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ABSTRACT
In this paper, we propose a programming language called
NextEJ. NextEJ is a smooth combination of a role-based
language EpsilonJ and context activation mechanisms pro-
vided by COP languages. It supports all the features of
the Epsilon model such as dynamic object-role binding and
unbinding, and encapsulation of collaboration of roles as a
context that can be defined as a reusable module. Further-
more, NextEJ tackles typing problem of the Epsilon model
by introducing the context activation scope inspired by COP
languages. The key ideas described in this paper are formal-
ized as a small core language FEJ that is built on top of FJ.
FEJ’s type system is proven to be sound.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.3.1 [Programming Languages]: Formal Def-
initions and Theory; D.3.3 [Programming Languages]:
Language Constructs and Features

General Terms
Languages

Keywords
Role model, Epsilon, Context-oriented Programming

1. INTRODUCTION
Context-awareness is becoming an increasingly important

feature in many types of applications, ranging from business
applications to mobile and ubiquitous computing systems.
For example, in location-based systems, the behaviors of
the provided services are situation-dependent or even deeply
personalized [6]; thus, instance-specific behavioral changes
with respect to the surrounding context are required. Un-
fortunately, current mainstream object-oriented languages
provide little explicit support for context-awareness [23].
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To explicitly support context-awareness at the program-
ming language level, several approaches have been proposed.
One of the promising methods of realizing context-awareness
is to use the Epsilon model [41, 42]. The Epsilon model pro-
vides a clear conceptual framework of role modeling and
object adaptation to collaboration fields between roles. It
also provides a good basis for developing context-aware ap-
plications. A Java-based implementation language called
EpsilonJ has also been implemented [34].

In EpsilonJ, each context is declared by a context declara-
tion statement (Figure 1). Each context consists of a set of
roles that represents collaborations performed in that con-
text. For example, Figure 1 shows collaborations between
employers and employees in a company (e.g., an employer
pays salary for the employees). Each context can be instan-
tiated by using the new expression, as in Java. An object
can participate in a context by assuming one of the role
instances belonging to that context. This can be achieved
by the newBind predefined method (Figure 2); this method
creates a role instance and binds it with the object that
is passed as an argument to newBind. An object can also
assume other role instances belonging to other contexts.

EpsilonJ supports the development of context-aware ap-
plications. We can define behavioral variations that may
vary with respect to the surrounding environment by us-
ing context declarations. In each context, we can group
related context-dependent behaviors. Each context and role
is a first-class entity that can be explicitly referred to by its
name; thus, we can explicitly invoke context-dependent be-
haviors. However, in EpsilonJ, dynamically acquired meth-
ods obtained by assuming roles have to be invoked by using
down-casting (line 6 of Figure 2); this is an unsafe operation.
This down-casting is cumbersome and error-prone, because
we always have to use it whenever we want to use role meth-
ods on a case-by-case basis. In addition, to assure that the
receiver object is actually bound with the role, we have to

context Company {

role Employer {

void pay() { Employee.getPaid(); } }

role Employee {

int save, salary;

Employee(int salary) {

this.salary = salary; }

void getPaid() { save += salary; } } }

Figure 1: Example of context in EpsilonJ



1 Person tanaka = new Person();

2 Person komiyama = new Person();

3 Company todai = new Company();

4 todai.Employer.newBind(komiyama);

5 todai.Employee.newBind(tanaka,1000);

6 ((todai.Employer)komiyama).pay();

Figure 2: Object-role binding in EpsilonJ

investigate the source code carefully.
One of the reasons for this problem is the fact that there

is no method to control the scope of object-role binding. If
we can represent a scope that ensures that the designated
objects and roles are bound, this problem would be solved.
This scoping mechanism is similar to the one that has been
described in Context-oriented Programming (COP) [23, 13,
22]. However, COP languages do not provide the object
adaptation mechanism supported by EpsilonJ because the
binding mechanism is not object-based but class-based. Fur-
thermore, in most the statically typed COP languages, such
binding is performed statically and only the activation mech-
anism is provided. Therefore, the flexible adaptive evolution
provided by EpsilonJ is not supported by COP languages.

We have proposed a smooth combination of the Epsilon
model and COP languages that incorporates the advantages
of both. We design a new programming language called
NextEJ [28]1 that incorporates the feature of both Epsilon
model and COP. NextEJ addresses the problem of the type
unsafety of the Epsilon model by introducing a language fea-
ture, the concept of which is adopted from COP languages,
called context activation scope. In the context activation
scope, we can denote which role of an object that belongs
to an context is bound and activated within the scope. If
the designated object is not bound with the role, the role in-
stance is implicitly created and bound with the object, and
therefore it is ensured that the object always assumes the
role within the scope and no method-not-understood errors
occur at run-time. Furthermore, context activation scopes
can be nested so that multiple contexts can be activated at
a time. A role instance has a pre-defined field thisC that
refers to its enclosing context instance. In the case of multi-
ple context activations, the reference of thisC is interpreted
as a composite context whose behavior is determined by the
order of activation.

