
StrongRelaxAJ: integrating adaptability of RelaxAJ and
expressiveness of StrongAspectJ

Tomoyuki Aotani
Graduate School of Arts and

Sciences
University of Tokyo

aotani@graco.c.u-
tokyo.ac.jp

Manabu Toyama
Graduate School of Arts and

Sciences
University of Tokyo

touyama@graco.c.u-
tokyo.ac.jp

Hidehiko Masuhara
Graduate School of Arts and

Sciences
University of Tokyo

masuhara@acm.org

ABSTRACT
A sketch of StrongRelaxAJ is presented. StrongRelaxAJ is
an extension to AspectJ with a type system for around ad-
vice that integrates the ones in RelaxAJ and StrongAspectJ.
In other words, StrongRelaxAJ employs the type-relaxed
weaving mechanism in RelaxAJ for better adaptability of
around advice, and supports type variables and explicit sig-
natures of proceed for better expressiveness without relying
on dangerous and annoying dynamic casting on the return
values from proceed.

Categories and Subject Descriptors
D.3.3 [PROGRAMMING LANGUAGES]: Language
Constructs and Features—Polymorphism

General Terms
Design, Languages

Keywords
Aspect-Oriented Programming, Around Advice, Type-Relaxed
Weaving, AspectJ, RelaxAJ, StrongAspectJ, StrongRelaxAJ

1. INTRODUCTION
Around advice is one of the unique and powerful features

of the pointcut and advice mechanism. It allows program-
mers not only to replace the operations with others without
directly modifying the source code but also to change pa-
rameters and return values of operations by using proceed.

Defining a good type system for around advice is one of
the challenges in statically typed aspect-oriented program-
ming (AOP) languages that employ the pointcut and advice
mechanism. Because a type system conservatively accepts
“safe” programs, it constrains the adaptability of around ad-
vice.

Recent studies revealed and solved problems of type-safety
and expressiveness in AspectJ [3, 5], which is one of the
widely used statically typed AOP languages.

RelaxAJ [6], which is an extension to AspectJ, improves
the adaptability of AspectJ’s around advice by relaxing the
restriction on its return type. While a piece of around advice
and its target join point on which the advice is executed must
have the same return type for type safety in AspectJ, this
is not required any more in RelaxAJ. Instead, it guarantees
type safety by ensuring that the return values of around
advice are safely used within the program.

StrongAspectJ [2] is another extension to AspectJ, which
supports type-safe generic around advice. A piece of around
advice in StrongAspectJ is safely evaluated on each target
join point. Intuitively, it is achieved by ensuring that a
piece of around advice always returns the return values of
proceed.

This position paper points out the problems of expres-
siveness in RelaxAJ as well as the problems of adaptability
in StrongAspectJ, and proposes StrongRelaxAJ as our solu-
tion. StrongRelaxAJ integrates the adaptability of RelaxAJ
and genericity of StrongAspectJ. In other words, it solves
the problems of expressiveness in RelaxAJ as well as solves
the problems of adaptability in StrongAspectJ. In the posi-
tion paper, we roughly explain its syntax and type checking
rules by using a concrete example. Its formalization and
implementation are left for future work.

The rest of the paper is organized as follows. Section 2
gives a brief overview of RelaxAJ and StrongAspectJ. Sec-
tion 3 presents examples that cannot be achieved by either
RelaxAJ or StrongAspectJ, and Section 4 shows a sketch of
StrongRelaxAJ. After discussing related work in Section 5,
Section 6 concludes the position paper and lists our future
work.

2. BACKGROUND: RELAXAJ AND STRON-
GASPECTJ

This section presents brief overviews of RelaxAJ and Stron-
gAspectJ along with a code fragment that implements a
popup window.

2.1 Base code: creating a popup window
Suppose we have an image editor in which one can manip-

ulate images by applying various filters (e.g., Gaussian blur
filters) and see a preview of the filter’s effect in a popup win-
dow. Listing 1 shows the method showPreview that creates
a popup window for previewing.

