
FOAL ’09

Proceedings of the Eighth Workshop on
Foundations of Aspect-Oriented Languages

held at the
Eighth International Conference on

Aspect-Oriented Software Development

March 2, Charlottesville, Virginia

Workshop Organizers: Curtis Clifton, Shmuel Katz, Gary T. Leavens, and Mira Mezini

Copyright on the individual papers in this informal proceedings varies with each paper.

http://www.eecs.ucf.edu/FOAL

Contents
Preface . ii

Message from the Program Committee Chair . iii
Mario Südholt—École des Mines de Nantes, France

A Type System for Functional Traversal-Based Aspects . 1
Bryan Chadwick—Northeastern University, USA
Karl Lieberherr—Northeastern University, USA

Modular Verification of Strongly Invasive Aspects . 7
Emilia Katz—Technion–Israel Institute of Technology, Israel
Shmuel Katz—Technion–Israel Institute of Technology, Israel

Unweaving the Impact of Aspect Changes in AspectJ . 17
Luca Cavallaro—Politecnico di Milano, Italy
Mattia Monga—Politecnico di Milano, Italy

Enhancing Base-code Protection in Aspect-Oriented Programs . 23
Mohamed ElBendary—University of Wisconsin Milwaukee, USA
John Boyland—University of Wisconsin Milwaukee, USA

A Machine-Checked Model of Safe Composition . 29
Benjamin Delaware—University of Texas at Austin, USA
William R. Cook—University of Texas at Austin, USA
Don Batory—University of Texas at Austin, USA

Demonstration: Graph-Based Specification and Simulation of Featherweight Java with Around Advice . 39
Tom Staijen—University of Twente, Netherlands
Arend Rensink—University of Twente, Netherlands

i

Preface
Aspect-oriented programming is a paradigm in software engineering and

FOAL logos courtesy of Luca Cardelli

programming languages that promises better support for separation of concerns.
The seventh Foundations of Aspect-Oriented Languages (FOAL) workshop was
held at the Seventh International Conference on Aspect-Oriented Software De-
velopment in Charlottesville, Virginia, on March 2, 2009. This workshop was
designed to be a forum for research in formal foundations of aspect-oriented
programming languages. The call for papers announced the areas of interest for
FOAL as including: semantics of aspect-oriented languages, specification and
verification for such languages, type systems, static analysis, theory of testing,
theory of aspect composition, and theory of aspect translation (compilation) and
rewriting. The call for papers welcomed all theoretical and foundational studies
of foundations of aspect-oriented languages.

The goals of this FOAL workshop were to:
• Make progress on the foundations of aspect-oriented programming lan-

guages.

• Exchange ideas about semantics and formal methods for aspect-oriented
programming languages.

• Foster interest within the programming language theory and types com-
munities in aspect-oriented programming languages.

• Foster interest within the formal methods community in aspect-oriented
programming and the problems of reasoning about aspect-oriented pro-
grams.

The workshop was organized by Curtis Clifton (Rose-Hulman Institute of Technology, USA), Shmuel Katz (Technion–
Israel Institute of Technology, Israel), Gary T. Leavens (University of Central Florida, USA), and Mira Mezini (Darm-
stadt University of Technology, Germany). The program committee was chaired by Mario Südholt.

We thank the organizers of AOSD 2009 for hosting the workshop, and in particular workshops chair Doug Schmidt,
the AOSD general chair Kevin Sullivan, and the organizing chair Jeff Gray for their help.

ii

http://www.eecs.ucf.edu/FOAL

Message from the Program Committee Chair
The eighth FOAL workshop maintains the high bar for quality set by previous instances. FOAL is one of the primary
forums for foundational work on aspect-oriented software development. As in the past, each paper was subjected to full
review by at least three reviewers. Papers co-authored by program committee members or organizers were reviewed
by four or five reviewers and were held to a higher standard. I am grateful to the program committee members for their
dedication, insightful comments, attention to detail, and the service they provided to the community and the individual
authors.

The members of the program committee were: Curtis Clifton (Rose-Hulman Institute of Technology), Erik Ernst
(University of Aarhus), Pascal Fradet (INRIA), Shmuel Katz (Technion-Israel Institute of Technology), Karl Lieber-
herr (Northeastern University), David Lorenz (The Open University of Israel), Hidehiko Masuhara (University of
Tokyo), Mira Mezini (Darmstadt University of Technology) Klaus Ostermann (Darmstadt University of Technology),
James Riely (DePaul University), and Damien Sereni (Oxford)

I am also grateful to the authors of submitted works. Twelve papers were submitted for review this year. Of these,
the program committee selected six for presentation at the workshop and publication in the proceedings. One of these
has been included specifically for a demo-based presentation because of corresponding tool support to animate and
illustrate semantics of aspect based languages

The program was rounded out with an invited talk by Mehmet Ak sit of the University of Twente in the Netherlands,
and an open session on “New Ideas, Open Questions, and Work in Progress,” organized by Shmuel Katz.

Finally, I would like to thank the other members of the organizing committee of FOAL—Shmuel Katz, Gary
Leavens, and Mira Mezini—for their work in guiding us toward another inspiring workshop.

Mario Südholt
FOAL ‘09 Program Chair
École des Mines de Nantes, France

iii

iv

A Type System for Functional Traversal-Based Aspects

Bryan Chadwick
College of Computer & Information Science

Northeastern University, 360 Huntington Avenue
Boston, Massachusetts 02115 USA

chadwick@ccs.neu.edu

Karl Lieberherr
College of Computer & Information Science

Northeastern University, 360 Huntington Avenue
Boston, Massachusetts 02115 USA

lieber@ccs.neu.edu

ABSTRACT
We present a programming language model of the ideas be-
hind Functional Adaptive Programming (AP-F) and our
Java implementation, DemeterF. Computation in AP-F is
encapsulated in sets of functions that implement a fold over
a data structure with the help of a generic traversal. In this
paper we define the syntax, semantics, and typing rules of
a simple AP-F model, together with a proof of soundness
that guarantees that traversal expressions result in a value
of the expected type. Applying a function set to a different
structure can then be statically checked to eliminate some
runtime tests and sources of program errors.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory

General Terms
Languages,Theory

Keywords
Adaptive Programming, Functional Aspects, Traversals, Type
Soundness

1. INTRODUCTION
Aspect Oriented Languages provide an enormous amount

of flexibility to programmers, which comes from the spec-
ification of aspects over a join point model using point-
cuts and advice. In [9] the authors discuss different models
that fall under this view, one of which is data structure
traversal specifications in DemeterJ [12], called Adaptive
Programming (AP) [8]. In AP, join points (traversal entry
and exit points) are selected using a strategy, which directs
traversal, while advice is encapsulated in visitors with be-

fore and after methods. Computation remains adaptable
to data structure changes, but computing via side effects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’09, March 2, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-452-2/09/03 ...$5.00.

(void methods) means that adaptability goes unchecked,
since structural assumptions are implicit in order dependen-
cies between advice.

We have recently developed a functional formulation of
AP that maintains the separate traversal, control (strate-
gies), and computation of DemeterJ, but with traversals
that return values. Computation in Functional Adaptive
Programming [3] (AP-F) and our implementation, Deme-
terF [2], is encapsulated in sets of functions (or function
objects) that, together with a generic traversal function, im-
plement a fold over a data structure. This limits a pro-
gram’s adaptability, but provides more structural informa-
tion about the flow of data, through argument and return
types. Function objects can then be checked statically to
ensure safety. In this paper we present a limited model of
AP-F, describing its syntax, semantics, and typing rules. We
prove the type system sound, meaning that function objects
always contain applicable functions (advice is complete) and
that the resulting program returns a value of the expected
type. Applying a function object to a different structure can
then be statically checked to eliminate some runtime tests
and sources of program errors.

2. SYNTAX
Figure 1 shows our model syntax including definitions,

functions, and simple expressions: variable references, in-
stance construction, and traversals. A program begins with
a number of definitions. The types in concrete definitions
represent constructor arguments, while each Ti in the defi-
nition of an abstract type A becomes a subtype of A.

x ::= variable names
C ::= concrete type names
A ::= abstract type names

P ::= D1 . . . Dn e
D ::= concrete C (T1, . . . , Tn)

| abstract A (T1, . . . , Tn)

T ::= C | A

e ::= x | new C (e1, . . . , en) | traverse(e0, F)

F ::= funcset(f1 . . . fn)

f ::= (T0 x0, . . . , Tn xn){ return e; }

Figure 1: AP-F Model Language Syntax

For simplicity there are no local variables, fields in ab-

1

// Double a given number representation
abstract Int (Succ , Zero)
concrete Succ (Int)
concrete Zero ()

traverse(new Succ(new Succ(new Succ(new Zero ()))),
funcset ((Succ s, Int i)

{ return new Succ(new Succ(i)); }
(Zero z)

{ return z; }))

Figure 2: Example Program : Double

stract types, non-traversal functions, or traversal control,
since these do not add anything new to the type system or
proofs. Function sets correspond to DemeterF function ob-
jects (sets of methods) and are used to compute over traver-
sals of constructed values. Each function provides its argu-
ments with their types and a single body expression, which
becomes the function’s result. A function set is similar to
a list of lambda expressions (anonymous functions), though
we require that all functions have no free variables.

A simple example program is given in Figure 2 with a
traversal that doubles a given number representation; in
this case calculating 3 ∗ 2. For each successor object that
is traversed we return a nested double successor with the
same inner integer, bottom up. The function for Zero is
applied first, and the result is subsequently passed to the
Succ function three times, along with each original nested
Succ instance. This looks very similar to fold in functional
languages, but the traversal function expression implicitly
adapts to different data structure shapes.

2.1 Well Formed Rules
We introduce rules similar to [5] and [4] to ensure that a

given program is well formed, before type checking and/or
evaluation. The rules are shown below with informal de-
scriptions; the formal definitions are elided for space reasons.
With a well formed program, we can now define evaluation
of expressions (the program body) in the context of a pro-
gram’s definitions.

TypesOnce(P): Each type is only defined once

SingleSuper(P): Each type is used in at most one
abstract definition

InductiveTypes(P): Objects of concrete types are
constructible without mutation, i.e., abstract types in-
clude at least one non-recursive subtype, and data
structure cycles contain at least one abstract type.

CompleteTypes(P): Each type in an abstract defi-
nition is itself defined

ClosedFunctions(P): All functions in P contain no
free variables

3. SEMANTICS
Our semantics describes object creation and a depth-first

(bottom up) traversal scheme that applies a function from
the given set when applicable. Figure 3 shows the syntax
of runtime expressions, values, and evaluation contexts. For
recursive traversals and function dispatch we add two ex-
pression forms not in the surface syntax. The first gives a

e ::= · · ·
| recur(F, v0, e1, . . . , en)

| apply(f, v0, e1, . . . , en)

v ::= new C (v1, . . . , vn)

E ::= []
| new C (v . . . , E, e . . .)
| traverse(E, F)

| recur(F, v0, v . . . , E , e . . .)

Figure 3: Runtime Expressions, Values, and Evalu-
ation Contexts

reduction context for the recursive step when traversing a
value and the second separates the recursive traversal from
function application. Values, v, are defined as a subset of
the expression forms, including only constructed objects.
Rather than congruence rules, we present evaluation con-
texts, E, under which reduction is permitted. A context is
not used for apply(. . .) since reduction proceeds directly
from apply to argument substitution.

We define the operational semantics as a single step re-
duction relation between contexts, → , which is shown in
Figure 4. Traversal of a constructed value proceeds by re-
curring on each field. Once all recursive results are com-
pleted (i.e., reduce to values), a function is chosen based on
the original object’s type. For a simplified presentation and
proof, a function is selected based only on the type of the
originally traversed value (single dispatch)1.

The meta-functions type, types, and choose are defined
along with substitution in Figure 5. The type function sim-
ply returns the type name used in value construction (i.e.,
reflection), while types returns the declared argument types
of the given function. The implementation of choose selects
the function in a set with a first argument that matches
the given type. Substitution is the typical replacement of
e′ for all free occurrences of x in e. Note that variables are
bound in functions, but functions are not the same as typical
functional closures, since substitution does not occur inside
function sets. This simplifies the traversal typing rules and
proof by eliminating the need for a type environment in the
traversal judgment, providing symmetry between runtime
traversals and static traversal typings.

4. TYPE SYSTEM
For ease of presentation, our type system is divided into

three separate judgments: expressions (`e), functions (`F),
and traversals (`T). All judgments are made in the context
of a program’s definitions, which provide a basis for the sub-
type relation (≤).

4.1 Expressions : `e

Our type system is typical for non-traversal expressions,
shown in Figure 6. Variables are looked up in a type en-
vironment, Γ, which is a list of variable/type pairs. The
construction of objects requires each field to be a subtype of

1In later formulations (future work) choose will use the types
of all recursive results, in addition to the original value’s type
(multiple dispatch).

2

the declared type. For traversal expressions we delegate to
our traversal judgment, which determines the return type
of a traversal of an instance of type T with function set F ,
notated 〈T0, F 〉. It begins with no recursive types (∅) and
the typing derivation must discharge all recursive traversal
constraints.

4.2 Functions: `F

Functions are typed in the normal manner, typing the
body expression with the argument names bound to their
assumed types. The result type of a function is inferred
from the argument types and body expression, though sub-
stitution could cause a subtype to be returned at runtime
(considered in Section 5).

4.3 Traversals : `T
The traversal typing judgment uses a set, X , of recursed

types (i.e., a stack) to identify recursive type uses in con-
crete type definitions. A set of pairs, Φ, represents traversal
constraints collected from recursive type uses. A constraint
of (T, T ′) means the traversal of a value of type T must
result in a subtype of T ′.

We read the judgment X `T 〈T, F 〉 : T ′; Φ as :

With recurred types X , the traversal of a value of type
T with function set F , returns a value of type T ′ with
traversal constraints Φ.

It is split into two rules shown in Figure 8; one each for
concrete and abstract types. Essentially we connect the
traversal of values to the static structural definitions in the
program.

For traversal of a concrete type, C, we select the parame-
ter types of the matching function in the given set, F . The
meta-function choose(F,C) selects a function in the set F
which has C as the type of its first argument, and types
returns the sequence of argument types. The type of the
function eventually becomes the type of the traversal, but
there are several conditions to be checked.

The recursive traversal of each non-recursive field with
type Ti is typed by including C in the recursive type set.
The result types, T ′i , are required to be subtypes of the
function’s argument types, T ′′i . If the recursive traversals
generate constraints on C then we require the function’s re-
sult type to be a subtype of the constrained type(s). New
constraints are created for field types that exist in the set of
recursed types, X . Since the types of traversals of recursed
types are unknown, we assume that the function argument
types are the correct sub-traversal result types. The final
constraint set is constructed from the union of field con-
straints by discharging those that involve C; the underscore
(_) stands for any type.

The typing of the traversal of an abstract type, A, is
slightly simpler since the traversal depends only on the re-
sults of the subtypes of A. Subtype traversals are typed by
including A in the set of recursive types. The final return
type is a common supertype, T , of the subtype traversal
results. Constraints on A are checked the same as in the
concrete case and new constraints are generated from recur-
sive subtypes in X , requiring a subtype of T as a traversal
result. Constraints on A are likewise discharged.

5. TYPE SOUNDNESS
To prove type soundness we use the standard technique

from [15] of proving preservation and progress. Most rules
are similar to those in [5]. We begin with required lemmas.

Lemma 1 (Substitution Preserves Type). If
(Γ, x :Tx) `e e : T , `e e

′ : T ′x, and T ′x ≤ Tx then
Γ `e e[e

′/x] : T ′ and T ′ ≤ T .

Proof: By straight-forward induction on the structure
of e, using the definition of substitution (Figure 5) and
Lemma 3. For a traversal expression we require that the
traversal of a subtype return a subtype of the originally as-
signed type.

When we apply a function during traversal, substitution
into the body always results in a subtype of the expected
return type. The proof extends to the runtime expressions
(recur and apply).

Lemma 2 (Complete Functions). For any well
typed traversal expression e = traverse(e0, F), the call
choose(F, C) will not fail.

Proof: By straight-forward induction on the typing deriva-
tion of e, using the traversal judgment (`T) rules, T-CTrav
and T-ATrav (Figure 8).

In our implementation, DemeterF, the main concern is
actually Lemma 2, since at runtime we must be able to se-
lect an applicable function (i.e., advice) from a given func-
tion object during traversal. Other lemmas/theorems give
the stronger result that the type of the value returned from
traversal is predictable.

Lemma 3 (Subtype Traversals Return Subtypes).
For any well typed traversal expression
e = traverse(e0, F) with Γ `e e0 : T0 and result type T ,
the traversal of e′0, where Γ `e e

′
0 : T ′0 and T ′0 ≤ T0, has

result type T ′ with T ′ ≤ T .

Proof: By induction on the typing derivation of e, using
the traversal judgment rules, T-CTrav and T-ATrav.

Note that by our syntax and well-formed rules, there are
no subtypes of a concrete type C, so the type of a con-
struction expression will not change during evaluation. Our
function selection (choose(F , C)) is deterministic and com-
plete by Lemma 2, and as such will return the same type for
a given concrete traversal. The T-ATrav rule also requires
that the result of all subtype traversals be a subtype of the
result type.

Lemma 4 (Well Typed Contexts). For any closed
expressions e, e′, and context E, if `e e : T , `e e

′ : T ′ with
T ′ ≤ T , and Γ `e E[e] : T0, then Γ `e E[e′] : T ′0 and
T ′0 ≤ T0.

Proof: By induction on the structure of the context E
and the typing derivation of E[e], using Lemma 3.

This aids the preservation proof below, since each reduc-
tion occurs on limited expression forms and contexts.

Theorem 1 (Preservation). If `e E[e] : T and
E[e] → E[e′] then `e E[e′] : T ′ with T ′ ≤ T .

Proof: By straight-forward induction on the structure
and typing derivation of E[e], using Lemmas 1, 3, and 4.

This gives the first half of soundness: reduction preserves
type, also referred to as subject reduction.

3

Theorem 2 (Progress). Suppose that e is a closed
expression. If `e e : T then either e is a value, or e = E[e0]
and E[e0] → E[e′0].

Proof: By straight-forward induction on the structure
and typing derivation of e.

We now have all requirements for the full theorem: well
typed terms reduce to values of the expected type.

Theorem 3 (Type Soundness). Suppose that e is a
closed expression and `e e : T , then either e is a value of
type T , or e → e′ and `e e : T ′, with T ′ ≤ T .

Proof: By Progress and Preservation theorems: e is
either a value or can be reduced. If e reduces to e′, then the
type of e′ (T ′) must be a subtype of T .

By Progress and Preservation we conclude that a well
formed, well typed program will reduce to a value of pre-
dicted type, which allows us to precalculate the selection of
certain functions from a set, or eliminate error checking from
our dispatch implementation.

6. RELATED WORK
Most related work on semantics of Aspect Oriented Pro-

gramming (AOP) Languages differs from our approach in
that we do not describe a weaving semantics in order to
provide a cleaner soundness proof. What we do share is a
notion of dynamically selected advice (i.e., choose), which is
sometimes referred to as advice lookup [1, 6], implemented
as match-pcd in [14].

In [7] the authors discuss the formulation of type safety
for an AOP language in the theorem prover Coq, developing
a more typical model. Our approach is specific to adaptive
programming using traversals, which simplifies our sound-
ness proof, but reduces the overall power of our model.

Similarly, in [13] the authors discuss an aspect extension
to ML [10]. Labels are used to provide explicit join points,
with first-class advice and side effects, providing most, if not
all, of the flexibility of mainstream AOP languages. Around
advice is similar to our function dispatch, though our syntax
has been simplified as a first step in modeling our AP-F
implementation.

Object Oriented type inference [11] has been used to pro-
vide a sound type system for a pure OO language using
constraints. Constraints are generated and solved to estab-
lish that a message-not-understood error cannot occur. We
have adapted typical typing rules based on their work and
our experience with traversals. Ultimately their approach
might lead to a simpler type checker, but full investigation
is an item of future work.

7. CONCLUSION
We have presented the syntax, semantics, and type sys-

tem of a restricted model of Functional Adaptive Program-
ming (AP-F) and proven it type sound. AP-F provides a
limited form of safe adaptive programming by way of func-
tional, traversal-based aspects. The complication in the ap-
proach comes from the generalization of function set dis-
patch (choose), which delays function selection until recur-
sive values are computed. This is done in order to later
support a simple extension to unrestricted dispatch, as ex-
ists in our implementation.

7.1 Future Work
We are currently working on an unrestricted proof of type

soundness with a full version of choose that selects a func-
tion based on all function arguments. With these results we
hope to develop an approach for static dispatch of function
objects during traversal, eliminating some of the overhead
of reflection.

8. REFERENCES
[1] G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely.

µabc: A minimal aspect calculus. In Proceedings of the
2004 International Conference on Concurrency
Theory, pages 209–224. Springer-Verlag, 2004.

[2] B. Chadwick. DemeterF: The functional adaptive
programming library. Website, 2008.
http://www.ccs.neu.edu/home/chadwick/demeterf/.

[3] B. Chadwick and K. Lieberherr. Functional Adaptive
Programming. Technical Report NU-CCIS-08-75,
CCIS/PRL, Northeastern University, Boston, October
2008.

[4] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes
and mixins. In In POPL, pages 171–183. ACM Press,
1998.

[5] A. Igarashi, B. Pierce, and P. Wadler. Featherweight
java: A minimal core calculus for java and gj. In
TOPLAS, pages 132–146, 1999.

[6] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of
untyped aspect-oriented programs. In ECOOP, pages
54–73, 2003.

[7] F. Kammüller and M. Voesgen. Towards type safety of
aspect-oriented languages. In AOSD 2006, FOAL
Workshop, 2009.

[8] K. J. Lieberherr. Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns. PWS
Publishing Company, Boston, 1996. 616 pages, ISBN
0-534-94602-X.

[9] H. Masuhara and G. Kiczales. Modeling crosscutting
in aspect-oriented mechanisms. In ECOOP, pages
2–28, 2003.

[10] R. Milner, M. Tofte, and D. Macqueen. The Definition
of Standard ML. MIT Press, Cambridge, MA, USA,
1997.

[11] J. Palsberg and M. I. Schwartzbach. Object-oriented
type inference. In OOPSLA, pages 146–161, New
York, NY, USA, 1991. ACM.

[12] The Demeter Group. The DemeterJ website.
http://www.ccs.neu.edu/research/demeter, 2007.

[13] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In ICFP, pages 127–139, New York, NY,
USA, 2003. ACM.

[14] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. TOPLAS, 26(5):890–910, 2004.

[15] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. Information and Computation,
115:38–94, 1994.