To carefully investigate the type soundness of NextEJ,
we develop FEJ, a core calculus that combines the features
of EpsilonJ and COP. This formalization is built on top of
Featherweight Java (FJ) [24] and its type system is proven
to be sound. There have been only a few reports on the
formalization of the Epsilon model and COP languages [27,
12], and there have been non on the combination of role-
based languages and COP. The formalization described in
this paper can also be considered as a theoretical basis for
similar languages such as ObjectTeams [21]. We discuss the
relationship between NextEJ and ObjectTeams in section 4.

2. NEXTEJ: SMOOTH COMBINATION OF
EPSILON AND COP

This section describes how context-awareness can be easily

1The syntax of NextEJ has been improved in this paper.

class Building {
role Guest {

void escape() { .. }
}
role Security {

void notify() {
Guest.escape(); }

}
}

class Shop {
role Customer {

void buy(Item i) {
int p = i.getPrice();
Seller.getPaid(p);

} }
singleton role Shopkeeper {

void getPaid(int price)
{ ... } } }

Figure 3: Context and role declarations

Figure 4: Structure of role instances and a context
instance

expressed by NextEJ. A design sketch of NextEJ was pre-
sented in [28]. For the sake of simplicity, we have included
this sketch in this paper.

2.1 An Example
To discuss the main features of NextEJ, we consider the

following example. This example features two contexts, build-
ing and shop. Within a building, there exist several roles
such as visitor, janitor, security agent, and owner. Similarly,
within a shop there exist some roles such as customer and
shopkeeper. When a person enters a building, she assumes
the role of a visitor. Similarly, a person assumes the role of
a customer when she enters a shop. There exist many inter-
actions among roles; e.g., a security agent notifies all visitors
in case of an emergency or a shopkeeper sells a customer an
item. When a person leaves a context (e.g., building) she
quits the role she assumes (e.g., visitor). Furthermore, shops
may be within a building; therefore a person may simulta-
neously enter multiple contexts (i.e., building and shop).

2.2 Context and Role Declarations
NextEJ is an extension of Java that provides an explicit

method to represent context-dependent behaviors and ob-
ject adaptation to contexts. Figure 3 shows an example of
context and role declarations in NextEJ. In NextEJ, each
context is declared as a normal class and each role is de-
clared within a class by using the role declaration state-
ment. In Figure 3, the context Building consists of two
roles, Guest and Security. Within roles, we can declare
methods and fields. For example, the role Guest declares
a method escape() that is called in the body of notify()

declared in Security.
A context can be instantiated by a new expression because

it is actually a normal class. On the other hand, an instance
of a role cannot be created explicitly, as described later. The
relationships among role instances and the enclosing context
instance are shown in Figure 4. A role instance is always as-
sociated with an instance of its enclosing context. A set of



Figure 5: Structure of an object bound with role
instances

instances of a role associated with the same enclosing con-
text instance is called a role group, and it is referred by the
role name. For example, the method call Guest.escape()
is interpreted as calling the escape() methods of all Guest
instances. A role declared as singleton is called a singleton
role; this implies that at most one instance of the role with
the same enclosing context instance can be created.

A role declaration cannot contain an extends clause; how-
ever, this does not mean that a role cannot extend other
roles. The composition mechanism of contexts and roles is
discussed in section 2.5.

2.3 Object Adaptation and Context Activation
A class instance enters a context by assuming one of its

role instances. Furthermore, a class instance can be bound
with multiple role instances and can activate or deactivate
some of them (Figure 5). For example, assuming that we
have a class Person, object adaptation to a context can be
written as follows:

final Building midtown = new Building();

Person tanaka = new Person();

Person suzuki = new Person();

Person sato = new Person();

bind tanaka with midtown.Guest(),

suzuki with midtown.Guest(),

sato with midtown.Security() {

...

sato.notify(); }

The sentence beginning from the keyword bind is called
a context activation scope. Before entering the execution
scope (enclosed between braces), it creates role instances and
binds them with the corresponding class instances, if these
class instances are not bound with the corresponding roles.
If a class instance is already bound with the corresponding
role, the role instance is not created but the existing role
instance is activated. Within the parentheses following the
role name, we specify the arguments for the constructor of
the role. These arguments are used only when the class
instance is not bound with the role so that the role instance
is created.

After entering the execution scope, it is assumed that each
class instance declared in the bind clause is bound with
the corresponding role instance. For example, in the above
code, sato is bound with a role midtown.Security() (im-
plying that sato enters the context midtown as a Security).
Within the following brace, sato acquires the behavior (and
states) declared in Building.Guest; thus, we can safely call
the method notify() declared in Building.Guest on sato.
Within the context activation scope, it is considered that

sato is a subtype of Person and Building.Guest, like mul-
tiple inheritance or mixins [9]. As described later, a context
can also be composed with another context, and a subtyping
relation exists between a context and the composite context.
To ensure type safety, all the variables referring to a context
instance have to be declared with the modifier final, be-
cause if a reference to a context instance changes during
computation, it becomes very difficult to determine the ac-
tual type of role instances belonging to the context2.

Note that outside the context activation scope, we cannot
access methods declared in roles. This does not imply that
the acquired role is discarded outside the scope. Instead,
the role instance and its states are retained but deactivated,
recovering the original behavior of the object. The retained
role instance will be reactivated if the object assumes the
same role in the same context.

