
Modeling Aspects by Category Theory
Serge P. Kovalyov

Technological Institute of Computer Technics
6 Institutskaya st. – 630090 Novosibirsk, Russia

+7-383-333-37-94

kovalyov@nsc.ru

ABSTRACT
A framework for formal analysis of aspect-oriented software
development (AOSD) is proposed. AOSD is treated as enriching
formal models of programs by traceable refinements that produce
their systemic interfaces. Category-theoretic construction of
architecture school is employed to formalize this approach.
Aspect weaving and separation of concerns are defined as
universal constructions. Aspect-oriented scenario modeling is
discussed as an example.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Specification
techniques

General Terms
Design, Theory

Keywords
Aspect Oriented Software Development, Architecture School,
Traceability, Aspect Weaving

1. INTRODUCTION
Aspect oriented software development (AOSD) [2] aims at
explicit separating and composing concerns elaborated in
response to particular requirements. Concerns are usually much
tangled and scattered across software modules due to
intermingling and conflicting nature of requirements.
Modularizing them or at least keeping them clearly
distinguishable throughout the development process can
drastically improve software maintainability. However, AOSD
has gained lower level of adoption in software production than
modular design up to now. As argued in [15], although the
community agrees on what AOSD is good for, there are no
common paradox-free understanding of what AOSD actually is.
This is partly caused by lack of a sound uniform metamodel
capable to elucidate handling of aspects within modular software
**

development paradigms in a natural way.

We present an attempt to create such metamodel. It is based on
the concept of tracing development process steps, since
traceability is most compromised by tangling. Concerns are
treated as sources of traceable refinements that eventually
produce software artifacts. Attaching these refinements to
program models allows identifying, composing (weaving), and
separating concerns in the course of the development process. In
order to provide formal semantics of these operations that doesn’t
rely on some specific development paradigm we employ category
theory. It allows characterizing (mathematical) objects by their
interrelations with other objects, avoiding appeal to their
“interiors” (by which software artifacts created with different
technologies much vary). Constructions in categories produce
objects that satisfy extensional (“systemic”) criteria: universality
(existence and uniqueness of interrelation with similar objects),
naturality (independence of multistep interrelation on the way it is
traced), and so on. Such objects are usually determined uniquely
up to an isomorphism, viz. appropriate abstraction of inessential
difference. Visual diagrammatic notation is routinely used to
specify constructions.

This motivates employing category theory as paradigm-
independent formal tool to reason on software design. The very
notion of modularity (the Holy Grail of AOSD) is captured as a
class of diagrams that satisfy certain structural properties.
Augmenting it with concepts of an interface and of a refinement
(expressed in category-theoretic terms) leads to fundamental
notion of an architecture school that provides uniform general
representation of software design (see [4]). In this setting, we
formally present enhancing a design technology by aspects as
natural labeling of school constituents by concerns.

We employ scenario modeling as principal example of applying
this construction to specific technology. On the one hand, it
properly captures operational semantics of aspect-oriented
programming that essentially consists in augmenting base
program execution scenario with woven aspects. On the other
hand, it is a widely used requirements engineering technique
empowered with methods for transforming models to
architectures, including those based on category theory [14].
Enhancing domain engineering of large-scale distributed systems
with aspect-oriented capabilities facilitates rapid incremental non-
invasive development [9].

2. ARCHITECTURE SCHOOLS
Category-theoretic approach to formalizing software systems
design is being developed since 1970s. According to it, formal
models (descriptions) of programs are represented as objects, and