4

E[traverse(new C (v1, . . . , vn) , F)]
→ E[recur(F, new C (v1, . . . , vn), traverse(v1, F), . . . , traverse(vn, F))]

E[recur(F, v0, v1, . . . , vn)] → E[apply(choose(F, type(v0)) , v0, v1, . . . , vn)]

E[apply((T0 x0, . . . , Tn xn){ return e; } , v0, v1, . . . , vn)] → E[e[vi/xi]]

Figure 4: Reduction Rules

type (new C (v1, . . . , vn)) = C

types ((T0 x0, . . . , Tn xn){ return e; }) = (T0, . . . , Tn)

choose (funcset(f . . . , (C x0, . . .){ return e; }, f . . .), C) = (C x0, . . .){ return e; }

x[e′/x] = e′

x′[e′/x] = x′ if x′ 6= x
new C (e1, . . . , en)[e′/x] = new C (e1[e′/x], . . . , en[e′/x])
recur(F, v0, e1, . . . , en)[e′/x] = recur(F, v0, e1[e′/x], . . . , en[e′/x])
apply(f, v0, e1, . . . , en)[e′/x] = apply(f, v0, e1[e′/x], . . . , en[e′/x])
traverse(e0, F)[e′/x] = traverse(e0[e′/x], F)

Figure 5: Reflection, Function Selection and Substitution Definitions

[T-Var]
x : T ∈ Γ
Γ `e x : T

[T-New]
concrete C (T1, . . . , Tn) ∈ P

Γ `e ei : T ′i T ′i ≤ Ti for all i ∈ 1..n
Γ `e new C (e1, . . . , en) : C

[T-Trav]
Γ `e e0 : T0 ∅ `T 〈T0, F 〉 : T ; ∅

traverse(e0 , F) : T

[T-Recur]
`e v0 : C Γ `e apply(choose(F, C), v0, e1, . . . , en) : T

Γ `e recur(F, v0, e1, . . . , en) : T

[T-Apply]
`e v0 : C types(f) = (C, T ′′1 , . . . , T

′′
n) `F f : T

for all i ∈ 1..n Γ `e ei : T ′i ∧ T ′i ≤ T ′′i
Γ `e apply(f, v0, e1, . . . , en) : T

Figure 6: Expression Typing Rules

[T-Func]

xi : Ti `e e0 : T
`F (T0 x0, . . . , Tn xn){ return e0; } : T

Figure 7: Function Typing Rule

[T-CTrav]
concrete C (T1, . . . , Tn) ∈ P types(choose(F,C)) = (C, T ′′1 , . . . , T

′′
n) `F choose(F,C) : T

for all i ∈ 1..n Ti 6∈ X ⇒ X ∪ {C} `T 〈Ti, F 〉 : T ′i ; Φi ∧ T ′i ≤ T ′′i
(C, T ′) ∈ (Φ1 ∪ · · · ∪ Φn) ⇒ T ≤ T ′ Φ = { (Tj , T

′′
j) | j ∈ 1..n ∧ Tj ∈ X } Φ′ = Φ ∪ (Φ1 ∪ · · · ∪ Φn)\(C, _)

X `T 〈C,F 〉 : T ; Φ′

[T-ATrav]
abstract A (T1, . . . , Tn) ∈ P

for all i ∈ 1..n Ti 6∈ X ⇒ X ∪ {A} `T 〈Ti, F 〉 : T ′i ; Φi ∧ T ′i ≤ T
(A, T ′) ∈ (Φ1 ∪ · · · ∪ Φn) ⇒ T ≤ T ′ Φ = { (Tj , T) | j ∈ 1..n ∧ Tj ∈ X } Φ′ = Φ ∪ (Φ1 ∪ · · · ∪ Φn)\(A, _)

X `T 〈A,F 〉 : T ; Φ′

Figure 8: Traversal Typing Rules

5

6

Modular Verification of Strongly Invasive Aspects

Emilia Katz Shmuel Katz
Computer Science Department

Technion – Israel Institute of Technologyn
emika, katz

o
@cs.technion.ac.il

ABSTRACT
An extended specification for aspects, and a new verifica-
tion method based on model checking are used to establish
the correctness of strongly-invasive aspects, independently
of any particular base program to which they may be wo-
ven. Such aspects can change the underlying base program
variables to new states, and after the aspect advice has com-
pleted, the base program code continues from states that
were previously unreachable. The needed changes in the
MAVEN model checker are described, and the soundness of
the verification method is proven. An example is shown of
its application to aspects that provide various bonus points
to student grading programs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model Checking ; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms
Verification, languages

Keywords
Aspects, model-checking, specification, modularity

1. INTRODUCTION
Several works have dealt with model checking of aspect

systems [8, 12, 5, 4, 9, 6]. These works either treat a sys-
tem with aspects woven in, or try to deal with the aspects
modularly, relative to a specification. In the later case, the
motivation is either to reduce the size of the models, or to
allow convenient reuse of aspects in a library. Such an ap-
proach requires that the aspect itself have an independent
specification that can be shown to hold. In one form or an-
other, the specification of an aspect describes an assumption

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009 All rights are reserved by the authors

about any base system to which the aspect can be woven,
and a guarantee about the resultant system after the aspect
is woven. The aspects are shown correct relative to their
specification, and not to interfere with each other [6], and
then, for each system to be constructed with the aspects,
the base system is shown to satisfy the assumptions of the
needed aspects. The construction of a model of the entire
concrete woven system (which might be considerably larger
than either of those used in the modular verification) and
its direct verification do not have to be carried out at all.

So far, when aspects are treated separately from a specific
weaving, it has been necessary to add a restriction: that the
aspect returns control to the base system in a state that al-
ready existed for some computation of the base system with-
out the aspect woven into it. Such aspects are called weakly
invasive in [7], where the other categories of aspects men-
tioned in this paper are also defined. The reasoning behind
the restriction is easy to understand: the aspect’s assump-
tion about the base system only relates to those computation
sequences and states (known as reachable states) that can
occur for some fair execution of the base system without the
aspect. When an aspect returns control to the base system
code, but in a state of the base variables that does not occur
for any computation of the base system that begins from a
”normal” initial state, there is no restriction on the behavior
of the continuation. Instructions from the base code are ex-
ecuted, but with values that were never expected or tested,
and with no restriction on the outcome. Thus the overall
behavior of such a system is hard to analyze in a modular
manner, separating the reasoning about the base from the
reasoning about the aspects to be woven. In such cases,
modular reasoning was thought unfeasible.

On the one hand, this restriction still allowed treating
most aspects. Several kinds of aspects, including specta-
tive ones that merely gather information, and regulative
ones that merely restrict possible steps, are weakly invasive.
Moreover, often the category of such aspects can be iden-
tified using dataflow techniques, as described in [7, 11, 13],
and many commonly used aspect examples are weakly in-
vasive. Nevertheless, there are other aspects that definitely
are strongly invasive, and that occur in real applications, so
that a more complete approach is desirable.

In this paper we show that such a restriction is unneces-
sary, and that a modular approach can be realized even for
so-called strongly invasive aspects that do return control to
the base system in new states that were unreachable in the
base system executing alone. To do this, we take advan-
tage of the usual organization of model checkers for linear

7

time systems, and of the facilities they commonly provide.
An extension of the MAVEN aspect verification system is
presented, that can treat strongly invasive aspects, and an
example of a bonus aspect for student grades is described.

The basic idea of the new approach is to add to the speci-
fication an assumption about the base system that restricts
the computation segments that may become reachable after
a strongly invasive aspect is woven. We then show once-and-
for-all that when the aspect is woven into any base system
with a reachable part that satisfies the previous type of as-
sumption and an unreachable part that satisfies the added
one, the result of the weaving will satisfy the guarantee. For
a particular base system, we then have to show that the as-
sumptions are true for both the reachable and unreachable
parts (or at least the unreachable part that may become
reachable after weaving). These tasks are made feasible due
to the fact that many model checkers actually generate a
state transition system that includes the unreachable parts
of the computation, as a side-effect of the construction, and
that marking the reachable states is a built-in operation.

The original MAVEN system [4], over NuSMV [1], builds a
single model that can be checked to establish the correctness
of a weakly-invasive aspect relative to its assume-guarantee
specification, given in Linear Temporal Logic (LTL). (In the
examples in this paper we use only the LTL modalities G p -
for “from now on, p”, F p - for “eventually, p”, and p U q - for
“p is true until q becomes true”). The tableau state machine
of the assumption is built using a module of NuSMV, and
then the transition system of the aspect advice is woven
into it, with pointcuts defining transitions to the beginning
of advice state machine fragments, and with transitions back
to the states of the base system that match the end states
of the advice segments. It is then proven that whenever
this particular model satisfies the guarantee assertion, then
a woven system with any base satisfying the assumption,
and the model corresponding to the aspect woven into it,
satisfies the guarantee.

In the following section, precise definitions of the terms
involved are presented, the theory behind the verification al-
gorithm is described, and a proof of soundness is given, that
extends the one given for the simpler MAVEN system. In
Section 3 algorithms are given for computing the last states
of the aspect, for determining the category of the aspect,
for verifying the aspect, and for checking the base system
for the needed assumptions. In Section 4 the specification
and verification of an aspect for adding bonus points for stu-
dent exercises and exams is described, and some concluding
remarks are in Section 5.

2. VERIFICATION THEORY FOR STRONGLY
INVASIVE ASPECTS

Definition 1. An aspect A is strongly invasive relative
to a model M if a state of M that was unreachable in M
becomes reachable in the woven system M+A and transitions
of M are applied to it.

The last part of the definition is needed to ensure that the
aspect advice (sometimes) finishes in a state of M that was
previously unreachable, and then the code of M is applied
to the new state.

2.1 Refined Aspect Specification

The assumption of a strongly invasive aspect has to con-
tain more information than the assumption of a weakly in-
vasive one: it sometimes needs to define restrictions on the
behavior of the unreachable part of the base system into
which the aspect can be woven, in order to ensure an ap-
propriate behavior of the woven system from the states that
are made reachable by the strongly invasive aspect.

The specification of aspect A is now a triple: (PA, UA, RA),
where, as before (in [4]), PA is the assumption about the
reachable part of the base system and RA is the result as-
sertion guaranteed to hold in the woven base with the aspect.
The new UA statement is an LTL formula defining the re-
strictions on the unreachable part of the base system which
is made reachable by completing an aspect advice fragment.
The restriction is posed on computations of the base system
that start in the states that might be reached by completing
the aspect advice, which were previously unreachable. We
now may define the correctness of an aspect relative to such a
specification, relating to a base system S = Sreach∪Sunreach

where Sreach represents the reachable part, and Sunreach the
unreachable part.

Definition 2. An aspect A is correct with respect to its
refined assume-guarantee specification (PA, UA, RA) if, when-
ever it is woven (by itself) into a system S = Sreach ∪
Sunreach, where Sreach satisfies PA and the part of Sunreach

that might become reachable after weaving satisfies UA, the
result will satisfy the guarantee, RA.

The property of the unreachable part of the system is
relevant only for computation segments starting from a state
that can be the last state of an advice execution. The reason
is that only by an advice execution can a computation of the
woven system pass from a state that was reachable in the
base system to a state which was unreachable in the base
system. Thus in order to check that the unreachable part
of the base system satisfies the requirements of the aspect,
it is enough to verify a formula of the form LA → UA on
it, where LA is a state formula describing the set of all the
possible last states of the advice state machine, projected
on the base system variables.

With some abuse of notation, we denote by LA the set of
possible last states of aspect A (identifying the unary pred-
icate with the set it describes). Note that this set consists
exactly of all the states in the base system into which a
computation can arrive after finishing advice execution.

2.2 Refined Tableau Construction
Given an aspect A and its refined specification, (PA, UA, RA),

we need to construct a refined tableau to serve as a repre-
sentation of all the base systems into which our aspect will
possibly be woven. But now in order to build the tableau
of the assumption of the aspect, it is not enough to build
the tableau of PA: we need to restrict the unreachable part
of the tableau. The tableau needs to represent the systems,
the reachable part of which satisfies PA, and the unreachable
part of which satisfies LA → UA, where LA is the predicate
defining the set of all the possible return states of the advice.
The refined tableau, T , is constructed in three steps:

Step 1: Automatically construct the predicate LA. The
construction is shown in Section 3.1.

Step 2: Use the ltl2smv module of the NuSMV model
checker to build the tableau T1 of the LTL formula (PA ∨
(LA ∧ UA)).

8

Step 3: Take the tableau T to be the same as T1 ex-
cept for the initial states definition. To obtain the INIT
predicate of T , restrict the INIT predicate of T1 to include
only states that should be reachable in the base system:
INIT ∧ PA.

Note that T1 is the tableau of (PA∨(LA∧UA)) and not of
(PA ∨ (LA → UA)), because the only way to reach the part
of the base system that does not satisfy PA is by application
of an aspect advice, and this will bring the computation to a
state in which LA must hold. This intuition will be justified
during the proof of Theorem 1.

Let us denote the refined tableau constructed as above by
T(PA,(UA,LA)).

Theorem 1. Let A be an aspect with the refined assume-
guarantee specification (PA, UA, RA), and let LA be a for-
mula describing the set of all the possible last states of A.
Then A is correct with respect to (PA, UA, RA) if the result
of weaving A into T(PA,(UA,LA)) satisfies RA.

We delay the proof of the theorem until after bringing
some helpful definitions and lemmas needed for the proof.
They appear below, together with the intuition for the proof.

In order to prove the theorem we need to show that if
the result of weaving A into T(PA,(UA,LA)) satisfies RA, then
for every base system M such that its reachable part sat-
isfies PA and the unreachable part satisfies LA → UA, the
result of weaving A into M satisfies RA. For this purpose
it is enough to show that for every infinite fair path σ in
the woven system M + A there exists a corresponding in-
finite fair path π in the woven tableau, T(PA,(UA,LA)) + A,
such that label(σ) |AP = label(π) |AP . (Where AP is the
set of all the atomic propositions appearing in the specifi-
cation of A, a label of a state s, label(s), is the set of all
the atomic predicates that hold at the state s, and a la-
bel of a path τ , label(τ), is defined to be the sequence of
the labels of the states of τ , so that if τ = s0, s1, s2, . . .,
label(τ) = (label(s0), label(s1), label(s2), . . .)). In that case
indeed in order to prove that every path in the woven sys-
tem satisfies RA, it is enough to show that every path in the
woven tableau satisfies this property.

To simplify the notation, let us denote T(PA,(UA,LA)) by
T. The task of finding a fair path in T +A that corresponds
to the given fair path of M + A will be divided into steps
according to prefixes of σ, and at each step a longer prefix
will be treated. The following lemma will help to extend the
treated prefixes:

Lemma 1. Let S be a system, and let s0, . . . , sk be states
in S such that s0 and sk are reachable by a fair path from
some initial state of S (the paths and the initial states for s0
and sk might be different), and for each 0 ≤ j < k, the tran-
sition (sj , sj+1) exists in S. Then there exists a fair compu-
tation in S which contains the sequence of states s0, . . . , sk.

Proof.
A computation is fair if it visits states from the Fairness set
of the system model infinitely often. Let π0 and πk be fair
computations in S in which s0 and sk occur, respectively.
Then π0 = σ0 · s0 · . . ., and
πk = . . . · sk · σk for some σ0 and σk. Let us take
π = σ0 · s0 · s1 · . . . · sk · σk. This is obviously a path in S,
and it starts from an initial state, as did σ0. Moreover, π is
a fair computation, because it has the same infinite suffix,

σk, as the fair computation πk.
Q. E. D.(Lemma 1)

The following definition will be useful for identifying the
“interesting” prefixes of the path σ:

Definition 3. Any infinite path π in a transition system
can be represented as a sequence of path segments -
π = π0 · π1 · . . ., where each path segment πi is a sequence
of states such that:

• If i = 0, the first state of πi is the initial state of π

• If i > 0, the first state of πi is either an initial state of
an advice or a resumption state of the base system (i.e.,
a state in the base system into which the computation
arrives after an advice execution is finished)

• The last state of πi is either a pointcut state or a last
state of an advice (after which the computation returns
to the base system), or the last state of the path, if π
is finite

• There are no pointcut states and no last states of advice
inside πi (i.e., in the states of π that are not the first
or the last state)

• π is the concatenation of the path segments of π in the
order of their indices

Note that the decomposition of a path to path segments is
unique, and that, because of loops, there can be resumption
states within a segment. Note also that we could have an
infinite (last) segment - in the reachable part of the base, or
in the unreachable part, or even in the aspect. In our case
all the paths in question are infinite, so the last state of each
finite path segment will be either a pointcut or a last state
of an advice. A resumption state might be unreachable in
the system before weaving - in case of a strongly invasive
aspect.

Now if we are given a path of M+A, σ = σ0 ·σ1 · . . . where
σi-s are the path segments of σ, for each finite prefix of σ
consisting of a number of path segments we define the set of
corresponding path-segment prefixes of fair paths in T+A:

Πi = {π0 · π1 · . . . · πi|
label(π0 · . . . · πi) |AP = label(σ0 · . . . · σi) |AP ,

∃π fair path in T+A such that π = π0 · . . . · πi, . . .}

Each element in Πi is a prefix of an infinite fair computation
of T + A corresponding to the i-th prefix of σ, thus the
following lemma will show that for every finite prefix of σ
there exists a corresponding prefix of a fair computation in
T +A:

Lemma 2. Given a fair computation σ of M+A, and sets
of prefixes Πi-s as defined above, ∀i ≥ 0.Πi 6= ∅.

Proof.
The proof is by induction on i.

Base: i = 0.
To show that Π0 is not empty we need to show the exis-

tence of π0 such that label(π0) |AP = label(σ0) |AP and π0

9

is a prefix of some fair path π in T+A. σ0 is the first path-
segment of a fair path in M+A, thus there is no advice appli-
cation before σ0 or inside it. So σ0 is also the first path seg-
ment of a fair computation in M . According to the assump-
tion on M , M |= PA, thus for every fair path starting from
an initial state of M there exists a corresponding fair path in
T . In particular, there exists a fair path π = t0, . . . , tk, . . .
in T such that label(σ0) |AP = label(t0, . . . , tk) |AP . Then
again, as t0, . . . , tk is a beginning of a fair path in T , and
there are no pointcuts in it, except maybe for the last state,
it is also a beginning of a fair computation in T + A. So
let us take π0 = s0, . . . , sk. We are left to show that π0 is
indeed a path-segment, and then it will follow that π0 ∈ Π0,
meaning that Π0 is not empty.

label(t0) = label((σ0)0), thus t0 is an initial state of T +A.
There is no pointcut inside σ0, because it is a path-segment,
so the last state of σ0 cannot be a return state of advice
application, which means that it has to be a pointcut state.
Due to the agreement on labels, the last state of π0 will also
be marked as a pointcut state. For the same reason, there
are no pointcut states among t0, . . . , tk−1, which, in the same
way as for σ0, implies that there are no advice return states
also. Thus both ends of π0 are legal ends of a path-segment,
and there are no pointcut states and no advice return states
inside π0, which makes it, indeed, a legal path-segment.

Induction step.
Let us assume that for every 0 ≤ i < k, Πi 6= ∅. We need

to prove that Πk 6= ∅.
The induction hypothesis holds, in particular, for i = k−1,

thus there exists some prefix π0 · π1 · . . . · πk−1 of a fair
computation of T + A, corresponding to the prefix σ0 · σ1 ·
. . . · σk−1 of M + A’s computation, σ. Let us denote by
s first(i) the first, and by s last(i) the last state of i − th
path-segment of σ (σi), and symmetrically for the states
of path segments of T + A - by t first(i) the first, and by
t last(i) the last state of i− th path-segment. There are two
possibilities for s last(k-1):

1. s last(k-1) is a pointcut. Then t last(k-1) is also a
pointcut, because due to the induction hypothesis
label(s last(k-1)) |AP = label(t last(k-1)) |AP . Then in
every continuation of the computation both in M +A
and in T + A the advice of the aspect will be per-
formed, thus the k-th path-segment will in both cases
be the application of the same advice from the same
state, and the agreement on the labels of the k-th path-
segments will be trivially achieved. Moreover, for the
same reason the existence of an infinite fair path with
the prefix π0 · π1 · . . . · πk−1 implies the existence of an
infinite fair path with the prefix π0 · π1 · . . . · πk, be-
cause every continuation of the first prefix had to be
an advice application. From the above it follows that
in this case Πk 6= ∅.

2. s last(k-1) is a last state of the advice. This, in particu-
lar, implies that s last(k) is a pointcut state, and no ad-
vice has been applied between s last(k-1) and s last(k).
Here are again two possibilities:

• s last(k-1) is a reachable state in M (more pre-
cisely, the state reachable in M is the projection
of s last(k-1) on AP). As no advice is applied
between s last(k-1) and s last(k), we have that

the whole path-segment σk is in the reachable
part of M . Moreover, due to Lemma 1, as both
s last(k-1) and s last(k) are reachable by some fair
paths from some initial states of M, we also have
that there exists a fair computation of M contain-
ing the sequence s last(k-1), s first(k), . . . , s last(k).
All the fair computations of the reachable part of
M are represented in the tableau of PA, which
is exactly the reachable part of T. Thus, in par-
ticular, the above fair path has a corresponding
path in T , and, as there was no pointcut or ad-
vice application inside the sequence s last(k-1),
s first(k), . . . , s last(k), there are also no point-
cuts and advice applications in the corresponding
sequence in the computation of T, and thus there
exists a corresponding sequence of states in T+A,
πk. The first state of πk, t last(k-1), is reachable
from the initial state of T +A by some fair path,
as Πk−1 is not empty. Moreover, all the prefixes of
such fair pathes appear in Πk−1, thus at least one
of them continues to the sequence πk. So indeed
we obtain that there exists a sequence of states
πk corresponding to σk in the woven tableau, for
which a fair continuation exists. We are left to
see that the sequence of states, πk, is indeed a
path segment in the woven tableau computation.
But this is true due to the agreement on labels
of the states, label(πk) |AP = label(σk) |AP : the
path segment σk started from a return state of an
advice, ended by a pointcut, and had no advice
applications in the internal states, so the same is
true for πk and thus πk is a path segment.

• The last case left is that s last(k-1) is unreachable
in M. Additionally, s last(k-1) is the last state of
the advice, thus s first(k) is the return state of
the advice, and also is unreachable in M, because
according to the weaving algorithm
label(s last(k-1)) |AP = label(s first(k)) |AP . From
the fact that s first(k) is unreachable in M, to-
gether with the assumption on the unreachable
part of M, we have that LA → UA holds in the
suffix of any path starting from s first(k). But
from the agreement on labels with s last(k-1) we
also have that s first(k) |= LA. Together we ob-
tain that UA holds in the suffix of any computa-
tion in M starting from s first(k), and, in partic-
ular, for the computation σ′ containing the next
path segment of σ, σk (because there is no advice
application inside σk, all its states are states of
the original system, M - either in the reachable
or the unreachable part). Now let us examine
the states of the woven tableau. The tableau of
LA∧UA is included in the refined tableau T, thus
every computation satisfying UA that starts from
a state satisfying LA is represented in T (though
its initial state might be unreachable before the
aspect is woven into T). Let π′ be a computation
that corresponds to the suffix of σ′ that starts
from s first(k). The first state of π′ agrees on
its label with s first(k), and thus with s last(k-1),
which, according to the induction hypothesis, im-
plies agreement on labels with t last(k-1). Ac-
cording to the weaving algorithm, the last state

10

of the advice is connected to all the states in
the underlying system with which it agrees on
labels. Thus, in particular, t last(k-1) (which is
the last state of the advice, in the same way as
s last(k-1)), is connected to the first state of π′.
So we can take the first state of π′ to be the first
state of πk. Let us then take πk to be the first
path-segment of π′. It is indeed a path segment
of a fair computation (due to Lemma 1), it is con-
nected to πk−1 and agrees on labels with σk, so
we found what we needed.