The idea of activation/deactivation of role instances is
taken from ContextJ and is one of the major differences from
EpsilonJ. Within the context activation scope, it is always
assumed that the object is bound with the corresponding
role instance; thus, we can safely access the role instance
method. In EpsilonJ, on the other hand, once an object is
bound with a role instance, this role instance is activated
only through down-cast expressions. Because whether an
object is bound or unbound with the role instance cannot
be determined statically, this down-casting may result in a
cast-exception. Once the object is unbound with the role,
the role instance becomes garbage. Instead, in NextEJ, the
deactivated role instance may be activated again, preserving
its states.

In NextEJ, the context activation is dynamically scoped,
because role method invocation is based on role instances
that are dynamically bound with a class instance, and this
binding can go beyond the lexical scope (e.g., by passing the
instance as an argument to a method invocation).

2.4 Multiple Context Activation
A class instance may enter multiple contexts. For exam-

ple, there exists a case in which a shop is within a building;
in this case, a customer of the shop is also a guest of the
enclosing building. To represent such a situation (i.e., there
are multiple contexts in which the person is participating),
the context activation scope can be nested, as shown in the
following example:

final Building midtown = new Building();

Person tanaka = new Person();

bind tanaka with midtown.Guest() {

final Shop lawson = new Shop();

Person sato = new Person();

bind tanaka with lawson.Customer(),

sato with lawson.Seller() {

tanaka.buy(someItem); } ... }

In this example, tanaka first enters the context midtown as
a Guest; then, it enters the context lawson, located within

2There may be other approaches to solve this problem (e.g.,
using exact types) [10, 25]; however, we prefer to use the
approach of“final context instance,” because it simplifies the
type system and it is easy to reason about the correctness
of the program. Furthermore, we observe that the reference
to a context is inherently difficult to change (like aspects
in AOP); thus, we are not sure when “non-final” context
instances become useful.



class Building {
String name;
Building(String name) {

this.name = name; }
void currentPosition() {

System.out.println(
" "+name);

next();
}
role Guest { ... }
role Security { ... }

}

class Shop {
String name;
Shop(String name) {

this.name = name; }
void currentPosition() {

System.out.println(
" "+name);

next();
}
role Customer { ... }
role Seller { ... }

}

Figure 6: Context method combination

midtown, as a Customer; finally, it buys someItem (and pays
to sato, as shown in Figure 3).

2.5 Referring the Enclosing Context and Com-
posite Context

Another feature of NextEJ that is not provided by Ep-
silonJ is that the enclosing context instance and its methods
can be accessed through the special field thisC that is im-
plicitly declared in all role declarations and always refers
to the enclosing context instance. Therefore, if contexts
Building and Shop are declared as shown in Figure 6, the
following code is allowed in NextEJ:

final Building midtown = new Building("Midtown");

Person tanaka = new Person();

bind tanaka with midtown.Guest() {

final Shop lawson = new Shop("Lawson");

bind tanaka with lawson.Customer() {

tanaka.thisC.currentPosition(); } }

In this code, the field thisC is accessed on tanaka; this
is allowed because tanaka is bound with role instances. Be-
cause the enclosing context instance declares a method
currentPosition (that can be statically assured by using
the information provided by the context activation scope),
we can safely call currentPosition on thisC; this prints
where tanaka reside on the standard output.

In addition, note that tanaka enters two contexts, midtown
and lawson, both of which declare the method current-

Position. Actually, on thisC, we can access a compos-
ite context of midtown and lawson. The ordering of the
composition is determined by the order of activation; the
innermost context always precedes the other contexts. In
Figure 6, the declaration of currentPosition contains a
method call next() that is similar to inner of Beta [33, 16].
It calls the next method if it exists. If the next method
does not exist, calling next() has no effects. Therefore,
currentPosition declared in Shop is first called; then, that
declared in Building is called. The above code therefore
prints a string " Lawson Midtown" on the standard output.

If each component context of a composite context has a
role with the same name, an access to the role name is also
interpreted as a composite role, and the innermost role al-
ways precedes the other contexts. This mechanism is sim-
ilar to family polymorphism [15]. Furthermore, a context
can also extend another context. If both of a context and
its derived context declare roles with the same name, the
role in the derived context implicitly inherits from the role
in the super context, and no subtyping is defined between
them. This mechanism is similar to lightweight family poly-
morphism [40]. In the case of method name conflict (i.e., a

role method overrides methods provided by both its super
role and another component role), the super role method
precedes the others (like nested inheritance [35, 36]).

2.6 Swapping Roles
As mentioned earlier, a role instance is deactivated outside

the context activation scope. This deactivated role instance
can be discarded3. Furthermore, as in EpsilonJ, another
class instance may also assume the removed role instance.
We can express it by using the bind statement (context ac-
tivation scope) followed by the from clause:

Person sato = new Person();

bind sato with lawson.Seller() from tanaka {

... }

The above code results in tanaka dropping the instance of
role lawson.Seller and sato taking it over (if tanaka is not
bound with lawson.Seller, a new instance of it is created
for sato).

2.7 Other Features Taken from EpsilonJ
NextEJ also has a few other features found in EpsilonJ.

For example, a role may declare a required interface. This
is a method of defining an interface to a role and it is
used at the time of binding with a class instance, requiring
the class instance to supply that interface, i.e., the binding
class instance should possess all the methods specified in
the interface. A required interface can be declared using the
requires clause as follows:

class Building {

role Guest requires { String name(); } {

... } }

When a required interface is declared to a role, meth-
ods can be imported from the binding class instance. For
example, supposing that Person has a method name(), in
the aforementioned bind statements, the method name() of
tanaka is imported to the Guest role instance through the
interface. The imported method can be used in the body of
the role declaration. Furthermore, the role may override the
imported method, and in the overriding method, we may
call the original (overridden) method by calling the method
with the same signature on super.