actions of integrating (models of) individual components into
(models of) systems are represented as morphisms. Composition
of morphisms represents multistep integration; identity
morphisms represent trivial integrating descriptions into
themselves by “doing nothing”. Resulting category of
descriptions is denoted as c-DESC. An example can be found in
the area of object-oriented design: classes (formally presented on
UML) can be considered as objects in category-theoretic sense,
with inheritance relations as morphisms. Another example,
particularly pertaining to the topic of this paper, is modeling
software systems by execution scenarios. The basic mathematical
representation of a scenario is a partially ordered set (poset) [13].
Its elements are atomic events occurred during execution,
partially ordered by causal dependence. Actions of scenarios
integration are precisely homomorphisms of posets since neither
events nor interactions shall be “forgotten” at integration. Hence
category Pos of all posets and all their homomorphisms plays the
role of c-DESC.
A system built from multiple components is represented as a
c-DESC-diagram that consists of the components and their
interconnections. Recall that a diagram is a functor of the kind
∆ : X → c-DESC, where X is a small category (called a schema of
∆). A diagram can be “visualized” as a directed graph of a
category X whose points are labeled by c-DESC-objects and
arrows are labeled by c-DESC-morphisms. In order to facilitate
category-theoretic reasoning on systems design decisions, we
consider diagrams as objects of appropriate category (the
(covariant) “super-comma category”, see [11]). First, recall that
all diagrams with schema X comprise a category, denoted
c-DESCX, whose morphisms are called natural transformations.
Recall that a natural transformation from a diagram
∆ : X → c-DESC to a diagram Σ : X → c-DESC is a map
ε : Ob X → Mor c-DESC that satisfies the following naturality
condition. For every X-objects A, B, and every X-morphism
f : A → B the equality Σ(f) ◦ εA = εB ◦ ∆(f) holds (in particular, we
have εA : ∆(A) → Σ(A) for every X-object A). A natural
transformation ε can be visualized as a “prism” with graphs of ∆
and Σ as bases, and arrows εA, A ∈ Ob X, as lateral edges.
Naturality condition ensures that composition induces minimal
amount of auxiliary arrows that cross lateral faces of the prism,
i.e. that component-wise integration of a system represented by ∆
into a system represented by Σ established by ε respects every
interconnection.
A notion of a natural transformation admits straightforward
extension to diagrams with different schemas, by adding a functor
that adjusts schemas. So a morphism from a diagram
∆ : X → c-DESC to a diagram Σ : Y → c-DESC is a pair 〈ε, fd〉
consisting of a functor fd : X → Y and a natural transformation
ε : ∆ → Σ ◦ fd. If ε consists of identities (implying that ∆ = Σ ◦ fd)
and fd is injective, then ∆ is called a subdiagram of Σ (graph of ∆
is a labeled subgraph of graph of Σ).
Each object A forms a singleton diagram whose graph consists of
the single point labeled by A. Morphisms between singleton
c-DESC-diagrams are precisely c-DESC-morphisms between
objects they constitute (in category theory it is said that c-DESC1,
where 1 is a singleton category, is isomorphic to c-DESC). A
morphism from an arbitrary diagram ∆ to a singleton diagram is
called a cocone. It can be visualized as a diagram in form of a
“pyramid” with base ∆ and edges directed from points of ∆ to the

distinct point called the vertex. A colimit of ∆, denoted colim ∆,
is a cocone that is universal in a sense that every cocone δ over ∆
factors through colim ∆ uniquely (i.e. there exists a unique
c-DESC-morphism c, called a colimit arrow, such that
δ = 〈c, 11〉 ◦ colim ∆). Obviously a colimit is determined uniquely
up to an isomorphism. Its vertex (called a colimit object) can be
thought of as the least “container” that encapsulates all objects of
∆ via edges respecting structure of their interconnections. For
example, a colimit of a discrete diagram (i.e. the one whose
schema has no morphisms except identities) is precisely a
coproduct of its objects, which includes all of them (preserving
their identity) and nothing more. Even an empty diagram may
have a colimit, whose object is precisely an initial object (there
exists exactly one morphism from it to any other object). An
initial object represents a “componentless” system that can be
uniquely integrated into every system (for example, “pure”
integration middleware).
These considerations motivate employing a notion of a colimit as
category-theoretic abstraction of system synthesis [10]. Existence
of a colimit is a necessary condition for a c-DESC-diagram to
represent a valid system. Clearly it is not sufficient, since various
structural rules usually apply (e.g. type constraints in object-
oriented design). Diagrams that actually produce systems are
called well-formed configurations, and constitute class denoted as
Conf. In scenario modeling, although any Pos-diagram has a
colimit, a configuration is considered as well-formed only if its
target system scenario is included into it explicitly, without
employing any structural computations beyond constructing a
coproduct. Such situation is common at requirements engineering
where the analyst haven’t yet collected enough information to
establish powerful structural rules over requirement models. So
the class CPos of all disjoint unions of Pos-cocones is used for
Conf. Every discrete Pos-diagram is well-formed; it represents a
disjoint union of parallel (non-interacting) scenarios. To see that
“many” other diagrams are ill-formed, consider a pair of Pos-
morphisms {a < b} ← {a, b} → {a > b}, where arrows denote
bijections a → a, b → b. This diagram exposes a and b as
concurrent events, so it is impossible to include both conflicting
orderings into the single scenario. In particular, the diagram’s
colimit object, which is a singleton poset, fails to represent
integration result (as well as any other poset).
It is well known that integration capabilities of a component are
completely determined by its specially devised “part” called an
interface. Interfaces of formal models comprise a category
denoted SIG; extracting an interface is expressed as a signature
functor sig : c-DESC → SIG. Although it shouldn’t be injective
(different components can have the same interface), it is required
to be faithful, i.e. injective on each hom-set Mor(A, B) that
consists of all c-DESC-morphisms with domain A and codomain
B (otherwise it would fail to distinguish different ways to
integrate a component A into a system B). Realizability of every
interface is ensured via existence of a functor
sig* : SIG → c-DESC that produces a “default” implementation of
every interface I. Specifically, sig*(I) has I as an interface (i.e.
sig ◦ sig* = 1SIG) and supports all integration capabilities of I (i.e.
functor sig surjectively, hence bijectively, maps a hom-set
Mor(sig*(I), A) to Mor(I, sig(A)) for every c-DESC-object A). In
category-theoretic terms functor sig* is called left adjoint to sig.

