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Preface
Aspect-oriented programming is a paradigm in software engineering and

FOAL logos courtesy of Luca Cardelli

programming languages that promises better support for separation of concerns.
The seventh Foundations of Aspect-Oriented Languages (FOAL) workshop was
held at the Seventh International Conference on Aspect-Oriented Software De-
velopment in Brussels Beligum, on April 1, 2008. This workshop was designed
to be a forum for research in formal foundations of aspect-oriented program-
ming languages. The call for papers announced the areas of interest for FOAL
as including: semantics of aspect-oriented languages, specification and verifi-
cation for such languages, type systems, static analysis, theory of testing, the-
ory of aspect composition, and theory of aspect translation (compilation) and
rewriting. The call for papers welcomed all theoretical and foundational studies
of foundations of aspect-oriented languages.

The goals of this FOAL workshop were to:
• Make progress on the foundations of aspect-oriented programming lan-

guages.

• Exchange ideas about semantics and formal methods for aspect-oriented
programming languages.

• Foster interest within the programming language theory and types com-
munities in aspect-oriented programming languages.

• Foster interest within the formal methods community in aspect-oriented
programming and the problems of reasoning about aspect-oriented pro-
grams.

The workshop was organized by Curtis Clifton (Rose-Hulman Institute of Technology, USA), Shmuel Katz (Technion–
Israel Institute of Technology, Israel), Gary T. Leavens (University of Central Florida, USA), and Mira Mezini (Darm-
stadt University of Technology, Germany). The program committee was chaired by Curtis Clifton.

We thank the organizers of AOSD 2008 for hosting the workshop, and in particular Workshops Chairperson Mario
Sudholt for his help.
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Message from the Program Committee Chair
The seventh FOAL workshop maintains the high bar for quality set by previous instances. FOAL is one of the primary
forums for foundational work on aspect-oriented software development. As in the past, each paper was subjected to full
review by at least three reviewers. Papers co-authored by program committee members or organizers were reviewed
by four or five reviewers and were held to a higher standard. I am grateful to the program committee members for their
dedication, insightful comments, attention to detail, and the service they provided to the community and the individual
authors.

The members of the program committee were: Jonathan Aldrich (Carnegie Mellon University, USA), Lodewijk
Bergmans (University of Twente, Netherlands), Curtis Clifton (Rose-Hulman Institute of Technology, USA), William
Griswold (University of California, San Diego, USA), Günter Kniesel (University of Bonn, Germany), Shriram Krish-
namurthi (Brown University, USA), Ralf Lämmel (Universität Koblenz-Landau, Germany), Karl Lieberherr (North-
eastern University, USA), Hidehiko Masuhara (University of Tokyo, Japan), James Noble (Victoria University of
Wellington, New Zealand), Klaus Ostermann (University of Aarhus, Denmark), Hridesh Rajan (Iowa State University,
USA), and Damien Sereni (Oxford, UK). The sub-reviewers, whom I also thank, were: Bryan Chadwick, Robert Dyer,
and Therapon Skotiniotis.

I am also grateful to the authors of submitted works. Ten papers were submitted for review this year. Of these, the
program committee selected four for presentation at the workshop and publication in the proceedings. The committee
judged that a fifth paper presenting preliminary work was intriguing and invited the authors to give a short presentation.
An abstract outlining that work is also published herein.

The program was rounded out with an invited talk by William Harrison of Trinity College, Dublin, Ireland, and a
panel discussion on the state of research in AOSD. The panelists were Mehmet Aksit (University of Twente, Nether-
lands), Oege de Moor (Oxford University, UK), Gary T. Leavens (University of Central Florida, USA), Klaus Oster-
mann (University of Aarhus, Denmark). I sincerely thank them all for their dedication and service.

Finally, I would like to thank the other members of the organizing committee of FOAL—Shmuel Katz, Gary
Leavens, and Mira Mezini—for their work in guiding us toward another inspiring workshop.

Curt Clifton
FOAL ‘08 Program Chair
Rose-Hulman Institute of Technology
Terre Haute, Indiana, USA
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ABSTRACT

State-of-the-art implementations of common aspect-oriented
languages weave residual dispatching logic for advice whose
applicability cannot be determined at compile-time. But
being derived from the residue’s formula representation the
woven code often implements an evaluation strategy which
mandates redundant evaluations of atomic pointcuts. In or-
der to improve upon the average-case run-time cost, this pa-
per presents an alternative representation which enables effi-
cient residual dispatch, namely ordered binary decision dia-
grams. In particular, this representation facilitates the com-
plete elimination of redundant evaluations across all point-
cuts sharing a join point shadow.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features; D.3.4 [Programming Languages]: Proces-
sors—Code Generation, Optimization; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs

General Terms

Languages, Performance

Keywords

Advice, aspect-oriented programming, dispatch functions,
ordered binary decision diagrams, pointcuts, residual dis-
patch

1. INTRODUCTION
This paper presents an approach for optimizing dispatch

in aspect-oriented languages of the pointcut-and-advice (PA)
flavor [18]. In this flavor, of which the AspectJ language [17]
is the most prominent example, aspects encompass two kinds
of constructs: pointcuts and advice. While advice define the
actions to be performed whenever the program is in a cer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Seventh International Workshop on Foundations of Aspect-Oriented Lan-

guages (FOAL 2008), April 1, 2008, Brussels, Belgium.
Copyright 2008 ACM ISBN 978-1-60558-110-1/08/0004 ...$5.00.

tain state,1 called a join point, their associated pointcuts
define predicates on join points, thereby associating states
with the advice in question.

The pointcut language, which is an integral part of any PA
flavor language, is typically based on propositional logic or
some extension thereof. Its atomic pointcuts designate, e.g.,
a call to a specific method and are subsequently composed
by propositional operators to form more complex pointcuts.
Furthermore, they generally are parameterized; such atomic
pointcuts are satisfied if and only if the program’s state al-
lows for a satisfying parameter binding [23]. On the whole,
these constructs are the foundation more elaborate pointcut
languages based on, e.g., temporal logics can rest upon [10].

1.1 Residues and Dispatch Functions
The semantics outlined above are typically implemented

in two steps [16]: join point shadow matching and weaving.
First, the matching step identifies all parts of the program,
called join point shadows, whose execution may result in a
join point satisfying a given pointcut. Then, the weaving
step inserts code at the join point shadows performing the
actions defined by each advice. But as compilers may be un-
able to statically determine whether an atomic pointcut is
satisfied or not at a join point shadow [3], residual dispatch-
ing logic has to be woven into the program’s code. This
residue is the result of the pointcut’s partial evaluation [19].

In this setting, residual dispatch at a join point shadow
can be viewed as the evaluation of a finitary Boolean func-
tion fφ : B

n → B, where B = {0, 1}, the so-called dispatch

function [9]; whether an advice is applicable depends solely
on the prior evaluation of the n atomic pointcuts occurring
in φ, the residue in question. Residual dispatch thus bears
close resemblance to predicate dispatch [12], even though the
function’s range is restricted to two outcomes: an advice is
either applicable or not. But this restriction is not inherent
in residual dispatch; in fact, this paper extends the notion
of dispatch functions to the simultaneous evaluation of all
residues φ ∈ Φ sharing a join point shadow. The dispatch
function hence becomes fΦ : B

ñ → B
m and characterizes

the subset of advice applicable at the join point; which com-
bination of the m = |Φ| advice is executed depends on the
state of the ñ atomic pointcuts jointly occurring in Φ.

Both cases are illustrated by Figure 1, which depicts the
residual dispatching logic woven for the following two advice.

1For uniformity of presentation, events in the program’s exe-
cution, as identified, e.g., by AspectJ’s call atomic pointcut,
are treated as part of the program’s state.
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Figure 1: Two implementation schemes employing
dispatch functions for residual dispatch at a join
point shadow.

Hereby, the two associated pointcuts match the same join
point shadow but give rise to two residues, namely φ1 and
φ2, which are—in general—different, although there may of
be identical atomic pointcuts occurring in both.

before() : joinPointShadow && φ1 { advice1; }
before() : joinPointShadow && φ2 { advice2; }

The first of the above implementation schemes resorts to
two distinct dispatch functions, fφ1

and fφ2
, which is the

approach followed by current weavers, whereas the second
employs just a single dispatch function: f{φ1,φ2}. Here, in

a state x and based on the value of f{φ1,φ2}(x) ∈ B
2, some

combination of advice is executed. But although the above
suggests that the weaver generates code for each combina-
tion of advice, this need not be the case in practice (cf.
Sections 4, 5.1).

1.2 Efficient Evaluation Strategies
In either case dispatch functions open up the possibility

for redundancy-free residual dispatch. In particular, each of
the n arguments of a dispatch function fφ need not be evalu-
ated more than once. By extension, any of the ñ arguments
of fΦ, each of which may be shared by several residues, has
to be evaluated at most once. This possibility hinges on a
few assumptions on residual dispatch, though. But these as-
sumptions typically hold for PA flavor languages in general
and AspectJ in particular (cf. Section 2).

As each atomic pointcut’s evaluation incurs a certain run-
time cost, which varies depending on the kind of pointcut [3],
it is of interest to find an evaluation strategy minimizing the
overall cost of evaluation. Hereby, the average-case cost of
evaluating fΦ(x) for all states x ∈ B

ñ is most relevant to
efficient dispatch, as it determines the run-time cost incurred
in the long run. In contrast, the worst-case cost with respect
to all states merely determines an upper bound.

Yet, regardless of the precise notion of optimality em-
ployed, the problem of finding an optimal strategy is NP-

hard, as the Boolean satisfiability problem can be reduced
to it.2 Consequently, this optimization problem is usually
approached heuristically. It is, e.g., often advantageous to
evaluate those atomic pointcuts first whose evaluation in-
curs the least run-time cost. In addition to such heuristics
there is a fundamental method which ensures improvement
with respect to run-time costs: the elimination of redundant
evaluations—ideally across residues.

1.3 Contributions and Structure of this Paper
This paper presents an approach which performs complete

redundancy elimination across all pointcuts sharing a join
point shadow. It furthermore makes use of the aforemen-
tioned heuristic by incorporating an ordering based on the
cost of the atomic pointcuts’ evaluation. To enable these op-
timizations, the approach employs an alternative represen-
tation of Boolean functions, namely ordered binary decision
diagrams [8].

The remainder of this paper is organized as follows. First,
Section 2 states the assumptions made on advice dispatch
to enable the simultaneous evaluation of multiple residues.
Then, Section 3 discusses advantages and disadvantages of
the functions’ traditional formula representation. Section 4
presents ordered binary decision diagrams as an alternative
representation. Thereafter, Section 5 assesses both repre-
sentations based on implementation experience and exper-
imental results. Finally, Section 6 discusses related work,
while Section 7 concludes this paper and suggests areas for
future work.

2. ASSUMPTIONS ON ADVICE DISPATCH
The simultaneous evaluation of multiple residues is made

possible by the three assumptions on advice dispatch stated
below.