For type-checking this binding, it is only necessary for the
class to have a method that has the same name and the same
signature required by the role. In other words, the class has
to be a structural subtype of the requires interface4.

2.8 Summary
As discussed in [28], NextEJ supports all the basic re-

quirements of COP languages. Furthermore, it provides a
flexible mechanism for object adaptation that was originally
proposed by the Epsilon model. In NextEJ, each context
represents a concern so that separation of concerns is explic-
itly supported by the language. Unlike ContextJ’s layer-in-
class approach, contexts including roles can be units of reuse.
Instance-specific context-dependent behaviors are supported

3This can be achieved using the unbind predefined method
described in [28]
4A similar mechanism is also found in McJava, a Java ex-
tension with mixins [26].



L ::= class C { T̄ f̄ ; M̄ Ā}
A ::= role R requires { M̄I }{T̄ f̄ ; M̄}
T ::= C.R | C̄.R̄ :: C

TS ::= T | { M̄I ; }
MI ::= T m(T̄ x̄)
M ::= MI { return e; }
e ::= x | e.f | e.m(ē) | new C(ē)⊕ r̄ |

bind x̄ with r̄ from ȳ { x̄ȳ.e0 }
v ::= new C(v̄)⊕ r̄
r ::= v.R(v̄)

Figure 7: Syntax

TS <: TS (S-REFL)

C <: D D <: E

C <: E
(S-TRANS)

T m(T̄ x̄);∈ M̄I ⇒ mtype(m, C) = T̄ → T

C <: {M̄I}
(S-STRUCT)

C.R :: T <: T (S-MIXINC)

C.R :: T <: C.R (S-MIXINR)

Figure 8: Subtyping

so that within the context activation scope, objects that are
not bound with the roles are not affected by the activa-
tion. As in EpsilonJ, the role-class binding is performed
at run-time. While developing a context, NextEJ does not
assume any existing code (i.e., we can design contexts in-
dependently), because the requires interface only imposes
structural subtyping on roles and classes.

Furthermore, unlike EpsilonJ, NextEJ provides a mecha-
nism for clearly defining the scope where the context-dependent
behaviors are activated. This scoping mechanism ensures
type-soundness. In the following section, we provide the
formalization of key ideas presented in this paper.

3. FEJ: CORE CALCULUS OF NEXTEJ
In this section, we formalize the core features of NextEJ

described in the previous sections as a small calculus called
FEJ. NextEJ provides a number of interesting features. In
this paper, we focus on the most relevant features for object
adaptation and context-activation mechanisms. FEJ is built
on top of Featherweight Java (FJ) [24], a functional core of
class-based object-oriented languages such as Java.

3.1 Syntax
The abstract syntax of FEJ is shown in Figure 7. The

metavariables C and D range over classes; S, T , U , and
V range over named types; M ranges over method decla-
rations; L ranges over class declarations; Q and R range
over roles; A ranges over role declarations; MI ranges over
method signatures; f and g range over fields; m and n range

over method names; TS ranges over types (including inter-
face types); b, c, d, and e range over expressions; x and y
range over variables; r and s range over role instances; and
v and w range over values.

We write M̄ as a shorthand for a possibly empty se-
quence M1 · · ·Mn, Ā as a shorthand for A1 · · ·An, and ē
as a shorthand for e1, · · · , en. We also abbreviate pairs of
sequences in a similar manner, writing T̄ f̄ ; as a shorthand
for T1 f1; · · ·Tn fn;, T̄ x̄ as a shorthand for T1 x1, · · · , Tn xn,
and C̄.R̄ as a shorthand for C1.R1 :: · · · :: Cn.Rn. We denote
an empty sequence as · and the length of sequence ē as #(ē).
Sequences are assumed to contain no duplicate names.

In FEJ, the body of class declaration consists of field dec-
larations, followed by method declarations and role decla-
rations. Similarly, the body of role declaration consists of
field declarations followed by method declarations. The in-
heritance of classes is omitted in this calculus, implying that
the family-polymorphism-like features of NextEJ is totally
excluded on FEJ. Although this feature is interesting and
very useful, it is not technically a new feature. To realize a
clear understanding of our new features provided by NextEJ,
FEJ is designed to be concentrated on the most relevant fea-
tures of object adaptation and context activation.

A named type is a class name, a role name (prefixed by a
class name), or a composite type of a sequence of roles and
a class. Named types appear in field declarations, signature
of method declarations and constructor declarations, and re-
turn type of method declarations. On the other hand, inter-
face types { M̄I} can only appear in the requires clause of
role declarations. The special variable super within the role
declaration is assumed to have an interface type appearing
in the requires clause.

A method declaration consists of the method signature
and a return type, followed by its body. The body of the
method declaration consists of just one return statement,
implying that FEJ is a purely functional calculus.