There exists a natural correlation between interfaces and
configurations. First, conditions ∆ ∈ Conf and sig ◦ ∆ = sig ◦ Σ
shall imply Σ ∈ Conf for any c-DESC-diagrams ∆, Σ. This
requirement establishes a kind of logical non-contradiction law
for interfaces: no interface integration schema can be produced by
both systems and illegal conglomerates of components. Second,
interface extraction shall be natural with regard to composing
systems: every colimit of SIG-diagram sig ◦ ∆ equals to
sig ◦ colim ∆ for each ∆ ∈ Conf. In other words, functor sig lifts
colimits of diagrams from Conf. Naturality is actually two-fold:
requirements enlisted above imply that functor sig preserves
colimits of diagrams from Conf.
In scenario modeling, an interface of a scenario is a set of
occurred events obtained by forgetting their order. Indeed, in
order to identify an execution scenario of a component in a
scenario of a system, it is necessary and sufficient to identify all
events occurred within the component. So the canonical forgetful
functor |–| : Pos → Set, where Set is a category of all sets and all
maps, is used for sig. It is easy to see that it satisfies all
requirements above. In particular, default realization of an
interface is represented by a functor |–|* : Set → Pos that turns a
set S into a discretely ordered poset 〈S, =〉 that seamlessly
integrates into any scenario.
In addition to system composition, software development process
contains steps of modeling individual components known as
refinements. The process is commonly viewed as moving along
two dimensions: horizontal structuring induced by “component-
of” relationships and vertical structuring induced by “refined-by”
relationships [10]. All descriptions and all refinements comprise a
category, denoted r-DESC, with the same class of objects as
c-DESC. A (trivial) example of a refinement is an isomorphism,
so a subcategory of c-DESC that contains of all descriptions and
all c-DESC-isomorphisms is required to be a subcategory of
r-DESC. The naturality of refinement with regard to composing
systems is imposed in the form that a collection of refinements of
components constituting a system shall induce a refinement of the
system. This can be formally expressed in terms of natural
r-DESC-transformations, given that every discrete c-DESC-
diagram is simultaneously an r-DESC-diagram. An arbitrary
collection of refinements of objects of a c-DESC-diagram ∆ is
precisely a natural r-DESC-transformation ϕ : |∆| → Σ, where |∆|
is discrete diagram that consists of all objects from ∆, and Σ is a
discrete diagram consisting of all refinements results. If ∆ ∈ Conf,
then a diagram ∆ ⊕ ϕ ∈ Conf shall exist, that has Σ as a
subdiagram (and possibly extra points and arrows), and an
r-DESC-morphism from a colimit object of ∆ to a colimit object
of ∆ ⊕ ϕ.
In scenario modeling, refinement of a scenario consists in
replacing atomic events with subscenarios in such a way that the
order is fully inherited [5]. Formally, a refinement of a poset X to
a poset A is identified with a surjective map f : A → X that
satisfies the condition ∀x ∀y f(x) ≤ f(y) ⇔ (x ≤ y ∨ f(x) = f(y)).
Notice the swap of source and destination: as we will see below, it
is a key to smooth aspect orientation. We will denote the category
of all posets and all scenario refinements by r-Pos.

