectJ [3], can 
be weaved to the base before/after method calls, access operations 
to fields, exception handlers, etc. In order to specify weaving 
rules, auxiliary AO-object C, called connector, is employed 
(see [12]) in a way that matching between entry points and join 
points is described as a pair of AO-morphisms j : B ← C → W : e. 
Observe that morphism j is usually called a pointcut 
descriptor [3]. Weaver at first (virtually) produces enough copies 
of W, one for each join point, with appropriate entry point marked 
at each copy. Then binding entry points to matching join points 
establishes the weaving provided that it respects aspect structures 
of both models. In an architecture school over Set the first step of 
weaving can be formalized as constructing a product C × W; 
subsequent binding of points is represented as appropriate 
pushout. These operations admit straightforward generalization to 
arbitrary school. Recall that a pushout is a colimit of a diagram 
that has a form of a pair of arrows with the same source. It is used 
in category theory to generalize set-theoretic operation of 
identifying “the same” elements in different sets. 

Definition 6. An aspect weaving of a pair of AO-morphisms 
j : B ← C → W : e, where B is called base description, W is called 
description being weaved, and C is called connector, is a pushout 
of pair j : B ← C → C × W : 〈1C, e〉 provided that it exists 
(implying that product C × W exists as well) and is preserved by 
functor str. □ 
This definition captures intuitive properties of weaving. For 
example, if B consists solely of join points (i.e. j is an 
isomorphism), then weaving produces a product B × W. Labeled 
scenarios (i.e. objects of a category AO constructed from 
constituents of scenario modeling school SM) are friendly to 
weaving. In particular, weaving exists iff the connector 
“tolerates” concurrency in a sense that it doesn’t impose specific 
order of executing different aspects of the advice bound to the 
same join point. Formally, for every x, y ∈ mod(C) conditions 
mod(j)(x) = mod(j)(y) and x ≤ y shall imply that 
asp(W)(v) = asp(W)(x) for every such v ∈ mod(W) that 
mod(e)(x) ≤ v ≤ mod(e)(y). This holds for weavers with implicit 
connectors, such as AspectJ. 
The construction of weaving suggests how to extract individual 
aspects from multiaspect program. The category-theoretic 
construction of a pullback (dual to a pushout) is employed there. 
Recall that a pullback is a limit (dual to a colimit) of a diagram 

that has a form of two arrows with the same destination. A 
pullback is used to generalize set-theoretic notion of a preimage 
of a subset: given a diagram s : S → A ← B : f, where s identifies 
a subobject S in A, and its pullback p : S ← P → B : q, morphism 
q identifies a “preimage” f –1(S). Similarly, a subaspect of an AO-
object A is essentially a preimage of its aspect structure along a 
traceable refinement represented by asp(A). 
Sound notion of a subaspect allows formal evaluation of 
modularizing crosscutting concerns, viz. separating them into 
modular design units. The first step towards modularization 
consists in explicating aspect structure of an AO-object as a 
traceable refinement. Although it may be impossible or 
ambiguous due to tangling, each nonempty AO-school contains 
models that allow naturally explicating their aspect structures as 
well as integration actions. 
Definition 7. An explication (of aspect structure) of an AO-
description S is an r-DESC-morphism s : X → mod(S) that is dual 
to a sig-trace and satisfies equality sig(sop) = asp(S). An 
explication s is called universal provided that for every AO-
morphism f : S → R and every explication r of aspect structure of 
R there exists a c-DESC-morphism q, called explication of f along 
r, such that q ◦ sop = rop ◦ mod(f). An (aspectual) core of an AO-
school is full subcategory of AO that consists of all descriptions 
that have a universal explication. □ 
Obviously a universal explication is unique up to an isomorphism. 
Moreover, observe that the explication equality resembles the 
definition of a natural transformation. This is not a mere 
coincidence: explicating an AO-morphism is actually a functor, 
and universal explications comprise natural transformation of 
functor mod (reduced on the core) to it. An example of a core AO-
object is a pair 〈A, 1sig(A)〉 obtained from a c-DESC-object A by 
functor mod*. 
Once an aspect structure of an AO-description is explicated as a 
refinement, individual aspects need to be extracted from it for 
subsequent modular development. Partitioning complex models to 
extractable aspects is known as separation of concerns. A key to 
separation is obtaining AO-morphisms with pullbacks as 
explications. 