There are five kinds of expressions in FEJ: variables, field
accesses, method invocations, class instance creations, and
bind expressions. A class instance creation consists of nor-
mal Java’s new syntax and its associated role instances, which
may vary during computation. The body of a bind expres-
sion only consists of one expression. Within the body of
the bind expression, variables appearing in the bind clause
and from clause are not considered as free variables. To
explicitly denote this fact, we write x̄ȳ.e0 to imply that x̄
and ȳ are bound in e0. We assume that this and super

are special variables that are implicitly declared in method
declarations.

An FEJ program is a pair of a class table CT and an
expression e. A class table is a map from class names to class
declarations. The expression e may be considered as the
main method of the real NextEJ program. The class table
is assumed to satisfy the following conditions: (1) CT (C) =
class C · · · for every C ∈ dom(CT ) and (2) C ∈ dom(CT )
for every class name appearing in the range of CT . In the
derivation hypothesis shown below, we abbreviate CT (C) =
class C · · · as class C · · · .

Subtyping rules of FEJ are shown in Figure 8. In FEJ,
subtyping is a reflective and transitive closure of the mixin
composition (::) relation. Furthermore, a class is a subtype
of an interface if the class implements all the methods de-
clared in the interface; thus, there exists structural subtyp-
ing between classes and interfaces.



class C { T̄ f̄ ; M̄ Ā}
fields(C) = T̄ f̄

class C { T̄ f̄ ; M̄ Ā}
role R requires { · · · }{ S̄ ḡ; · · · } ∈ Ā

fields(C.R) = S̄ ḡ

fields(C) = T̄ f̄

ftype(fi, C) = Ti

fields(C.R) = T̄ f̄

ftype(fi, C.R) = Ti

ftype(f, C.R) = S

ftype(f, C.R :: T ) = S

fields(C.R) = T̄ f̄ f 6∈ f̄

ftype(f, C.R :: T ) = ftype(f, T )

Figure 9: Field lookup

class C { T̄ f̄ ; M̄ Ā }
fvalue(fi, new C(ē)⊕ ·) = ei

(FV-CLASS)

class C { · · · Ā }
role R requires { · · · }{ T̄ f̄ · · · } ∈ Ā

fvalue(fi, new D(· · · )⊕ new C(ē).R(d̄)r̄) = di

(FV-ROLE)

class C { · · · Ā } f 6∈ f̄
role R requires { · · · }{ T̄ f̄ ; · · · } ∈ Ā

fvalue(f, new D(· · · )⊕ new C(ē).R(d̄)r̄) =
fvalue(f, new D(· · · )⊕ r̄)

(FV-ROLE1)

Figure 10: Field value lookup

3.2 Auxiliary Definitions
For the typing and reduction rules, we require a few auxil-

iary definitions. Field lookup functions are defined in Figure
9. The function fields( ), where is either C or C.R, is a
sequence T̄ f̄ of field types and names declared in C or C.R.
The function ftype(f, T ) returns the type S of field f , if f
can be accessed on T . We write f 6∈ f̄ to imply that the
field f is not included in f̄ . The definitions of both fields
and ftype are straightforward.

Figure 10 shows field value lookup rules. The function
fvalue(f, v) returns the value w of field f , if f can be accessed
on either r̄ or v. It first searches for f on the sequence of role
instances r̄. In this searching, the fields declared in the role
instance of the left-most side of r̄ are searched, followed by
the next role instance. If f is not found on r̄, fields declared
in the class instance new C(ē) are searched.

class C { T̄ f̄ ; M̄ Ā}
T m(T̄ x̄){ return e; } ∈ M̄

mtype(m, C) = T̄ → T

class C { T̄ f̄ ; N̄ Ā }
role R requires {M̄I}{· · · M̄} ∈ Ā

T m(T̄ x̄){ return e; } ∈ M̄

mtype(m, C.R) = T̄ → T

class C {T̄ f̄ ; N̄ Ā}
role R requires {M̄I}{· · · M̄} ∈ Ā

m 6∈ M̄ T m(T̄ x̄) ∈ M̄I

mtype(m, C.R) = T̄ → T

T m(T̄ x̄) ∈ M̄I

mtype(m, { M̄I }) = T̄ → T

mtype(m, C.R) = T̄ → T

mtype(m, C.R :: S) = T̄ → T

mtype(m, C.R) is undefined

mtype(m, C.R :: T ) = mtype(m, T )

Figure 11: Method type lookup

class C { T̄ f̄ ; M̄ Ā }
T m(S̄ x̄){ return e; } ∈ M̄

mbody(m, new C(ē)) = x̄.e
(MB-CLASS)

class C { · · · Ā }
role R requires { M̄I }{ · · · M̄ } ∈ Ā

T m(S̄ x̄){ return e; } ∈ M̄

mbody(m, new C(ē).R(d̄)r̄) = x̄.e, new C(ē).R(d̄)
(MB-ROLE)

class C { · · · Ā } m 6∈ M̄
role R requires { M̄I }{ · · · M̄ } ∈ Ā

mbody(m, new C(ē).R(d̄)r̄) = mbody(m, r̄)
(MB-MIXIN)