Component

+setLocation(p:Point): void

JDialog JWindow

<<interface>>

RootPaneContainer

+getContentPane(): Container

Window

+setAlwaysOnTop(b:boolean): void

Figure 1: Relationship between Component, Window,
JDialog, JWindow and RootPaneContainer

1 void showPreview(JFrame mainWin, MyImage image){

2 JWindow popup = new JWindow(mainWin);

3 MyCanvas canvas = new MyCanvas(image);

4 JButton closeButton = new JButton("close");

5 popup.getContentPane().add(canvas);

6 popup.getContentPane().add(closeButton);

7 }

Listing 1: Popup window for previewing

It takes two parameters, namely mainWin, which is the
main window of the application, and image, which is the
processed image the user will see. MyCanvas, which is a
subclass of JPanel, draws the processed image. The popup
window popup, which is an instance of JWindow, contains a
canvas and button. If the button is clicked then the popup
window is closed.

2.2 RelaxAJ
RelaxAJ is an extension to AspectJ, which has a novel

type-checking rule for the return types of around advice. A
piece of around advice in RelaxAJ can have a return type
that is not a subtype of the target join points’ on which the
advice is executed. In AspectJ, the return type instead must
be a subtype of the target join points’.

Of course the return type cannot be any type in RelaxAJ.
It must be consistent with the types as which the return
values are used in the program.

Assume we want to create a modal dialog instead of a
simple popup window in the above example so as not to
leave previews outdated. One of the easiest ways to achieve
it is to use JDialog with the modal flag, instead of JWindow.

Listing 2 shows a piece of around advice that implements

1 RootPaneContainer around(Frame frame)

2 :call(JWindow.new(Frame))&&args(frame){

3 return new JDialog(frame, true);

4 }

Listing 2: Around advice that replaces JWindow
with JDialog

1 <T extends Component>

2 T around(Frame frame)

3 :call((JDalog||JWindow).new(Frame))&&args(frame)

4 :T proceed(Frame){

5 T popup = proceed(frame);

6 popup.setLocation(DEFAULT_LOC);

7 return popup;

8 }

Listing 3: Around advice that specifies the location
of the popup window

the idea. It simply creates a new modal JDialog object and
returns it when a JWindow object is to be created.

Note that the return type, which is RootPaneContainer,
is a supertype of the target join point’s return type, which
is JWindow. It is not valid in AspectJ because it requires the
return type is a subtype of the return types of its target join
points.

RelaxAJ accepts the advice when it is applied only to
the line 2 in Listing 1 because its return value is used only
as RootPaneContainer within the program and thus the re-
placement is safe.

2.3 StrongAspectJ
StrongAspectJ is another extension to AspectJ, which sup-

ports type-safe generic around advice. The genericity and
type-safety are achieved by using (bounded) type variables
to declare the return types of around advice and also pro-

ceed. Although AspectJ implicitly decides the return type
of proceed, StrongAspectJ does not. It is given by the pro-
grammer through a dual advice signature.

Assume a popup window is an instance of either JDialog

or JWindow, and we want to specify the location where the
window appears. This can be achieved by calling setLoca-

tion that is defined in Component.
Listing 3 is a piece of the around advice in StrongAspectJ

that catches the popup window object and calls setLoca-

tion on it. Line 1 declares the type variable T whose upper
bound is Component. It is used as the return type of the
advice. Line 4 is the dual advice signature that declares the
return and argument types of proceed: here its return type
is T and its argument type is Frame.

If the base program is type safe, the woven program is
also type safe. This is because (1) the return type of each
target join points (JDialog or JWindow) is always a subtype
of Component (see Figure 1) so that no type error occurs
within the advice, and (2) the return types of the advice and
proceed are always the same so that the values returned by
the advice can be used safely as the original values.

3. EXAMPLES THAT NEED AN INTEGRATED
LANGUAGE

By integrating RelaxAJ and StrongAspectJ, we can im-
plement more adaptive and interesting aspects. This section
presents two examples that cannot be achieved in either Re-
laxAJ or StrongAspectJ alone but can be achieved in the
integrated language.