Thus, indeed, the set of possible continuations, Πi, is never
empty.
Q. E. D.(Lemma 2)

Theorem 1 proof:.
Now let us return to the proof of Theorem 1. Let us be

given an infinite fair path σ in the woven system M + A.
From Lemma 2 it follows that there exists an infinite path
π in the woven tableau corresponding to the given path σ
- all the prefixes of π appear in the Πi-s above, and due
to the lemma, the Πi-s are all non-empty. So in order to
complete the proof of the theorem we need only to notice
that every path constructed from the prefixes in Πi-s above
is fair, for the following reason: There are two possibilities
for the infinite suffix of π. It either has infinitely many
advice applications, or there exists some infinite suffix in
which no aspect state is visited. If there are infinitely many
advice applications, some state of the advice must be visited
infinitely often, and all the states of the advice are defined
as fair. If there is no advice application after some state,
then there are only a finite number of path segments of π,
and the last path segment is infinite. But, as we know, this
path segment belongs to some fair path in T + A, so this
must be a fair suffix, and so the computation π is indeed
fair. This completes the proof of Theorem 1
Q. E. D.

3. ALGORITHMS

3.1 Computing LA Automatically
Given a model of the aspect, A, in MAVEN format, we

would like to automatically compute the state formula defin-
ing the set of all the possible last states of A’s advice. The
algorithm we propose consists of four steps:

Step 1: Construct a formula ϕ defining the pointcut of
the aspect: take ϕ to be the disjunction of all the POINT-
CUT expressions in A.

Step 2: Run MAVEN on a model A′ which is the same as
A except for a change in the specification. The assumption
of the aspect is replaced by ϕ, and the guarantee of the
aspect is replaced by true. The purpose of this operation is
to obtain a system in which all the possible computations of
the aspect are represented, and this goal is achieved in the
following way:

• At the first step of its work, MAVEN will automati-
cally construct the tableau of the new assumption of
the aspect, ϕ, using the ltl2smv module of NuSMV.
Note that in this tableau, Tϕ, only the initial states
are restricted, and the initial states are exactly all the
possible join-points of the aspect.

• At the second step, MAVEN will perform the weav-
ing of the aspect into the constructed tableau. The
obtained woven system, Tϕ + A, will contain all the
possible computations of the aspect, because the ini-
tial states of the tableau are all the possible pointcut
states that can occur in either reachable or unreach-
able parts of the base systems into which A will be
woven (as the ranges of all the base variables as de-
fined in the aspect model definition are the maximal
possible, and the combinations of variables values are
restricted only by the formula ϕ).

Note that if we added other restrictions on the computations
of the tableau Tϕ, we may not be able to guarantee that
all the possible runs of the advice of A will appear in the
woven tableau. For example, if we demand that the com-
putations of the tableau should satisfy PA, then after the
weaving we would not obtain the runs of the aspect from
the states that were unreachable in the base system. Since
in the unreachable part of the base system which becomes
reachable after the weaving there might be join-points of
A, we have to model the computations of the advice start-
ing from these states. However, there are cases when ad-
ditional restrictions might be posed on the computations of
the tableau built. For example, there might be some invari-
ant that holds both in the reachable and the unreachable
parts of the base system, and then it could be added to ϕ.
Additionally, there might exist an assertion that holds for
all the pointcut states, but is not explicitly written as part
of the pointcut. Then it would be possible to restrict the
initial states of the constructed tableau by this assertion.

Step 3: Take the woven system obtained in Step 2, Tϕ +
A, and use the built in functionality of NuSMV to com-
pute the set of all the reachable states of this model, (Tϕ +
A)reachable. For each of the states in (Tϕ + A)reachable, check
whether it satisfies any of the RETURN conditions of the
aspect. If it does, add it to the set LA.

Step 4: Now LA is the set of all the possible last states of
A. What is left is only to construct the predicate describing
this set. This is done by taking the disjunction of all the
predicates describing the states in LA.

Sometimes it might be easy to see a compact description
of the possible last states of the aspect. For this case we pro-
vide the user a possibility to supply a manually constructed
predicate L. But such a predicate should be checked before
use, because the intuition of the user might be wrong. Then
we use the above algorithm to construct the full LA predi-
cate, and check that the supplied predicate L is implied by
LA. If indeed LA → L holds, the verification using L will
still be sound, because it just might check additional paths,
but no relevant path will be left unverified.

3.2 Determining the Aspect Category
Before applying the full verification technique it is very

desirable to determine the category of the aspect. If the as-
pect is of the weakly invasive category (or a simpler category
included within the weakly invasive one), then the method
described in [4] is applicable to it. Otherwise, the method
described in Section 3.3 should be used.

Some ways of determining the category of the aspect us-
ing code analysis, dataflow techniques and semantic defini-
tions are described in [7, 11, 13, 3]. If none of them gives
a positive answer, the algorithm presented below can help
to determine whether the aspect is uniformly strongly inva-

11

sive, i.e., is always strongly invasive for every possible base
system to which it can be woven. But first some definitions
and observations are needed:

Remark 2. From Definition 1 in Section 2 it immedi-
ately follows that for any system M in which all the states
not reachable from the initial state by some fair path have
been removed, if an aspect A is strongly invasive relative to
M, there is a deadlock in the system M +A: Let s be a last
state of advice execution such that there exists no reachable
state s′ in M for which label(s′) = label(s) |AP . Then this
state is a deadlock state in the woven system.

Lemma 3. Let aspect A have the specification
(PA, UA, RA), where AP is the set of all the atomic propo-
sitions appearing in the specification and TP denotes the
tableau of PA. Aspect A is strongly invasive with respect
to PA if when A is woven into TP , there exists a state s in
TP +A such that:

• s is the last state of advice execution, and

• there exists no state s′ in TP such that s′ is reachable
by some computation of TP and label(s′) = label(s) |AP

Proof.
Immediate from the above remark.

Definition 4. Given a tableau T of an LTL formula φ,
the tableau TP obtained from T by removing all the states
that are not reachable from the initial state of T by any fair
path (and only them) is called the pruned tableau of φ.

Note that the above defined pruned tableau is equivalent
to a tableau obtained from T by removing all the states and
transitions that only lead to deadlock states.

Lemma 4. Aspect A with the specification (PA, RA) is
strongly invasive relative to PA iff there exists a deadlock
in the system TPA +A, where TPA is the pruned tableau of
PA.

Proof.
The conditions of Remark 2 above hold, in particular, for
M = TPA, so there will be a deadlock state in TPA +A.

On the other hand, if there exists a deadlock in the system
TPA + A, let s be the deadlock state. Let us denote by s′
the state of TPA such that label(s′) = label(s) |AP . There
are two possibilities: If s′ is reachable in TPA, then there
exists some infinite computation π = s′, s2, . . . from s′ in
TPA, because TPA is a pruned tableau. In particular, there
exists a state s2 in TPA (the second state of π) to which s′
is connected. However, in TPA + A the state s is no longer
connected to s2. According to the construction of TPA +A,
the only reason could be that an advice is applied at s. But
if an advice was applied at s, s would not be a deadlock
state. Thus when we assumed that the projection of s on
AP is reachable in TPA we obtained a contradiction. So we
conclude that s′ is unreachable in TPA.

But could s′ still be reachable in TP ? This can only be
if s′ has been removed from TP during the construction of
the pruned tableau. This means that all the paths starting
from s′ led to some deadlock states, and thus s′ couldn’t
be reached by any fair computation of T. But according to
Lemma 3 this exactly means that the aspect A is strongly

invasive relative to its assumption.
Q. E. D.

According to Lemma 4, the following algorithm verifies
whether the given aspect is strongly invasive relative to its
assumption:

1. Construct the pruned tableau TPA from the tableau
of the assumption of A. This is done automatically, by
an iterative procedure that we have added to MAVEN.
The procedure is as follows:

• Run NuSMV to detect deadlock states in the tableau.

• If a deadlock state is detected, construct a predi-
cate describing this state, p

• Rule out the deadlock state: Add the negation of
p to the initial state definition, and to the pred-
icate defining possible next states of the transi-
tions.

Repeat the procedure until there are no more dead-
locks in the tableau.

2. Use MAVEN to weave the aspect into the above con-
structed tableau.

3. Run NuSMV to check whether there are deadlocks in
the woven tableau. If a deadlock is detected, the aspect
is strongly invasive relative to its assumption. Other-
wise, the aspect A is weakly invasive relative to PA.

Note that the algorithm presented here gives a positive
answer only if the aspect is strongly invasive relative to the
tableau of its assumption, but not relative to a concrete base
system. Thus if the algorithm gives a positive answer, the
aspect is strongly invasive relative to all the possible base
systems into which it might be woven. But if the algorithm
gives a negative answer, there might exist a base system sat-
isfying the assumption of the aspect, with respect to which
our aspect is still strongly invasive.

Given a base system S, there is one more way for us to
check whether the given aspect, A, is strongly invasive rela-
tive to this system. Intuitively, what we would like to do is
to look at all the unreachable states of the base system, and
check whether there are last states of our aspect among these
unreachable states. For that purpose we can check satisfia-
bility of the following formula: ϕ = SU∧LA, where SU is the
formula defining the set of all the unreachable states of S,
and LA is the formula defining the set of all the possible last
states of A. ϕ can be constructed automatically: the way to
construct LA automatically is shown in Section 3.1, and the
way to construct SU automatically is shown in Section 3.4.1.
And then the satisfiability of ϕ can be automatically checked
using a SAT solver (such as, for example, Chaff [10]). If ϕ
is found unsatisfiable, it means that there are no last states
of the aspect A in the unreachable part of S, so A has to be
weakly invasive relative to S, and the simpler model check
in [4] can be used. If ϕ is found satisfiable, it doesn’t neces-
sarily imply that A is strongly invasive relative to S, because
the predicate LA is an over-approximation: it contains all
the possible last states of the aspect, but maybe some of
them will never occur in the computations of the woven sys-
tem S+A, and thus will not bring the computation to states
that were unreachable in S. But this over-approximation is
a safe one: if we declare some aspect as strongly invasive

12

when it is weakly invasive, we will just have to work harder
to prove its correctness than we would if we knew its exact
category, but the verification results will be sound.

3.3 Verifying the Aspect
Given an aspect A and its refined assume-guarantee spec-

ification, (PA, UA, RA), the verification of correctness of A
with respect to (PA, UA, RA) is performed as follows:

1. Construct the refined assumption tableau for A as shown
in Section 2.2 - the T(PA,(UA,LA)).

2. Use MAVEN to weave A into T(PA,(UA,LA)) and to run
the NuSMV model checker on the resulting system and
check the RA property on it.

3.4 Base System Correctness Verification

3.4.1 Non-optimized solution
Given a base system S, we need to verify that it satisfies

the refined assumption of our aspect, (PA, UA):

• Verify that the reachable part of S, Sreach, satisfies PA

• Verify that all the computations starting from the un-
reachable part of S, Sunreach, satisfy LA → UA.

The first verification task can be done by usual model-checking
of S versus PA. The meaning of the second task is as fol-
lows: we need to examine the model of Sunreach and check
all the fair computations that start from states satisfying LA

(note that a computation starting from a state in Sunreach

might return to the reachable part of S at some state). All
these computations should satisfy UA. The verification is
performed in three steps:

1. Automatically compute the state formula SU defining
the set of all the unreachable states of S: SU is the
negation of the formula SR defining all the reachable
states of S, and in NuSMV there exists a possibility to
compute SR automatically for a given system S.

2. In the model of the base system, S, automatically re-
place the initial states definition by the formula SU ∧
LA

3. Run NuSMV on the obtained model and the formula
UA. If the verification succeeds, it means that the
given base system satisfies the restriction on the un-
reachable part.

3.4.2 Optimization
In some cases, the requirement in the second part of the

verification process can be relaxed due to the structure of
UA. For example, in case when UA is some safety property,
i.e., UA has the form Gϕ, we do not have to verify that ϕ
holds all along the computations starting from resumption
states in the unreachable part of the system. We need to
check only the segments between a resumption state and
the next join-point or reachable state. So if we denote by
ptc the predicate defining the pointcut of the aspect, and
by reachable - the predicate defining the reachable states of
the base system, then it is enough to verify the following
formula on the unreachable part of the system: LA → (ϕ U
(reachable ∨ (pointcut ∧ ϕ))). The reason is that when the
computation reaches a join-point, in the woven system the

advice will be executed at that point, so the information
about the possible continuations of the computation in the
base system from that point is useless. And if a computation
leaves the unreachable part and arrives to some previously
reachable state, its continuation will behave as specified by
the assumption of the aspect about the reachable part of the
base system, and all these continuations are already checked
during the reachable part verification.

As an example of the situation described above, we can
take a look at an aspect that is in charge of the scheduling
policy of a semaphore-guarded resource. The purpose of the
aspect is to implement a possibility of a waiting queue for
the semaphore. As a result, the semaphore that could pre-
viously have only values 0 or 1 can now have negative values
(according to the number of waiting processes). Thus the
aspect is indeed strongly invasive. But there is a part of the
system invariant that we need to extend to the unreachable
part of the base system: regardless of the semaphore value
and the concrete scheduling algorithm, we demand that no
two processes hold the guarded resource at the same time.
So if the formula ψ encodes the fact that two processes hold
the resource at the same time, the assumption of the aspect
about the unreachable part of the base system should be
U = G¬ψ. But when verifying the computations starting
in the unreachable part of the base system, it is enough to
check that after each possible last state of the aspect the
computation satisfies ¬ψ until it arrives to a pointcut state
or to a reachable state.

4. EXAMPLE
In this example we discuss an aspect that can be used in

any grades-managing system. The aspect B provides a way
of giving bonus points for assignments and/or exams (thus
making it possible to have assignment/exam grades that are
more than 100), but still keeping the final grade within the
0..100 range.

The aspect has two kinds of pointcuts, and two corre-
sponding pieces of advice. The first pointcut of B is the
moment when an assignment or exam grade is entered to
the system. At this point the original system would accept
only grades between 0 and 100, but the aspect offers a pos-
sibility of giving a bonus on the grade, and stores the new
grade successfully even if it exceeds 100. The second point-
cut of B is the moment when the final grade calculation of
the base system is performed. Then if the calculation re-
sulted in a grade that exceeds 100, the aspect replaces this
grade by 100 (otherwise keeping the grade unchanged).

Aspect B is strongly invasive in the systems into which
it can reasonably be woven, because its operation results in
states in which some grades are more than 100, which is
impossible in the base systems without bonus policies. And
this example, though simple, is still of interest to us, because
the aspect here exhibits a typical behavior we would like to
treat: when it is woven into a system, the calculations there
are performed partly in the aspect, and partly in the base
system code, but using new inputs, that were impossible
before the aspect was woven in.

The specification of B can be formalized as follows:

• The assumption on the reachable part of the base sys-
tem is that all the grades appearing in the grading
system - homework assignment grades (hw i), exam
grades (exam j), final grade (f) - are between 0 and

13

100, and after the final grade is ready (f ready) (i.e.,
all the assignments and exams that comprise the grade
have been checked, and the final grade has been calcu-
lated from them according to the base system grading
policy), the final grade is published (f published). The
result of the final grade calculation is represented by
calc.

PB = [G(f ready→ ((f = calc) ∧ F f published))

G(f published→ f = calc) ∧
G(0 ≤ f ≤ 100) ∧
G(∀1 ≤ i ≤ 10(0 ≤ hw i ≤ 100)) ∧
G(∀1 ≤ j ≤ 2(0 ≤ exam j ≤ 100))]

Here, for modeling purposes, we have to provide some
bounds on the number of assignments and exams, so
we assume that there are no more than 10 home as-
signments and no more than 2 exams in each course.
We also show the specification for the grades of a sin-
gle student (because the grades of different students
are independent, and calculations involving them can
be viewed as orthogonal). When the model of the as-
pect is built, the ranges of all the variables - both the
aspect variables and the relevant base system ones -
are defined. Let us assume, for example, that our as-
pect gives bonuses in range of 0..20 points, then all
the grade variables defined in the model of B are in
the range 0..120.

• The assumption on the unreachable part of the base
system is in our case a weakening of PB . We still want
the final grades to be published after they are ready,
but now the final and the intermediate grades do not
have to be bound by 100, but by 120. So we are left
with the following property:

UB = [G(f ready→ ((f = calc) ∧ F f published)) ∧
G(f published→ f = calc) ∧
G(0 ≤ f ≤ 120) ∧
G(∀1 ≤ i ≤ 10(0 ≤ hw i ≤ 120) ∧
G(∀1 ≤ j ≤ 2(0 ≤ exam j ≤ 120))]

• The guarantee of the aspect now is that regardless of
the existence of bonuses on the components of the final
grade, the final grade will be the one calculated by
the base system function, but rounded down to 100 if
needed:

RB = [G(f published→ f = min(calc, 100))]

The guarantee of the aspect might also include a state-
ment about the bonus policy it enforces, saying that
the aspect calculates the bonuses as desired. But to
simplify the discussion, we omit it here.

• The pointcut of the aspect can be formalized using the
following predicates, which define the moments when
the grades are entered into the system: enter hw i for
homework grades, and enter exam j for exam grades.

PointcutB = [(
_

i=1

10
(enter hw i))∨

(enter exam 1) ∨ (enter exam 2)∨
(f ready ∧ (f > 100))]

Let us follow the verification algorithm, applying it to
aspect B. The first step is the refined tableau construction.
It begins with calculating the predicate LB , defining all the
possible last states of B. In our example, we get

LB = [(f ready→ ((f = 100) ∧ (calc > 100))) ∧
(¬f published) ∧
∀1 ≤ i ≤ 10(¬enter hw i) ∧
∀1 ≤ j ≤ 2(¬enter exam j) ∧
(0 ≤ f ≤ 120) ∧ (0 ≤ calc ≤ 120) ∧
∀1 ≤ i ≤ 10(0 ≤ hw i ≤ 120) ∧
∀1 ≤ j ≤ 2(0 ≤ exam j ≤ 120)]

And here is the explanation: All the combinations of exams
and assignments grades values in range 0..120 are possible
at the last state of the aspect, because all the grades of
assignments and exams are independent. There is a connec-
tion between the final grade and the other grades, but only
when the final grade is declared to be ready and still is not
published. Then the final grade is equal to the minimum
between the calculated value (calc) and 100. However, as
we do not want to restrict the calculation function of the
base system, we cannot establish this connection, and at
the other states of the computation the value of the final
grade is not restricted (except by its range), so effectively
we have to enable any combination of the final grade value
and the other grades. The values of the other system vari-
ables are restricted as follows: The variables enter hw i and
enter exam j for all i-s and j-s are false, because no grade
is entered by the user at the last state of the advice. The
variable f published is also false, because the aspect does
not publish the grades - even if it was called at the moment
when the final grade was calculated, it just modifies the cal-
culated grade, but does not publish it. Publishing the grades
is done by the base system. The next variable to discuss is
f ready. If the aspect was called at the moment of grades
entering, the variable f ready is false at the join-point. The
final grade is not calculated by the aspect in this case, so
the variable remains false at the last state of the advice.
However, if the aspect was called at a join-point when the
final grade is calculated, the variable f ready is true there
and remains true after the advice finishes its execution. In
this case, as we said earlier, we will also have f = 100 and
calc > 100.

Now after the predicate LB is constructed, the tableau of
the (PB ∨(LB ∧UB)) formula is created, its initial states are
restricted to those satisfying PB (that is, the refined tableau
T(PB ,(UB ,LB)) is built), and then B is woven into the result.
The last part of the verification process is running NuSMV
on the woven tableau in order to check the RB property on
it. And for the above described aspect, with the specifica-
tion given, the verification succeeds, so our algorithm shows
that indeed it is correct with respect to its refined assume-
guarantee specification. Intuitively, the reason for the suc-
cess of the verification is that the base system performs only
some arithmetic operations on the grades the aspect mod-
ifies, and thus we can expect that the result of performing
old operations on the new arguments will be as anticipated,
if only there is no overflow or type declaration problem. (By
a type declaration problem we mean, for example, the case
when the type of the grades variables is defined in the base
code by some typedef to be 0..100, so that larger values

14

cause a fatal type error.) But the assertion UB ensures that
this will not happen, because UB will not hold for the base
system in case such problems arise.

Note that the aspect does not restrict the grade calcu-
lation process of the base system, so this aspect is highly
reusable, as long as the calculation can handle values greater
than 100 (as seen in UB). Moreover, this aspect can appear
in a library of aspects providing different grading policies:
different types of bonuses for homework assignments, or fac-
tors on the exam grades. All these aspects will have the
same requirements from the base system as B does, so when
some grading system is checked for applicability of one of the
aspects from this library, it is automatically inferred that all
the other aspects from the library are also applicable to this
base system. Thus the grading policy can be changed as
needed at any time, by replacing the applied aspect, with-
out any further checks on the base system.

5. CONCLUSIONS
We have shown that strongly invasive aspects can be spec-

ified and shown correct relative to their specification, inde-
pendently of a particular base system. Moreover, it is rea-
sonable to check the properties needed from the unreachable
part of the base system because the possible transitions of
the base are considered bottom up, independently of the ini-
tial states, thus generating the unreachable part of the base
system as a byproduct of model checking. Strongly inva-
sive aspects typically extend the functionality of the base
system to situations not originally covered. The examples
seen in the paper, of a semaphore with negative values, and
of aspects to give bonus points beyond the normal range,
are typical. Often some invariants true in the base system
alone will no longer hold after weaving such aspects, but
other invariants will continue to hold, and are essential to
the correctness of the woven system.

The verification method presented here is modular, and
thus has an advantage over a straightforward non-modular
verification of a woven system: the possibility of reuse with-
out proof. There are two types of such reuse we see, both of
which are demonstrated by the aspect described in Section 4.
One case is when one and the same aspect is applicable to
different base systems. Then the verification of the advice
versus the assume-guarantee specification is performed only
once, and in order to be able to apply the aspect to a given
base system we need only to perform the base system ver-
ification described in Section 3.4. Another case is when a
library of aspects is given, where all the aspects are built
for the same purpose (like defining some action policy) and
have a common assumption (P,U) about the base system.
Then if we have a base system that satisfies the above as-
sumptions, we can change the policy defined in this system
at any time, by applying different aspects from the library -
one at a time, of course - without any further checks.