A tuple 〈c-DESC, Conf, sig, r-DESC〉, that satisfies all conditions
enlisted above, is called an architecture school, and various
examples of schools are considered, in [4]. Of particular interest

are schools “over” Set, in which c-DESC is a concrete category
over Set in the following sense. Descriptions are sets equipped
with some structure (e.g. algebraic structures, topological spaces,
etc), integration actions are maps that respect the structure, and
sig is canonical functor |–| that forgets the structure. Scenario
modeling architecture school SM = 〈Pos, CPos, |–|, r-Pos〉 is an
example of an architecture school over Set.

3. ENHANCING DESIGN WITH ASPECTS
Our model of AOSD rests upon representing emergence of
aspects in a software design technology as formal transformation
of architecture schools. Indeed, AOSD can be generally
considered as equipping software artifacts with certain labeling
conveniently identifying concerns handled by their constituents.
Original motivation of AOSD creators [7] stems from the fact that
programming languages are too concise to allow tracing
intermingled fragments of source code to their ultimate “goals”.
Different flavours of AOSD [2] greatly vary in labeling
techniques (among which modularization is most welcome) but
agree in pursuing transparent traceability, viz. ability to determine
exactly what each fragment of a model is included into it for.
A metamodel of traceability proposed in [16] formally
demonstrates that tracing is routinely compromised by
refinement. A refinement may change the very “nature” of a
model, e. g. when implementing a specification by means of a
programming language. On the contrary, system composition is
able to provide at least partial tracing back to components;
difficulties arise at tracing concerns that crosscut boundaries of
modular architecture (such as security). So ability to trace result
of a refinement to its source means that reversing its direction (i.e.
category-theoretic dualization) produces a c-DESC-morphism,
called its trace. In order to preserve traceability in subsequent
integration of a result into a system, a trace shall have right
inverse at the level of interfaces. Indeed, if a refinement r : X → A
satisfies a condition sig(rop) ◦ s = 1sig(X) for some SIG-morphism
s : sig(X) → sig(A), then SIG-morphism sig(f) ◦ s identifies sig(X)
in sig(S) for every c-DESC-morphism f : A → S.
Obvious example of traceable refinement is a c-DESC-
isomorphism (recall that a dual to an isomorphism is identified
with its inverse which is an isomorphism as well). Non-trivial
traceable refinements are obtained as r-DESC-morphisms that
coherently behave as duals to c-DESC-morphisms. Denote by cr-
DESC the intersection of all such maximal common subcategories
of c-DESC and r-DESCop that contain all c-DESC-isomorphisms.

Definition 1. A cr-DESC-morphism t is called a trace provided
that sig(t) is a retraction (i.e. has right inverse). A sig-image of a
trace is called a labeling. A dual to a trace is called a traceable
refinement. □
In an architecture school over Set every labeling is a surjective
map, so a traceable refinement r : X → A is a total antifunctional
binary relation that is conservative with regard to structure. Its
action can be described as expansion of points of |X| to sets that
comprise partitioning of |A|, projecting structural constraints
defined on points of |X| to some (possibly none) members of their
expansion results. A point of |X| can be considered as a concern
that is elaborated by expansion, in accordance with intuitive
notion of refinement. For example, in scenario modeling school
SM r-Posop is a subcategory of Pos; every refinement is traceable,
and literally determines a labeling of its target by points of its