3.1 Specifying return type of proceed in type-
relaxing advice

1 RootPaneContainer around(Frame frame)

2 :call(JWindow.new(Frame))&&args(frame){

3 if(POPUP_MODAL) return new JDialog(frame, true);

4 else{

5 JWindow popup=(JWindow)proceed(frame);

6 JOptionPane.showMessageDialog(popup,ALERT);

7 return popup;

8 }

9 }

Listing 4: Using dynamic casting to use return val-
ues of proceed as a JWindow

Suppose that we want to make the popup window modal
only if POPUP_MODAL is true. Otherwise, we show a message
dialog that warns danger of out-of-date previews along with
the original popup window. It can be achieved in RelaxAJ
by defining a piece of around advice shown in Listing 4

The problem here is the use of a cast operator at line
5. It is necessary because RelaxAJ simply adapts AspectJ’s
typing rule for proceed.

The return type of proceed is the same to the one of the
around advice, that is, RootPaneContainer. On the other
hand, to set popup as the parent window of the message di-
alog (JOptionPane) through showMessageDialog1, its static
type must be a subtype of Component, which is incompatible
with RootPaneContainer.

We should be able to omit dynamic casting because it
is obvious that proceed always returns a JWindow object.
One way to achieve it is to add StrongAspectJ’s dual advice
signature and the typing rules to RelaxAJ. StrongAspectJ
allows programmers to declare the return type of proceed.
JWindow is a valid return type here because it is (1) a super-
type of the return type of the target join points (JWindow
itself) and also (2) a subtype of the return type of the advice
(RootPaneContainer).

Of course StrongAspectJ does not accept such advice be-
cause its return type is invalid: it must be a subtype of the
return types of the target join points in StrongAspectJ, but
here RootPaneContainer is a supertype, not a subtype, of
JWindow.

3.2 Abstracting the return type of around ad-
vice by using type variables

RelaxAJ provides no way to write a piece of around advice
whose return value of is used as two or more types incom-
patible with each other. In other words, the return type of
a piece of around advice must be one type in RelaxAJ.

It is natural to control orders of windows in GUI pro-
grams. Listing 5 extends the base program (Listing 1) so
that the popup window stays above all other windows. Line
7 is added where popup is used as a Window because setAl-

waysOnTop, which is an instance method defined in Window,
is called on it.

The around advice declaration in Listings 2 and 4 can-
not be compiled with the above extended program. This is
because the return type cannot be relaxed to RootPaneCon-

tainer. As mentioned before, the return value is used as

1showMessage(Component,Object) is a static method in
JOptionPane

1 void showPreview(JFrame mainWin, MyImage image){

2 JWindow popup = new JWindow(mainWin);

3 MyCanvas canvas = new MyCanvas(image);

4 JButton closeButton = new JButton("close");

5 popup.getContentPane().add(canvas);

6 popup.getContentPane().add(closeButton);

7 popup.setAlwaysOnTop(true);

8 }

Listing 5: Create a popup window that stays above
all other windows

1 <T extends RootPaneContainer & Window>

2 T around(Frame frame)

3 :call(JWindow.new(Frame))&&args(frame)

4 :JWindow proceed(Frame){

5 if(POPUP_MODAL) return new JDialog(frame, true);

6 else{

7 JWindow popup=proceed(frame);

8 JOptionPane.showMessageDialog(popup,ALERT);

9 return popup;

10 }

11 }

Listing 6: Around advice in StrongRelaxAJ with an
explicit signature of proceed and type variable

not only a RootPaneContainer but also a Window.
Modifying the return type is not a solution because there

is no such a type that is a subtype of RootPaneContainer

and Window and a supertype of JDialog and JWindow.

4. STRONGRELAXAJ
We propose StrongRelaxAJ, which is a hybrid of RelaxAJ

and StrongAspectJ. StrongRelaxAJ has two additional lan-
guage features, namely explicit signature of proceed and type
variables to the type-relaxed weaving mechanism in Re-
laxAJ. An explicit signature of proceed helps us to omit
dynamic casts shown in Section 3.1. Type variables are used
to define a piece of around advice whose return values are
used as two or more incompatible types shown in Section
3.2.

This section first explains how the StrongRelaxAJ around
advice looks by showing an example. Then it explains about
explicit signature of proceed and type variables.

4.1 Around advice in StrongRelaxAJ
The syntax of around advice in StrongRelaxAJ is similar

to StrongAspectJ. A piece of around advice in StrongRe-
laxAJ has declarations of type variables and the signature
of proceed.