When model-checking is used, the size of the verified sys-
tem and of the specification is very important, as it strongly
affects the verification time, and sometimes, if the model
verified is too large, the model-checker can even fail to pro-
vide any answer. For the complexity analysis purpose, we
denote by m the size of the base system model, by a - the
size of the aspect model (|A|), by r - the size of all the formu-
las in A’s specification (assuming, without loss of generality,
that all the formulas used in verification - PA, UA, RA - are
approximately of the same size). When a formula of size

k is verified on a model of size m, the space complexity of
the model checking is O(m · 2k) ([2]). Thus the complex-
ity of a straightforward verification of the woven system is
O(2r · (m · a)), because a system of size m is verified against
a formula of size r (the guarantee of A, in this case). Let us
find the complexity of the modular verification method. It
is the sum of the following components:

• The verification of the base system. It is of O(2r ·m) for
the reachable part, and the same for the unreachable
part, so together we obtain 2 ·O(2r ·m) = O(2r ·m)

• Verification of the aspect. Here, first the refined as-
sumption tableau is constructed, T(PA,(UA,LA)). The

complexity of this step is O(22r) (Note that LA is al-
ways a state formula, and thus does not increase the
complexity.) Then the woven tableau is built, and we
obtain a system of size O(22r ·a). At the last step, the
woven tableau is verified against the guarantee of A,
RA, and this requires complexity of O(2r · (22r · a))

The total complexity thus is O(2r ·(22r ·a)) + O(2r ·m). But
the size of the base system model is usually very large, so
m ≥ 22r, and thus the complexity of our verification is usu-
ally not worse than that of the straightforward woven system
check. Even when this is not the case, the possibilities for
reuse make the modular approach preferable.

6. REFERENCES
[1] A. Cimatti, E.M. Clarke, F. Giunchiglia, and

M. Roveri. NuSMV: a new Symbolic Model Verifier.
In N. Halbwachs and D. Peled, editors, Proc. Eleventh
Conference on Computer-Aided Verification
(CAV’99), number 1633 in LNCS, pages 495–499.
Springer, July 1999. NuSMV home page:
http://nusmv.itc.it.

[2] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled.
Model Checking. MIT Press, Cambridge, MA, 1999.

[3] S. Djoko Djoko, R. Douence, and P. Fradet. Aspects
preserving properties. In Proc. of the 2008 ACM
SIGPLAN Symposium on Partial Evaluation and
Semantic-Based Program Manipulation (PEPM’08),
pages 135–145. ACM, 2008.

[4] M. Goldman and S. Katz. MAVEN: Modular aspect
verification. In Proc. of TACAS 2007, volume 4424 of
LNCS, pages 308–322, 2007.

[5] E. Katz and S. Katz. Verifying scenario-based aspect
specifications. In Proc. Formal Methods: International
Symposium of Formal Methods Europe (FM’05),
volume 3582 of LNCS, pages 432–447. Springer, 2005.

[6] E. Katz and S. Katz. Incremental analysis of
interference among aspects. In Proc. of the 7th
workshop on Foundations of aspect-oriented languages
FOAL ’08, pages 29–38. ACM, 2008.

[7] S. Katz. Aspect categories and classes of temporal
properties. Transactions on Aspect Oriented Software
Development (TAOSD), 1:106–134, 2006. LNCS 3880.

[8] S. Katz and M. Sihman. Aspect validation using
model checking. In Proc. of International Symposium
on Verification, LNCS 2772, pages 389–411, 2003.

[9] S. Krishnamurthi and K. Fisler. Foundations of
incremental aspect model-checking. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 16(2), 2007.

15

[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient sat
solver. In Proc. of the 38th Design Automation
Conference, DAC’01, pages 530–535, 2001.

[11] M. Rinard, A. Salcianu, and S. Bugrara. A
classification system and analysis for aspect-oriented
programs. In Proc. of International Conference on
Foundations of Software Engineering (FSE04), 2004.

[12] H.B. Sipma. A formal model for cross-cutting modular
transition systems. In Proc. of Foundations of Aspect
Languages Workshop (FOAL03), 2003.

[13] N. Weston, F. Taiani, and A. Rashid. Interaction
analysis for fault-tolerance in aspect-oriented
programming. In Proc. Workshop on Methods, Models,
and Tools for Fault Tolerance, MeMoT’07, pages
95–102, 2007.

16

Unweaving the Impact of Aspect Changes in AspectJ

Luca Cavallaro
Politecnico di Milano

Piazza L. da Vinci, 32 – 20133 Milano, Italy

cavallaro@elet.polimi.it

Mattia Monga
Università degli Studi di Milano

Via Comelico 39 – 20135 Milano, Italy

mattia.monga@unimi.it

ABSTRACT
Aspect-oriented programming (AOP) fosters the coding of
tangled concerns in separated units that are then woven to-
gether in the executable system. Unfortunately, the oblivi-
ous nature of the weaving process makes difficult to figure
out the augmented system behavior. It is difficult, for ex-
ample, to understand the effect of a change just by reading
the source code. In this paper, we focus on detecting the
run time impact of the editing actions on a given set of test
cases. Our approach considers two versions of an AspectJ
program and a test case. Our tool, implemented on top
of the abc weaver and the AJANA framework is able to
map semantics changes to the atomic editing changes in the
source code.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques

General Terms
Language, Verification

Keywords
AspectJ, Software Maintenance, Change Impact Analysis

1. INTRODUCTION
Software maintenance of an evolving code base is a com-

plex problem. A major source of complexity is understand-
ing the effect of source code changes on the behavior of the
program. Even small changes can have non-local effects that
can make difficult to grasp the impact of the global prop-
erties of the system. In object-oriented programs polymor-
phism and dynamic binding may affect the behavior of vir-
tual method calls that are not lexically near the allocation
site. The problem is even critical in aspect-oriented soft-
ware, due to the intrinsic obliviousness [4] of join points.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’09, March 2, 2009, Charlottesville, Virginia, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

In fact, the woven aspect may change control and data de-
pendencies of the base code, and a change in the aspect
code can significantly affect the semantics of the whole sys-
tem. This is actually the very motivation of introducing an
aspect: in practice, however, especially when both aspects
and classes evolved separately, it is very easy to get unex-
pected results. We aim at supporting the programmer in
tracking down the causal chain from his/her changes to the
surprising effect, in order to ease the conception of a solu-
tion. An important contribution to this problem is offered
by change impact analysis [2], a collection of techniques for
determining the effects of a source code editing action on
the behavior of a set of test cases for a program. Recently,
many techniques have been proposed to support change im-
pact analysis of object-oriented software [9, 11] but very
little effort has been done to apply this technique to Aspect
Oriented Software

In this paper we present an application of change impact
analysis to AspectJ programs. Our approach considers two
versions of an AspectJ [6] program and captures their syn-
tactical differences, breaking them in atomic changes. Then
we observe the behavior of the program under a test case
that gives unexpected results. We build a representation of
the executed parts of the two versions and we compare them,
in order to understand how the semantics has changed and
how this maps to the atomic changes introduced. We im-
plemented our approach on the top of abc [1], an extensible
aspect compiler, and AJANA [16], a framework for AspectJ
analysis.

2. MOTIVATING EXAMPLE
We illustrate the need for change impact analysis with an

example for which we report the source code in Listings 1
2, and 3: it implements a simple system composed of two
Java classes and one AspectJ aspect. The class Point (see
Listing 1) has two fields, and the proper getters and setters
for those fields; moreover it exposes a setRectangular method,
which sets both fields. The class PointExt (see Listing 2)
should be considered an evolution of Point, in fact it is a
subclass of it that overrides two methods.

Listing 3 shows an aspect that is expected to be woven to
the above base system. This aspect declares some “intro-
ductions” to the base system, two pointcuts and six pieces
of advice. The evolution of the aspect consists in adding a
new field and modifying the advice marked as before2.

A test case for the system is listed in Listing‘4.
The code reported in the example implements an observer

pattern by using the aspect BoundPoint. The latter defines

17

Listing 1: Source code for Point class

public c lass Point {
// Y part omitted to save space
int x = 0 ;
public int getX () { return x ; }
public void se tRectangu lar (int newX, int newY)

throws Exception {
setX (newX) ;
setY (newY) ;

}
public void setX (int newX)

throws Exception {
i f (newX < 0) throw new Exception () ;
x = newX ;

}
}

Listing 2: Source code for PointExt class

public c lass PointExt extends Point {
//Overridden in modified vers ion
pub l i c void setRectangu lar (i n t newX, i n t newY)

throws Exception {
setX (newX + 1) ;
setY (newY + 1) ;

}
//Overridden in modified vers ion

pub l i c void setX (i n t newX) throws Exception {
i f (newX < 0) throw new Exception () ;
x = (i n t)newX /2 ;

}
}

some pieces of advice woven into join points identified by the
calls to the method setX. These pieces of advice check the
parameter passed to the called method and keep a history
of the older values of the x field. We imagine to slightly
modify the initial version of the program by overriding two
methods in the class PointExt, which is a subclass of Point ;
moreover, we add a field in the aspect BoundPointand a line
in the before2 advice.

From the viewpoint of editing changes, the overriding of
the methods in PointExt can be decomposed in two actions:
a first step that brings a new method in the subclass, then
a second step that changes the method body of the added
method. Finally we also consider that the overriding brings
a change in the lookup table of the program: before the
change when a method setX was invoked on an object with
dynamic type PointExt the superclass method was invoked.
After the overriding the method that is actually invoked in
this case is the overridden one.
Finally in listings 4 we show a test case for the example pro-
gram. Of course the outcome of the test for the first and for
the modified version of the program will be different, but
not all the introduced changes could be responsible for the
result change.
The main purpose of our analysis is to help a developer un-
derstand which code edits originated the change and which
actions he should take to bring the program back into a state
in which it gave the previous output.

3. CHANGE IMPACT ANALYSIS FOR AOP
Our approach considers two versions v0 and v1 of the same

program and a set of test cases that should apply on both.
We aim at mapping source code changes to the semantic
differences induced by a test case t. In order to achieve this
goal, we proceed as follows:

Listing 3: Source code for BoundPoint aspect

public aspect BoundPoint {
//Added in modified vers ion
pr i va t e i n t prev iousValue ;

// a re ference to a Point ob j e c t
PropertyChangeSupport support =

new PropertyChangeSupport (this) ;
public void addPropertyChangeListener

(PropertyChangeListener l){
support . addPropertyChangeListener (l) ;

}
void f i rePropertyChange (Point p ,

S t r ing property ,
double o ldva l ,
double newval) {

p . support . f i rePropertyChange (property ,
new Double (o ldva l) ,new Double (newval)) ;

}

// ====== pointcut s =======
pointcut se t te rX (Point p) :
ca l l (public void Point +. setX (∗)) && target (p) ;

pointcut s e t t e rXon ly (Point p) :
s e t te rX (p) &&
! cflow (
execution (void Point +. se tRectangu lar (int , int))) ;

// ====== advices ======
before (Point p , int x) throws Inva l idExcept ion :

se t te rX (p) && args (x) { // before1
i f (x < 0) throw new Inva l idExcept ion (”bad”) ;

}
void around (Point p) : s e t te rX (p) { // around1

int oldX = p . getX () ; proceed (p) ;
f i rePropertyChange (p , ” setX” , oldX , p . getX ()) ;

}
void around (Point p) : s e t t e rXon ly (p) { // around2

int oldX = p . getX () ; proceed (p) ;
f i rePropertyChange (p , ” onlysetX ” , oldX , p . getX ()) ;

}
before (Point p) : s e t te rX (p){ // before2

//added in modified vers ion
t h i s . prev iousValue = p . getX () ;
System . out . p r i n t l n (” s t a r t s e t t i n g p . x”) ;

}
after (Point p) throwing (Exception ex) :

se t te rX (p) { // afterThrowing1
System . out . p r i n t l n (ex) ;

}
after (Point p) : s e t te rX (p){ // a f t e r1

System . out . p r i n t l n (”done s e t t i n g p . x”) ;
}

}

1. we compare the source code of v0 and v1 and find the
textual changes between the two. The difference is de-
composed into atomic changes detailed in Section 3.1;

2. we build a control flow representation (AJIG) for each
version of the program and we mark the differences we
found between AJIG0 and AJIG1 as dangerous edges
(Section 3.2);

3. the two programs are instrumented and run whit the
test set, in order to collect dynamic pieces of informa-
tion that we use to decorate AJIG0 and AJIG1 by
marking the executed paths (Section 3.3);

4. for each test case t that gives different results when
applied to v0 and v1 we consider the decorated graphs
AJIG0 andAJIG1 and we finally map dangerous edges
to source code changes.

The idea is that only the statements on a dangerous path
solicited by the test case t can be responsible for the change

18

Listing 4: Source code for a test case for program in listings 1 2 3

public c lass Demo implements
PropertyChangeListener {

public void propertyChange
(PropertyChangeEvent arg0) { /∗ . . . ∗/ }

public stat ic void main (St r ing [] a)
throws Exception {
Point p1 = new Point () ;
p1 . addPropertyChangeListener (new Demo ()) ;
p1 . se tRectangu lar (5 , 2) ;
i f (p1 . x > 5) { p1 . setX (6) ;}
Point p2 = new PointExt () ;
p2 . addPropertyChangeListener (new Demo ()) ;
p2 . se tRectangu lar (5 , 2) ;
p2 . setX (5) ;

}
}

of results of t: we are thus interested in them when we are
trying to understand the impact of our source code editing.

3.1 Atomic changes
The first step in change impact analysis is to decompose

the difference between v0 and v1 into a set of atomic changes.
We consider the atomic changes as proposed by [10, 8] for the
base system, and, by [18] for the aspect part. A set of atomic
changes that is able to reproduce the difference between v0
and v1 is computed by comparing the abstract syntax trees
of the two versions of the program and by finding their dif-
ferences. Since an AspectJ program is composed by a plain
Java code base and some aspect-oriented code units, one can
apply the different catalogs of atomic changes separately.

In general, a given change may depend on some previous
one. Intuitively, an atomic change A1 is dependent on an-
other atomic change A2 if applying A1 to the original version
of the program without also applying A2 results in a syn-
tactically invalid program: in order to be possible to change
a method (CM), that method has to exist: if it was added
by the new version (AM), the atomic change CM depends
on the specific AM.

Three types of dependence can be considered: structural,
which captures the necessary sequences that occur when new
elements are added or deleted in a program; declarative,
which captures all the necessary element declarations that
are required to create a valid intermediate version; mapping,
which captures implicit dependencies introduced by chang-
ing the class hierarchy or overriding methods. An example
of dependencies between atomic changes is shown in Fig-
ure 1. Here we report the dependencies computed for the
example of Section 2. In the picture the arrows denotes the
interdependencies between changes. The overriding of the
methods in the class PointExt is broken into four atomic
changes: the addition of an empty method (AM) and the
corresponding modification of the method body (CM). The
latter is structurally dependent on the former. Moreover
we also have two changes for the virtual methods lookup:
let’s consider for example the overriding of the method setX.
Each time someone is going to call the method setX on a
reference statically typed as Point, if the runtime object will
be of type PointExt the call will reach the method defined
in the subclass. The same will happen if the reference has
as static type PointExt. These changes are represented as
lookup changes (LC) and the addition of the method setX in
PointExt has a mapping dependency on them. The changes
in the aspect BoundPoint are decomposed in an added field

(AF) and a changed advice body (CAB) changes. The latter
is declaration dependent on the former, because it uses the
field definition added by the AF change.

3.2 Control flow representation of the pro-
gram

To capture the differences in behavior we need to build a
representation of the program. To accurately model AspectJ
semantics, we use a control-flow representation, the AspectJ
Inter-module Graph (AJIG), presented in [15]. This repre-
sentation is an extension to aspect-oriented encapsulation
units of the Java Interclass Graph [5]. The main goal of this
graph is to make explicit the interactions between the base
system and the aspect part of an AspectJ program with par-
ticular regard to the weaving of multiple advice at the same
join point.
The AJIG is designed to represent precisely all interactions
involving the pieces of advice that are anonymous pieces of
code analogous to object-oriented methods that are executed
when a specific dynamic join point occurs: such interactions
are at therefore the core of aspect-oriented programming.
Unlike explicit method calls, an advice is invoked implic-
itly at the shadow of a certain join point. The execution of
the advised Java code is completely replaced by the com-
bination of pieces of advice and the join point shadow that
matches it. Before- and after- advice can be considered as
special cases of around-advices with an implicit proceed
statement. Thus, for each advised piece of Java code its
control-flow subgraph is replaced with the representation of
woven pieces of advice called Interaction Graph (IG).

To create an interaction graph we need to compute the
precedence the woven pieces of advice are executed with,
and to do this the AJIG uses an advice nesting tree, which
represents the run-time advice nesting relationships. Each
tree level contains at most one around-advice, which is the
root of all pieces of advice in the lower levels of the tree.
With each around-advice A the algorithm associates (1) a
possibly-empty set of before-pieces of advice and after-pieces
of advice, (2) zero or one around-pieces of advice, and possi-
bly (3) the actual call site that could be invoked by the call
to proceed in A. These pieces of advice and the call site
appear as if they were nested within A.

For example, a call to Point.setX gives the advice nest-
ing tree shown in Figure 2. The information captured by
the advice nesting tree is used to weave advice bodies at a
shadow and can be exploited to build the AspectJ Interac-
tion Graph. A condensed picture of the AJIG for Point.setX
is shown in Figure 3.

The AJIGs built for the two versions of the program are
then compared to find dangerous edges, i.e., edges that are
different in the two versions. The algorithm for comparing
AJIGs is a depth first traversal of the graphs that aims at
finding the differences between paths in the graphs and it
was proposed and described in detail in [15]. Basically, if an
edge is present in the first graph and is missing in the second
or if it was added in the second or if the edges of the path
changed their label, then they are marked as “dangerous”.
An example of a dangerous path is shown in Figure 4. The
example refers to the AJIG of Figure 3 and it corresponds
to the impact of adding a field and modifying the body
for advice before2 in BoundPoint aspect and overriding the
method setX in the class PointExt. There are two dangerous
edges (marked in red) in the figure. The first one is the one

19

Figure 1: Representation of atomic changes dependencies for the example

Figure 2: Advice nesting tree for
BoundPoint at shadow this.setX() in
the example presented in section 3.1

Figure 3: AspectJ Interaction Graph for the example presented in
section 3.1

starting from the before2 entry point and determined by the
addition of the statement this.previousValue = p.getX() in
Listing 3. The second one is determined by the addition of
the path going through the method PointExt.setX, overrid-
den in class PointExt.

3.3 Combining dynamic information
Dangerous edges are only a potential cause of an unwanted

effect. However, the execution of a test case that gives unex-
pected results can be explained in terms of dangerous path
traversals. In other words, we use the information gathered
from the instrumentation of the program to consider only
dangerous paths executed by a test case and we map these
paths on the atomic changes computed earlier. The mapping
takes place by considering that nodes in the paths interested
by dangerous edges represent instructions in the program,
so we perform the mapping considering their line numbers in
the compilation units they come from. At this point we have
a set of atomic changes, representing syntactical changes in
the source code of the program, mapped on a set of danger-

ous edges in the program control flow representation, which
represents changes of behavior of a test case. This gives
the causal chain between the editing and the unexpected
result: the set of changes mapped onto the traversed dan-
gerous edges are responsible for the observed behavior. In
fact, undoing the atomic changes set will produce a version
of the program that will not show anymore the altered test
result. Moreover, by removing the set of changes, we would
have a syntactically correct intermediate program version,
since atomic changes interdependencies consider syntactical
dependencies between changes. Atomic changes not mapped
on dangerous edges for a given test are not responsible for
the change of that test result and can be left in the mod-
ified version of the program. Finally we can consider that
changes not mapped on any test case dangerous edges are
not stressed at all by the test suite.

4. IMPLEMENTATION
For the implementation of our solution we relied on the

abc compiler [1] and on AJANA framework [16].
The abc compiler is an extensible compiler for AspectJ based
on Soot [12]. abc gave us the possibility to manipulate the
abstract syntax trees of the programs we analyzed and to
find atomic changes. Moreover it provided us with an easy to
analyze intermediate representation of the program, Jimple,
which we used to build our AJIG. Finally abc performs a two
phases weaving process. In the first phase it computes the
pointcuts shadows in the system code but keeps the weav-
ing information separated from the system bytecode, then
it performs some optimizations and finally produces code
to insert pieces of advice at the proper shadow. The possi-
bility to keep weaving information separated from the code
gave us way to build our AJIG witout considering the extra
code that AspectJ compiler generates to weave an advice at
a shadow. In this way we could produce a more accurate
representation of the program control flow.
AJANA is a general framework for ApectJ analysis. It pro-
vided us the AJIG representation. We had to slightly modify
this representation to implement our change impact analy-
sis, in order to keep track of some pieces of information
originally not needed for AJIG construction.

5. RELATED WORK
Change impact analysis for object-oriented programs was

introduced by Ryder et al. in [10]. In their paper they
proposed a technique for Java software and in [9, 8] they

20

Figure 4: Dangerous edges determined by modification of before2 advice body in class BoundPoint and overriding of method setX in PointExt
class

extended the applicability of the technique and provided
tool support.

The problem of change impact analysis for AspectJ soft-
ware was previously treated in [18]. This paper presents a
lightweight approach to change impact analysis based on a
static program representation. We based our approach on a
dynamic representation of the program which captures the
actually executed paths in the control flow. Since from our
previous work [3] we noticed that for AspectJ static repre-
sentations introduces a considerable quantity of dependen-
cies that are not to be considered at run time we think that
our approach could lead to an increased precision in the
analysis.

Change impact analysis is related with regression testing
and debugging. We based our work on a framework de-
veloped for a regression test selection technique [15]. Many
other techniques were proposed for aspect oriented programs
regression testing. In [13] an approach based on a wrap-
per class synthesis technique and a framework for generat-
ing test inputs for AspectJ programs are presented; in [14]
the authors propose an approach to generate regression test
cases starting from a specification of the program. All these
approaches can be considered as complementary to ours,
since they focus on discovering if a failure was introduced
by changes while we want to unwind the relation between
source code changes and failures found in the program.

Delta debugging was originally introduced by Zeller in
[17]. This technique allows to create intermediate versions of
the program by adding or removing a set of atomic changes
from the program source. Change impact analysis for Java
programs was successfully integrated with delta debugging
in [9], we plan to do the same in our future work.

6. CONCLUSION AND FUTURE WORK
In this work we developed a prototype to perform change

impact analysis on AspectJ programs. Our prototype can
relate changes in the source code of an AspectJ program to
changes in its behavior. The tool is based on a modified ver-
sion of the abc aspect weaver and the AJANA framework.
We tested our prototype on simple examples of evolving As-
pectJ programs that advise call and execution join points.
Since our first results are promising, we plan to extend our
experimentation to real world programs. Moreover, we think
that the level of abstraction of atomic changes is too low in
most cases, even if it worked well in our toy examples. In
fact, Ryder et al. report in [11] that Java change impact
analysis based only on a syntactical classification produces
changes sets that are difficult to be interpreted by humans.
Thus, we plan to study some higher level view to give to the
programmer a more effective means of understanding his or
her changes.