Figure 12: Method body lookup

Method lookup functions are defined in Figures 11 and 12.
The type of method invocation m at TS , written mtype(m, TS),
is a pair of a sequence T̄ of the formal parameter types and a
return type T , written as T̄ → T . We write m 6∈ M̄ to imply
that the method definition of the name m is not included
in M̄ . The definition is also quite similar to field lookup
functions; if TS matches a mixin composition type C.R :: T ,
method declarations on C.R are searched first. The body of
the method invocation m on the sequence of role instances
r̄, written as mbody(m, r̄), is a triple, written as x̄.e, r, of
the sequence of parameters x̄, body e, and role instance r
indicating where the method m is found from r̄. The body



Bindability checking:

C <: {M̄I} class D {· · · Ā}
role R requires {M̄I}{ · · · } ∈ Ā

bindable(D.R, C)

Allowed unbinding:

T = D̄.Q̄ :: C ∀Di.Qi ∈ D̄.Q̄, Di.Qi ∈ C̄.Q̄

unbindAllowed(T, C̄.Q̄)

Figure 13: Other auxiliary functions

Well-formed role instance:

bindable(D.R, C) fields(D.R) = T̄ f̄
Γ ` ē : Ū Ū<:T̄

Γ ` roleOK(D, R, ē, C)

Expression typing:

Γ ` x : Γ(x) (T-VAR)

Γ ` e0 : S ftype(f, S) = T

Γ ` e0.f : T
(T-FIELD)

Γ ` e0 : TS Γ ` ē : S̄
mtype(m, TS) = T̄ → T S̄<:T̄

Γ ` e0.m(ē) : T
(T-INVK)

fields(C) = T̄ f̄ Γ ` ē : S̄ S̄<:T̄
ri = di.Ri(c̄i) Γ ` di : Ui

Ui<:Ci Γ ` roleOK(Ci, Ri, c̄i, C)

Γ ` new C(ē)⊕ r̄ : C̄.R̄ :: C
(T-NEW)

Γ(x̄ : C̄.R̄ :: Γ(x̄), ȳ : Γ(ȳ)/C̄.R̄) ` e0 : T
ri = di.Ri(c̄i) Γ ` x̄ : S̄

Γ ` d̄ : Ū Ū <: C̄ Γ ` roleOK(Ci, Ri, c̄i, Si)
Γ ` ȳ : V̄ Γ ` unbindAllowed(Vi, C̄.R̄)

Γ ` bind x̄ with r̄ from ȳ { x̄ȳ.e0 } : T
(T-BIND)

Figure 14: Expression typing

of the method invocation m on a class instance new C(ē),
written as mbody(m, new C(ē)), is also defined in a similar
manner.

Other auxiliary definitions regarding binding operations
are shown in Figure 13. The predicate bindable(D.R, C)
checks whether or not an instance of C can be bound with
an instance of D.R. This predicate returns true if C is a
subtype of D.R’s required interface { M̄I }. Finally, the
predicate unbindAllowed(T, C̄.R̄) checks whether all the role
types contained in T are also members of C̄.Q̄.

3.3 Typing

x̄ : T̄ , this : C ` e0 : T0

class C { · · · } C̄ ∈ dom(CT ) R̄ OK IN C̄

T0 m(T̄ x̄) { return e0; } OK IN C
(T-METHOD)

x̄ : T̄ , thisC : C, this : C.R, super : { M̄I } ` e0 : T0

class C { · · · Ā } C̄ ∈ dom(CT ) R̄ OK IN C̄
role R { M̄I ; }{ · · · } ∈ Ā

T0 m(T̄ x̄) { return e0; } OK IN C.R
(T-RMETHOD)

M̄ OK IN C.R

role R requires { M̄I }{ T̄ f̄ ; M̄ } OK IN C
(T-ROLE)

M̄ OK IN C Ā OK IN C

class C { T̄ f̄ ; M̄ Ā } OK
(T-CLASS)

Figure 15: Well-formed definitions

The typing rules for FEJ expressions are shown in Figure
14. An environment Γ is a finite mapping from variables to
types, written as x̄ : T̄ . The typing judgment for expressions
has the form Γ ` e : T , read as “in the environment Γ,
expression e has type T .”

The rules are syntax directed, with one rule for each form
of expressions. The typing rules for method invocations and
class instance creations check whether each actual parame-
ter has a type of the corresponding formal parameter. The
typing rule for class instance creations also checks that each
role instance bound with the class instance is well-formed
(i.e., each actual parameter for the role instance creation
has a type of the corresponding formal parameter) and the
class C is a subtype of each type of role instance.

The rule T-BIND is complicated. By Γ(x̄ : T̄ ), we im-
ply an environment that can be obtained by updating all
the types of x̄ contained in Γ to the corresponding types T̄ ,
respectively. By T/C.R, we imply a type generated by re-
moving C.R from T , if T is a type of the form C̄.R̄ :: C and
C.R is contained in C̄.R̄. We write x̄ : C̄.R̄ :: Γ(x̄) as a short-
hand for x1 : C1.R1 :: Γ(x1), · · · , xn : Cn.Rn :: Γ(xn), and
ȳ : Γ(ȳ)/C̄.R̄ as a shorthand for y1 : Γ(y1)/C1.R1, · · · , yn :
Γ(yn)/Cn.Rn. Thus, the first hypothesis of T-BIND indi-
cates that under the updated type environment, the body
of bind expression e0 has type T . Then, this rule inspects
the role names of r̄ and checks whether the types of x̄ are
compatible with those roles. It also checks whether role un-
binding of C̄.R̄ is allowed for ȳ.