• The evaluation of an atomic pointcut is side-effect free.

• The binding of parameters is no side-effect of an atomic
pointcut’s evaluation.

• The execution of an advice does not affect the evalua-
tion of a pointcut associated with another advice.

The first and second assumption make it possible to eval-
uate the atomic pointcuts occurring in a single residue in
any order. The third assumption extends this possibility to
multiple residues. Together, these assumptions allow for a
clean separation between the residues’ evaluation on the one
hand and the advice’s execution on the other hand.

The above assumptions impose only moderate restrictions
on PA programs. In particular, they hold for most—if not
all—programs written in AspectJ. Violations of the first as-
sumption, although prohibited by neither ajc [16, 17] nor
abc [4], the two principal compilers for the AspectJ language,
are strongly advised against in the language’s Programming

Guide [2], since the order of evaluation of atomic pointcuts is
implementation-specific. The second assumption is even ac-
tively enforced by ajc as the AspectJ language disallows am-
biguous parameter bindings [23]. It should be noted, how-
ever, that abc resolves these ambiguities consistently rather

2If a non-tautological formula φ were satisfiable, i.e., if ∃x ∈
B

n.fφ(x) = 1, then at least one argument of fφ would have
to be evaluated by an optimal strategy.

2



∨
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x1 x2 x3 x1 x2 1 0

Figure 2: A formula (in DNF) and an evaluation
strategy for (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2).

than disallowing them outright [4]; here, parameter binding
becomes a side-effect of evaluation.

In contrast to the first two assumptions, which carry over
from predicate dispatch [12], the third assumption is spe-
cific to advice dispatch and may indeed be violated by legal
AspectJ programs: a pointcut associated with one advice
can observe, by means of an if atomic pointcut, some state
affected by another advice. The latter thus becomes what
is known as narrowing advice [21]; whether the former is
executed depends on the execution of the latter. But this
advice-on-advice interaction is subtle, error-prone, and pre-
sumably not often used. Still, if it is used, the weaver has
to resort to multiple dispatch functions instead of a joint
one (cf. Section 7). Although this precludes redundancy
elimination across residues, each dispatch function’s evalua-
tion strategy may still be freed from redundancies.

3. PROPOSITIONAL FORMULAS
As pointcuts are typically specified using a language akin

to propositional logic, propositional formulas are a repre-
sentation of considerable import; at the very least they will
serve as the dispatch functions’ intermediate representation.
But formulas do not, by themselves, give rise to an evalua-
tion strategy. In most programming languages their evalu-
ation is therefore governed by a set of rules. The Java Lan-
guage Specification [15], e.g., mandates left-to-right short-
circuit evaluation. In contrast, AspectJ, despite its evoca-
tive use of Java’s short-circuiting && and || operators, does
not prescribe any particular order of evaluation. But since
all atomic pointcuts are required to be side-effect free (cf.
Section 2), this is not a problem but an asset; it allows for
evaluation strategies optimized not only by reordering the
atomic pointcuts’ evaluations but also by removing redun-
dant atomic pointcuts outright.

Still, the evaluation strategies chosen by both ajc 1.5.4

and abc 1.2.1 are ultimately based on the left-to-right short-
circuit evaluation of a formula. Figure 2 exemplifies this.
The resulting strategy is hereby depicted as an if-then-else
straight-line program. By convention, the then- or 1-edges
are drawn solid, whereas the else- or 0-edges are drawn
dashed. If, e.g., the three atomic pointcuts are in state
x = (1, 1, 1)⊺ ∈ B

3, then computation proceeds along the
path 〈x1 → x2 → x3 99K x1 99K 0〉; hereby, the second
evaluation of the atomic pointcut x1, in the literal3 x1, is
redundant when it comes to computing the value f(x) = 0.

3A literal is either an atomic pointcut or its negation.

3.1 Redundancy Elimination
Both compilers do not directly derive evaluation strate-

gies from a residue; instead, the strategies chosen revolve
around a refined formula representation thereof: the original
formula φ is brought into disjunctive normal form (DNF).
Given this representation, either compiler generates code
that performs short-circuit evaluation of the normalized for-
mula. In addition, ajc makes use of the DNF representa-
tion to eliminate some redundancies by applying two laws of
Boolean algebra: idempotence and boundedness. The com-
piler furthermore performs a minor optimization by reorder-
ing the literals in each conjunct in order of increasing run-
time cost. Similarly, the conjuncts themselves are ordered.
But, as Figure 2 illustrates, being limited to a two-level for-
mula representation like DNF makes it frequently impossible
to eliminate redundant evaluations of atomic pointcuts.

Some of these can, however, be eliminated after the dis-
patching logic has been generated by the weaver for the cho-
sen evaluation strategy. Compilers which perform data-flow
analyses like common subexpression elimination [1] can, e.g.,
eliminate the second evaluation of x1 in Figure 2, which is
redundant, as on all paths leading to the corresponding ver-
tex the value of this common subexpression has already been
computed. In contrast, the second evaluation of x2 cannot
avoided, as there is a path 〈x1 99K x1 → x2〉 on which the
value of x2 has not previously been computed.

3.2 Extended Propositional Operations
As propositional formulas have traditionally been used to

represent functions fφi
: B

n → B only, AspectJ compilers
generate dispatching logic that evaluates, for i = 1, . . . , m,
one residue φi after the other. But Boolean logic allows
for a straight-forward extension to formulas which can cover
the class of functions f : B

n → B
m for arbitrary m. Using

this extension the m formulas φ1, . . . , φm can be encoded
into one. Hereby, the truth value of variables x1, . . . , xn is
the same across all component formulas, i.e., each variable
x1, . . . , xn still evaluates to either ⊥ = (0, . . . , 0)⊺ ∈ B

m

or ⊤ = (1, . . . , 1)⊺ ∈ B
m. The propositional operators, how-

ever, are extended to operate component-wise on B
m. To fa-

cilitate projections onto a single component the extension is
also enriched by m constants e1, . . . , em evaluating to truth
values other than ⊥ and ⊤, namely to the Boolean atoms
(1, 0, . . . , 0)⊺ , . . . , (0, . . . , 0, 1)⊺ ∈ B

m. Disjunctions thereof
thus cover the entire range of B

m.
Considering the above extension, let there be m residues,

represented by formulas φ1, . . . , φm whose signatures jointly
encompass the variables x1, . . . , xn satisfiable at a single join
point shadow. Then the joint dispatch function fΦ : B

n →
B

m, or rather a formula representation thereof, is given by∨m

i=1
ei ∧ φi. Conceptually, each residue φi is first evalu-

ated separately. The result is then projected onto the i-
th component, before all intermediate results are combined
by means of disjunction. This is exemplified by Figure 3,
which depicts such an extended formula with its constants
distributed downwards to the level of literals. For a state
x = (0, 0, 0, 0)⊺ ∈ B

4, e.g., the subformula on the left evalu-
ates to (0, 0)⊺ whereas the subformula on the right evaluates
to (0, 1)⊺ , which consequently is the value of fΦ(x).

Unfortunately, this extended representation does not al-
low for short-circuit evaluation; while for a range of B the use
of if-then-else instructions was sufficient for implementing
evaluation strategies, code generated for the extended range

3



e1 ∧ φ1

e2 ∧ φ2

∨

∨
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e1 ∧ x1

e1 ∧ x2

e1 ∧ x3

e1 ∧ x1

e1 ∧ x2

e2 ∧ x2

e2 ∧ x4

Figure 3: An extended formula, together with its
two component formulas φ1 = (x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2)
and φ2 = x2 ∧ x4.

of B
m needs to evaluate the actual conjunctions and dis-

junctions. Nevertheless, propositional formulas are a useful
representation. Not only are they the representation point-
cuts are typically specified in, but they also allow for an el-
egant description of a pointcut’s addition or removal: given
an extended formula representation, the addition of another
advice and its associated pointcut φm+1 can be described
simply in terms of disjunction. Similarly, their removal can
be described in terms of conjunction and negation.

4. BINARY DECISION DIAGRAMS
Like formulas, binary decision diagrams (BDDs) are a nat-

ural representation of Boolean functions with a long history.
But unlike the former, the latter make evaluation strate-
gies explicit. They are thus of particular interest when such
strategies are sought, as is the case when optimizing residual
dispatch. Informally, a BDD is a rooted, directed, acyclic
graph (DAG) built up from two kinds of vertices: splits and
sinks. Hereby, all splits are labeled with variables x1, . . . , xn

and have two outbound edges, labeled 0 and 1, respectively.
Similarly, the sinks are labeled with values from a set B

m

but do not have outbound edges.
Of the several equivalent definitions of a BDD’s seman-

tics [24], one closely reflects the intuition of a control-flow
from source to sink: given a state x ∈ B

n, computation be-
gins at the root or source of the BDD G. At a vertex labeled
xi it then proceeds along the low or 0-edge if xi = 0 and
along the high or 1-edge otherwise. It finally stops, when a
sink is reached; fG(x) ∈ B

m is the value this sink is labeled
with. This top-down approach to evaluation immediately
gives rise to an evaluation strategy. Code generation is also
straight-forward. Figure 4 exemplifies this by depicting such
a strategy and thus the BDD itself as an if-then-else straight-
line program. Note in particular that this BDD is decision

equivalent to the extended formula of Figure 3; it represents
the same function f : B

4 → B
2, i.e., for every state x ∈ B

4

evaluation of either representation results in the same value
f(x). But, as exposed by the BDD representation, φ1 and
φ2 cannot be satisfied simultaneously, i.e., f(x) 6= (1, 1)⊺ ; if
code is generated for each combination of advice (cf. Section
1.2), then this fact may be exploited to avoid code genera-
tion for all combinations of advice.

x1

x2

x2

x3

x4

00

01

10

Figure 4: A BDD representation decision equivalent
to the extended formula of Figure 3.

4.1 Redundancy Elimination
Since a BDD representation corresponds to an evaluation

strategy, redundant evaluations of atomic pointcuts can be
characterized by a simple syntactic property: the existence
of paths from source to sink on which more than one split is
labeled with the same variable or, equivalently, the existence
of paths which are not taken for any state x [24]; BDDs
without such inconsistent paths are called free or read-once.

While the read-once property is generally desirable, the
conversion from unconstrained BDDs to free ones can cause
an exponential blow-up in terms of size [24]. This blow-up
is, however, in general no worse than that which a formula’s
conversion to either CNF or DNF can cause. Still, there are
functions which allow for a polynomial-size normal form but
which require a free BDD (FBDD) whose size is exponential
in the number of variables [6]. But this is also true vice
versa. Thus, the representational power of FBDDs, DNFs,
and CNFs is only comparable on a case by case basis; neither
representation is smaller for all functions.

Yet, there is one assumption one can reasonably make
about the functions encountered during residual dispatch:
they stem from a small and structured formula represen-
tation. This is because these formulas correspond to the
pointcuts as written. It is hence reasonable to restrict the
discussion to those formulas which are likely to form a point-
cut in real-world programs. But this set of small, structured
formulas is difficult to characterize. Nevertheless, such a
characterization will be attempted in Section 5.2.