7. REFERENCES
[1] P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins,

J. Lhoták, O. Lhoták, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. abc: an extensible AspectJ
compiler. In Proc. of AOSD’05.

[2] S. A. Bohner. Software change impact analysis.
Wiley-IEEE Computer Society Pr, 1996.

[3] A. C. D’Ursi, L. Cavallaro, and M. Monga. On bytecode
slicing and AspectJ interferences. In Proc. of FOAL’07.

[4] R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness. Technical
report, RIACS, 2000.

[5] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for Java software. In Proc. of
OOPSLA’01, 2001.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In Proc. of
ECOOP’01, 2001.

[7] M. Marin, L. Moonen, and A. van Deursen. An integrated
crosscutting concern migration strategy and its application
to JHotDraw. In Proc. of SCAM’07, 2007.

[8] X. Ren, O. Chesley, and B. G. Ryder. Identifying failure
causes in Java programs: An application of change impact
analysis. IEEE TSE., 32(9), 2006.

[9] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: a tool for change impact analysis of Java
programs. In Proc. of OOPSLA’04, 2004.

[10] B. G. Ryder and F. Tip. Change impact analysis for
object-oriented programs. In Proc. of PASTE’01, 2001.

[11] M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip. Finding
failure-inducing changes in Java programs using change
classification. In Proc. of FSE-14. ACM, 2006.

[12] R. Vallée-Rai, L. Hendrena, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot – a Java optimization
framework. In Proc. of CASCON’99, 1999.

[13] T. Xie and J. Zhao. A framework and tool supports for
generating test inputs of aspectj programs. In Proc. of
AOSD’06. ACM, 2006.

[14] D. Xu and W. Xu. State-based incremental testing of
aspect-oriented programs. In Proc. of AOSD’06, 2006.

[15] G. Xu and A. Rountev. Regression test selection for
AspectJ software. In Proc. of ICSE’07, 2007.

[16] G. Xu and A. Rountev. AJANA: a general framework for
source-code-level interprocedural dataflow analysis of
AspectJ software. In Proc. of AOSD’08, 2008.

[17] A. Zeller. Yesterday, my program worked. today, it does
not. why? In Proc. of ESEC’99, 1999.

[18] S. Zhang, Z. Gu, Y. Lin, and J. Zhao. Change impact
analysis for AspectJ programs. In Proc. of ICSM 2008.

21

22

Enhancing Base-code Protection in Aspect-Oriented
Programs

Mohamed ElBendary
University of Wisconsin-Milwaukee

Milwaukee, WI 53211
mbendary@cs.uwm.edu

John Boyland
University of Wisconsin-Milwaukee

Milwaukee, WI 53211
boyland@cs.uwm.edu

ABSTRACT
Aspect-oriented programming (AOP) promises to localize
concerns that inherently crosscut the primary structural de-
composition of a software system. Localization of concerns
is critical to parallel development, maintainability, modular
reasoning, and program understanding. However, AOP as
it stands today causes problems in exactly these areas, de-
feating its purpose and impeding its adoption. First, the
need to open up systems’ modules for aspects’ interaction
competes with the need to protect those modules against
possible fault injection by aspects. Second, since aspects
are written in terms of base code interfaces, base system
components must be stable before aspect components can
be developed. This dependency hinders parallel develop-
ment. This work proposes a language-based solution that
allows base code classes to regulate aspect invasiveness, and
provides loose coupling of aspects and base code.

Categories and Subject Descriptors
D.3 [Programming Languages]: Aspect-Oriented Pro-
gramming; D.2 [Software Engineering]: Compilers

General Terms
Algorithms, Design

1. INTRODUCTION
Aspect-oriented software development (AOSD) is supposed

to apply over a system’s entire lifetime, positively impact-
ing software measures such as cost, quality, and time-to-
market [8]. AOP promises to localize cross-cutting concerns
by providing language-based mechanisms for explicitly rep-
resenting their structure and/or behavior. AOP does pro-
vide a cleaner separation of concerns. However, AOP nega-
tively impacts modularity by crossing module boundaries in
a completely unregulated fashion [10].

This work is an attempt to resolve two points of contention
that are impeding the adoption of AOP. The first point is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’09, March 2, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-452-2/09/03 ...$5.00.

competition between the need to open up systems’ modules
for AOP and the need to protect those modules against pos-
sible fault injection by AOP. The second point is the need to
have base system components stabilized before aspect com-
ponents can be developed, which reduces opportunities for
parallel development.

We believe that pure obliviousness (currently, the dom-
inant approach to AOP, as in AspectJ) is problematic for
the following reasons. First, while clients (including aspects)
may be insensitive to changes in implementation details of
the components they use, they are tightly coupled to their
interfaces. For example, an aspect that references method m

in class C breaks if method m is now called n, this problem
is referred to as the fragile pointcut problem. Second, pure
obliviousness offers no information on the base side regard-
ing what elements of an interface are being advised or which
aspects are involved. Aspects can infuse the component’s in-
ternals through introductions and advice mechanisms mak-
ing it impossible to reason about a base component by exam-
ining it in isolation. Third, pure obliviousness renders the
base code component entirely helpless in the face of harmful
aspects. A harmful aspect is an aspect that violates a base
code policy as it extends (advises) base components, for ex-
ample, by replacing the body to be executed at a joinpoint
with something entirely different.

Our philosophy is that since the base code and the as-
pect code participate in making up a module’s interface,
they should explicitly cooperate to preserve the module’s
boundary. We see a module boundary extending beyond
traditional class or aspect module boundaries with base code
classes being responsible for establishing their module bound-
aries within the system, using advising constraints to limit
aspects’ invasiveness.

We believe that pure obliviousness can be sacrificed to
maintain ease of reasoning, ease of maintenance, separation
of concerns, and code locality. This work focuses on sepa-
ration of concerns, code quality, and ease of maintenance as
primary “concerns”.

2. INTERFACE IMAGE (I2) APPROACH
An Interface Image (I2) is a level of indirection through

which all advising requests are carried out. It provides
a mechanism by which a class exposes a set of joinpoints
through aliasing base code interface elements. The image
incorporates advising constraints per exposed joinpoint. As-
pects are developed against the aliases defined in the inter-
face images of base code classes. Aspects are not allowed to
advise classes directly. This indirection limits the scope of

23

image declaration ::= image {

[opento: { TypeAccess* };]
[alias definition*]

}

alias definition ::=
method-header = method-header { constraints }

| * = * { constraints }

method-header ::=
[modifiers] RT method-name(P) throws list

modifiers: Java-style member method modifiers
RT ::= TypeAccess
method-name: Java-style method identifier
P : Java-style method parameter list
throws list ::= TypeAccess*
TypeAccess ::=

Java-style type access (qualified and simple type names)

constraints ::= kind: { Advice Kind* };

| (origin=Origin, boundary=Boundary);
| exceptions: { Exception Type* };

Advice Kind ::= before | after | after_returning
| after_throwing | around

Origin ::= internal | external
Boundary ::= method | class | package
Exception Type ::= TypeAccess

Figure 1: Interface image syntax.

dependency of aspects on base code to that of images only.
I2 lends itself to a feature-obliviousness design, as the next
section will show. Our design requires cooperation from the
base code developers so it is not language-level oblivious.
I2 is not designer-oblivious either since it assumes designers
are aware of aspects realizing functionality.

In this design, an I2 provides the following benefits:

1. The base code is now an active participant in the ad-
vising process since it is up to each class to expose
joinpoints on which it permits advice. For each ex-
posed joinpoint, advising constraints can be attached
to disallow unwanted aspect advising.

2. Response to changes in the interface of a class is limited
to updates in the class’ interface image. Aspects are
not involved. Parallel development can benefit from
this loose coupling.

3. The I2 serves as a specification of advisable interface
elements for base code and aspect developers alike.

This work studies the interface image approach in the con-
text of classes only. We leave augmenting interfaces and
aspects with interface images for future work.

Interface images are defined using the image construct.
An image can only appear within the scope of a class defini-
tion. Figure 1 shows the syntax and Fig. 2 shows an example
instance. An empty image image{} exposes the class to un-
restricted (AspectJ-style) advising.

class Point extends Shape {

protected int x, y;

public void moveby(int dx, int dy){

x += dx; y += dy;

}

image {

opento: {CheckScene};

public void moveby(int dx, int dy) =

public void translate(int dx, int dy){

kind: {after};

(origin=external, boundary=class);

exceptions: {SceneInvariantViolation};

}

}

}

Figure 2: Example image for a class Point

2.1 The opento clause
The opento clause allows a class to provide a list of as-

pects allowed to perform introductions on it. If an image
does not declare an opento list, then the enclosing class will
accept introductions from any aspect. An empty opento list
prohibits any aspects from performing introductions on the
declaring class.

2.2 Aliases
An alias definition has a signature on the left-hand side

of an equal sign followed by an alias signature and an at-
tached scope for declaring advising constraints. The aliases
are used to name aspect joinpoints—only aliased methods
can be advised.

A class can only alias methods that it explicitly declares.
Both instance and static methods are aliasable. The wild-
card form * = * permits all declared methods in the class
to be advised under a single set of advising constraints.

An image can also declare multiple aliases for the same
joinpoint to further allow constraint refinement per join-
point. If two aspects implementing two different concerns
each with a different set of, possibly conflicting, advising
constraints at the same joinpoint, accommodating both is
easily done by defining different aliases on the same join-
point and having each aspect use a different alias definition.
Providing different hooks (aliases) with different advising
constraints essentially allows joinpoints to “fan-out” differ-
ent channels for aspects to communicate with the base code.

2.3 Advising Constraints
The kind clause lists the advice kinds allowed at this join-

point. For example (Fig. 2), the clause kind: {after},
would only allow after advice at this joinpoint for this
alias. If an aspect declares a pointcut that matches this
alias, and declares an advice of a kind other than this kind
(e.g. around), this advice application will be disabled. This
is useful for enforcing the design intent that the translation
cannot be skipped.

An empty kind clause turns off any advising on this join-
point through this alias. If a kind clause is omitted, all
advice kinds are allowed.

24

The (origin, boundary) pair, if it exists, specifies whether
advising is permitted for calls originating inside (internal)
or outside (external) module boundary or both. A mod-
ule boundary is either method, class, or package. If the
(origin, boundary) pair is omitted, all calls may be ad-
vised.

The exceptions clause, if it exists, lists all exception types
that if thrown by this joinpoint cannot be “softened” by an
aspect with a matching pointcut of a declare soft() state-
ment. Omitting the exceptions clause allows all exceptions
to be softened. An empty exceptions list prevents softening
of any exception through this alias.

2.4 Summary
The interface image technique has the following benefits

to the base code designer: The base code can limit advice
to join points that are semantically relevant to the outside,
and can limit which aspects are permitted to perform in-
troductions. The base code can determine which exceptions
can be safely softened. No extra aspect is required to check
advising constraints.

On the other hand, the aspect designer can still make
use of the full power of aspect orientation and is now only
dependent on the alias names, not the actual method names.
This avoids the overloading of method signatures with two
different meanings, from the client’s perspective they are
service access points while from the aspect’s perspective they
are joinpoints.

3. EXAMPLE
This banking authorization example is adapted from Lad-

dad [9]. Ladded developed it to showcase modularity of an
AspectJ solution over a conventional Java solution. The ex-
ample is an authorization service in a banking system. The
base code (not shown) for this example consists of methods
for performing simple operations on bank accounts: debit,
credit and transfer.

Laddad used an abstract aspect, shown in Fig. 3 to im-
plement an authorization protocol. The abstract pointcut
authOperations() acts as a hook for concrete derived as-
pects to quantify which operations in the system they want
to apply the authorization protocol to. A derived concrete
aspect, BankingAuthAspect, that fully implements the au-
thorization concern is shown in Fig. 3.

The first before() advice in Fig. 3 performs authentica-
tion if the subject accessing the system has not been au-
thenticated yet. The around() advice wraps authorization
around the banking operations’ calls. The example uses
banking methods’ names as the permission names. We rely
on the JoinPoint.StaticPart parameter to access method
names at the joinpoints in the body of getPermission().

The implementation given uses strictly two kinds of ad-
vice, before and around. So it is safer to allow exactly those
kinds of advice and explicitly disable all others, possibly al-
lowing more as new concerns are added. It is important to
note that allowing around does not automatically include
before and after kinds, even though their effects may be
possible.

The solution provided by Laddad [9] does not soften the
checked exception, InsufficientBalanceException, used
by the application to prevent invalid withdrawals and/or
transfers. The solution provides an aspect implemented
specifically for preserving this exception. We believe that,

public abstract aspect AbstractAuthAspect{

public abstract pointcut authOperations();

before() : authOperations() {

// authentication logic

}

public abstract Permission getPermission(

JoinPoint.StaticPart joinPointStaticPart);

Object around()

: authOperations() &&

!cflowbelow(authOperations()) {

// Perform authorized operation

}

before() : authOperations(){

// Authorization logic

}

} // Abstract aspect ends here

Figure 3: AbstractBankingAuthAspect [Laddad].

public aspect BankingAuthAspect

extends AbstractAuthAspect{

public pointcut authOperations()

: execution(public * banking.Account.*(..))

|| execution(

public *

banking.InterAccountTransferSystem.*(..));

public Permission getPermission(

joinPoint.StaticPart joinPointStaticPart){

return new BankingPermission(

joinPointStaticPart.getSignature().

getName());

}

}

Figure 4: Concrete aspect BankingAuthAspect
[Laddad].

image {

opento: {};

* = * {

kind: { before, around };

exceptions: { InsufficientBalanceException };

(origin=internal, boundary=package);

}

}

Figure 5: Banking example interface image declara-
tion.

25

for an exception that is part of the contract of a core class
method, the decision of whether it is softened or not, is for
the core class to make. Clients on the base code may want
to “know” about this situation and handle it in their own
specific ways. The exceptions clause also saves substan-
tial coding, since it replaces an entire aspect that had to be
developed in the classical AspectJ solution.

Given the nature of this application and its operations,
calls to credit and debit originating outside banking should
be considered dubious. Currently, AspectJ guards against
this using pointcut matching. However, a single misplaced
wild card, could jeopardize the integrity of the application
and the base code is simply helpless. Instead, base code
classes could easily add the (origin, boundary) pair in
Fig. 5, improving the robustness of advising and preventing
the potentially erroneous behavior of unintended wild-cards.

The image in Fig. 5 is the finished product, this is all
the code we need in order to alleviate the potential prob-
lems outlined above. In this example, the aspect side does
not perform introductions of any sort. However, it does not
make sense to keep the base classes open for intertype dec-
larations, even though no errors will be caused in this case.
This is because it is safer to progressively open classes to
specific aspects as needed than leaving them open for all
aspects and deal with possible maintenance problems later.

4. IMPLEMENTATION
I2 is implemented as an extension to AspectJ within the

aspectbench compiler (abc) [2]. Our implementation uses
the JastAdd [4] front-end of abc.

4.1 Image Semantic Checking
An image has to pass an error checking phase before it

can be translated, including that the enclosing class does
not have multiple image declarations, and that aliases are
for methods declared in the enclosing class. We also check
for duplicate constraint declarations.

If an aspect wishes to make introductions, the effected
classes must have a image declaration and permit the in-
troduction (see opento). Then for each joinpoint that the
advice potentially applies to, we check the advice for viola-
tions of kind and exceptions clauses.

4.2 Image Translation
The image construct is translated internally into a priv-

ileged static nested aspect that performs method introduc-
tions into the class declaring the image. Being privileged
allows the translated aspect to refer to private members of
enclosing classes, which may be aliased.

One introduced wrapper method that called the original
method is generated for each alias definition. An around

advice is used to intercept calls to the original method and
direct them to the wrapper. This advice in controlled by the
(origin, boundary) pair constraint for the alias. Table 1
shows the translation to AspectJ conditions.

Additionally, we add && !within(imageAspect) to each
generated pointcut to prevent internal aspects from advis-
ing themselves, where “imageAspect” is some identifier used
only internally that identifies the generated aspect.

We use AspectJ’s precedence declaration to ensure that
the generated aspects are applied before the concern-specific
aspects:

Table 1: Translation of (origin, boundary) pairs to
pointcuts.

(origin,boundary) Pointcut Translation
(internal, method) within(signature(m))
(internal, class) within(enclosing type)
(internal, package) within(enclosing package)
(external, method) !within(signature(m))
(external, class) !within(enclosing type)
(external, package) !within(enclosing package)

class Point extends Shape {

protected int x, y;

public void moveby(int dx, int dy){

x += dx; y += dy;

}

privileged static imageAspect {

public void Point.translate(int dx, int dy){

moveby(dx, dy);

}

void around(Point p):

target(p) && !within(imageAspect) &&

!within(Point) &&

call(

public void Point.moveby(int dx,int dy)){

p.translate(dx, dy);

}

}

}

Figure 6: Class Point after translation

public aspect _internalOrderingAspect {

declare precedence: *..*imageAspect*, *;

}

Any concern-specific precedence declarations are rewritten
to add the pattern *..*imageAspect* to the front of the
precedence list of each one of them.

Class Point shown in Fig. 2 translates internally to the
one shown in Fig. 6. It shows the call to the aliased method
moveby() wrapped inside introduced method translate().
It also shows the around advice and the pointcuts generated
from the (origin, boundary) constraint. The target(p)

pointcut exposes p for use in the advice body.

5. EVALUATION
This section presents evaluation of the I2 approach. This

quantitative evaluation uses the AspectJ Development Tools’
(AJDT) cross-cutting map generator to measure coupling.
In the context of this study, coupling means the existence
of a “cross-cutting relationship” between two components.
A cross-cutting relationship in the source code arises from
intertype declarations and advice declarations.

This study uses two examples from the AspectJ program-
ming guide published by the Eclipse foundation [6]. These
are, the Observer and the Telecom Simulation. The third
is the ants simulation program used to demonstrate Open

26

Table 2: Coupling data reported by AJDT.

Example AspectJ AJI2 Coupling Change(%)
Observer 38 48 +26.3%
Telecom 30 24 -20.0%

Ants 670 626 -6.6%

Modules [1]. For each example, two implementations are an-
alyzed, a classical AspectJ implementation and an AspectJ
with I2-style implementation.

In order to allow AJDT to process I2 sources, we simulate
the effects of I2 syntax by modifying the implementations of
the examples as follows. We use a field introduction of an
aspect instance into the class that uses opento, to account
for classes referring back to aspects using the opento clause.
We use one introduction declaration within each aspect ref-
erenced in the opento list. We also change method names
in pointcuts to use alias names instead of the original names
of their signatures in classes. For every alias that we use, we
write a method in base code classes selected by the point-
cut using the alias. This additional method bears the alias
signature and wraps the call to the original aliased method.
This arrangement simulates limiting the scope of aspects’
references to images as opposed to the entire program as
in AspectJ. The table above summarizes the “cross-cutting
relationships” data reported by AJDT for each example.

In weighing these percentages a few details need to be
taken into consideration. In ants simulation, the 6.6%
corresponds to 44 less cross-cutting relationships in the pro-
gram, which in turn corresponds to 27 spots in the source
code where independent evolution is possible. We can only
expect the number of spots to grow for larger programs with
a similar feature mix. The 27 spots represent a 9% reduc-
tion in coupled spots in the code, a substantial percentage
in a large program.

6. RELATED WORK
In Open Modules (OM) [1], a module exposes pointcuts

that can be advised by external aspects as part of the mod-
ule’s interface. Thus only “external origin” calls are advis-
able. Also unlike I2, Open Modules do not allow advice
to crosscut modules unless the modules are related through
inheritance.

Cross-cutting Pointcut Interfaces (XPI) [5] separate a tra-
ditional aspect into three aspects: one to specify pointcuts
and advising constraints; another aspect with advice imple-
mentations; and a third aspect to check advising constraints.
Roughly, I2 can be seen as a way to automatically create and
check the advising constraints of XPI.

Using Explicit Join Points (EJPs [7]), the base code adds
syntactic hooks that look like static method calls at points
where advising is required. This is more powerful than As-
pectJ or I2 because these hooks can occur in arbitrary blocks
of code, at the cost of requiring the base code designer to
put forward more effort.

Modular Aspects with Ownership (MAO [3]) enables mod-
ular reasoning using ownership to constrain heap effects.
Advice can be declared as having no or only limited con-
trol effects, or no or limited data (heap) effects. Unre-
stricted aspects must be “accepted” by the base code to
which they apply, in a similar mechanism to I2’s “opento”

declaration, which only applies to aspects with introduc-
tions. I2 preserves more feature obliviousness while MAO
enables stronger modular reasoning.

Ptolemy [11] solves the fragile pointcut problem by in-
troducing named event (joinpoint in AspectJ terminology)
types that are declared independently from the modules (as-
pects) that announce/handle them. This is arguably supe-
rior to the pattern-matching used by AspectJ (and I2) to
identify joinpoints. Ptolemy does not appear to support ad-
vising constraints.

7. CONCLUSION
This work addresses two modularity problems in AOSD:

(1) aspect brittleness and sensitivity to base code changes;
(2) the inability for base code to control advising. We pro-
vide a language-level solution to both problems in the form
of a new construct added to classes that exports a view of the
advisable class interface for aspects. Advising constraints
can be attached to joinpoints that restrict what advice may
apply. A prototype implementation as an AspectJ extension
along with evaluation studies show it is possible to realize
a design that loosely couples the evolution of the base code
interfaces from the aspect-oriented code advising base com-
ponents. We hope that these ideas can encourage greater
adoption of AOP by the software engineering community.

8. REFERENCES
[1] J. Aldrich. Open modules: Modular reasoning about

advice. In ECOOP ’05, pages 144–168, 2005.

[2] P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc: An
extensible AspectJ compiler. In AOSD 2005, pages
87–98, 2005.

[3] C. Clifton, G. T. Leavens, and J. Noble. Mao:
Ownership and effects for more effective reasoning
about aspects. In ECOOP ’07, pages 451–475, 2007.

[4] T. Ekman and G. Hedin. The jastadd system -
modular extensible compiler construction. Sci.
Comput. Program., 69(1-3):14–26, 2007.

[5] W. G. Griswold, K. Sullivan, Y. Song, Y. Cai,
M. Shonle, N. Tewari, and R. Hridesh. Modular
software design with crosscutting interfaces. IEEE
Softw., pages 51–60, 2006.

[6] A. P. Guide. The AspectJ programming guide.
http://www.eclipse.org/aspectj/doc/released/progguide/.

[7] K. Hoffman and P. Eugster. Bridging java and
AspectJ through explicit join points. Technical Report
ejp-200705-1, Purdue University, 2007.

[8] I. Jacobson. A case for aspects. Software development
Magazine, October 2003.

[9] R. Laddad. AspectJ IN ACTION, Practical
Aspect-Oriented Programming. Manning Publications
Co., 2003. ISBN 1-930110-93-6.