Typing rules for method declarations, role declarations,
and class declarations are shown in Figure 15. The type
of the body of a method declaration is a subtype of the
return type. The special variable this is bound in every
method declaration, and for every method declaration in
roles, variables thisC and super are also bound; the type
of thisC is its enclosing class, and the type of super is its
required interface. A role declaration is well-formed if all
the methods declared in that role are well-formed, and a
class declaration is well-formed if all the methods and roles



fvalue(f, new C(v̄)⊕ r̄) = w

(new C(v̄)⊕ r̄).f −→ w
(R-FIELD)

v = new C(v̄′)⊕ r̄ mbody(m, r̄) is undefined
mbody(m, new C(v̄′)) = x.e

v.m(v̄) −→ [v̄/x̄, v/this]e
(R-INVK)

v = new C(v̄′)⊕ r̄ r̄ = r̄1, w.R(w̄), r̄2

mbody(m, r̄) = x̄.e, w.R(w̄) cp(v) = new C(v̄′)⊕ r̄2

v.m(v̄) −→ [v̄/x̄, v/this, w/thisC, cp(v)/super]e
(R-RINVK)

bind v̄ with r̄ from w̄ {x̄ȳ.e0} −→ [(v̄ ⊕ r̄)/x̄, (w̄ − r̄)/ȳ]e0

(R-BIND)

e −→ e′

e.f −→ e′.f
(CR-FIELD)

e0 −→ e′0

e0.m(ē) −→ e′0.m(ē)
(CR-INVK)

ei −→ e′i

v.m(· · · , ei, · · · ) −→ v.m(· · · , e′i, · · · )
(CR-INVK-ARG)

ei −→ e′i

new C(· · · , ei, · · · ) −→ new C(· · · , e′i, · · · )
(CR-NEW)

Figure 16: Dynamic semantics

declared in that class are well-formed.

3.4 Dynamic semantics
The reduction rules of FEJ are shown in Figure 16. We use

a standard call-by-value operational semantics. There exist
four computation rules: R-FIELD, R-INVK, R-RINVK, and
R-BIND. The rest of the rules formalize the call-by-value
strategy. The reduction relation is of the form e −→ e′,
read “expression e reduces to expression e′ in one step.”

For the rule R-FIELD, the field f is searched in all the role
instances r̄ bound with the class instance new C(v̄). There
exist two rules for method invocation: one is for method
invocation declared in a class instance (rule R-INVK), and
the other is for method invocation declared in a role in-
stance (rule R-RINVK). The method invocation reduces to
the expression of the method body, substituting all the for-
mal parameters x̄ with the argument values v̄ and the spe-
cial variable this with the receiver of method invocation.
Furthermore, in R-RINVK, the special variables thisC and
super are also substituted with corresponding values; thisC
is substituted with the enclosing class instance returned by
mbody. By cp(v), we imply a fresh value whose class name
and arguments for its instance creation are identical to v. In
R-RINVK, a new value copied from the receiver of method
invocation is created and replaced with super. The bind-

ing role instances for cp(v) are also changed so that cp(v)
is bound with role instances that exist on right-hand side of
w.R(w̄) (role instance returned by mbody), which formal-
izes the method combination mechanism for role instance
compositions.

The bind expression reduces to its body. It substitutes
the free variables x̄ and ȳ with values appearing in the bind

clause and from clause, respectively. By v ⊕ r, we imply a
value obtained by adding r to the left-most side of v’s bind-
ing roles r̄. By v−r, we imply a value obtained by removing
r from the v’s binding roles. We write (v̄ ⊕ r̄)/x̄ as a short-
hand of (v1 ⊕ r1)/x1, · · · , (vn ⊕ rn)/xn. Similarly, we write
(w̄− r̄)/x̄ as a shorthand of (v1 − r1)/x1, · · · , (vn − rn)/xn.
Thus, in the resulting expression, roles r̄ are removed from
w̄ and added to v̄. Because FEJ is a purely functional calcu-
lus, both binding operations (creating a new role instance)
and context activation (activating the role instance) are ex-
pressed in one reduction rule.

3.5 Property
We show the property of FEJ, namely, every well-typed

expression evaluates to a value. In this section, we only
present a series of theorems indicating FEJ type soundness.
We provide proofs in the full version of this paper5.

Theorem 3.1 (Subject reduction). If Γ ` e : T and
e −→ e′, then Γ ` e′ : S for some S <: T .

Theorem 3.2 (Progress). If Γ ` e : T and there exist
no e′ such that e −→ e′, then e is a value.

Theorem 3.3 (FEJ Type Soundness). If ∅ ` e : T
and e −→∗ e′ with e′ a normal form, then e′ is a value v
with ∅ ` v : S and S<:T .

4. RELATED WORK
We have overviewed the main features of NextEJ and com-

pare it with those of EpsilonJ. Besides the object adaptation
mechanism of EpsilonJ, NextEJ provides the feature of con-
text activation inspired by COP languages. However, con-
text activation in NextEJ is slightly different from that of
COP languages. While COP languages provide methods for
realizing behavioral variability with respect to some contex-
tual information, NextEJ puts more emphasis on acquiring
and activating new behaviors that are not provided by the
original class.