4.2 Propositional Operations
Given two (free) BDDs G and H, the problem of com-

puting their conjunction or disjunction, a task known as
synthesis, is NP-hard. (Negation, however, can trivially be
applied by negating the value of all sinks.) Thus, a variety
of syntactic constraints has been imposed on BDDs in order
to facilitate efficient synthesis [22, 14]. The most prominent
constraint [8] gives rise to a subclass of BDDs known as
ordered binary decision diagrams (OBDDs): on each path
from source to sink the variables are required to occur in the
same order π. The OBDD shown in Figure 4, e.g., is a π-
ordered representation of the extended formula of Figure 3,
where π = 〈x1, x2, x3, x4〉.

Obviously, every OBDD is free and hence gives rise to
a redundancy-free evaluation strategy. The converse, how-
ever, is false; thus, the representational power of OBDDs is
strictly smaller than that of FBDDs—although not smaller
than that of either CNF or DNF (cf. Section 4.1). Nev-
ertheless, OBDDs are of particular interest when dispatch
functions are to be represented. In this setting, being con-
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Figure 5: The deletion rule and the merging rule.

strained to a fixed variable ordering π is only a moderate
impediment. In fact, ordering the atomic pointcuts simply
in the order of increasing run-time cost is a heuristic which
performs well in experiments (cf. Section 5.2).

Provided that both operands are π-ordered, there exists
an efficient algorithm for computing the disjunction or con-
junction of two OBDDs G and H [8]; employing memoiza-
tion, synthesis is performed in O(|G||H|). While originally
devised for OBDD representations of functions f : B

n → B,
the algorithm can easily be adapted to sinks labeled with
values from the larger set B

m. It can furthermore be mod-
ified such that the result of each step is reduced, i.e., the
number of vertices is minimized [7]. This is done by repeat-
edly applying the two reduction rules shown in Figure 5.
Applying these rules during each synthesis step is desirable
not only because it keeps intermediate results small, but also
because it minimizes the size of the final OBDD.

5. ASSESSMENT
When assessing the utility of OBDD-based dispatch func-

tions, two questions have to be answered: whether dispatch
functions can be easily integrated with a compiler or an
aspect-aware execution environment and whether an OBDD
representation thereof can improve upon the average-case
run-time cost of residual dispatch.

5.1 Implementation Experience
OBDD-based dispatch functions were implemented and

integrated with an experimental execution environment for
PA flavor languages developed as part of the Aspect Lan-
guage Implementation Architecture project [5];4 they sup-
planted the previous, DNF-based residual dispatching logic.
Furthermore, dispatch functions were incorporated into the
framework the environment builds on, with the abstraction

4The implementation is available to the public:
http://www.st.informatik.tu-darmstadt.de/static/
pages/projects/ALIA/alia.html.

completely hiding the chosen representation; whether the
functions are represented by means of formulas, OBDDs, or
even a combination thereof is immaterial to the framework
itself. Only when the residual dispatching logic needs to be
woven by an instantiation of the framework, e.g., a compiler
or an execution environment, the functions’ concrete rep-
resentations have to be considered. The weaving approach
which the default instantiation hereby follows avoids gener-
ating code for each combination of advice. Instead, it com-
putes the joint dispatch function’s value and, based on this,
dispatches the applicable advice one after the other.

Overall, the changes required by the integration to both
the framework and its instantiation were minimal. This fact
can serve as indication that the notion of dispatch functions
is a natural one. Deployment and undeployment of aspects
in particular were found to be easily implementable in terms
of the extended propositional operations (cf. Section 3.2).

5.2 Experimental Results
Traditionally, the complexity theory of Boolean functions

has considered the class of functions f : B
n → B only. Con-

sequently, any representation’s expressiveness has been as-
sessed primarily with respect to this class. When a rep-
resentation suitable for residual dispatch has to be chosen,
however, this assessment is of limited usefulness as all dis-
patch functions ultimately stem from pointcuts and their
respective residues. Thus, an attempt was made to char-
acterize the formulas likely to form residues in real-world
programs: these non-trivial but simple formulas are those
which are not decision equivalent to either ⊥ or ⊤ and can-
not be simplified by applying the laws of idempotence and
boundedness.

Although there are, e.g., 22
5

= 4, 294, 967, 296 Boolean
functions in five arguments, there are only about 118 million
non-trivial, simple formulas of signature 〈x1, . . . , x5〉 with up
to six propositional operators; this set, which contains, e.g.,
the formula of Figure 2, is at the same time large enough
to encompass most residues encountered in practice but also
small enough to experiment with. It should be noted, how-
ever, that it contains various decision equivalent formulas.
During the course of the experiments these were treated as
distinct, for they may give rise to distinct evaluation strate-
gies. The cost incurred by evaluating each of the five atomic
pointcuts was assumed to be 1.0, 1.5, 2.0, 2.5, and 3.0, re-
spectively, which reflects the range of relative costs observed
for common atomic pointcuts like this and cflow.

Figure 6 charts the average-case costs of evaluation strate-
gies derived from the original formulas and their DNF coun-
terparts, respectively. Each data point hereby corresponds
to numerous pairs of formula and DNF; its shade indicates
how many representations give rise to a particular combina-
tion of average-case costs. While there are formulas whose
DNF representation is considerably larger and thus incurs
higher cost of evaluation, it is noteworthy that there are nu-
merous formulas which benefit from conversion to this rep-
resentation. The figure depicts these cases as data points
above and below the bisector, respectively.

The aforementioned result is due to two causes: first, con-
version allows for simplification to be applied twice; the laws
of idempotence and boundedness were employed once be-
fore and once after conversion to DNF. Second, literals and
conjuncts were reordered according to the run-time costs
incurred by their evaluation. These two optimizations are
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Figure 6: The average-case costs of evaluation
strategies derived from formulas and their DNF.

precisely those used by ajc (cf. Section 3.1) and here have
been proven effective; the evaluation cost averaged over all
simple formulas considered is 4.398 for DNF representations,
whereas their left-to-right short-circuit evaluation results in
an average cost of 4.603.

In contrast to this marginal difference OBDD represen-
tations offer significant improvements over either formula-
based representation. These improvements are only partly
owed to the redundancy-free nature of OBDDs; the vari-
able ordering chosen is also important, as illustrated by Fig-
ure 7. One of the variable ordering heuristics applied here,
the so-called depth-first search (DFS) heuristic [13], derives
an ordering from a depth-first traversal of the original for-
mula. The second heuristic applied, the cost-only heuristic,
derives an ordering from the costs incurred by the variables’
evaluation. While the former heuristic ignores the atomic
pointcuts’ cost, the latter ignores the residue’s structure.
Both are straight-forward, but when the average-case cost
of evaluation strategies is the primary concern, the cost-only
heuristic was found to be superior to the DFS heuristic.

For 47.6% of the formulas considered, the cost-only heuris-
tic gives rise to a strategy with average-case cost superior
to that derived using the DFS heuristic. The latter heuris-
tic is superior in only 18.2% of the cases. But with 3.438
and 3.721, respectively, the evaluation costs averaged over
all formulas in either case are lower than that of the two
formula-based representations.

6. RELATED WORK
Dispatch functions of the form h : B

n → {1, . . . , m} play
an important role in predicate dispatch [12] and bear a close
resemblance to the functions employed during advice dis-
patch [20]; in this setting, the n atomic predicates deter-
mine which of the m methods is ultimately executed. When
the dispatch function is viewed as a composition h = g ◦ f ,
with f : B

n → B
m and g : B

m → {1, . . . , m}, this resem-
blance is most prominent. Hereby f characterizes applicabil-
ity, whereas g determines the overriding relationship. This
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Figure 7: The average-case costs of evaluation
strategies derived from OBDDs ordered with re-
spect to two straight-forward heuristics.

decomposition is particularly advantageous if, as suggested
by the present paper, an OBDD representation is used for
the former function. First, a representation of f is synthe-
sized by applying the extended propositional operations (cf.
Sections 3.2, 4.2). Then the sinks are relabeled according to
g. Finally, subsequent applications of the reduction rules (cf.
Figure 5) yield the reduced OBDD representing h.

Decision diagrams have been employed, under the name of
lookup DAGs, for the efficient implementation of both multi-
ple and predicate dispatch [9]. But these decision diagrams
are not necessarily binary; this complicates synthesis. For
residual dispatch, however, this complication is unnecessary
as atomic pointcuts are propositional in nature. Construc-
tion of lookup DAGs is further complicated by the fact that
the synthesis algorithm requires a canonical formula repre-
sentation, namely DNF, to be used. In some cases, this can
cause an exponential blow-up of intermediate results even
though the size of the final result is moderate. Also, as the
range of f is specified with respect to the DNFs’ conjuncts
instead of the m predicates themselves, this view prevents
the straight-forward but elegant description of the addition
or removal of predicates in terms of propositional opera-
tions (cf. Section 3.2). This paper therefore links the work
on lookup DAGs with the theory of Boolean functions in
general and that of BDDs in particular [24].

7. CONCLUSIONS AND FUTURE WORK
This paper has shown that, under three assumptions which

typically hold for PA flavor languages, the average-case run-
time cost incurred by residual dispatch can be improved
upon by applying two optimizations. The first and fore-
most of these, namely the complete redundancy elimination
across multiple residues, is facilitated by an alternative rep-
resentation of the dispatch function in question: OBDDs.
This representation does also allow for a straight-forward
implementation of the second optimization, namely the re-
ordering of atomic pointcuts in order of increasing cost. Fur-
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thermore, as OBDDs are, like formulas, a representation of
dispatch functions, they, too, allow for an elegant descrip-
tion of aspect deployment and undeployment.

It should be noted, however, that, strictly speaking, only
point-in-time semantics [11] allow for the one-to-one corre-
spondence between dispatch functions and join point shad-
ows this paper so far has alluded to. Yet, dispatch func-
tions can be used to good effect with AspectJ’s region-in-
time semantics [17] as well. They merely necessitate a sep-
arate treatment of after returning and after throwing
advice. This is necessary, since in either case a parame-
ter may be bound which is unavailable at the beginning of
the join point’s region-in-time. A straight-forward solution
would require two dispatch functions, which handle the be-
ginning of the join point’s region-in-time and the end of the
join point’s region-in-time, respectively. Using several dis-
patch functions may also be advantageous in the presence
of around advice which do not proceed. While such an
advice may preclude the execution of other advice and is
therefore narrowing, it leaves their pointcuts’ satisfiability
unaffected and hence does not violate the assumptions of
Section 2. The precise workings of this scheme are, how-
ever, an area for future work.