source. Moreover, refinements allow tracing inclusions of
components, viz. integration actions that leave inner structures of
components intact. Inclusions are represented by regular Pos-
monomorphisms; capability to trace them means that for every r-
Pos-morphism r : X → A and inclusion i : M → X there exists an
inclusion i' : M → A such that rop ◦ i' = i.
Observe that traceable refinements particularly tolerate
configurations. Consider a diagram, called a push of ∆ by ϕ, that
consists of a diagram ∆ ∈ Conf and a family ϕ of arrows directed
from distinct points outside of ∆ to points of ∆. Obviously a push
has a colimit with the same object as ∆. Comprising ϕ from traces
(so that ϕop is a natural r-DESC-transformation from |∆| to a
discrete subdiagram of a push), we see that traceable refinements
are non-invasive with respect to system composition: if a push
belongs to Conf, then it can be taken for ∆ ⊕ ϕop, and appropriate
isomorphism for a refinement of colimit objects. Non-invasive
refinements are much appreciated within the context of AOSD.
For example, this is obviously the case for scenario modeling
school.
These considerations suggest that the AOSD objective can be
achieved by equipping descriptions with traceable refinements
that produce them, at least at the interface level. Such equipping
is precisely the desired aspect labeling. We employ the construct
of comma category (see [11]) to formalize it. We will work in
specific comma category denoted as sig ↓ SIG. Recall that its
objects are pairs 〈A, a : sig(A) → X〉, where A ∈ Ob c-DESC and
a ∈ Mor SIG. A morphism from an object 〈A1, a1〉 to an object
〈A2, a2〉 is such pair 〈f : A1 → A2, b : codom a1 → codom a2〉 that
b ◦ a1 = a2 ◦ sig(f). Denote by AO full subcategory of sig ↓ SIG
whose objects are all pairs 〈A, a〉 in which a is a labeling.

In an architecture school over Set aspect labeling a : |A| → X of a
description A consists in assigning each point of |A| a point of set
X that denotes the “name” of the aspect it belongs to. The labeling
is essentially (up to an AO-isomorphism) an equivalence relation
on |A|, equivalence classes representing individual aspects. Every
such relation turns A into a valid aspect-oriented model, so
aspects needn’t respect its “modular” structure in any way. AO-
morphisms are precisely such c-DESC-morphisms that preserve
this additional equivalence relation. As we will see below, there
exists a functor that turns AO into a concrete category over Set.
Objects of various categories that comprise AO can serve as
interfaces of AO-descriptions, contributing to turning AO into
full-scale architecture school. Specifically, the software designer
have freedom to choose interfaces of aspect-oriented models to be
either:
- original non-aspect-oriented models, obtained by functor

mod that takes an AO-object 〈A, a〉 to a c-DESC-object A, for
modular design tasks;

- aspect labelings, obtained by functor asp that takes 〈A, a〉 to
a, for design and analysis of aspect structure;

- original model interfaces, obtained by functor
int = sig ◦ mod, for specification purposes.

Other options that refine (i.e. can be naturally transmuted to)
original interfaces may be available in particular schools.
Refinements and well-formed configurations of aspect-oriented
models are constructed by appropriate enrichment of modular

“material”. Let tr-AO be the subcategory of AO that consists of all
AO-objects and all such AO-morphisms f that mod(f) is a trace.
Further, denote by str functor that takes 〈A, a〉 to codom a. Notice
that, given an AO-diagram ∆, a diagram |asp ◦ ∆| that consists of
labelings of all objects of ∆ can be viewed as a natural
transformation of int ◦ ∆ to str ◦ ∆, i.e. γ ◦ 〈|asp ◦ ∆|, 1dom ∆〉 is a
cocone over int ◦ ∆ for each cocone γ over str ◦ ∆. Bearing this in
mind, we will call a class I-Dia of SIG-diagrams aspect-closed if
for any Σ ∈ I-Dia an AO-diagram ∆ satisfies the following
conditions provided that int ◦ ∆ = Σ:

- mod ◦ ∆ ∈ Conf;

- SIG-diagram str ◦ ∆ has a colimit;

- every colimit arrow c∆, such that
colim (str ◦ ∆) ◦ 〈|asp ◦ ∆|, 1dom ∆〉 = 〈c∆, 11〉 ◦ colim (int ◦ ∆),
is a labeling;

- for every natural tr-AO-transformation ϕ : Σ → |∆| there
exists an AO-diagram ∆ ⊕ ϕ, such that Σ is its subdiagram,
int ◦ (∆ ⊕ ϕ) ∈ I-Dia, and there exists a tr-AO-morphism
t : 〈C⊕, c∆ ⊕ ϕ〉 → 〈C, c∆〉, where C⊕ is a colimit object of
mod ◦ (∆ ⊕ ϕ) and C is a colimit object of mod ◦ ∆.

Denote by AO-Int the union of all aspect-closed classes of SIG-
diagrams. It allows determining all configurations that retain
modularization when constituent components gain labeling by
aspects.