[10] G. T. Leavens and C. Clifton. Multiple concerns in
aspect-oriented language design: A language
engineering approach to balancing benefits, with
examples. Technical Report TR 07-01a, Iowa State
University, 2007.

[11] H. Rajan and G. T. Leavens. Ptolemy: A language
with quantified, typed events. In ECOOP ’08, pages
155–179, 2008.

27

28

A Machine-Checked Model of Safe Composition∗

Benjamin Delaware, William Cook, Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712 U.S.A.

{bendy,wcook,batory}@cs.utexas.edu

ABSTRACT
Programs of a software product line can be synthesized by
composing features which implement some unit of program
functionality. In most product lines, only some combination
of features are meaningful; feature models express the high-
level domain constraints that govern feature compatibility.
Product line developers also face the problem of safe compo-
sition — whether every product allowed by a feature model
is type-safe when compiled and run. To study the problem
of safe composition, we present Lightweight Feature Java
(LFJ), an extension of Lightweight Java with support for
features. We define a constraint-based type system for LFJ
and prove its soundness using a full formalization of LFJ
in Coq. In LFJ, soundness means that any composition of
features that satisfies the typing constraints will generate
a well-formed LJ program. If the constraints of a feature
model imply these typing constraints then all programs al-
lowed by the feature model are type-safe.

Categories and Subject Descriptors
F.3.3 [Studies of Program Constructs]: Type structure

General Terms
Design, Languages

Keywords
Product lines, Type safety, Feature model

1. INTRODUCTION
Programs are typically developed over time by the accu-

mulation of new features. However, many programs break
away from this linear view of software development: remov-
ing a feature from a program when it is no longer useful, for
example. It is also common to create and maintain multiple

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant CCF-0724979.

Copyright (c) 2009 Benjamin Delaware.

feature Bank {
class Account

extends Object{
int balance = 0;
void update(int x) {

int newBal =
balance + x;

balance = newBal;
}}}

(a) Bank Feature

feature Sync {
refines class Account

extends Object{
static Lock lock

= new Lock();
refines void update(int x) {

lock.lock();
Super.update(x);
lock.unlock();

}}}
(b) Synchronized Feature

class Account extends Object {
int balance = 0;

static Lock lock = new Lock();
void update(int x) {

lock.lock();
int newBal = balance + x;
balance = newBal;

lock.unlock(); }}}

(c) A composed program: Sync•Bank

1: Account with synchronization feature

versions of a product with different sets of features. The
result is a product line, a family of related products.

The inclusion, exclusion, and composition of features in a
product line is easier if each feature is defined as a modular
unit. A given feature may involve configuration settings,
user interface changes, and control logic. As such, features
typically cut across the normal class boundaries of programs.
Modularizing a program into features, or feature modularity,
is quite difficult as a result.

There are many systems for feature modularity based on
Java, such as the AHEAD tool suite [4]. In these systems,
a feature is a collection of Java class definitions and refine-
ments. A class refinement is a modification to an existing
class, adding new fields, new methods, and wrapping exist-
ing methods. When a feature is applied to a program, it
introduces new classes to the program and its refinements
are applied to the existing classes.

Figure 1 is a simple example of a product line containing
two features, Bank and Sync. The Bank feature in Figure 1a
implements an elementary Account class with setBalance and
update methods. Feature Sync in Figure 1b implements a
synchronization feature so that accounts can be used in a
multi-threaded environment. Sync has a refinement of class
Account that modifies update to use a lock, which is intro-

29

duced as a static variable. Method refinement is accom-
plished by inheritance; Super.update(x) indicates a substitu-
tion of the prior definition of method update(x). Composing
the refinement of Figure 1b with the class of Figure 1a pro-
duces a class that is equivalent to that in Figure 1c. The
Bank feature can also be used on its own. While this ex-
ample is simple, it exemplifies a feature-oriented approach
to program synthesis: adding a feature means adding new
members to existing classes and modifying existing methods.
The following section presents a more complex example and
more details on feature composition.

Not all features are compatible, and there may be complex
dependencies among features. A feature model defines the
legal combinations of features in a product line. A feature
model can also represent user-level domain constraints that
define which combinations of features are useful.

In addition to domain constraints, there are low-level im-
plementation constraints that must also be satisfied. For
example, a feature can reference a class, variable, or method
that is defined in another feature. Safe composition guar-
antees that a program synthesized from a composition of
features is type-safe. While it is possible to check individual
programs by building them and then compiling them, this
is impractical. In a product line, there can be thousands of
programs; it is more desirable to ensure that all legal pro-
grams are type-safe without synthesizing the entire product
line. This requires a novel approach to type checking.

We formalize feature-based product lines using an object-
oriented kernel language extended with features, called
Lightweight Feature Java (LFJ). LFJ is based on Lightweight
Java [11], a subset of Java that includes a formalization in
the Coq proof assistant [6], using the Ott tool [10]. A pro-
gram in LFJ is a set of features containing classes and class
refinements. Multiple products can be constructed by se-
lecting and composing appropriate features according to a
product specification - a composition of features.

Features modules are separated by implicit interfaces that
govern their composition. One solution to type checking
these modules is to require explicit feature interfaces. We
instead infer the necessary feature interfaces from the con-
straints generated by a constraint-based type system for
LFJ. The type system and its safety are formalized in Coq.
We then show how to relate the constraints produced by the
type system to the constraints imposed by a feature model,
using a reduction to propositional logic. This reduction al-
lows us to statically verify that a feature model will only
allow type-safe programs without having to generate and
checking each product individually.

2. SAFE COMPOSITION
Feature refinements can make significant changes to classes.

Features can introduce new methods and fields to a class and
alter the class hierarchy by changing the declared parent of a
class. They can also refine existing methods by adding new
statements before and after a method’s body or by overwrit-
ing it altogether.

The features in Figure 2 illustrate how these modifications
affect the Account class in the feature Bank. The Retiremen-
tAccount feature refines the Account class by updating its
parent to Lehman, introducing a new field for a 401k account
balance with an initial balance of 10000, and rewrites the
definition for the update method to add x to the 401k bal-
ance. InvestmentAccount also refines Account, updating its

feature InvestmentAccount {
refines class Account extends WaMu {

int 401kbalance = 0;
refines void update (int x) {

x = x/2; Super(); 401kbalance += x;
}}}

feature RetirementAccount {
refines class Account extends Lehman {

int 401kbalance = 10000;
int update (int x) {

401kbalance += x;
}}}

feature Investor {
class AccountHolder extends Object {

Account a = new Account();
void payday (int x; int bonus) {

a.401kbalance += bonus;
return a.update(x);

}}}

2: Definitions of InvestmentAccount, Investor, and Retire-
mentAccount features.

class Account extends Lehman{
int balance = 0;
int 401kbalance = 10000;
void update(int x) {

401kbalance += x;
}}

3: RetirementAccount•Bank

parent to WaMu and introducing a 401k field, but it refines
the update method to put half of x into a 401k before adding
the rest to the original account balance.

A software product line can be modelled as an algebra
that consists of a set of operations, where each operation
implements a feature. We write M = { Bank, RetirementAc-
count, InvestmentAccount, Investor} to mean model M has
the features (operations) Bank, RetirementAccount, Invest-
mentAccount, Investor declared above. One or more features
of a model are constants that build base programs through
a set of class introductions:

Bank a program with only the generic Account class
Investor a program with only the AccountHolder class

The remaining operations are unary functions on pro-
grams, and are program refinements or extensions:

InvestmentAccount•Bank builds an investment account
RetirementAccount•Bank builds a retirement account

where • denotes function application and B • A is read as
“feature B refines program A” or equivalently “feature B is
added to program A”. A refinement can extend the program
with new definitions or modify existing definitions. The de-
sign of a program is a composition of features: a product
specification.

P1 = RetirementAccount•Bank Fig. 3
P2 = InvestmentAccount•Bank Fig. 4
P3 = RetirementAccount•Investor•Bank Fig. 5

This model of software product lines is based on step-
wise development: one begins with a simple program (e.g.,
constant feature Bank) and builds more complex programs
by progressively adding features (e.g., adding feature Invest-
mentAccount to Bank).

A set of n features can be composed in an exponential

30

class Account extends WaMu{
int balance = 0;
int 401kbalance = 0;
void update(int x) {

x = x/2;
int newBal = balance + x;
balance = newBal;
401kbalance += x;

}}

4: InvestmentAccount•Bank

class Account extends Lehman{
int balance = 0;
int 401kbalance = 10000;
void update(int x) {

401kbalance += x;
}}

class AccountHolder extends Object {
Account a = new Account();
void payday (int x; int bonus) {

a.401kbalance += bonus;
return a.update(x);

}}

5: RetirementAccount•Investor•Bank

number of ways to build a set of order n! programs. A
product line is a subset of these programs described by a
feature model which constrains the ways in which features
can be composed. A composition of features might fail to
meet the dependencies of its constituent features, resulting
in a program that fails to type check. Only a subset of the
programs built from a set of features is well-typed. The
goal of safe composition is to ensure that the product line
described by a feature model is contained in this set, i.e.
that all the programs in the product line are well-typed.

The combinatorial nature of product lines presents a num-
ber of problems to statically determining safe composition.
The members and methods of a class referenced in a feature
might be introduced in several different features. Consider
the AccountHolder class introduced in the Investor feature:
this account holder is the employee of a company which
gives a small bonus with each paycheck which the employee
adds directly into the 401k balance in his account. In order
for a composition including the Investor feature to build a
well-typed Java program, it must be composed with a fea-
ture that introduces this field to the Account class, in this
case either InvestmentAccount or RetirementAccount. This
requirement could also be met by a feature which sets the
parent of Account to a different class from which it inherits
the 401kbalance field. Since a parent of a class can change
through refinement, the inherited fields and methods of the
classes in a feature are dependent on a specific product spec-
ification. Each feature has a set of type-safety constraints
which can be met by the combination of a number of dif-
ferent features, each with their own set of constraints. To
study the interaction of feature composition and type safety,
we first develop a model of Java with features.

3. LIGHTWEIGHT FEATURE JAVA
Lightweight Feature Java (LFJ) is a kernel language that

captures the key concepts of feature-based product lines of
Java programs. LFJ is based on Lightweight Java (LJ), a
minimal imperative subset of Java [11]. LJ supports classes,
mutable fields, constructors, single inheritance, methods and
dynamic method dispatch. LJ does not include local vari-
ables, field hiding, interfaces, inner classes, or generics. This
imperative kernel provides a minimal foundation for study-
ing a type system for feature-oriented programming. LJ is
more appropriate for this work than Featherweight Java [8]
because of its treatment of constructors. When compos-
ing features, it is important to be able to add new mem-
ber variables to a class during refinement. Featherweight
Java requires all member variables to be initialized in a sin-
gle constructor call. As a result, adding a new member
variable causes all previous constructor calls to be invalid.
Lightweight Java allows such refinements through its sup-
port of more flexible initialization of member variables. In
addition, Lightweight Java has a full formalization in Coq,
which we extended to prove the soundness of LFJ mechan-
ically. The proof scripts for the system are available at
http://www.cs.utexas.edu/~bendy/featurejava.php.

Product specification
PS ::= FD

Feature declarations
FD ::= feature F {cld; rcld}

Class refinement
rcld ::= refines class dcl extending cl{fd; md; rmd}

Method refinement
rmd ::= refines method ms {rmb}

Method refinement
rmb ::= s; Super(); s; return y

6: Modified Syntax of Lightweight Feature Java.

The syntax of LFJ extends LJ to support feature-oriented
programming is given in Figure 6. A feature definition FD
maps a feature name F to a list of class declarations cld
and a list of class refinements rcld . A class refinement rcld
includes a class name dcl , a set of LJ field and method in-
troductions, fd and md , a set of method refinements rmd ,
and the name of the updated parent class cl . A method re-
finement advises a method with signature ms with two lists
of LJ statements s and an updated return value y . When
applied to an existing method, a method refinement wraps
the existing method body with the advice. The parameters
of the original method are passed implicitly because the re-
finement has the same signature as the method it refines.
The set of features from which a product line can be built
is called the feature table. A product specification PS is a
sequence of distinct feature names.

3.1 Feature Composition
A LJ program can be modelled as a partial function from

class names to their definitions: CT : dcl → cld. In the
operational semantics of LJ, this function is concretely real-
ized as the function path : P → dcl → cld which looks up
a class definition in a given program. In this context, CT is
simply the path specialized on P : CT = pathP . Features
are themselves functions from LJ programs to LJ programs.
Composition of a feature feature FD {cld; rcld} with an
LJ program P produces a new mapping, CT ′:

31

CT ′(dcl) =

(
pathcld(dcl) dcl ∈ cld
rcld • CT (dcl) dcl 6∈ cld (1)

In the case that FD introduces a class named dcl, CT ′

returns this class, ignoring any previous declarations and
refinements. Otherwise, CT ′ finds the definition of dcl in
the previous program using the original CT function and
returns the resulting class definition, cld, refined by rcld. If
a class refinement rcld in rcld is named dcl, the • operator
builds a refined class by first advising the methods of cld
with the method refinements in rcld. The fields and methods
introduced by rcld are then added to this class and its parent
is set to the superclass named in rcld. CT ′ is undefined if
cld lacks a method refined by rcld.

A product specification builds a LJ program by recur-
sively composing its features in this manner, starting with
the empty LJ program. Each LFJ feature table can con-
struct a family of programs through composition. The set of
class definitions in a program is determined by the sequence
of features which produced it. The class hierarchy is also
potentially different in each product: refinements can alter
the parent of a class, and two mutually exclusive features
can define the same class with a different parent.

3.2 Typechecking Feature Models
A feature model is safe if it only allows the creation of

well-formed LJ programs. For any particular product spec-
ification, this can be checked by composing its features and
then checking the type safety of the resulting program using
the standard LJ type system. A naive approach to checking
the safety of a feature model is simply to iterate over all
the programs it describes, type checking each individually.
This approach constructs a potentially exponential number
of programs, making it computationally expensive. Instead,
we propose a type system which allows us to statically verify
that all programs described by a feature model are type-safe
without having to synthesize the entire family of programs.

The key difficulty with this approach is that features are
typically program fragments which make use of class defi-
nitions made in other features; these external dependencies
can only be resolved during composition with other features.
Every LJ construct has two categories of requirements which
must be met in order for it to be well-formed in the LJ type
system. The first category consists of premises which only
depend on the structure of the construct, e.g. the require-
ment that the parameters of a well-formed method be dis-
tinct. The remaining premises access information from the
surrounding program through the CT function. For exam-
ple, CT is used to determine that the type of a variable y
is a subtype of the type of variable x when assigning y to
x in a method body. Intuitively, these premises define the
structure of the programs in which LJ constructs are well-
formed. In the standard LJ type system, the structure of
the surrounding program is known. In a software product
line, however, each feature can be included in a number of
programs, and the final makeup of the surrounding program
depends on the other features in a product specification.
Converting these kinds of premises into constraints provides
an explicit interface for an LJ construct with any surround-
ing program. A feature’s interface determines which features
must be included in a product specification in order for its
constructs to be well-formed in the final LJ program.

4. LFJ TYPE SYSTEM
In this section, we present a constraint-based type sys-

tem for LFJ based on a constraint-based type system we
have developed for LJ. The constraint-based systems retain
the premises that depend on the structure of the construct
being typed and convert those that rely on external infor-
mation into constraints. By using constraints, the external
typing requirements for each feature are made explicit, sep-
arating derivation of these requirements from their satisfac-
tion. Generating a set of constraints for a feature is sep-
arated from consideration of which product specifications
have a combination of features satisfying these constraints.

Composition Constraints
dcl introduces ms before F
dcl introduced before F

Uniqueness Constraints
cl f unique in dcl

cl m (vdk
k
) unique in dcl

Structural Constraints
cl1 ≺ cl2
cl2 ≺ ftype(cl1, f)
ftype(cl1, f) ≺ cl2

mtype(cl,m) ≺ clk
k → cl

defined(cl)
f 6∈ fields(parent(dcl))
pmtype(dcl,m) = τ

7: Syntax of Lightweight Feature Java typing constraints.

The constraints used by our type system are given in Fig-
ure 7 and are divided into three categories. The two com-
position constraints guarantee successful composition of a
feature F by requiring that refined classes and methods be
introduced by a feature in a product line before F . The two
uniqueness constraints ensure that member names are not
overloaded within the same class, a restriction in the LJ for-
malization. The structural constraints come from the stan-
dard LJ type system and determine the members of a class
and its inheritance hierarchy in the final program. The sub-
type constraint is particularly important because the class
hierarchy is malleable until composition; if it were static,
constraints that depend on subtyping could be reduced to
other constraints or eliminated entirely.

The typing rules for LFJ are found in Figure 8-10 and
rely on judgements of the form ` J | ξ, where J is a typ-
ing judgement from LFJ and ξ is a set of constraints, called
a signature. The signature ξ provides an explicit interface
which guarantees that J holds in any product specification
that satisfies ξ. Typing rules for statements, methods, and
classes are those from LJ augmented with signatures. Typ-
ing rules for class and method refinements in a feature F
are similar to those for the objects they refine, but require
that the refined class or method be introduced in a feature
that comes before the F in a product specification. Method
refinements do not have to check that the names of their
parameters are distinct and that their parameter types and
return type are well-formed: a method introduction with
these checks must precede the refinement in order for it to
be well-formed. The signature of a product specification PS

32

`τ,F md | C Method well-formed in class with signature

distinct(vark
k) type(clk) = τk

k
type(cl) = τ ′

Γ = [vark 7→ τk
k][this 7→ τ] Γ ` s` | C`

`
Γ(y) = τ ′′

`τ cl meth (clk vark
k
) {s`

` return y; } | {τ ′′ ≺ τ ′,defined clk
k} ∪S

` C`

(WF-Method)

` cld | C Class well-formed with signature

distinct(fj) distinct(mk) dcl 6= cl type(dcl) = τ `τ clk methk (cl`,k var`,k
`
) mbk | Ck

k

ξ =
S

j{fj 6∈ fields(parent(dcl))} υ =
S

j{clj fj unique in dcl} υ′ =
S

k{clk methk (cl`,k var`,k
`
) unique in dcl}

ξ′ =
S

k{pmtype(dcl,methk) = cl`,k
` → clk}

` class dcl extends cl {clj fj
j
; clk methk (cl`,k var`,k

`,k
) mbk

k

} | S
k Ck ∪ {defined cl,defined clj

j} ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-Class)

`τ,F rmd | C Refined method well-formed in class of feature with signature

type(cl) = τ ′ Γ = [vark 7→ τk
k][this 7→ τ]

Γ(y) = τ ′′ Γ ` sj | Cj
j

Γ ` s` | C`
`

C = {τ ′′ ≺ τ ′, τ introduces cl meth (clk vark
k
) before F} ∪S

j Cj ∪
S

` C`

`τ,F refines method cl meth (clk vark
k
) {sj

j ; Super(); s`
`; return y; } | C

(WF-Refines-Method)

`F rcld | C Class refinement well-formed in feature with signature

dcl 6= cl type(dcl) = τ `τ clk methk (cl`,k var`,k
`
) mbk | Ck

k

`τ,F rmdm | C′
m

m

ξ =
S

j{fj 6∈ fields(parent(dcl))} υ =
S

j{clj fj unique in dcl} υ′ =
S

k{clk methk (cl`,k var`,k
`
) unique in dcl}

ξ′ =
S

k{pmtype(dcl,methk) = cl`,k
` → clk}

`F refines class dcl extending cl {clj fj
j
;`τ clk methk (cl`,k var`,k

`,k
) mbk

k

; rmd`,k
`,k} | S

k Ck ∪
S

m C′
m∪

{defined cl,defined clj
j
, dcl introduced before F, } ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-Refines-Class)

9: Typing Rules for LFJ method and class refinements.

is the union of the constraints on each of the features in PS .
Once the signature of a product specification PS is gener-

ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the

33

Γ ` s | C Statement well-formed in context with signature

Γ ` sk | Ck
k

Γ ` {sk} |
S

k Ck
(WF-Block)

Γ(x) = τ1 Γ(var) = τ2

Γ ` var = x; | {τ1 ≺ τ2}
(WF-Var-Assign)

Γ(x) = τ1 Γ(var) = τ2

Γ ` var = x.f ; | {ftype(τ1, f) ≺ τ2}
(WF-Field-Read)

Γ(x) = τ1 Γ(y) = τ2

Γ ` x.f = y; | {τ2 ≺ ftype(τ1, f)} (WF-Field-Write)

Γ(x) = τ1 Γ(y) = τ2
Γ ` s1 | C1 Γ ` s2 | C2

C3 = {τ2 ≺ τ1 ∨ τ1 ≺ τ2}
Γ ` if x == y then s1 else s2 | C1 ∪ C2 ∪ C3

(WF-If)

Γ(var) = τ1 type (cl) = τ2

Γ ` var = new cl() | {τ2 ≺ τ1}
(WF-New)

Γ(x) = τ Γ(var) = π Γ(yk) = πk
k

C = {mtype(τ,meth) ≺ πk
k → π}

Γ ` var = x.meth(yk
k) | C

(WF-MCall)

8: Typing Rules for LJ and LFJ statements.

soundness proofs that follow. For this reason, the following
sections elide many of the bookkeeping details, instead pre-
senting sketches of the major pieces of the soundness proofs.

Theorem 4.1 (Soundness of constraint-based LJ Type Sys-
tem). Let P be a LJ program with distinct class names and
an acyclic, well-founded class hierarchy. Let C be the set
of constraints generated by a class cld in P . cld is well-
formed if and only if P satisfies C: P ` cld↔ P |= C where
` cld | C.

Proof. The two key pieces of this proof are: showing that
satisfaction of each of the constraints guarantees that the
corresponding judgement holds, and that there is a one-to-
one correspondence between the constraints generated by
the typing rules in Figure 9 and the premises used in the
declarative LJ type system. The former is straightforward
except for the subtyping constraint, which relies on the path
function to check for satisfaction. We can prove their equiva-
lence by induction on the derivation of the subtyping judge-
ment in one direction and induction on the length of the
path in the other. We can then show that the two type
systems are equivalent by examination of the structure of
P . At each level of the typing rules, the structural premises
are identical and each of the external premises of the rules
appears as a constraint in the signature. As a result of the
previous argument, satisfaction of the signature guarantees
that premises of the typing rules hold for each structure in
P . Having shown the two type systems are equivalent, the

` P | C Program well-formed with signature

` cldk | Ck
k

P = cldk
k

distinct names (P)

` P | S
k Ck

(WF-Program)

` F | C Feature well-formed with signature

` cldk | Ck
k `F rcld` | C`

`

` feature F {cldk
k
rcld`

`} | S
k Ck ∪

S
` C`

(WF-Feature)

` PS | C Product specification well-formed with signature

` ∅ | ∅ (WF-Specification-Nil)

` F | C ` Fk
k | C′

` F, Fk
k | C ∪ C′

(WF-Specification)

10: Typing Rules for LFJ Programs and Features.

proofs of progress and preservation for the constraint-based
type system follow immediately.