Other areas for future work include methods which ex-
ploit static information, e.g., the fact that args(Integer)
implies args(Number) or which perform profile-guided op-
timizations whose notion of optimality is based not on the
average- but on the expected-case cost. In these areas, how-
ever, experiments require a detailed model of both the inter-
dependencies of atomic pointcuts and the probability distri-
bution underlying the set of states; such a model does not
yet exist.
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ABSTRACT
Aspect Oriented Programming (AOP) has significant poten-
tial to separate functionality and cross-cutting concerns. In
particular, AOP supports an incremental development pro-
cess, in which the expected functionality is provided by a
baseline program, that is successively refined, possibly by
third parties, with aspects that improve non-functional con-
cerns, such as efficiency and security. Therefore, AOP is a
natural enabler for Proof Carrying Code (PCC) scenarios.

The purpose of this article is to explore a PCC architec-
ture that accommodates an incremental development pro-
cess. We extend our earlier work on certificate translation,
and show in the context of a very simple AOP language
that it is possible to generate certificates of executable code
from proofs of aspect-oriented programs. To achieve this
goal, we introduce a notion of specification-preserving ad-
vice, and provide a verification method for programs with
specification-preserving advices.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Logics of programs

General Terms
Languages, Verification, Security

Keywords
AOP, Proof-carrying Code, Program Verification

1. INTRODUCTION
While reliability and security of executable code is an

important concern, many program verification tools target
high-level languages, and thus do not address the concerns of
the code consumers, who require verification procedures that
can be run on executable code and that dispense them from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Seventh International Workshop on Foundations of Aspect-Oriented Lan-
guages (FOAL 2008), April 1, 2008, Brussels, Belgium.
Copyright 2008 ACM ISBN 978-1-60558-110-1/08/0004 ...$5.00.

trusting code producers (that are potentially malicious), net-
works (that may be controlled by an attacker), and compilers
(that may be buggy).

In a Proof Carrying Code (PCC) [20, 19] architecture, a
certifying compiler returns, in addition to executable code,
program annotations, which specify program invariants tai-
lored to the desired policy, and a checkable proof, a.k.a. cer-
tificate, that the code is compliant to the policy. Through
its associated verification mechanisms for executable code,
PCC addresses the security concerns for mobile code. Nev-
ertheless, current instances of certifying compilers mostly
focus on basic safety policies and do not take advantage of
the existing methods for verifying source code.

In order to overcome the limitations of certifying compil-
ers, earlier work [6, 5, 7, 18] has considered expressive verifi-
cation methods for executable code and established their
adequacy with respect to verification methods for source
programs. In particular, Burdy and Pavlova [7] have de-
veloped a proof compiler for Java, that enables certificates
of Java bytecode programs to be constructed from source
code verification with JML-based tools such as ESC/Java
and Jack.

Proof compilation is an important step towards support-
ing expressive policies since proof compilers allow certificate
generation to rely on widely used verification environments,
and thus enables to address expressive policies (at the cost
of interactive verification). Nevertheless, proof compilation
currently targets Java programs and does not provide sup-
port for advanced programming idioms such as aspects.

Contributions. The main contribution of this work is to
study proof compilation for a very simple AOP language.

In order to realize proof compilation, we introduce the
notion of specification-preserving advice. Informally, an ad-
vice a is specification-preserving for an annotated piece of
code {Φ}c{Ψ}, where Φ and Ψ respectively denote the pre
and postcondition for c, if the advised code a.c satisfies the
same specification, i.e. {Φ}a.c{Ψ}. Specification-preserving
advices are natural in the context of PCC with intermedi-
aries, since many aspects related to security (resource man-
agement, logging, etc.) and efficiency (e.g. cached func-
tions, optimized code,etc.) fall in this category. Moreover,
specification-preserving advices support “separate verifica-
tion” (as coined by [16]) and allow intermediaries to treat
correctness proofs of the baseline code as black-boxes.

In summary, the contributions of this article are:

• the definition of the class of specification-preserving
advices that support modular reasoning, and a mild
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generalization of the classification of specification-preserving
advices to sequences of advices;

• the relationship between specification-preserving ad-
vices and harmless advices [11], which are required
to verify the stronger property of preserving the se-
mantics of advised code, except for the possibility of
modifying the termination behavior. Inspired by this
relationship, we provide a simple static analysis that
ensures that advices are specification-preserving;

• an algorithm that takes as input an AOP program p
and a certificate c of its correctness, and returns a cer-
tificate for the compiled program JpK.

• a mild generalization of the classification of specification-
preserving advices to sequences of advices.

2. A BASIC MOTIVATING EXAMPLE
Consider the program p with a procedure main and an-

other procedure twice advised unconditionally by a:

main(x) = y := twice(x); z := y + x; return z
twice(x) = return (x + x)

a(x) = x := 0; z := proceed(x); return z

The correctness of the program is established w.r.t. a spec-
ification table Γ that associates to each procedure a triple
consisting of a precondition, a postcondition, and a modifies
clause that states which variables are modified. We choose
the obvious specifications for main and twice, i.e.

Γ(main) = (true, res = x? + x? + x?, ∅)
Γ(twice) = (true, res = x? + x?, ∅)

(We consider that the variables y and z are local variables,
and thus are not declared in the modified clauses).

One can generate for each procedure a verification condi-
tion that guarantees, in a traditional setting, that the pro-
cedure meets its specification. Both verification conditions
hold obviously. Nevertheless all terminating executions of
the program will simply return the value given as input,
and thus the postcondition will not be satisfied if main is
called with an input distinct from 0. In this case, the prob-
lem is caused by the fact that a forces twice to be executed
with input 0. In other words, a is not parameter-preserving,
i.e. causes f to be called with an input different from the
one that is declared in the program.

A similar problem shall occur if an advice modifies a global
variable that is otherwise unmodified by the procedures it
advises. More generally, advices should, in addition to be
parameter-preserving, preserve specifications. Consider the
modified advice a(x):

(if x = 0 then z := proceed(x) else z := 0); return z

As in the previous case, the postcondition will not be sat-
isfied if main is called with an input distinct from 0. The
problem is caused by the fact that a is not specification-
preserving. Indeed, consider the function â derived from a
by replacing the proceed statement by a call to f :

â(x) = (if x = 0 then z := twice(x) else z := 0);
return z

One cannot prove that the procedure â satisfies the speci-
fication of twice, since the proof obligation for â with the

Commands c ::= v:=e | c; c | v:=f(e)
| v:= proceed(e)
| if b then c else c
| while b do c
| skip | return e

Procedures proc ::= f arg∗ cb

Point-cut descriptors ptd ::= if b around f
Advices advice ::= ptd+ a arg∗ ca

Programs Prog ::= proc∗ advice∗

Figure 1: Syntax of SAL programs

same pre and postcondition as twice is logically equivalent
to x = 0 ⇒ x + x = x + x ∧ x 6= 0 ⇒ 0 = x + x which does
not hold.

Now consider instead the correct advice a(x):

(if x 6= 0 then z := proceed(x) else z := 0); return z

The function â(x) derived from a(x) by replacing the pro-
ceed statement by a call to f :

(if x 6= 0 then z := twice(x) else z := 0); return z

is specification-preserving, since the proof obligation for â
with with the same pre and postcondition as twice is logically
equivalent to

x 6= 0 ⇒ x + x = x + x ∧ x = 0 ⇒ 0 = x + x

and it is thus valid. Note that the proof obligations for â
relies on the specification of twice, but not on its code.

3. A SIMPLE AOP LANGUAGE
This section introduces SAL, a simple procedural language

with aspects. For simplicity, SAL is restricted to around
advices, to point-cuts at procedure calls, and to point-cut
descriptors that do not refer to the control-flow graph.

3.1 Syntax
The syntax of commands can be found in Figure 1, where

v ranges over the sets V of local variables and X of global
variables, arg ranges over local variables, f ranges over the
set F of procedure names, and a ranges over the set A of
advice names. A baseline command is a command that does
not contain any proceed command. We let cb and ca range
respectively over baseline and advice commands.

Point-cut descriptors are of the form if b around f , where
b is a boolean condition and f is a procedure name. Then,
each procedure is composed of an identifier, its formal pa-
rameters and a command that represents its body. Each
advice is composed of an identifier from a set A of advice
names, a non-empty set of point-cut descriptors, its formal
parameters, and an extended command that represents its
body. A program is a given by a set of procedures with a
distinguished main procedure and a set of advices.

3.2 Semantics
Advice weaving, which enables aspects to influence the ex-

ecution of programs at designated program points and under
certain conditions, is the fundamental mechanism that de-
termines the semantics of AOP programs. Thus, the essence
of SAL programs is captured by the transition rules for the
commands call and proceed, which are described informally
below. For simplicity, we restrict our attention to procedures
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Logical expressions ē ::= res | x? | x | c | ē op ē
Propositions φ ::= ē cmp ē | ¬φ | φ ∧ φ

| φ ∨ φ | φ ⇒ φ | . . .

Figure 2: Specification language

and advices with a single formal parameter. The semantics
of all remaining constructs is defined in the usual way.

Upon reaching a call statement of the form v:=f(e), one
checks in the order prescribed by the declaration of advices
whether the guard of a point-cut descriptor for f is satisfied.
If there is no point-cut descriptor for f such that the guard
is satisfied, then one starts a new execution frame, initializes
the local variable par with the value of e, and executes the
body of f ; otherwise, if a is the first advice for f whose guard
is satisfied, then one starts a new execution frame, initializes
the local variable par with the value of e, and executes the
body of a.

Upon reaching a statement of the form v:= proceed(e),
one must examine the call stack to determine the current
procedure, say f , and the current advice, say a. Then one
checks for all advices that occur after a in the declaration
of advices whether the guard of a point-cut descriptor for
f is satisfied. If there is no point-cut descriptor for f such
that the guard is satisfied, then one starts a new execution
frame, initializes the local variable par with the value of
e, and executes the body of f ; otherwise, if a′ is the first
advice for f whose guard is satisfied, then one starts a new
execution frame, initializes the local variable par with the
value of e, and executes the body of a′.

Under such a semantics, the body of f will not be exe-
cuted whenever a procedure call to f , say v:=f(e), triggers
an advice that does not contain any proceed statement, or
contains a proceed statement that is not reached during ex-
ecution. Furthermore, if an advice contains two or more
proceed statements, then execution will stop upon reaching
the second proceed statement.

Formally, the semantics of advice weaving is defined by
compilation to an intermediate language SBL, defined in
Section 6. For the purpose of the next sections, it is suf-
ficient to know that the semantics of SAL programs can be
modeled by judgments of the form p, µ ⇓ v, ν which read:
the execution of program p with initial memory µ terminates
with final memory ν and returns value v.

4. VERIFICATION OF BASELINE CODE
In this section, we focus on baseline programs, i.e. pro-

grams without advices, and introduce for such programs a
verification method based on the idea of contract. There-
fore, each procedure is specified in terms of a precondition,
which captures the situations under which the procedure can
be called, and a postcondition, which establishes a relation-
ship between the inputs and outputs of the procedure, and
a frame condition that specifies which variables are modified
during the execution of f , and that is used by the verification
condition generator to improve its context-sensitivity.