The Epsilon model, on which this work is based, is related
to aspect-oriented programming (AOP). AOP has a useful
feature in that it enables one to add aspects dynamically as
well as statically [29]. One of the main AOP languages is
AspectJ [30], a Java-based AOP language. The main ob-
jective of writing aspects is to deal with cross-cutting con-
cerns. This implies that there already exists some structure
of module decomposition. Although efforts have been made
to design software based on the AOP principle from the be-
ginning, the normal framework of mind for thinking aspects
assumes the existing program code as a target for inserting
advices to join points. Instead, Epsilon does not assume
any existing code and designs collaboration contexts inde-
pendently. The work corresponding to designating pointcuts
and attaching advices is executed by binding objects to roles.

5http://www.l.u-tokyo.ac.jp/~kamina/nej-full.pdf



The Epsilon model is also related to feature-oriented pro-
gramming (FOP) in that both approaches provide a method
to modularize and compose features. FeatureC++ is an
FOP extension for the C++ programming language that
provides a method for composing features statically as well
as dynamically [3, 39]. In FeatureC++, a developer can se-
lect a composition method from static binding or dynamic
binding when composing a product. Context-activation mech-
anism is not considered in FeatureC++.

In CaesarJ, a Java-based AOP language, an aspect can
be deployed and undeployed at any time [4]. This feature
is similar to context activation scope in NextEJ. However,
in NextEJ, a context is activated at the binding time. On
the other hand, in CaesarJ, the binding is specified in the
binding class. Although CaesarJ’s binding class and meth-
ods for aspect deployment provide much flexibility for aspect
composition and activation, NextEJ provides a more simple
and flexible basis for object adaptation and context activa-
tion mechanism by specifying objects and contexts at the
binding time.

ObjectTeams [21] also has a similar mechanism for role
binding. In ObjectTeams, each instance of a bound role
class internally stores a reference to its base object. This
reference cannot be changed during its lifetime. By lower-
ing (retrieving the base object from a role object) and lifting
(opposite of lowering), we can safely change the behavior of
the object at run-time. As in NextEJ, a team (a construct
of ObjectTeams corresponds to a context in NextEJ) can
be activated and deactivated. However, in ObjectTeams,
the role-class binding is declared at the class declaring time.
NextEJ and EpsilonJ provide a more flexible method to ex-
press the relationship between roles and classes by using
requires clause. Currently there exist no formalizations of
ObjectTeams.

Delegation Layers [37] provide flexible object-based com-
position of collaborations. They combine the mechanism
of delegation [31, 38] and virtual classes [32, 10], or Fam-
ily Polymorphism [15]; roles may be represented by virtual
classes, and a composition is instance-based using the del-
egation mechanism. However, this approach do not suc-
cessfully represent the object adaptation described in this
paper. For example, in NextEJ, the object can assume and
discard a role dynamically, and even the discarded role may
be assumed by another object and the state held in the role
instance is taken over by the latter object.

powerJava [5] is a language similar to NextEJ in that roles
and collaboration fields are the first class constructs, inter-
action between roles are encapsulated, and objects can par-
ticipate in the interaction by assuming one of its roles. As in
NextEJ, the type of role depends on the enclosing context in-
stance. However, powerJava lacks the feature of role groups,
a powerful mechanism for obtaining role instances associated
with the context instance reflectively. Role unbinding and
swapping, and explicit ordering of context activation that
affects method combination are also unconsidered.

There are pieces of literature that formalize the feature of
extending objects at run-time. Ghelli presented foundations
for extensible objects with roles based on Abadi-Cardelli’s
object calculi [1], where coexistence of different methods in-
troduced by incompatible extensions is considered [19]. Gi-
anantonio et al. presented a calculus λObj+[20], an exten-
sion of λObj[17] with a type assignment system that allows
a self-inflicted object extension that still statically catches

the “message not found” errors. Drossopoulou et al. pro-
posed a type-safe core language Fickle[14] that allows re-
classification of objects, a mechanism for dynamically chang-
ing object’s belonging classes that share the same “root” su-
perclass. On the other hand, FEJ focuses on a foundation of
object adaptation and context activation for Java-like lan-
guages (based on FJ). FEJ supports a notable feature of
unbinding of role instances (removing role instances from
values in from clause of bind expression).

Mixins [9] are related to roles in NextEJ in that they
form partial definitions that can be reused with a number of
classes that conform to the requirements of mixins. Several
extensions of Java with mixins have been proposed [18, 2,
26]. Although mixin composition is originally performed at
compile time, dynamic composition of mixins is also studied
in a core calculus [7], and such kind of object-level inheri-
tance is also studied as wrappers [11, 8].

5. CONCLUDING REMARKS
We have presented NextEJ, a type-safe alternative to Ep-

silon model programming language with the features of COP.
It provides a method for naturally representing context-
awareness at the programming language level. Based on the
object adaptation mechanism provided by Epsilon model,
NextEJ supports a convenient COP feature of activating/
deactivating contexts or roles. While such activation is only
supported by down-casting in EpsilonJ, NextEJ provides a
safe way for activation by the context activation scope. Fur-
thermore, in NextEJ, multiple contexts can be activated at a
time, and the behavior of the composite context generated
by such multiple context activations is determined by the
order of activations. A small core calculus FEJ provides a
solid basis for assuring its type soundness.
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