Definition 2. Given an architecture school AR = 〈c-DESC, Conf,
sig, r-DESC〉, functor ai is said to generate an aspect-oriented
architecture school (AO-school) from AR, if a tuple

AOai(AR) = 〈AO, {∆ | int ◦ ∆ ∈ AO-Int}, ai, tr-AOop〉
is an architecture school, and there exists such functor si that
si ◦ ai = int. □
Theorem 3. Functors 1AO, mod, asp, int generate AO-schools. □
The proof of the theorem consists in checking that AOai(AR)
satisfies all conditions for an architecture school whenever one of
enlisted functors is taken for ai. In particular, functor mod*,
which is left adjoint to mod and defines inclusion of c-DESC into
AO, takes a c-DESC-object A to an AO-object 〈A, 1sig(A)〉. It
represents the first step in enhancing a modular design technology
by aspects: seed aspect structure coincides with an integration
interface. AO-descriptions with non-trivial aspect structures
emerge upon refining them in the course of AOSD process.
In scenario modeling school SM, aspects appear to be precisely
labels that, being attached to elements, turn posets into
pomsets [13]. Labels can be considered as event “names”
denoting concerns they handle. Class AO-Int coincides with
|–| ◦ CPos, which means that all configurations admit aspect
orientation. Since every refinement is traceable, all of them are
used at constructing tr-AOop. Functor mod* endows the discrete
labeling on a scenario, equipping each event with a unique label
(actually itself).

4. WEAVING AND SEPARATING
ASPECTS
Elementary building blocks of aspect-oriented models are known
as aspects. In an architecture school over Set, an aspect is
precisely an AO-object whose str-image is a singleton set, i.e. a

terminal Set-object (there exists exactly one map from any other
set to it). For example, an aspect in scenario modeling is precisely
a pomset with all elements labeled with the same label. In order to
generalize to arbitrary AO-school, observe that every morphism
directed from a terminal object has left inverse (that typically is a
trace, so aspects particularly tolerate tracing).
Definition 4. An AO-description A is called an aspect if str(f) has
left inverse for every AO-morphism f : A → X. □
Proposition 5. If c-DESC has a terminal object 1, then A is an
aspect iff str(A) = sig(1). □
Aspect-oriented program synthesis and decomposition techniques
can be formalized as universal constructs in category AO. For
example, weaving an AO-object W (advice) into an AO-object B
(base) is represented as follows. Weaving rules determine join
points in base B at which W is called through appropriate entry
points. For example, a program written on an aspect-oriented
extension of an object-oriented language, such as AspectJ [3], can
be weaved to the base before/after method calls, access operations
to fields, exception handlers, etc. In order to specify weaving
rules, auxiliary AO-object C, called connector, is employed
(see [12]) in a way that matching between entry points and join
points is described as a pair of AO-morphisms j : B ← C → W : e.
Observe that morphism j is usually called a pointcut
descriptor [3]. Weaver at first (virtually) produces enough copies
of W, one for each join point, with appropriate entry point marked
at each copy. Then binding entry points to matching join points
establishes the weaving provided that it respects aspect structures
of both models. In an architecture school over Set the first step of
weaving can be formalized as constructing a product C × W;
subsequent binding of points is represented as appropriate
pushout. These operations admit straightforward generalization to
arbitrary school. Recall that a pushout is a colimit of a diagram
that has a form of a pair of arrows with the same source. It is used
in category theory to generalize set-theoretic operation of
identifying “the same” elements in different sets.

Definition 6. An aspect weaving of a pair of AO-morphisms
j : B ← C → W : e, where B is called base description, W is called
description being weaved, and C is called connector, is a pushout
of pair j : B ← C → C × W : 〈1C, e〉 provided that it exists
(implying that product C × W exists as well) and is preserved by
functor str. □
This definition captures intuitive properties of weaving. For
example, if B consists solely of join points (i.e. j is an
isomorphism), then weaving produces a product B × W. Labeled
scenarios (i.e. objects of a category AO constructed from
constituents of scenario modeling school SM) are friendly to
weaving. In particular, weaving exists iff the connector
“tolerates” concurrency in a sense that it doesn’t impose specific
order of executing different aspects of the advice bound to the
same join point. Formally, for every x, y ∈ mod(C) conditions
mod(j)(x) = mod(j)(y) and x ≤ y shall imply that
asp(W)(v) = asp(W)(x) for every such v ∈ mod(W) that
mod(e)(x) ≤ v ≤ mod(e)(y). This holds for weavers with implicit
connectors, such as AspectJ.
The construction of weaving suggests how to extract individual
aspects from multiaspect program. The category-theoretic
construction of a pullback (dual to a pushout) is employed there.
Recall that a pullback is a limit (dual to a colimit) of a diagram