The set of propositions is defined in Figure 2, where x? is
a special, so-called starred, variable representing the initial
value of the variable x, and res is a special value representing
the final value of the evaluation of the program. Program
specifications rely on particular classes of propositions:

• preconditions, which refer to the formal parameters of
the function and global variables but do not refer to
starred variables (since redundant at an initial state),
nor the result (special variable res);

• postconditions, which refers to the formal parameters,
and the initial and current state of global variables
(respectively with starred and standard variables);

• loop invariants, which do not refer to the return value
(i.e. the special variable res).

Each precondition Φ yields a predicate over states, denoted
µ |= Φ for a state µ, whereas a postcondition Ψ yields a
ternary relation over an initial state, a final state, and a
result, denoted µ, ν, v |= Ψ for the states µ and ν and the
value v. Likewise, invariants yield binary relations over an
initial and a current state.

In order to reason effectively about programs, we assume
that each procedure is annotated, i.e. that all while loops in
its body carries an invariant (we use whileI(b){s} to denote
the loop whileI(b){s} annotated with invariant I), and that
we dispose of a specification table Γ that associates to each
procedure f a triple (Φ, Ψ,W) where Φ is a precondition, Ψ
is a postcondition, and W is a modifies clause that declares
all variables that are modified during the execution of f .
Furthermore, we let VΓ be the set of variables that appear
in the specification of baseline procedures.

It may be argued that the specification overhead can make
the approach impractical. However, that depends strictly on
the complexity of the properties we intend to specify. In a
practical implementation, we can consider as specification
the result of a static analysis represented in terms of logical
formulae. In that case the specification overhead is reduced
while the results presented in this paper are still applicable.

Given a specification table Γ, one can compute for each an-
notated procedure f a set POΓ(f) of verification conditions.
The verification conditions are defined using an extended
predicate transformer vcg, which takes as input a baseline
command c and a postcondition Ψ, and returns a precondi-
tion Φ and a set of proof obligations ∆f . Formally, the set
POΓ(f) is defined as ∆f∪{Φ ⇒ Φ′[y/y? ]}, where ϕ[e/x] stands
for the substitution of the expression e for the free occur-
rences of variable x in the logic formula ϕ, Γ(f) = (Φ, Ψ,W),
y stands for every variable in VΓ and vcg(c, Ψ) = (Φ′, ∆f ),
where c is the body of f . We say that a procedure is valid if
all its proof obligations are valid formulae, and that a pro-
gram is valid if all its procedures are. The formal definition
of vcg is given in Figure 3.

For the verification method to be sound, we must also
check the correctness of the modifies clause. Even though we
can propose a logic to verify this frame condition, we assume
a sound but incomplete automatic analysis that checks its
correctness.

The weakest precondition calculus is sound in the sense
that if a program p is valid w.r.t. a specification table Γ with
a main procedure specified by (Φ, Ψ), then all executions of
p initiated with a memory µ satisfying Φ will terminate with
a final memory ν and value v such that (µ, ν, v) satisfy Ψ.

Lemma 1 (Soundness). Let p be a baseline program
over a set F of procedures. Let Γ be a specification table
for p and let Γ(main) = (Φ, Ψ,W). Assume that p is valid
w.r.t. Γ. Then, if p, µ ⇓ v, ν and µ |= Φ, then µ, ν, v |= Ψ.
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let Γ(f)=(Φ, Ψ,W) in

vcg(skip, ϕ) = (ϕ, ∅)
vcg(x:=e, ϕ) = (ϕ[e/x], ∅)
vcg(c1;c2, ϕ) = let (ϕ2, S2)=vcg(c2, ϕ) in let (ϕ1, S1)=vcg(c1, ϕ2) in(ϕ1, S1 ∪ S2)

vcg(return e, ϕ) = (ϕ[e/res], ∅)
vcg(if b then c1 else c2, ϕ) = let (ϕ1, S1)=vcg(c1, ϕ) in let (ϕ2, S2)=vcg(c2, ϕ) in(b⇒ϕ1 ∧ ¬b⇒ϕ2, S1 ∪ S2)

vcg(while b {Inv} do c, ϕ) = let (ϕ′, S)=vcg(c, Inv) in(Inv, {Inv⇒(b⇒ϕ′ ∧ ¬b⇒ϕ)} ∪ S)

vcg(x:=f(e), ϕ) = Φ[e/inf ] ∧ (∀W′,res.Ψ[e/inf ][W
′
/W ][W/W? ]⇒ϕ[res/x][W

′
/W ], ∅)

vcgf (x:= proceed(e), ϕ) = Φ[e/inf ] ∧ (∀W′,res.Ψ[e/inf ][W
′
/W ][W/W? ]⇒ϕ[res/x][W

′
/W ], ∅)

Figure 3: Weakest Precondition Function

In the setting of PCC, we require that proof obligations are
certified, i.e. that programs come equipped with indepen-
dently checkable proofs of their validity. For the purpose of
our work, we do not need to commit to any particular for-
mat for certificate, nor do we need to specify an algorithm
to check certificates. Instead, we rely on an abstract notion
of certificate. Finally, we define a certified program as one
whose functions are certified, i.e. carry valid certificates for
the proof obligations attached to them. Formally, let p be an
annotated baseline program and Γ be a specification table.
Then, a certificate for the program p w.r.t. Γ is an indexed
set of certificates (cδ)δ∈POΓ(f),f∈F such that cδ :` δ for all
δ belonging to POΓ(f) and for all procedures f . If such a
certificate exists, we say that p is certified w.r.t. Γ.

If a program p is certified w.r.t. a specification table Γ,
then it is obviously valid w.r.t. Γ.

5. VERIFYING AOP PROGRAMS
As illustrated by the examples of Section 2, soundness

fails for programs with advice, as expected since verification
condition generation is oblivious to aspects. The purpose of
this section is to define a method to verify SAL programs; the
verification method is based on the notion of specification-
preserving advice, which is introduced formally below.

Throughout this section, we consider a program p in which
all procedures are annotated, i.e. have loop invariants, and
specified in a table Γ.

5.1 Specification-preserving advices
In order to reason about advices, we extend the verifica-

tion condition generator to proceed statements. The exten-
sion is parametrized by the name of the advised function,
and the proceed statement is interpreted as a call to this
function; see Figure 3. Note that when reasoning about an
advice a, in order for the verification condition generator
to be effective we need one set of loop invariants for each
procedure f that a is advising.

Definition 1. An advice a with guard b preserves the
specification of method f w.r.t. Γ if it satisfies the specifica-
tion (b∧Φ, Ψ,W ′) where Γ(f)=(Φ, Ψ,W), and W ′∩VΓ⊆W.

The condition W ′ ∩ VΓ ⊆ W states that the advice a only
modifies in W, unless they do not appear originally on the
specification of the baseline program. We let POΓ,f (a) stand
for the set of proof obligations required to prove that the
advice a is specification-preserving w.r.t. f and Γ. Formally,
if Γ(f) = (Φ, Ψ,W) and c is the body of a, the set POΓ,f is
defined as ∆a,f ∪ {Φ⇒ φ[y/y? ]} where (φ, δa,f ) = vcg(c, Ψ)
and y? stands for every starred variable in φ.

If all advices are specification-preserving, then baseline
program verification is sound. To state this result, one first

extends the notion of valid advice, and valid program. Let
(p, Γ) be an annotated program. We say that an advice a
is valid if for all procedures f that it advises, the set of
proof obligations POΓ,f (a) is valid. Then, we say that the
program p is valid if all its procedures and all its advices are
valid.

We can now state soundness of the verification method in
the presence of advice weaving.

Lemma 2 (Soundness). Let (p, Γ) be a valid annotated
program. Then, if p, µ ⇓ v, ν and µ |= Φ, then µ, ν, v |= Ψ.

One can extend the notion of certified baseline program to
programs with specification-preserving advices, by requiring
that programs come equipped with a certificate that advices
are specification-preserving.

Remark. We can extend the scope of this paper to a
language with a richer set of point-cut descriptors, for in-
stance to point-cut descriptors that refer to the control-flow
graph. To this end, as an alternative to reasoning about the
control-flow graph or the call-stack in our logic, we propose
a stronger definition of specification preserving advices. An
advice a is specification-preserving w.r.t. f and Γ if it sat-
isfies the specification (Φ, Ψ,W ′) where Γ(f) = (Φ, Ψ,W),
and W ′ ∩VΓ ⊆ W. Notice that, in contrast to previous def-
inition, the guard b does not appear in the precondition of
a.

5.2 Example
To illustrate the approach with a running example we as-

sume an extended program syntax. Consider a procedure
g

.
= slowRetrieve of a SAL program p, that returns the

value stored in a slow access memory. That is, given as pa-
rameter the integer Address i, the procedure g returns the
value mem[i], where mem is a global array variable, if i is
within the accessible range.

Since we plan to improve the efficiency of the procedure g,
we consider two auxiliary global array variables available

and cache and the SAL procedures f1
.
= updateCache and

f2
.
= isAvailable. Let φ stand for the consistency of the

cache variable with respect to the array availability, i.e.
φ

.
= ∀i.(available[i]⇒ cache[i] = mem[i]) . For simplicity,

we assume that global variables available and cache are
only accessible by these procedures.

Consider a specification table Γ such that Γ(g) = (Φ, Ψ,W)
where Φ

.
= 0 ≤ i < N ∧φ, Ψ

.
= res = mem[i]∧φ and W = ∅.

Similarly, we specify procedures f1 and f2 with their re-
spective pre and postconditions:

Φ1
.
= Φ

Ψ1
.
= cache = cache?[i 7→ v] ∧ φ

Φ2
.
= 0 ≤ i < N

Ψ2
.
= res = available[i]
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Consider the introduction of an advice a
.
= fastRetrieve

that improves the store access time by taking advantage of
the array variables available and cache and the procedures
f1 and f2. This advice replaces the functionality of method g
by receiving as parameter the store address i and returning
the cached value if available or, otherwise, by permitting the
original function g to continue:

around slowRetrieve(Address i) fastRetrieve {
b:= isAvailable(i);
if b

return cache[i]
else

v:=proceed(i);
updateCache(i, v);
return v

}

Then, we can prove that a is specification preserving by
showing that the proposition

Φ2 ∧ ∀b.(Ψ2[
b/res]⇒

b⇒Ψ[cache[i]/res] ∧ φ
∧
¬b⇒Φ ∧ ∀res.(Ψ⇒Φ1∧

∀cache′ .(Ψ1[
cache′/cache][

cache/cache? ]⇒
(Ψ ∧ φ)[cache

′
/cache])))

is implied by Φ.

5.3 Harmless advices
In general, it is not decidable whether an advice a pre-

serves the specification of a procedure f w.r.t. a specifica-
tion table Γ. Therefore, it is of interest to develop automated
approximate methods to detect specification-preserving ad-
vices. A natural condition is to require that the advice does
not modify the variables in VΓ and always executes a proceed
statement. Since such requirements are closely related to the
notion of harmless advice, we call such advices specification-
harmless.