Definition 8. An AO-morphism m : A → S is called a subaspect of 
a core AO-description S if it satisfies the following conditions: 
- A is a core aspect; 
- explication m' of m is right inverse to a trace; 
- explication equality m' ◦ aop = sop ◦ mod(m), where a and s 

are universal explications of A and S, respectively, 
determines a c-DESC-pullback. □ 

In an architecture school over Set, explication of aspect structure 
of an AO-description S consists in equipping set str(S) with 
enough “modular” structure to turn map asp(S) into actual trace 
directed from mod(S). If such equipping is possible, then a 
candidate subaspect in S can be identified, like in Set, by pulling 
back a (weak) element (i.e. a morphism whose domain rests upon 
a singleton set) along this trace. An underlying set of the pullback 
object is precisely an equivalence class of aspect structure 
equivalence relation. In order for it to form a genuine subaspect, 
both it and the codomain of the identifying element should be 
produced from the element’s domain by traceable refinements. 
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Every core labeled scenario can be partitioned to subaspects. 
However, the core is rather “small”: for example, two linearly 
ordered aspects executed in interleaving mode cannot be 
separated from each other. Weaving cannot directly produce 
interleaving as well. This fact illustrates difficulties encountered 
at developing even simple client-server distributed systems. Yet 
every scenario can be labeled by linearly ordered extractable 
aspects. Their number can be either maximized by applying the 
functor mod*, or minimized by identifying so-called sequential 
subsystems [8]. This fact justifies developing aspect-oriented 
extensions to traditional programming languages that allow 
creating only sequential programs. 
As an example application of aspect-oriented scenario modeling, 
consider a distributed measurement system (DMS). As shown 
in [9], its main execution scenario consists in reiterating the 
following linearly ordered sequence of data processing 
(functional) concerns: 

           measure → store → validate → compute → display. 
During system development, each of them is refined to a complex 
aspect, yet they remain separable. However, infrastructure 
aspects, such as metadata model, monitoring, and security, are 
woven to each of them, undermining separation of concerns. So in 
order to execute different data processing functions on different 
computers, the infrastructure has to be somehow replicated among 
them. It is this replication that makes a DMS considerably more 
challenging to develop than an isolated measurement device. 
A glance on results of this section reveals that major contribution 
of AOSD into software design (in its category-theoretic 
treatment) consists in employing various kinds of limits 
(constructions dual to colimits), including a terminal object, 
products, and pullbacks. Contrast this with traditional modular 
design that, as presented in Section 2, is based solely on colimits. 
The root reason of limits to appear is of course the duality 
between integration actions and traceable refinements, as imposed 
by Definition 1. 

5. CONCLUSION 
Our work belongs to the mainstream of applications of category 
theory to computer science. Their success is due to ability of 
category-theoretic notions to formally express basic mental 
patterns of systems analysis, which is the crucial software design 
activity. In particular, fundamental results were achieved in the 
area of “categorizing” modular design. However, to the best of 
our knowledge there are no comparably powerful frameworks 
suitable to construct and analyze aspect-oriented development 
technologies. Existing AOSD methods are represented in terms of 
concrete formal devices difficult to apply beyond specific 
software development paradigms. Formalisms employed to 
express aspect-oriented concepts include process algebras [1], 
model checking [6], architecture description languages [12], 
graph transformations [17], and so on. In contrast to them, our 
approach aims at producing aspect-oriented methods suitable for 
any particular designers’ needs by formal transformation of a 
given modular architecture. 
So far presented metamodel is too abstract to be directly applied 
in software development. Its instances pertaining to major 
existing design technologies need to be developed and generously 
illustrated with examples. Such kind of development is a 

promising area of further research. Much work also has to be done 
in discovering capabilities and limitations of AO-schools, creating 
abstract yet powerful aspect weaving and separating techniques. 
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