that has a form of two arrows with the same destination. A
pullback is used to generalize set-theoretic notion of a preimage
of a subset: given a diagram s : S → A ← B : f, where s identifies
a subobject S in A, and its pullback p : S ← P → B : q, morphism
q identifies a “preimage” f –1(S). Similarly, a subaspect of an AO-
object A is essentially a preimage of its aspect structure along a
traceable refinement represented by asp(A).
Sound notion of a subaspect allows formal evaluation of
modularizing crosscutting concerns, viz. separating them into
modular design units. The first step towards modularization
consists in explicating aspect structure of an AO-object as a
traceable refinement. Although it may be impossible or
ambiguous due to tangling, each nonempty AO-school contains
models that allow naturally explicating their aspect structures as
well as integration actions.
Definition 7. An explication (of aspect structure) of an AO-
description S is an r-DESC-morphism s : X → mod(S) that is dual
to a sig-trace and satisfies equality sig(sop) = asp(S). An
explication s is called universal provided that for every AO-
morphism f : S → R and every explication r of aspect structure of
R there exists a c-DESC-morphism q, called explication of f along
r, such that q ◦ sop = rop ◦ mod(f). An (aspectual) core of an AO-
school is full subcategory of AO that consists of all descriptions
that have a universal explication. □
Obviously a universal explication is unique up to an isomorphism.
Moreover, observe that the explication equality resembles the
definition of a natural transformation. This is not a mere
coincidence: explicating an AO-morphism is actually a functor,
and universal explications comprise natural transformation of
functor mod (reduced on the core) to it. An example of a core AO-
object is a pair 〈A, 1sig(A)〉 obtained from a c-DESC-object A by
functor mod*.
Once an aspect structure of an AO-description is explicated as a
refinement, individual aspects need to be extracted from it for
subsequent modular development. Partitioning complex models to
extractable aspects is known as separation of concerns. A key to
separation is obtaining AO-morphisms with pullbacks as
explications.

Definition 8. An AO-morphism m : A → S is called a subaspect of
a core AO-description S if it satisfies the following conditions:
- A is a core aspect;
- explication m' of m is right inverse to a trace;
- explication equality m' ◦ aop = sop ◦ mod(m), where a and s

are universal explications of A and S, respectively,
determines a c-DESC-pullback. □

In an architecture school over Set, explication of aspect structure
of an AO-description S consists in equipping set str(S) with
enough “modular” structure to turn map asp(S) into actual trace
directed from mod(S). If such equipping is possible, then a
candidate subaspect in S can be identified, like in Set, by pulling
back a (weak) element (i.e. a morphism whose domain rests upon
a singleton set) along this trace. An underlying set of the pullback
object is precisely an equivalence class of aspect structure
equivalence relation. In order for it to form a genuine subaspect,
both it and the codomain of the identifying element should be
produced from the element’s domain by traceable refinements.

Every core labeled scenario can be partitioned to subaspects.
However, the core is rather “small”: for example, two linearly
ordered aspects executed in interleaving mode cannot be
separated from each other. Weaving cannot directly produce
interleaving as well. This fact illustrates difficulties encountered
at developing even simple client-server distributed systems. Yet
every scenario can be labeled by linearly ordered extractable
aspects. Their number can be either maximized by applying the
functor mod*, or minimized by identifying so-called sequential
subsystems [8]. This fact justifies developing aspect-oriented
extensions to traditional programming languages that allow
creating only sequential programs.
As an example application of aspect-oriented scenario modeling,
consider a distributed measurement system (DMS). As shown
in [9], its main execution scenario consists in reiterating the
following linearly ordered sequence of data processing
(functional) concerns:

 measure → store → validate → compute → display.
During system development, each of them is refined to a complex
aspect, yet they remain separable. However, infrastructure
aspects, such as metadata model, monitoring, and security, are
woven to each of them, undermining separation of concerns. So in
order to execute different data processing functions on different
computers, the infrastructure has to be somehow replicated among
them. It is this replication that makes a DMS considerably more
challenging to develop than an isolated measurement device.
A glance on results of this section reveals that major contribution
of AOSD into software design (in its category-theoretic
treatment) consists in employing various kinds of limits
(constructions dual to colimits), including a terminal object,
products, and pullbacks. Contrast this with traditional modular
design that, as presented in Section 2, is based solely on colimits.
The root reason of limits to appear is of course the duality
between integration actions and traceable refinements, as imposed
by Definition 1.