Theorem 4.2 (Soundness of LFJ Type System). Let PS be
a LFJ product specification and C be a set of constraints such
that ` PS | C. If PS |= C and Object is in the path of every
class introduced by a feature in PS, then the composition of
the features in PS produces a valid, well-formed LJ program.

Proof. This proof is decomposed into three key lemmas, cor-
responding to the three kinds of typing constraints:

(i) Composition of the features in PS produces a valid LJ
program, P .

For each class or method refinement of a feature F in PS ,
a composition constraint is generated by the LFJ typing
rules. Each of these are satisfied according to the definition
in Figure 11, allowing us to conclude that a feature with
appropriate declarations appears before F in PS . Each of
these declarations will appear in the program generated by
the features preceding F , allowing us to conclude that the
composition succeeds for each feature in PS .

(ii) P is typeable in the constraint-based LJ type system
with constraints C′.

In essence, we must show that the premises of the constraint-
based LJ typing judgements hold. Our assumption that each
class in PS is a descendant of Object ensures that P has
an acyclic, well-founded class hierarchy. The premises for
the LJ methods and statements are identical, leaving class
typing rules for us to consider. The LJ typing rules require
that the method and field names for a class be distinct, but
these premises are removed by the LFJ typing rules, as the
members of a class are not finalized until after composi-
tion. This requirement is instead enforced by the unique-
ness constraints in Figure 11, which are satisfied only when

34

ftype(P, τ1, f) = τ3 τ2 ∈ path(P, τ3)

P |= τ2 ≺ ftype(τ1, f)

ftype(P, τ1, f) = τ3 τ3 ∈ path(P, τ2)

P |= ftype(τ1, f) ≺ τ2

mtype(P, τ,m) = π′
k

k → π′ π′ ∈ path(P, π)

πk ∈ path(P, π′
k)

k

P |= mtype(τ,m) ≺ πk
k → π

type(cl) ∈ path(P, type(cl))

P |= defined(cl)

τ2 ∈ path(P, τ1)

P |= τ1 ≺ τ2

ftype(P,parent(dcl), f) = ⊥
P |= f 6∈ fields(parent(dcl))

mtype(P,parent(dcl),m) = ⊥ ∨
mtype(P,parent(dcl),m) = τ

P |= pmtype(dcl,m) = τ

FP = Ak
k
FB`

`
HCj

j

τ.ms ∈ H τ 6∈ introductions(B`
`
)

FP |= τ introduces ms before F

FP = Ak
k
FB`

`
HCj

j
dcl ∈ H

FP |= dcl introduced before F

type(dcl) = τ
∀A,B ∈ FP, τ.cl1 f ∈ A ∧ τ.cl2 f ∈ B → cl1 = cl2

FP |= cl f unique in dcl

type(dcl) = τ ms1 = cl m (vdk
k
)

ms2 = cl′ m (vd′
k

k
)

∀A,B ∈ FP, τ.ms1 ∈ Aτ.ms2 ∈ B → ms1 = ms2

FP |= cl m (vdk
k
) unique in dcl

11: Satisfaction of typing constraints.

a method or field name is introduced by a single feature.
Since PS |= C, it follows that the premises of the LJ typing
rules hold for P and that there exists some set of constraints
C′ such that ` P | C′.

(iii) P satisfies the constraints in C′ and is thus a well-
formed LJ program.

We break this proof into two sublemmas:

(a) C′ ⊆ C.

The key observation for this proof is that every class, method,
and statement in P originated from some feature in PS .
The most interesting case is for the constraints generated
by method bodies: a statement contained in a method body
can come from either the initial introduction of that method
or advice added by a method refinement. In either case,
the statement was included in some feature in PS and thus
generated some set of constraints in C. Because method
signatures are fixed across refinement, the context used in
typing both kinds of statements is the same as that used for
the method in the final composition. This does not entail

that C = C′, however, as there could be some construct in-
troduced in PS that is overwritten by an introduction in a
subsequent feature.

(b) For any structural constraint K, if PS |= K, then P |=
K.

This reduces to showing that class declaration returned by
CT (dcl) is the same as the class with that identifier in P .
This follows from tracing the definition of the CT function
down to the final introduction of dcl in the product line.
From here, we know that this class appears in the program
synthesized from the product specification starting with this
feature. Further refinements of this class are reflected in the
• operator used recursively to build CT (dcl); each refine-
ment succeeds by (i) above. Since the two functions are the
same, the helper functions which call path in P (i.e. ftype,
mtype) and those that use CT in PS return the same val-
ues. We can thus conclude that the satisfaction judgements
for PS and P are equivalent.

All constraints in C′ appear in C, so PS |= C′. By (b)
above, it follows that P |= C′. P must therefore be a well-
formed LJ program by Theorem 4.1.

5. FEATURE MODELS
A feature model represents the dependencies and constraints

between features that make up a product line. One common
representation for feature models is a feature diagram. A
feature diagram is a hierarchy of features where each node
in the tree corresponds to a feature. Annotations on the
tree represent constraints. Features required by a parent
are marked with a dot.

5.1 Feature Diagrams
Consider an elementary automotive product line that dif-

ferentiates cars by transmission type (automatic or manual),
engine type (electric or gasoline), and the option of cruise
control. Figure 12 shows the feature diagram of this prod-
uct line. A car has a body, engine, transmission, and op-
tionally a cruise control. A transmission is either automatic
or manual (choose one), and an engine is electric-powered,
gasoline-powered, or both.

12: Feature diagram

Besides hierarchical relationships, feature models also al-
low cross-tree constraints, although these are more difficult
to represent in a feature diagram. Such constraints are often
inclusion or exclusion statements of the form: if feature F is
included in a product, then features A and B must also be
included (or excluded). A cross-tree constraint is that cruise
control requires an automatic transmission.

Feature models are compact representations of proposi-
tional formulas [5]. We exploit this representation in relating

35

τ1 ≺ τ2 ⇒ Styτ1,τ2
τ2 ≺ ftype(τ1, f) ⇒ W{Styτ2,cl ∧ Styτ1,type(cld) ∧ FinalInname(cld),F | ∃cld ∈ clds(F), ∃cl, cl f ∈ fds(cld)}∨W{Styτ2,cl ∧ Styτ1,type(rcld) ∧ Finalname(rcld),F | ∃rcld ∈ rclds(F), ∃cl, cl f ∈ fds(rcld)}
ftype(τ1, f) ≺ τ2 ⇒ W{Stycl,τ2

∧ Styτ1,type(cld) ∧ FinalInname(cld),F | ∃cld ∈ clds(F)∃cl, cl f ∈ fds(cld)}∨W{Stycl,τ2
∧ Styτ1,type(rcld) ∧ Finalname(rcld),F | ∃rcld ∈ rclds(F), ∃cl, cl f ∈ fds(rcld)}

mtype(τ,m) ≺ πk
k → π ⇒ W{Stycl,π ∧

V
k Styπk,clk

∧ FinalInname(cld),F | ∃cld ∈ clds(F),

∃cl, clkk
, vk

kcl m(clkvk
k
) ∈ mds(cld)}∨W{Stycl,π ∧

V
k Styπk,clk

∧ Finalname(rcld),F | ∃rcld ∈ rclds(F),

∃cl, clkk
, vk

kcl m(clkvk
k
) ∈ mds(rcld)}

defined(cl) ⇒ W{InF | ∃cld ∈ clds(F),name(cld) = cl}
τ introduces ms before F⇒ W{InG ∧PrecG,F∧

V{InH → PrecF,H ∨PrecH,G | ∃cld′ ∈ clds(H)), type(name(cld′)) = τ}
| ∃cld ∈ clds(G), type(name(cld)) = τ ∧ms ∈ methods(mds(cld))}∨W{InG ∧PrecG,F ∧V{InH → PrecF,H ∨PrecH,G | ∃cld′ ∈ clds(H)), type(name(cld′)) = τ}
| ∃rcld ∈ rclds(G), type(name(rcld)) = τ ∧ms ∈ methods(mds(rcld))}

dcl introduced before F ⇒ W{InG ∧PrecG,F | ∃cld ∈ clds(F),name(cld) = dcl}
cl f unique in dcl ⇒ V{¬InF | ∃cld ∈ clds(F),name(cld) = dcl ∧ ∃cl′, cl′f ∈ fds(cld) ∧ cl 6= cl′}∧V{¬InF | ∃rcld ∈ rclds(F),name(rcld) = dcl ∧ ∃cl′, cl′f ∈ fds(rcld) ∧ cl 6= cl′}
cl m (vdk

k
) unique in dcl ⇒ V{¬InF | ∃cld ∈ clds(F),name(cld) = dcl ∧ ∃cl′, vd′

k

k
, cl′m (vd′

k

k
) ∈ mds(cld) ∧ cl 6= cl′∨

(
W

k vdk 6= vd′
k)}∧

V{¬InF |∃rcld ∈ rclds(F),name(rcld) = dcl ∧ ∃cl′, vd′
k

k
, cl′m (vd′

k

k
) ∈ mds(rcld) ∧ cl 6= cl′∨

(
W

k vdk 6= vd′
k)}

f 6∈ fields(parent(dcl)) ⇒ V{InF ∧ FinalInname(cld),F → ¬Stytype(dcl),cl |
∃cld ∈ clds(F),name(cld) = cl ∧ dcl 6= cl ∧ ∃cl′, cl′f ∈ fds(cld)}∧V{InF ∧ Finalname(rcld),F → ¬Stytype(dcl),cl |
∃rcld ∈ rclds(F),name(rcld) = cl ∧ dcl 6= cl ∧ ∃cl′, cl′f ∈ fds(rcld)}

pmtype(dcl,m) = τ ⇒ V{InF ∧ FinalInname(cld),F → ¬Stytype(dcl),cl | ∃cld ∈ clds(F),name(cld) = cl
∧dcl 6= cl ∧m ∈ methods(cld) ∧mtype(cld,m) 6= τV{InF ∧ Finalname(cld),F → ¬Stytype(dcl),cl | ∃rcld ∈ rclds(F),name(rcld) = cl
∧dcl 6= cl ∧m ∈ methods(rcld) ∧mtype(rcld,m) 6= τ

where
FinalIncl,F ↔ InF ∧V{InG → PrecG,F | cl ∈ names(clds(G)) ∧G 6= F}
Finalcl,F ↔ InF ∧V{InG → PrecG,F | cl ∈ names(clds(G))}

13: Translation of constraints to propositional formulas.

feature models to the constraint-based type system for LFJ.
A given program specification can be tested for inclusion in
a product line by checking if it satisfies the constraints ex-
pressed in a feature model. For example, the feature model
Auto of the automotive product line is:

(Body ∧ (Automatic ∨ Manual) ∧
(Electric ∨ Gasoline) ∧ (Automatic ↔ ¬ Manual))

where Body is the lone constant.

6. SAFETY OF FEATURE MODELS
By the soundness of the LFJ type system, if a product

specification satisfies the signature of every feature included
in it, its composition is a well-formed LJ program. The
signature of a feature F provides an interface with other
feature modules. This interface can be translated into a
propositional formula describing the minimal structural re-
quirements that any product specification built from a fea-
ture table FT which includes F must satisfy in order for the
constructs in F to be well-formed. The conjunction of these
formulas builds a formula φsafe which any product specifica-
tion must satisfy in order to produce a well-formed program.
The safety of a feature model can then be statically verified
by using a SAT solver to check that its propositional repre-
sentation implies this minimal formula.

The propositional variables of φsafe have three basic forms,

InA : Feature A is included.
PrecA,B : Feature A precedes Feature B.
Styτ1,τ2

: τ1 is a subtype of τ2.

14: Description of propositional variables.

described in Figure 14. Note that a satisfying assignment
to the In and Prec variables which obeys the properties
of the precedence relation describes a unique product spec-
ification. The propositional constraints that impose these
properties are given in Figure 15. The first three formulas
enforce that a precedence relation is total on all features in-
cluded in a product specification, that it is asymmetric, and
that it is irreflexive. The next four ensure that each product
specification dictates an assignment to the Sty variables cor-
responding to its class hierarchy. In effect, the Sty Total
rule builds the transitive closure of the subtyping relation,
starting with the parent/child relationships established by
the last definition of a class in a product specification. A
satisfying assignment to WFSpec , the conjunction of all these
constraints, represents a unique product specification.

The makeup of the program built from a product spec-
ification depends upon the ordering of features and their
introductions and refinements. The rules in Figure 13 gen-

36

erate a propositional formula for each kind of typing con-
straint. A satisfying assignment to a formula in Figure 13
which also satisfies WFSpec represents a product specifica-
tion which satisfies the associated constraint. The Final and
FinalIn abbreviations ensure that introductions and refine-
ments in features appearing before the feature with the final
introduction are ignored. The composition and uniqueness
constraints have straightforward propositional representa-
tions that govern the valid orderings and makeup of product
lines. The translations of the structural constraints rely on
the mutability of the class hierarchy: any class cl1 that has
a required field or method could ultimately satisfy a con-
straint on the members of another class, cl2, if cl2 ≺ cl1 in
the final product specification.

Let φF be the conjunction of the formulas built from each
constraint in the signature of a feature F according to the
rules in Figure 13. φF describes the structure of all product
specifications in which F is well-formed. φsafe is constructed
by first building a clause for each feature F stating its inclu-
sion implies φF : InF → φF . The propositional constraints
generated by Sty WF in Figure 15 are then added to this
formula to ensure that the class hierarchy of a product spec-
ification is acyclic by requiring that each class included in a
product specification be a subtype of Object.

The representation of a feature model in propositional
logic, FM , describes the assignments that represent legit-
imate specifications of a product line, defining the family of
programs it contains. It is possible to build FM using the
variables in Figure 14. By construction, a satisfying assign-
ment to φsafe which sets InF to true also satisfies φF . It
follows that any satisfying assignment to WFSpec → φsafe

represents a product specification which satisfies the signa-
tures of each of the features it includes. By Theorem 4.2,
such a product specification produces a well-formed LJ pro-
gram. Since FM and the minimal well-formedness formula
share the same variables, a SAT solver can check whether
FM ∧ WFSpec → φsafe is valid. If so, the set of programs
described by the feature model is a subset of those allowed
by φsafe . Thus, the composition of any product specification
allowed by such a feature model is well-formed.

6.1 Feasibility of Our Approach
While checking the validity of FM ∧ WFSpec → φsafe is

co-NP-complete, the SAT instances generated by our ap-
proach are highly structured, making them amenable to fast
analysis by modern SAT solvers. We have previously imple-
mented a system based on this approach for checking safe
composition of AHEAD software product lines [12]. The size
statistics for the four product lines analyzed are presented
in Table 1. The tools identified several errors in the existing
feature models of these product lines. It took less than 30
seconds to analyze the code, generate the SAT formula, and
run the SAT solver for JPL, the largest product line. This
is less than the time it took to generate and compile a single
program in the product line.

7. RELATED WORK
Our strategy of representing feature models as proposi-

tional formulas in order to verify their consistency was first
proposed in [5]. The authors checked the feature models
against a set of user-provided feature dependences of the
form F → A ∨ B for features F , A, and B. This approach
was adopted by Czarnecki and Pietroszek [7] to verify soft-

Product # of # of Code Base Program
Line Features Prog. Jak/Java Jak/Java

LOC LOC

PPL 7 20 2000/2000 1K/1K
BPL 17 8 12K/16K 8K/12K
GPL 18 80 1800/1800 700/700
JPL 70 56 34K/48K 22K/35K

1: Product Line Statistics from [12].

ware product lines modelled as feature-based model tem-
plates. The product line is represented as an UML spec-
ification whose elements are tagged with boolean expres-
sions representing their presence in an instantiation. These
boolean expressions correspond to the inclusion of a feature
in a product specification. These templates typically have a
set of well-formedness constraints which each instantiation
should satisfy. In the spirit of [5], these constraints are con-
verted to a propositional formula; feature models are then
checked against this formula to make sure that they do not
allow ill-formed template instantiations.

The previous two approaches relied on user-provided con-
straints when validating feature models. The genesis of our
current approach was a system developed by Thaker et al.
[12] which generated the implementation constraints of an
AHEAD product line of Java programs by examining field,
method, and class references in feature definitions. Analysis
of existing product lines using this system detected previ-
ously unknown errors in their feature models. This system
relied on a set of rules for generating these constraints with
no formal proof showing they were necessary and sufficient
for well-formedness, which we have addressed here.

If features are thought of as modules, the feature model
used to describe a product line is a module interconnection
language [9]. Normally, the typing requirements for a mod-
ule would be explicitly listed by a “requires-and-provides
interface” for each module. We instead infer a module’s “re-
quires” interface automatically by considering the minimum
structural requirements imposed by the the type system.
We verify that these interface constraints are satisfied by
the implicit “provides” interface for each feature module in
a product specification. If composition is a linking process,
we are guaranteeing that there will be no linking errors. The
difference with normal linking is that we check all combina-
tions of linkings allowed by the feature model.

A similar type system was proposed by Anacona et al.
to type check, compile, and link source code fragments [1].
Like features, the source code fragments they considered
could reference external class definitions, requiring other
fragments to be included in order to build a well-typed pro-
gram. These code fragments were compiled into bytecode
fragments augmented with typing constraints that ranged
over type variables, similar to the constraints used in the
LFJ typing rules. The two approaches use these constraints
for different purposes, however. Anacona et al. solve these
constraints during a linking phase which combines individu-
ally compiled bytecode fragments. If all the constraints are
resolved during linking, the resulting code is the same as if
all the pieces had been globally compiled. Our system uses
these constraints to type check a family of programs which
can be built from a known set of features.

The existing work on type checking feature-oriented lan-

37

Prec Total: ∀A,B,A 6= B, InA ∧ InB ↔ (PrecA,B ∨PrecB,A)
Prec ASym: ∀A,B,PrecA,B → ¬PrecB,A

Prec Irrefl: ∀A,¬PrecA,A

Sty Refl: ∀τ,Styτ,τ ↔
W{InF | cld ∈ clds(F) ∧ type(name(cld)) = τ}

Sty Obj: StyObject,Object

Sty ASym: ∀τ1, τ2,Styτ1,τ2
→ ¬Styτ2,τ1

Sty Total: ∀τ1, τ2, τ3,Styτ1,τ2
↔((Styτ1,τ3

∧ Styτ3,τ2
)∨W{InF | ∃cld ∈ clds(F), type(name(cld)) = τ1 ∧ type(parent(cld)) = τ2}∧V{InG → PrecG,F | G 6= F ∧ ∃cld ∈ clds(G), type(name(cld)) = τ1}∧V{InG → PrecG,F | G 6= F ∧ ∃rcld ∈ rclds(G), type(name(rcld)) = τ1}∨W{InF | ∃rcld ∈ rclds(F), type(name(rcld)) = τ1 ∧ type(parent(cld)) = τ2 ∧

name(rcld) 6∈ names(clds(F))}∧V{InG → PrecG,F | G 6= F ∧ ∃cld ∈ clds(G), type(name(cld)) = τ1}∧V{InG → PrecG,F | G 6= F ∧ ∃rcld ∈ rclds(G), type(name(rcld)) = τ1})
Sty WF: ∀A, ∀c ∈ clds(A), InA → Styty(name(c)),Object

15: Constraints on the precedence and subtyping relations.

guages has focused on checking a single product specifica-
tion, as opposed to checking an entire product line. Apel
et al. [3] propose a type system for a model of feature-
oriented programming based on Featherweight Java [8] and
prove soundness for it and some further extensions of the
model. gdeep [2] is a language-independent calculus de-
signed to capture the core ideas of feature refinement. The
type system for gdeep transfers information across feature
boundaries and is combined with the type system for an
underlying language to type feature compositions.

8. CONCLUSION
A feature model is a set of constraints describing how a

set of features may be composed to build the family of pro-
grams in a product line. This feature model is safe if it only
allows the construction of well-formed programs. Simply it-
erating all the programs described by the feature model is
computationally expensive and impractical for large prod-
uct lines. In order to statically verify that a product line
is safe, we have developed a calculus for studying feature
composition in Java and a constraint-based type system for
this language. The constraints generated by the typing rules
provide an interface for each feature. We have shown that
the set of constraints generated by our type system is sound
with respect to LJ’s type system. We verify the type safety
of a product line by constructing SAT-instances for the in-
terfaces of each feature. The satisfaction of the formula built
from these SAT-instances ensures the product specification
corresponding to the satisfying assignment will generate a
well-typed LJ program. Using the feature model to guide
the SAT solver, we are able to type check all the members
of a product line, guaranteeing safe composition for all pro-
grams described by that feature model.

9. REFERENCES
[1] D. Ancona and S. Drossopoulou. Polymorphic

bytecode: Compositional compilation for java-like
languages. In In ACM Symp. on Principles of
Programming Languages 2005. ACM Press, 2005.

[2] S. Apel and D. Hutchins. An overview of the gDEEP
calculus. Technical Report MIP-0712, Department of
Informatics and Mathematics, University of Passau,
November 2007.

[3] S. Apel, C. Kästner, and C. Lengauer. Feature
Featherweight Java: A calculus for feature-oriented
programming and stepwise refinement. In GPCE ’08:
Proceedings of the 7th International Conference on
Generative Programming and Component Engineering.
ACM Press, Oct. 2008.

[4] D. Batory. Feature-oriented programming and the
AHEAD tool suite. Software Engineering, 2004. ICSE
2004. Proceedings. 26th International Conference on,
pages 702–703, May 2004.

[5] D. Batory. Feature models, grammars, and
propositional formulas. In In Software Product Lines
Conference, LNCS 3714, pages 7–20. Springer, 2005.

[6] Y. Bertot and P. Castéran. Interactive Theorem
Proving and Program Development. Springer-Verlag,
Berlin, 2004.

[7] K. Czarnecki and K. Pietroszek. Verifying
feature-based model templates against well-formedness
ocl constraints. In GPCE ’06: Proceedings of the 5th
international conference on Generative programming
and component engineering. ACM Press, 2006.

[8] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[9] R. Prieto-Diaz and J. Neighbors. Module
interconnection languages: A survey. Technical report,
University of California at Irvine, August 1982. ICS
Technical Report 189.

[10] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine,
T. Ridge, S. Sarkar, and R. Strnǐsa. Ott: effective tool
support for the working semanticist. In ICFP ’07:
Proceedings of the 12th ACM SIGPLAN international
conference on Functional programming, pages 1–12,
New York, NY, USA, 2007. ACM.

[11] R. Strnisa, P. Sewell, and M. J. Parkinson. The Java
module system: core design and semantic definition. In
R. P. Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S.
Jr., editors, OOPSLA, pages 499–514. ACM, 2007.

[12] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In GPCE ’07:
Proceedings of the 6th international conference on
Generative programming and component engineering,
pages 95–104, New York, NY, USA, 2007. ACM.