The set of SAL commands is extended with assertions
assert(φ) and ghost assignments set z′ := z, where φ is a
proposition and z′ is a ghost variable not appearing in the
original program. The definition of vcg is extended accord-
ingly:

vcg(assert(φ), ϕ) = (φ, {φ⇒ϕ})
vcg(set z′ := e, ϕ) = (φ[e/z′ ], ∅)

Formally, an advice a with parameters ~y and guard b is
specification-harmless w.r.t. f and Γ if the procedure â
whose body is obtained from the body of a by substitut-
ing x:= proceed(~e) by

assert( ~z? = ~z); x:=f(~y); set x′, ~z′ := x, ~z

satisfies the specification

(b ∧ Φ, x′ = res ∧ ~z′ = ~z,W ′)

where Γ(f) = (Φ, Ψ,W), and W ′ ∩ VΓ = ∅, and where x′, ~z′

are fresh ghost variables, and where ~z is an enumeration of
VΓ. We classify an advice as control flow preserving if ev-
ery path in its control flow contains exactly one proceed

statement. We assume the existence of an automated ap-
proximate static analysis to check this condition.

Lemma 3. Let a be a control-flow preserving advice. Then,
if a is specification-harmless with respect to f and Γ, then it
is specification-preserving.

instr ::= nop | push v | load x | store x
| jmp l | jmpif cmp l
| invoke | return

Figure 4: Instruction set for SBL

Dantas and Walker [11] propose a mechanism to check
that the execution of an advice does not interfere with the
final value produced by the computation of the baseline pro-
cedure. It consists on a type-effect system inspired on in-
formation flow type systems that does not consider timing
nor termination behavior. One can use this type system as
a static analysis to detect whether an advice is specification-
harmless.

5.4 Beyond harmless advices
There are many natural examples of advices that do not

necessarily trigger a proceed statement. For example, ad-
vices that seek to improve efficiency by replacing a pro-
cedure call by a semantically equivalent but more efficient
computation will not call a proceed statement. For such
examples of advices, it is still possible to use the prop-
erty of specification-harmless to ensure that the advice is
specification-preserving for those paths in which a proceed
statement is effectively called, and generate a proof obliga-
tion for all paths that do not call to proceed.

Recall the advice of the basic example shown in Section 2:

a(x) = (if x 6= 0 then z := proceed(x) else z := 0);
return z

Clearly, we have two possible execution paths depending on
whether the input value is equal to 0. To verify that a
preserves the specification of f , i.e. (true, res = x? + x?),
we consider each possible path separately. In case that
the parameter x is not equal to 0 we know that exactly
one proceed statement will be executed, that no variable is
modified and that the expression returned by the proceed
statement is passed unchanged by the advice. Thus, we can
use a simple static analysis to detect whether this path is
specification-harmless. However, the path corresponding to
an input equal to 0 does not execute a proceed statement, so
we need to generate proof obligations that ensures that the
specification is still preserved. In this case, it corresponds
to the valid proposition x = 0⇒0 = x + x.

6. COMPILING ADVICES
From an applicative perspective, AOP is transparent and

compilers target typical back-ends: indeed, it is the role of
the compiler to integrate these concerns into a single exe-
cutable object, through a weaving mechanism that modifies
the code of each procedure depending on the advices that
operate over it. In this section, we define the compilation of
SAL programs to a stack-based language.

6.1 Target language
The target language is a simple stack-based language (SBL)

that can be used to compile the imperative core of SAL.
The syntax of SBL instructions is given in Figure 4, where v
and l ranges over integers, x ranges over program variables,
cmp over relations between integer values, and g ranges over
function names. A SBL program consists of a set of func-
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pf [i] = invoke f

〈µ, 〈f ′, pc, lm, v : os〉 :: lf〉 ; 〈µ, 〈f, 1, [par 7→ v], ε〉 :: 〈f ′, pc + 1, lm, os〉 :: lf〉
pf [i] = return

〈µ, 〈f, pc, lm, v : os〉 :: 〈f ′, pc′, lm′, os′〉 :: lf〉 ; 〈µ, 〈f ′, pc′, lm′, v :: os′〉 :: lf〉

Figure 5: Operational semantics of SBL

tion names, and for each function g a declaration of the
form g args∗ = instr∗. The operational semantics of SBL
programs is standard, and defined by a small-step relation
; between states. A state is either final, in which case it
consists of a global memory µ and a result value v, or in-
termediary, in which case it consists of a global memory µ
and a list of frames lf , each frame consisting of the name of
the function being called, of a program counter, of a local
memory with a distinguished variable par that stores the
parameter of the function being called, and of an operand
stack. Figure 5 gives the rules for invoke and return instruc-
tions, where [par 7→ v] denotes the local memory that only
assigns v to par.

6.2 Compiler
The compiler for SAL programs is defined in Figure 6 as

a function JK that takes a command and returns a list of
labeled instructions. It relies on a compiler for integer ex-
pressions and a compiler for boolean conditions, namely JKe

and JKb. The compiler JKe takes an integer expression e and
returns a sequence of instructions whose effect is to push
on top of the stack the evaluation of the expression e. The
compiler JKb takes, in addition to a boolean expression b,
a label l and outputs a sequence a instructions that forces
the program execution to jump to the program point la-
beled l if the condition b evaluates to true. The compiler for
commands is standard, to the exception of the function call
statement, whose compilation involves advice weaving, and
the proceed statement. Since SBL does not feature a dedi-
cated mechanism for advice weaving, each advice is compiled
multiple times, exactly once per procedure it advises, and
the procedure call x:=f(e) is compiled into

JeKe :: invoke âf :: store x

where a is the first advice for f , and âf is its specific com-
pilation for f . The code of âf is of the form

Jb, lKb :: load par :: invoke â′f :: return :: [l : af ]

where af is obtained by compilation from a by translating
any proceed statement of the form x:= proceed(e) by

JeK :: invoke a′f :: store x

where a′ is the next advice for f . In other words, the code of
âf tests if the guard for a holds, and if so proceeds to execute
the body of the advice, or lets â′f proceed otherwise.

In order to achieve the desired effect, the compiler is thus
parametrized by a procedure (used in the clause for proce-
dure calls to trigger the appropriate advice), or by a proce-
dure and an advice (used in the clause for proceed to trigger
the appropriate advice). For readability, we use superscripts
to indicate the parameter and omit the superscript in all
cases where it is not used.

JskipK = [l :nop]
Jx:=eK = let inse=JeKe in

inse :: store x
Jc1;c2K = let ins1=Jc1K in

let ins2=Jc2K in
ins1 :: ins2

Jif b then c1 else c2K =
let ins1=Jc1K in
let ins2=Jc2K in
let insb=Jb, l1Kb in
insb :: ins2 :: jmp l :: [l1 : ins1] :: [l :nop]

Jwhile b do cK =
let insc=JcK in
let insb=Jb, lcKb in
jmp l :: [lc : insc] :: [l : insb]

Jx:=h(e)Kf = let inse=JeKe in
inse :: invoke af :: store x

Jreturn eK = let ins=JeKe in
ins :: return

Jx:= proceed(e)Ka
f = let inse=JeKe in

inse :: invoke a′f :: store x

Figure 6: Compiler for SAL programs

stack expressions ōs ::= os | ē :: ōs |↑k ōs
logical expressions ē ::= res | x? | x | c | ē op ē | ōs[k]

Figure 7: Logical SBL expressions

7. CERTIFICATE TRANSLATION
In this section, we show that a valid SAL program is com-

piled into a valid SBL program. To this end, we first define
a verification method for SBL programs. The method is
strongly inspired from earlier work, and in particular [6].

7.1 Verification of SBL programs
While program annotations are similar to those of SAL

programs, the weakest precondition computation will pro-
duce propositions that refer to the operand stack, and thus
the language of SBL annotations is extended to such propo-
sitions.

• The extended set of logical expressions is defined in
Figure 7; the logical propositions are built as before.
In the definition, os is a special variable representing
the current operand stack and ↑k ōs denotes the stack
ōs minus its k-first elements. An annotation is a propo-
sition that does not contain stack sub-expressions.

• An annotated bytecode instruction is either a bytecode
instruction or a proposition and a bytecode instruc-
tion: ī ::= i | (φ, i)

• An annotated program is a pair (p, Γ), where p is a
bytecode program in which some instructions are an-
notated and Γ is a specification table that associates to
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each procedure f a triple (Φ, Ψ,W) where Φ is a pre-
condition, Ψ is a postcondition, and W is a modifies
clause that declares all variables that may be modified
during the execution of f .

Verification of SBL programs is defined in terms of a weakest
precondition function wp that operates on annotated pro-
grams. In order for the wp function to be well-defined, we
must restrict our attention to well-annotated programs [4,
6, 21], i.e. programs in which all cycles in the control-flow
graph must pass through an annotated instruction. We char-
acterize such programs by an inductive definition.

An annotated program p is well-annotated if every pro-
cedure is well annotated. A procedure g is well-annotated
if every program point satisfies the predicate reachAnnotg

inductively defined by the clauses:

g[k] = (φ, i)

k ∈ reachAnnotg

g[k] = return

k ∈ reachAnnotg

∀k′. k 7→ k′ ⇒ k′ ∈ reachAnnotg

k ∈ reachAnnotg

Given a well-annotated procedure, one generates an asser-
tion for each label, using the assertions that were given or
previously computed for its successors. This assertion rep-
resents the precondition that an initial state should satisfy
for the procedure to terminate only in a state satisfying its
postcondition.

Let (p, Γ) be a well-annotated program.

• The weakest precondition calculus over (p, Γ) is defined
in Figure 8. Formally, the result of the weakest precon-
dition calculus is a program in which all instructions
are annotated.

• The set PO(f) of verification conditions of the proce-
dure f is defined by the clauses:

Φ ⇒ wpL(0)[
~x?
/~x] ∈ POΓ(f)

f [k] = (φ, i)

φ ⇒ wpi(k) ∈ POΓ(f)

As before, an annotated SBL program is valid w.r.t. Γ if all
its sets proof obligations POΓ(f) are valid.

7.2 Preservation of validity
The purpose of this section is to prove that valid SAL

programs are compiled into valid SBL programs. To this end,
we first extend the compiler of Section 6 so that compiled
programs are well-annotated. This is achieved by modifying
the compiler clause for loops:

JwhileI(b){c}K = let insc = JcK and insb = Jb, lcK in
jmp l :: [lc : insc] :: [l : (I, insb)]

where we denote (I, insb) the sequence of instructions ob-
tained by annotating the first instruction of insb with I. In
the rest of this section, for any SBL function g, we denote
g[l, l′] the sequence of instructions g[l] :: g[l+1] :: . . . ::g[l′−1].