Listing 6 is a piece of around advice in StrongRelaxAJ. It
is a modified version of the advice in Listing 3.1 that works
with the extended base code shown in Listing 5.

Line 1 declares the type variable T whose upper bounds
are RootPaneContainer and Window. It is used as the return
type of the advice in Line 2 instead of RootPaneContainer.
Line 4 declares the signature of proceed.

Note that we does not use dynamic casting at line 7. Be-
cause the return type of proceed is JWindow, we can use its

return value as a JWindow object.

4.2 Explicit signature of proceed
The return type of proceed in a piece of around advice

must be (1) a supertype of the return types of the target
join points and also (2) a supertype of the return types of
around advice that may be called by proceed. In other
words, StrongRelaxAJ does not need any relationships be-
tween the return type of a piece of around advice and its
proceed unlike AspectJ, StrongAspectJ and RelaxAJ. This
does not break type-safety because proceed never calls the
around advice that encloses it.

Let’s look at the example in Section 4.1. The explicit
signature of proceed on Line 4 in Listing 6 satisfies the con-
dition. The return type JWindow is not a type variable, and
it is clearly a supertype of JWindow, which is the return type
of the target join points. Because there is no other pieces of
advice, the second condition for non variable return types
holds too.

4.3 Type variables
Type variables in StrongRelaxAJ are more expressive than

the ones in StrongAspectJ. StrongAspectJ uses type vari-
ables to ensure that the return value of proceed is the re-
turn value of the advice. For instance, if the return type
of proceed is T, which is a type variable, then the enclosing
around advice must be T.

In addition to the usage, StrongRelaxAJ uses them to
declare that the advice returns a value of some type that
satisfies the upper bounds. Listing 6 is an example. It
uses the type variable T to return JDialog and JWindow.
Because each of them is a subtype of Window and Root-

PaneContainer, StrongRelaxAJ’s type system accepts the
return statements.

Note that the return value is used as only a Window and
a RootPaneContainer within the target program, that is,
Listing 5. Therefore, type safety is preserved.

5. RELATED WORK
Adding union types to Java [4] gives another solution for

the situation in Section 3.2. If it is allowed to use union
types, we can declare the return type of the advice as JWin-
dow∨JDialog instead of using a type variable as in Listing
6. Then RelaxAJ with union types successfully accepts the
advice because JWindow and JDialog are subtypes of JWin-
dow∨JDialog and RootPaneContainer and Window are su-
pertypes of JWindow∨JDialog.

6. CONCLUSIONS AND FUTURE WORK
The position paper presented a sketch of StrongRelaxAJ,

which is a hybrid of RelaxAJ and StrongAspectJ. By us-
ing explicit signature of proceed, programmers can omit dy-
namic casting on the return values of proceed. Type vari-
ables are used not only to write generic advice but also to
declare the return type of a piece of around advice whose
return type cannot be described by using only one type.

Dealing with parameter types of proceed is one of our
future work as RelaxAJ. Formalization and implementation
are also our future work. Formalization could be done by
extending Featherweight Java for Relaxation (FJR) [6] and
StrongAspectJ [2]. Implementation would be done on top of
StrongAJ compiler or the AspectBench compiler (abc) [1].

7. REFERENCES
[1] Pavel Avgustinov, Aske Simon Christensen, Laurie

Hendren, Sascha Kuzins, Jennifer Lhoták, Ondrej
Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. abc: An extensible
AspectJ compiler. In Proceedings of AOSD’05, pages
87–98, 2005.

[2] Bruno De Fraine, Mario Südholt, and Viviane Jonckers.
StrongAspectJ: Flexible and safe pointcut/advice
bindings. In Proceedings of AOSD’08, pages 60–71,
2008.

[3] Erik Hilsdale and Jim Hugunin. Advice weaving in
AspectJ. In Proceedings of AOSD’04, pages 26–35,
2004.

[4] Atsushi Igarashi and Hideshi Nagira. Union types for
object-oriented programming. In Proceedings of
SAC’06, pages 1435–1441, 2006.

[5] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. In Proceedings of ECOOP’01,
pages 327–353, 2001.

[6] Hidehiko Masuhara, Atsushi Igarashi, and Manabu
Toyama. Type relaxed weaving. In Proceedings of
AOSD’10, 2010. To appear.