38

Graph-Based Specification and Simulation of
Featherweight Java with Around Advice

Tom Staijen
Software Engineering Group

University of Twente
P.O. Box 217, 7500 AE

Enschede, The Netherlands
staijen@cs.utwente.nl

Arend Rensink
Formal Methods and Tools Group

University of Twente
P.O. Box 217, 7500 AE

Enschede, The Netherlands
rensink@cs.utwente.nl

ABSTRACT
In this paper we specify an operational run-time semantics
of Assignment Featherweight Java — a minimal subset of
Java with assignments — with around advice, using graph
transformations. We introduce a notion of correctness of
our specification with respect to an existing semantics and
claim a number of advantages over traditional mathematical
notations, that come forth from the executable nature of
graph-transformation-based semantics.
Using test programs as graphs during specification of the
semantics, simulation can help in verifying the correctness
of the rules simply by testing, increasing the rigorousness of
the specification process. Also, execution of the semantics
results in a state space that can be used for analysis and
verification, giving rise to an effective method for aspect
program verification.
As a criterion for correctness, we use a structural operational
semantics of this language from the so-called Common As-
pect Semantics Base.

Categories and Subject Descriptors
F.3.2 [Logics and Meaning of Programs]: Semantics of
Programming Languages—Operational semantics

General Terms
Languages, Verification

1. INTRODUCTION
Aspect-oriented programming (AOP) [6] is a popular para-
digm that allows for the modular specification of cross-cutting
concerns. However, aspect-oriented programs are not easy
to get right and even harder to test or debug. For this
reason, it is attractive to investigate formal verification for
aspectual programs. For the purpose of formal verification
of AOP languages and programs, it is essential to specify the
semantics of such languages formally and unambiguously.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’09, March 2, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-452-2/09/03 ...$5.00.

In this paper we propose a formal specification approach for
the run-time semantics of Assignment Featherweight Java
(AFJ). We illustrate an instruction based representation of
an AFJ program and define the semantics of a “machine”
running these instructions. This language is an extension
to Featherweight Java (FJ), a minimal subset of Java. This
simple language - although not suitable for industrial im-
plementations - is typically suitable for studying language
extensions. We study an extension of this language with
around advice, which can also be used to represent before
and after advice.
The specification method proposed in this paper is graph
transformations. Graph transformation is a formal spec-
ification technique that supports rule based specification
as well as an intuitive visual representation of states and
rules. As a matter of fact, we use Groove [8] for the defi-
nition of the rules and graphs. Using the GROOVE tool,
the graph transformation-based operational semantics di-
rectly provides an executable model; given a start graph
representing a program and the graph transformation based
operational semantics of the language, this system can be
simulated resulting in a state space, represented as a la-
belled transition system (LTS). We claim that graph trans-
formation has the following main advantages over tradi-
tional, more mathematical notations of operational seman-
tics.

• Specifying a semantics can be a complicated task; mis-
takes are easily made. The directly executable nature
increases ease and confidence of specification of a se-
mantics by giving the user a way to test the seman-
tics without having to write a interpreter first, which
may contain errors either copied from the semantics or
made during implementation.

• By giving the semantics in this way, the road is opened
towards applying existing verification methods, such as
the work we have presented in [1]. Also, the LTS lends
itself directly for model checking (see [5]).

In addition, we believe that the visual nature of the graph
transformation rules will appeal to many readers that are
not experts in mathematics.
To increase confidence in the correctness of our definitions,
we show that they coincide with a formal specification of
the AFJ language in a work called the Common Aspect Se-
mantics Base (CASB) [2]. The CASB is presented as a ref-
erence model for the run-time semantics of aspect-oriented
programming languages. It presents a structural operational

39

semantics (SOS) for the language at hand (AFJ with an as-
pectual extension).
In the next section we will explain details of Assignment
Featherweight Java with around advice and give an impres-
sion of the used execution mechanism. Section 3 provides a
background on graph transformations and the visual nota-
tion used in this paper, followed by brief intuition in Section
4 of the actual graphs and rules used in the graph trans-
formation based semantics. In Section 5 we briefly discuss
the reference semantics and formulate our notion of correct-
ness. Finally, in Section 6 we briefly mention essential re-
lated work, followed by our conclusions in Section 7.

2. ASSIGNMENT FEATHERWEIGHT JAVA
WITH AROUND ADVICE

In this paper, we specify an operational semantics of As-
signment Featherweight Java extended with the possibility
of declaring around advice. In this section, we describe the
required background.

2.1 The Featherweight AspectJ Language
Featherweight Java (FJ) [3] is a subset of Java that con-
tains only five forms of expression: object creation, method
invocation, field access, casting, and variables. Assignment
Featherweight Java (AFJ) [7] has extended this language
with mutable field variables to bring it closer to the way
Java programs are usually written. The minimal syntax and
operational semantics make it a handy language for concep-
tual studies on the implications of language extensions. This
makes the language useful for trying AOP language features.
We actually study an extension of the AFJ language with
around advice. For the duration of this paper, we will refer
to the extended language as Featherweight AspectJ (FAJ).
The grammar of FAJ is as folows:

Prog ::= L; e;A

L ::= class T extends T {T f ;M}
M ::= T m(T x){e; }
e ::= x | e.f | e.m(e) | new T (e)

| e.f = e | (T)e

A ::= T around(Tx) : P {e′}
P ::= call(T ∗.m∗(T ∗))

e′ ::= e | e.proceed(e)

T ∗ ::= T | * | T+

m∗ ::= m | *

Throughout the paper we use the overbar notation for lists.
A program consists of a set of classes, a main expression,
and a set of advice declarations. Classes contain a list of
field names and types, and a list of methods. A method
consists of a return type, an identifier, a list of arguments
and a method body, which is an expression. Expressions
can be (from left to right) variables (e.g. a method parame-
ters), fields accesses, method invocations with a sequence of
expressions as arguments, object creations with a sequence
of expressions as parameter, castings, assignments, and pro-
ceed expressions (see below). Object creation is not handled
by an explicit constructor. Instead, the ordered list of argu-
ments is assigned to the ordered list of fields.
Aspects are represented as (global) declarations of an around

mcode(id, r) = S(mbody(id, r)); return

S(x) = varx

S(e.f) = S(e); getf

S(e0.f = e) = S(e);S(e0); setf

S(new T (e0, . . . , en)) = S(e0); . . . ;S(en); newT

S(e.m(e0, . . . , en)) = S(e0); . . . ;S(en);S(e); callm

S(e.proceed(e0, . . . , en)) = S(e0); . . . ;S(en);S(e); proceed

Figure 1: Sequentialisation

advice and a point-cut. Advices, depicted in the grammar
above by the letter A, are methods that can optionally con-
tain a proceed expression. As usual, we can use this also
to mimic before and after advice, by adding a proceed in-
struction after or before the instructions of the advice, re-
spectively. An advice declaration is combined with a point-
cut declaration (depicted by P in the grammar) that selects
certain expressions. In this language we have limited the
point-cut language to the selection of method calls. Such a
point-cut is specified as a call to a certain receiver type T ∗,
which can be a concrete type, a wildcard “*” standing for
an arbitrary type, or T+, selecting a type and all its sub-
types. The same is used for the parameters of the call. The
method identifier can be either a concrete method identifier,
or a wildcard “*” selecting an arbitrary identifier.

2.2 Run-time Semantics
The run-time semantics of this language is specified in terms
of sequences of instructions. That is, every expression in
the grammar can be sequentialised into a sequence of stack-
based instructions of the types: call, return, new, var,
get, set, and proceed. In this paper, we assume that ex-
pressions are pre-evaluated into such sequences; whenever
we represent an FAJ program, method-bodies consist of a
sequence of instructions instead of an expression. We define
this sequentialisation as a function mcode : Id× T → Instr
that returns a sequence of instructions given a method iden-
tifier. Given a function mbody : Id × T → Expr that finds
the body expression for a method identifier and a receiver
type. This is defined as show in Figure 1.
Thus, the mcode function will use the given identifier and
type to the mbody function, which looks up the method
and returns the body expression. This expression is broken
down into a sequence of instructions by function S. Finally,
a return instruction is added.
Run-time information is stored in both a heap and a number
of global stacks:

• A so-called continuation stack contains the currently
scheduled instructions, the top instruction being the
first to be executed. Execution terminates when the
continuation stack is empty.

• The results of evaluating an expression are placed on
a so-called value stack.

For executing around advice, the following concepts are re-
quired:

40

• a proceed stack is used for postponing an action that
triggers an advice; proceed instructions pop the top
of the proceed stack onto the continuation stack.

Furthermore, a number of auxiliary instructions will be used:

• a do instruction is used for invoking advices;

• a pushp instruction pushes the top of the continuation
stack on top of the proceed stack;

• a popp instruction pops the top of the proceed stack;

When a call instruction is matched by any aspects, these
aspects are first scheduled (in a certain order) by placing a
do instruction on either the continuation stack (for the first
advice), or the proceed stack (for any other advices). The
pushp and popp instructions are added to achieve a uniform
handling of multiple around advice, all of which may contain
a proceed instruction. To prevent instructions from being
intercepted more then once, they are tagged the first time.

3. GRAPH TRANSFORMATIONS
Graph transformation is a systematic, rule-based transfor-
mation technique. It has a solid research foundation [9] and
applications in many areas of computer science.
A graph is a type (N,E) where N is a set of nodes and
E ⊆ N ×Lab×N a set of labelled edges. Nodes are graphi-
cally represented as black bordered boxes and edges as black
arrows. A graph production system (GPS) is a set of graph
production rules, each of which can transform a source graph
into a new graph called the target graph. The rule specifies
both the conditions under which it applies and the changes it
makes to the source graph. Technically, a graph production
rule consists of two partially overlapping graphs, a left hand
side and a right hand side, and a set of negative applica-
tion conditions, which are also (connected) graphs partially
overlapping with the left hand side.
Graph transformations provide an attractive visual repre-
sentation. In our visual representation of a rule used in this
paper (which is taken from the GROOVE tool [8]) we com-
bine all elements together in one graph, made up of four
types of elements:

• Readers: elements that are used for matching; are de-
picted as with black borders and arrows (see Figure
2.a);

• Erasers: elements that will be erased during the trans-
formation are depicted with thin dashed borders and
arrows (see Figure 2.b);

• Creators: elements that will be created during trans-
formation are depicted with thick light gray borders
and arrows (see Figure 2.c);

• Embargoes: elements that are not allowed to be present
in the graph when the rule is matched are depicted
with dashed, dark gray edges (see Figure 2.d)

4. SEMANTICS
We specify the run-time semantics of FAJ using graph trans-
formations. Due to the limited amount of space, we are

Figure 2: The graph production rule elements

Figure 3: Rule for the set instruction

merely able to give an intuition of the workings: the en-
coding of the graphs, and the actual rules that form the
semantics.
Graphs consists of a graph-based representation of an FAJ
specification, and the run-time state. This run-time state
consists of the stacks that we have introduced in Section 2,
and nodes representing Objects. In fact, no distinction is
made between memory locations and the actual instances.
Expressions (method-bodies and the main expression) have
already been process to sequences of instructions; the main
expression is placed on the continuation stack.
There are rules for each of the instructions discussed in Sec-
tion 2. To get a feeling of the proposed semantics, we de-
scribe the set instruction. The complete set of rules can be
found at http://www.cs.utwente.nl/˜staijen/faj/.
Figure 3 shows the rule for the set instruction, which orig-
inates from an expression of the kind e.f = e0. The rule
applies when a set instruction is popped from the contin-
uation stack, represented by a node labelled Stack, C. An
outgoing edge of this stack points to the top Cell of the
stack. A next edge points to the Cell underneath. The re-
ceiver object e and the new value e0 are on the value stack,
labelled with Stack, S. The variable to be updated is se-
lected, that has the same name as the name argument of
the set instruction. The value of the variable is replaced,
and the receiver is popped from the value stack. The new
value remains on the value stack, since it is also result of
e.f = e0.

5. CORRECTNESS
We now give an intuition of how we can show that our opera-
tional semantics is correct in the sense that it corresponds to
the prior semantics defined in SOS (Structural Operational
Semantics) style in [2]. For this purpose, we define a map-
ping from the configurations in the SOS semantics to graphs,
such that there is a one-to-one correspondence between SOS
derivations and (sequences of) graph derivations. (It should
be noted that our language is a slight adaptation of that in
[2]; the most important difference is that we only allow call
point-cuts, whereas they can define point-cuts for arbitrary
instructions; on the other hand, we include parameters into
the advice, which they do not. To establish correctness, we
use an accordingly modified version of the SOS semantics.)

41

The static structure of a given FAJ program is captured by
three partial functions:

• FDecl : T → (Ident × T)∗, yielding for each class type
the sequence of field declarations (where Ident is the
universe of identifiers);

• MDecl : (T × Ident) ⇀ (Ident×T)∗×T ×Expr , yield-
ing for each class type the corresponding method dec-
larations. A method declaration consists of a list of
parameters (pairs of identifiers and types), a return
type and a method body.

• ADecl : (T×Ident)→ P((Ident×T)∗×Expr), yielding
for each pair of class and method identifier the set of
aspects that statically match calls of that method.

For every program, this triple of functions together with the
initial expression plays exactly the same role as the initial
graph. , except that there all expressions (i.e., the initial
expression and the bodies of all methods and advices) have
been sequentialised as discussed in Sect. 2.2. In fact, there
is a straightforward translation from each valid combination
(FDecl ,MDecl ,ADecl ,Expr) to an aspect program graph.
For lack of space we omit the definition here, but below
we use Instr, Ident and Class to denote the sets of nodes
corresponding to Instr , Ident and T in the program.
The dynamic structure, i.e., the states of the program, are
encoded in the SOS semantics as configurations (S,C,Σ, P)
consisting of the same stacks and store as in our graph-based
semantics:

• C ∈ (Instr × Bool)∗ is the continuation stack, con-
taining the instructions to be executed, combined with
booleans indicating whether the instruction has al-
ready been adviced.;

• S ∈ Object∗ is the value stack, containing intermediate
results; Object means location or heap address here;

• Σ : Object → T × (Ident ⇀ Object) is the heap, con-
taining the run-time type and field values of all objects;

• P ⊆ (Instr × Bool)∗ is the proceed stack, containing
the (tagged or untagged) advices scheduled to be exe-
cuted.

On the basis of these configurations, the SOS semantics con-
sists of two types of rules: first, rules to sequentialise expres-
sions to their corresponding instructions; and second, rules
modelling the the execution of the instructions. In our se-
mantics we have chosen to do sequentialisation as part of
the pre-processing in Section 2.2; for the purpose of showing
correctness in this section, we assume the same has hap-
pened on the SOS semantics side; that is, we assume that
all expressions are already transformed into sequences of in-
structions.
The execution rule of instruction instr always has the form

side conditions

(instr : C, S,Σ, P)→ (C′, S′,Σ′, P ′)

meaning that, if the side conditions are fulfilled, a configura-
tion in which the first instruction on the continuation stack
is instr can perform a step, changing into the configuration
on the right hand side. For instance, the rules for set, call
and return are:

set
Σ(v0) = (T, F)

(setf : C, v0 : v : S,Σ, P)
→b (C, v : S,Σ[v0 7→ (T, F [f 7→ v])], P)

call
Σ(v0) = (T, F) MDecl(m,T) = ((x1, . . . , xn), e)
(callm : C, v0 : v1 : . . . : vn : S,Σ, P)
→b (e[x1/v1, . . . , xn/vn], this/v0 : C, S,Σ, P)

return
(return : C, S,Σ, P) →b (C, S,Σ, P)

Note that in these rules, the continuation stack elements are
given as plain instructions rather than pairs of instructions
and booleans; this is to indicate that we do not care about
the instruction tags here.
The P -stack is only used for advice execution. Two example
rules are given below: the around-rule to schedule advice
execution, and the rule for executing proceed. Notice that
in these rules, we do care about tags.

around

Σ(this) = (T,Fd) Ψ(T,m) = {aq . . . an}
((callm,ff) : C, S,Σ, P)→

(doa1 : popp : C, S,Σ,
doa2 : . . . : doan : (callm, tt) : P)

proceed (proceed : C, S,Σ, i : P)
→ (i : pushppi : C, S,Σ, P)

5.1 From Configurations to Graphs
The translation of SOS configurations to graphs is defined
by

Tra : (C, S,Σ, P) 7→ [[C]] ∪ [[S]] ∪ [[Σ]] ∪ [[P]]

where [[C]], [[P]] etc. are the graphs corresponding to the in-
dividual data structures; the combined graph is the union of
these. The individual graphs in turn are defined as follows:

• For each of the stacks, we introduce a single special
Stack-node that stands for the stack as a whole, and
Cell-nodes that stand for the stack positions. As rep-
resentatives we can use integer numbers:

Stack = {−1}
Cell = {0, . . . , n} where n is the stack size

The nodes are linked with top-, next- and value-edges
in accordance with the generated graphs. Using |C| to
denote the size of C and Ci to denote the value at
position i (where the first position is numbered 0 and
the last |C| − 1), the formal definition is:

[[C]] = (Stack ∪ Cell ∪ Instr, EC) where

EC = {(−1, top, 0)} ∪
{(i, next, i+ 1) | 0 ≤ i < |C|} ∪
{(i, value, x) | 0 ≤ i < |C|, Ci = (x, b)} ∪
{(i, tag, i) | 0 ≤ i < |C|, Ci = (x, tt)}

Note that stacks always contain a spurious Cell-node
for the sake of uniformity, so that even the empty stack
has a top-edge.

The P -stack is encoded in the same way; so is the S-
stack, except that the value-edges point to Objects,
and no tag-edges are required.

• For the store, we assume a set of nodes Object cor-
responding to the objects in dom(Σ), that is, those

42

objects that are actually allocated on the heap. We
also need auxiliary nodes to represent the object fields;
these will be encoded as pairs (o, f) where o ∈ Object

and f is a field declared for o’s type:

Var = {(o, id) | Σ(o) = (t,Fd), id ∈ dom(Fd)}
Using this set of nodes, the graph for Σ is defined by

[[Σ]] = (Class ∪ Object ∪ Ident ∪ Var, EΣ) where

EΣ = {(v, name, id) | v = (o, id)} ∪
{(o, var, v) | v = (o, id)} ∪
{(v, value, o) | v = (o′, id),Fd(o′) = o} ∪
{(o, type, t) | Σ(o) = (t,Fd)}

On the basis of these definitions, the correctness criterion
is that the following correspondence must hold between the
graph semantics and the SOS semantics:

(C, S,Σ, P) (C′, S′,Σ′, P ′)

G G′

SOS derivation

Tra

graph derivation sequence

Tra

This picture can be read top-down or bottom-up: for all
single SOS derivations, there is a corresponding sequence of
graph derivations, and for all sequences of graph derivations
between non-intermediate graphs there is a corresponding
SOS derivation — where a graph is intermediate if it is in
between of a number of graph derivations that together cor-
respond to the SOS derivation, i.e. when a SOS rule is spec-
ified using more then one graph transformation rule. The
corresponding derivations are defined as a bisimulation. We
are currently working on this final step.

6. RELATED WORK
The idea of the work reported here arose from [4], where a
full graph transformation-based semantics is given for a cus-
tom defined object-oriented language. Also based on that
work is the graph transformation-based semantics of a the
Composition Filters language mentioned in [1], which how-
ever does not include a base language semantics and can
therefore merely execute subsequent advices at a single join
point. Both models use a different run-time state represen-
tation that is more suitable for object-oriented “machines”.
As mentioned before as our correctness criterion, Douence
et al. [2] give an operational semantics of two base lan-
guages — a simple functional language and AFJ — and a
large number of features of aspect-oriented language. The
notation used is semi-formal yet mathematical and it does
not provide means for execution.

7. CONCLUSION
In this paper we have propose a graph transformation-based
semantics for a simple object-oriented language with around
advice. The specified language, Assignment Featherweight
Java, leans itself very well for studying language extensions.
We have extended this language with around advice bound
to point-cuts that select certain instructions.
We have illustrated that a graph transformation based oper-
ational semantics is a formal specification technique and can

be complete with respect to a certain reference semantics.
We have introduced a notion of correctness and illustrated
how to prove this correctness. A graph tranformation based
semantics is directly executable. This can help in finding
bugs and testing the semantics. Due to its executable na-
ture, the graph transformation-based specification has led to
the discovery of oversights in the specification that is used as
a correctness criterion; we see these errors as an unfortunate
consequence of a purely formal notation.
The executable semantics allows simulation of program writ-
ten in the specified language, if this program is represented
as a graph as described in this paper. This gives a sim-
ple view on the execution of the program, and opens the
road towards applying existing verification methods such as
analysis based on model checking.

8. REFERENCES
[1] Mehmet Aksit, Arend Rensink, and Tom Staijen. A

Graph-Transformation-Based Simulation Approach for
Analysing Aspect Interference on Shared Join Points.
In AOSD ’09: Proceedings of the 8th International
Conference on Aspect-Oriented Software Development,
Charlotteville, Virginia, USA, Charlottesville, Virginia,
USA, March 2009.

[2] Rémi Douence, Simplice Djoko Djoko, Pascal Fradet,
and Didier Le Botlan. Towards a common aspect
semantic base (casb). In Deliverable 54, AOSD-Europe,
EU Network of Excellence in AOSD, August 2006.

[3] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight java: A minimal core calculus for java
and gj. In ACM Transactions on Programming
Languages and Systems, pages 132–146, 1999.

[4] H. Kastenberg, A. G. Kleppe, and A. Rensink.
Engineering object-oriented semantics using graph
transformations. Technical Report TR-CTIT-06-12,
University of Twente, Enschede, March 2006.

[5] H. Kastenberg and A. Rensink. Model checking
dynamic states in groove. In A. Valmari, editor, Model
Checking Software (SPIN), Vienna, Austria, volume
3925 of Lecture Notes in Computer Science, pages
299–305, Berlin, 2006. Springer-Verlag.

[6] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented
programming. In ECOOP, pages 220–242, 1997.

[7] Thomas Mølhave and Lars H. Peterseny. Assignment
featherweight java: Bringing mutable state to
featherweight java. Master’s thesis, University of
Aarhus, 2005.

[8] Arend Rensink. The GROOVE simulator: A tool for
state space generation. In J. Pfalz, M. Nagl, and
B. Böhlen, editors, Applications of Graph
Transformations with Industrial Relevance (AGTIVE),
volume 3062 of Lecture Notes in Computer Science,
pages 479–485. Springer-Verlag, 2004.

[9] Grzegorz Rozenberg, editor. Handbook of Graph
Grammars and Computing by Graph Transformation,
volume I: Foundations. World Scientific, Singapore,
1997.

43

	Contents
	Preface
	Message from the Program Committee Chair
	A Type System for Functional Traversal-Based Aspects
	Modular Verification of Strongly Invasive Aspects
	Unweaving the Impact of Aspect Changes in AspectJ
	Enhancing Base-code Protection in Aspect-Oriented Programs
	A Machine-Checked Model of Safe Composition
	Demonstration: Graph-Based Specification and Simulation of Featherweight Java with Around Advice