Lemma 4. Assuming the axioms (v :: os)[0] = v and
↑ (v :: os) = os for stacks, the auxiliary compilers JKe and
J.Kb satisfy the following properties:

i) for every integer expression e and function g such that
g[l, l′] = JeKe, wpL(l) is equivalent to wpL(l′)[e::os/os];

ii) for every boolean expression b and function f such that
g[l, l′′] = Jb, l′Kb, wpL(l) is equivalent to

b⇒wpL(l′) ∧ ¬b⇒wpL(l′′)

Given a specification table Γ for SAL programs, Γ′ is a spec-
ification table for SBL programs extending Γ if for every ad-
vice a and procedure f advised by a, Γ′(âf ) = (Φf , Ψf ,Wf )
and Γ′(af ) = (Φf ∧ b, Ψf ,Wf ), where Γ(f) = (Φf , Ψf ,Wf ).
In the following paragraphs, we implicitly consider the spec-
ification tables Γ and Γ′ respectively for the verification of
SAL and SBL programs.

Lemma 5. Let g be a SBL function such that g[l, l′] = JcK,
and let (φ, S) = vcg(c, wpL(l′)). Then, φ′ ≡ wpL(l) and the
proof obligations in S are equivalent to the proof obligations
corresponding to the annotated instructions in g[l, l′].

Consider a SBL program p′ compiled from an annotated
SAL program p. The following result states that if p is a
valid SAL program w.r.t. Γ, then p′ is a valid SBL program
w.r.t. Γ′.

Theorem 1. Suppose that (p, Γ) is a valid annotated pro-
gram. That is, for every procedure f and for every advice
a, the sets of proof obligations ∆f and POΓ,f (a) are valid.
Then, for every function f , af and âf , the sets POΓ′(f),
POΓ′(af ) and POΓ′(âf ) contain valid proof obligations.

Furthermore, we can prove that a SAL programs certified
with respect to Γ is compiled into a SBL program certified
with respect to Γ′. More precisely, using the rules of the
proof algebra extended with the axioms (v :: os)[0] = v and
↑(v :: os) = os, for every equivalent proof obligations δ and
δ′, we can transform a certificate cδ for δ to a certificate cδ′

for δ′. Therefore, if for every procedure f ∈ F , (cδ)δ∈POΓ(f)

and (cδ)δ∈POΓ,f (a) are indexed sets of certificates for a SAL

program p, then for every function g of p′ we can generate
a certificate for the proof obligation δ ∈ POΓ′(g).

8. INCREASING THE POWER OF VERIFI-
CATION

Consider the following trivial example:

a1(x) = z := proceed(x + 1); return z
a2(x) = z := proceed(x− 1); return z

When executed in isolation around a function f , it is clear
that neither a1 nor a2 preserves the behavior of f . However,
when both are executed around f they collaborate, and the
effect of a1 is neutralized by the effect of a2.

Then, since it may seem a bit restrictive to require that
every advice in its own is specification-preserving, we pro-
pose a more general proof system to study instead whether
a sequence of advices is specification preserving.

When verifying the behavior of a sequence of advices ~a ex-
ecuting around a function f , we are interested in verifying a
specification for the sequence ~a around f (denoted ~a . f), in
addition to verifying each advice in isolation. As with func-
tions and advices, the specification for sequences of advices
executing around a function f consist on a precondition, a
postcondition and a set of modifiable variables. This spec-
ification is inferred and proved from the specification of its
components. For notational convenience, ~a may also stand
for an empty sequence of advices.
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let Γ(f)=(Φ, Ψ,W) and y represent every variable in W:

wpi(k) = wpL(k + 1)[c::os/os] if g[k] = push c

wpi(k) = wpL(k + 1)[(os[0] op os[1])::↑2os/os] if g[k] = binop op
wpi(k) = wpL(k + 1)[x::os/os] if g[k] = load x

wpi(k) = wpL(k + 1)[↑os,os[0]/os,x] if g[k] = store x
wpi(k) = wpL(l) if g[k] = jmp l

wpi(k) = (os[0] 6= 0 ⇒ wpL(k + 1)[↑
1os/os])

∧ os[0] = 0 ⇒ wpL(l)[↑
1os/os])

if g[k] = jmpif l

wpi(k) = Ψ[os[0]/res] if g[k] = return
wpi(k) = Φ[os[0]/in]∧

(∀res, y′.Ψ[os[0]/in][y/y? ][y
′
/y ] ⇒ wpL(k + 1)[res::os/os][y

′
/y ])

if g[k] = invoke f

wpL(k) = φ if g[k] = φ : i
wpL(k) = wpi(k) otherwise

Figure 8: Weakest precondition for SBL programs

For each nonempty sequence of advices ~a1a ~a2 executing
around a function f , we call the sequence ~a2 . f , i.e. the
advices remaining to be executed around f when a executes
a proceed statement, an execution context of a.

Verification proceeds in two steps. First, each advice a
is verified in isolation, i.e. without considering the set of
contexts in which the advice a may be executed. To this
end, we must rely on a single specification for the expected
behavior of the execution invoked by a proceed statement.
In a second phase, for each context in which the advice may
be executed, we check the consistency of the specification
for the proceed statement w.r.t. the specification derived
for the remaining context.

Verification of advices in isolation. We extend the spec-
ification of advices such that for every advice a we have, in
addition to the tuple (Φ, Ψ,W), a specification for the code
that may be invoked by a proceed statement. That enables
to reason about the correctness of an advice abstracting from
the possible contexts in which this advice may be invoked.
The specification extension for an advice a consists on an ex-
tra and distinct tuple (Φ′, Ψ′,W ′), in addition to the tuple
(Φ, Ψ,W). The tuple (Φ′, Ψ′,W ′) is such that W ′ specifies
the set of variables that the code invoked by a proceed state-
ment is allowed to modify, and Φ′ and Ψ′ are respectively
the pre and postconditions of such invocation. The propo-
sitions Φ′ and Ψ′ may refer, in addition to the input and
output arguments of a (in and res), to the input and out-
put arguments of the invoked code, respectively represented
with the new variables in′ and res′. It is the goal of the sec-
ond phase to check, for every context in which the advice a
may be executed, that the code allowed to proceed satisfies
the specification (Φ′, Ψ′,W ′).

The predicate transformer wp is extended for proceed

statements, s.t. wpa(x:= proceed(e), φ) is defined as

(Φ′
a[e/in′a ] ∧ ∀y′,res′ .Ψ

′
a[e/in′a ][y

′
/y][y/y?′ ]⇒φ[res′

/x][y
′
/y][e/in′a ], S)

where (Φ′, Ψ′,W ′) correspond to the specification extension
for the proceed statement and y ∈ W ′.

By using this modified wp function we can prove that the
body of an advice satisfies its specification as long as the
code invoked by a proceed statement satisfies the specifica-
tion (Φ′, Ψ′,W ′).

Verifying weaved code. After statically determining the
sequence of advices ~af executing around f , we are interested

in identifying a set of sufficient proof obligations that ensures
that the sequence ~af is specification-preserving.

The collection of proof obligations is defined by induc-
tion on the length of the sequence of advices ~af executing
around the procedure f . Since we do not require that ev-
ery subsequence ~af

′ of advices preserves the specification,
we generalize and accept the inference of pre and postcon-
ditions Φ and Ψ for ~af

′ . f without requiring Φ and Ψ to be
compatible with the pre and postcondition of f . The goal of
the verification for each subsequence ~a of ~af is a judgment
of the form Γ, Γa`{Φ}~a . f{Ψ}. For such a judgment, we
do not require Φ and Ψ to be compatible with the pre and
postcondition of f , i.e. the subsequence ~a is not necessarily
specification-preserving.

To verify a judgment Γ, Γa`{Φ}~a . f{Ψ}, we proceed by
induction on the length of the sequence ~a to identify the set
of proof obligations ∆~a(Φ, Ψ).

In the base case, i.e. when no advice is executed around
the function f , we have the judgment Γ, Γa`{Φ}f{Ψ} with-
out premises, where Φ and Ψ are the pre and postconditions
of f .

Given a non-trivial sequence ~a = a~a′, we consider two al-
ternative sets of verification conditions, depending on whether
we can statically ensure that the code of the advice a is con-
trol flow preserving. We assume an automated static mech-
anism to check this condition.

In case that it cannot be checked whether a is control-flow
preserving we apply the following rule:

Γa(a) = 〈(Φa, Ψa,Wa), (Φ′a, Ψ′
a,W ′

a)〉
Γ, Γa`{Φ′}~a′ . f{Ψ′}

Φ′a⇒Φ′[in
′
a/inθ ] Ψ′[in

′
a/inθ ][res

′
/res]⇒Ψ′

a Wf ∪W~a′ ⊆ W′
a

Γ, Γa`{Φa}a~a′ . f{Ψa}

For simplicity, we are not considering the boolean condition
specified in the point-cut descriptor.

Unfortunately, the rule above makes hard to propagate
the information carried by the specification (Φ′, Ψ′), unless
it is explicitly stated in the specification (Φa, Ψa) of a. How-
ever, under the hypothesis that a is a control flow preserving
advice we can apply the following alternative rule:

Γa(a) = 〈(Φa, Ψa,Wa), (Φ′a, Ψ′
a,W ′

a)〉
Γ, Γa`{Φ′}~a′ . f{Ψ′}

Φ⇒Φa ∧ ∀x′.(Φ′a[x
′
/x]⇒Φ′[in

′
a/inθ ][x

′
/x]) Wf ∪W~a′ ⊆ W′

a

Ψ′[in
′
a/inθ ][res

′
/res][y

?′
/y? ]⇒Ψ′

a ∧ ∀x′.(Ψa[in/ina ][x
′
/x]⇒Ψ[x

′
/x])

Γ, Γa`{Φ}a~a′ . f{Ψ}

where x′ represents the global variables potentially modified
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by a, and W ′
a specifies the variables that may be modified

by the execution triggered by the proceed statement.
For every procedure f advised by ~af , we define ∆~af

(Φ, Ψ)
as the set of proof obligations required to derive the judg-
ment Γ, Γa`{Φ}~af . f{Ψ}. Assume the specification table
Γ is such that Γ(f) = (Φf , Ψf ,W). Then, we say that the
sequence ~af is specification preserving with respect to f , Γ
and Γa, if Φf ⇒ Φ, Ψ ⇒ Ψf and the proof obligations in
∆~af

(Φ, Ψ) are valid.

Lemma 6. Let p be a SAL program over a set F of proce-
dures and a set A of advices. Let Γ be a specification table
for F and Γa be a specification table for A. Assume that for
every procedure f that is advised by ~af , the sequence ~af is
specification preserving with respect to f , Γ and Γa. Then,
if f, µ ⇓ v, ν and µ |= Φ, then µ, ν, v |= Ψ, where Φ and Ψ
are the pre and postconditions of f .

The dynamic nature of some point-cut descriptors can
make static verification a difficult task. Consider for exam-
ple a cflow point-cut descriptor, for which program semantics
must refer to a collecting call stack to decide whether a cflow
condition is valid.