5. CONCLUSION
Our work belongs to the mainstream of applications of category
theory to computer science. Their success is due to ability of
category-theoretic notions to formally express basic mental
patterns of systems analysis, which is the crucial software design
activity. In particular, fundamental results were achieved in the
area of “categorizing” modular design. However, to the best of
our knowledge there are no comparably powerful frameworks
suitable to construct and analyze aspect-oriented development
technologies. Existing AOSD methods are represented in terms of
concrete formal devices difficult to apply beyond specific
software development paradigms. Formalisms employed to
express aspect-oriented concepts include process algebras [1],
model checking [6], architecture description languages [12],
graph transformations [17], and so on. In contrast to them, our
approach aims at producing aspect-oriented methods suitable for
any particular designers’ needs by formal transformation of a
given modular architecture.
So far presented metamodel is too abstract to be directly applied
in software development. Its instances pertaining to major
existing design technologies need to be developed and generously
illustrated with examples. Such kind of development is a

promising area of further research. Much work also has to be done
in discovering capabilities and limitations of AO-schools, creating
abstract yet powerful aspect weaving and separating techniques.

6. REFERENCES
[1] Andrews J.H. Process-Algebraic Foundations of Aspect-

Oriented Programming. Lecture Notes in Computer Science,
Vol. 2192, 2001, 187–209.

[2] Aspect-Oriented Software Development. Addison Wesley,
2004.

[3] Colyer A., Clement A., Harley G., Webster M. Eclipse
AspectJ. Addison-Wesley, 2004.

[4] Fiadeiro J.L., Lopes A., Wermelinger M. A Mathematical
Semantics for Architectural Connectors. Lecture Notes in
Computer Science, Vol. 2793, 2003, 190–234.

[5] Glabbeek R.J. van, Goltz U. Refinement of Actions and
Equivalence Notions for Concurrent Systems. Acta
Informatica, Vol. 37, Issue 4–5, 2000, 229–327.

[6] Katz E., Katz S. Verifying Scenario-Based Aspect
Specifications. Lecture Notes in Computer Science, Vol.
3582, 2005, 432–447.

[7] Kiczales G. et al. Aspect-Oriented Programming. Lecture
Notes in Computer Science, Vol. 1241, 1997, 220–242.

[8] Kovalyov S.P. Architecture of Time of Distributed
Information Systems. J. Computational Technologies, Vol. 7,
No. 6, 2002, 38–53. [In Russian]

[9] Kovalyov S.P. Domain Engineering of Distributed
Measurement Systems. Optoelectronics, Instrumentation and
Data Processing, 44(2), 2008, 125–130.

[10] Lopes A., Fiadeiro J.L. Revisiting the Categorical Approach
to Systems. Lecture Notes in Computer Science, Vol. 2422,
2002, 426–440.

[11] Mac Lane S. Categories for Working Mathematician. 2nd
Ed. Springer, 2008.

[12] Pinto M., Fuentes L., Troya J.M. DAOP-ADL: An
Architecture Description Language for Dynamic Component
and Aspect-Based Development. Lecture Notes in Computer
Science, Vol. 2830, 2003, 118–137.

[13] Pratt V.R. Modeling Concurrency with Partial Orders. Intl. J.
Parallel Programming, 15(1), 1986, 33–71.

[14] Sassone V., Nielsen M., Winskell G. Deterministic
Behavioural Models for Concurrency. Lecture Notes in
Computer Science, Vol. 711, 1993, 682–692.

[15] Steimann F. The Paradoxical Success of Aspect-Oriented
Programming. In Proceedings of OOPSLA’06. Portland,
2006, 481–497.

[16] Vanhooff B., Baelen S. van, Joosen W., Berbers Y.
Traceability as Input for Model Transformations. In
Proceedings of the 3rd ECMDA-TW. Haifa, Israel, 2007,
37–46.

[17] Whittle J., Jayaraman P. MATA: A Tool for Aspect-Oriented
Modeling Based on Graph Transformation. Lecture Notes in
Computer Science, Vol. 5002, 2008, 16–27.