Although possible, it is cumbersome to reason explicitly
about the call stack in the program logic. We propose, thus,
the following simple derivation rule to reason in the presence
of cflow point-cut descriptors:

Γ, Γa`{Φ}a~a′ . f{Ψ} Γ, Γa`{Φ}~a′ . f{Ψ}

Γ, Γa`{Φ}a
cflow
. (~a′ . f){Ψ}

where a
cflow
. (~a′ . f) denotes that the execution of the advice

a is conditional on a cflow statement. The rule can be inter-
preted as the fact that the specification (Φ, Ψ) is still verifi-

able with respect to the sequence a
cflow
. (~a′ . f), regardless of

whether the cflow condition is valid. Although incomplete,
this rule may prove to be useful as long as the advice a is
specification preserving with respect to (Φ, Ψ).

We have formally proved the soundness of the proof sys-
tem proposed in this section. In addition, we have shown
how to extended the compiler with a mechanism to translate
a certificate of correctness of a SAL program to a certificate
for the compiled code.

9. RELATED WORK

Reasoning about advices. As the invasive nature of as-
pects cause them to break modularity, the design of verifica-
tion methods for AOP programs is challenging. Many works
have explored the design space for such verification methods,
and proposed different trade-offs between the modularity of
verification and the generality of the method. In addition,
there are been many works that isolate particular classes of
aspects that are well-suited for modular reasoning and pro-
vide automatic analysis methods to detect when an advice
fits in one of these classes.

Clifton and Leavens [9] define a notion of modular reason-
ing and show why modularity is not a general property in
AspectJ. They define a classification for aspects as spectators
or assistants: the former include aspects that only modify
the state space they own and do not alter the control flow,
whereas assistants can interfere with the original behavior
of the program but only if explicitly accepted by the original

program. Based on this classification, Clifton and Leavens
suggest a verification method, detailed in [8]. More recently,
Clifton, Leavens and Noble [10] have developed an effect sys-
tem to verify the control and heap effect of aspects in the
MAO language. The system verifies whether an advice is
a spectator, and provides information exploitable by subse-
quent verification. To our best knowledge, there is however
no sound program verification method based on these ideas.
In a similar vein, Rinard et al [22] provide a a static analy-
sis that automatically classifies aspects. They illustrate the
usefulness of their analysis, but do not develop any verifica-
tion mechanism based on it.

There have been several efforts to develop modular model-
checking techniques for AOP. The prevailing trend to achieve
modularity is to isolate specific classes of aspects that ex-
hibit an appropriate behavior. Early work by Katz et al.
[15] proposes a classification of aspects as spectative, regula-
tive or invasive, and analyze the class of temporal properties
that are preserved by aspects falling in these categories. In
a subsequent work, Goldman and Katz [14] have formal-
ized the idea that weakly invasive aspects preserve temporal
properties. More recently, Djoko Djoko et al [12] have given
a formal treatment of similar ideas based on a slightly dif-
ferent classification. These works resembles our own in the
sense that they favor modularity of the verification process
and makes emphasis on the preservation of original proper-
ties. Krishnamurthi et al [16] propose an alternative method
where modularity is achieved by requiring that the set of
point-cut designators is known statically.

Dantas and Walker [11] define the notion of harmless ad-
vice, which may preventing termination and may also per-
form I/O, but it does not interfere with the result of the base-
line code. This weak interference property is an instance of
specification-preserving advice, and thus permits to reason
about the original program independently. They propose an
information-flow type system over a core AOP language [23]
to check harmlessness with respect to the main program. As
discussed in Section 5.3, their type system can be combined
to form part of our hybrid logic to certify and check that an
advice does not interfere with the original global state.

Aldrich [1] has proposed a module system called “Open
Modules” that enables class interfaces to explicitly control
the visibility of internal control-flow points. Thus, it pro-
vides a mechanism to restrict the interference of external
advice, by forbidding the attachment of advices to hidden
internal join-points.

Proof compilation. There have been several efforts to study
proof compilation for non-optimizing and optimizing com-
pilers. Our work is most closely based on the work of [6],
who show that a sufficiently simple compiler generates, from
an imperative source program, a stack based low-level code,
whose proof obligations are syntactically equal to that of the
source program. Similar results are detailed by Pavlova [21],
for a significant subset of Java Bytecode.

There has been a closely related effort by Zhao and Ri-
nard [24] to provide state-of-the-art specification and verifi-
cation tools for AOP, and to relate them to standard verifica-
tion. They have defined Pipa [24], an extension to JML [17]
for AspectJ [2], to support specification for aspects invari-
ants, pre and postconditions for advices and variable intro-
ductions, and provided a compiler that transforms a Pipa-
annotated AspectJ program into a JML-annotated Java pro-
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gram. However, they do not provide any formal treatment
to support their approach.

10. CONCLUSION
We have introduced the notion of specification-preserving

advice, that mildly generalizes the notion of harmless advice
of Dantas and Walker, and that is expressive enough to cap-
ture many advices related to security and efficiency. In ad-
dition, we have developed a modular verification method for
programs with specification-preserving advices, and shown
how proof compilation extends naturally to this setting. Our
results, while preliminary, establish the feasibility of a Proof
Carrying Code scenario with untrusted intermediaries modi-
fying the code by aspects. In future work, we intend to build
on proof compilation for Java and extend our results towards
an expressive fragment of AspectJ, taking into account re-
cent developments in optimizing compilation for aspects [3].
In addition, it would be interesting to target our compiler
to low level languages with support for aspects [13], and
investigate certificate translation in that setting.
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ABSTRACT
Reasoning, specification, and verification of Aspect-Oriented
(AO) programs presents unique challenges especially as such
programs evolve over time. Components, base-code and as-
pects alike, may be easily added, removed, interchanged, or
presently unavailable at unpredictable frequencies. Conse-
quently, modular reasoning of such programs is highly at-
tractive as it enables tractable evolution, otherwise neces-
sitating that the entire program be reexamined each time
a component is changed. It is well known, however, that
modular reasoning about AO programs is difficult. In this
paper, we present our ongoing work in constructing a rely-
guarantee style reasoning system for the Aspect-Oriented
Programming (AOP) paradigm, adopting a trace-based ap-
proach to deal with the plug-n-play nature inherent to these
programs, thus easing AOP evolution.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Modules, packages; D.2.4 [Software Engi-
neering]: Software Verification—Formal methods

General Terms
Languages, theory
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Aspect-oriented programming, modular reasoning,
rely-guarantee
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1. INTRODUCTION
Aspect-oriented programming (AOP) [21] allows for mod-

ular implementations of crosscutting concerns. Since its in-
ception, many authors [8, 24, 26, 33] have shown how aspects
may be used to write localized implementations of impor-
tant crosscutting concerns such as process synchronization,
event logging, data persistence, exceptional situation han-
dling, etc. The separation of concerns that AOP enables
helps produce programs whose components are increasingly
decoupled from one another as a direct consequence of the
reduction of scattered and tangled code. As such, AO pro-
grams tend to enjoy plug-n-play-type capabilities where base
and/or aspect components may be introduced, removed, and
interchanged easily [24]. This inherent nature of AOP is
beneficial in the sense that AO programs may evolve in a
non-invasive fashion simply by “switching” features on and
off. However, program evolution is bound to occur at un-
predictable frequencies; therefore, programmers are often re-
quired to make key decisions and come to conclusions about
a software components, base-code and aspect alike, utiliz-
ing either incomplete or highly volatile information at hand.
Ergo, the ability to reason about individual AO program
components modularly and to then compose these reason-
ing efforts, just as we would compose the components them-
selves, to obtain the actual behavior of the overall program
becomes extremely desirable. This ability would permit AO
programmers to avoid the unfortunate situation where the
entire program must be reexamined upon each component
change, thereby facilitating tractable evolution.

Despite its benefits, modular reasoning about AO pro-
grams indeed presents significant challenges [1, 3, 13, 5, 22,
23, 37, 29, 9, 38, 31, 12, 7, 34, 36, 30]. The problem is
that, by circumscribing core concerns into classes and cross-
cutting concerns into aspects we are essentially creating two
different systems, a baseline system (base-code) and an aug-
mented system which is the result of applying aspects that
alter the behavior of the baseline. Indeed, the ability of
an aspect to change the behavior of the base-code that it
advises, which is the very reason for much of the power of
AOP, is also what causes difficulties for reasoning about the
behavior of such software. In fact, as aspects “weave” in and
out of (or “plugged” then “played”) a software system, we
may be forced to reason about the entire system, account-
ing for the interleaved execution of various pieces of advice
with the base-code.

What we would aspire instead is to draw meaningful and
useful conclusions about component code, e.g., base-code

19



Spec(A1)

A1

Spec(C)

C

Behavior of C+A1

Com
pose

Spec(A2)

A2

Behavior of C+A2

Com
pose

Com
pose

Behavior of C
+A1+A2

Figure 1: Schematic of behavior derivation using pa-
rameterized specifications of a component C under
the influence of advice of A1 and/or A2.

which may reside in a method or an advice body that is
itself subject to advice, without considering the actual ad-
vice code. Ideally, we would like to specify the behavior of
AO components without any particular advice in mind such
that in order to arrive at the behavior of the augmented
system, just as aspects are plugged-in to enhance or enrich
the behavior of the advised components, the specifications
of applicable advice would be “plugged” into the matching
behavioral specifications of the base-code. Furthermore, in
order to arrive at useful conclusions that remain valid de-
spite the addition of advice, it may be necessary to constrain
possible advice behavior in order to preserve the intended
semantics of the advised component. In other words, for a
component to function correctly, assumptions may need to
be made about potentially applicable advice such that these
assumptions hold during evolution, with aspects entering,
leaving, and re-entering the software.

Adopting such an idealized approach would allow develop-
ers as AO programs evolve to deduce the behavior of the aug-
mented software without reexamining the internals of each
component. In essence, the specified behavior of a compo-
nent would be parameterized over the behaviors of all possi-
bly applicable advice. Figure 1 helps to illustrate this notion,
portraying schematically at a bird’s-eye-view how these pa-
rameterized specifications can be hypothetically combined
with the specifications of advice in order to obtain the over-
all system behavior, where Spec(X) refers to the behavioral
specifications of component X.

Although the above outlined approach may seem desir-
able, there are several key obstacles that must be overcome
in its achievement:

Usefulness. As previously mentioned, we would like to
draw useful conclusions about component code that is sub-
ject to the application of advice without considering the ac-
tual advice code. As we are focused on evolving AO software,
the advice code may not yet exist; it may be added a later
time. It is not clear, however, exactly how useful these con-
clusions can be considering that they should hold upon the

application of any advice. What sorts of conclusions could
we draw in this case?

Complexity. Since component specifications would be
written in terms of any applicable advice, there is a strong
possibility of these specifications becoming unwieldy. As
such, any changes made to the internals (i.e., the imple-
mentation) of the advised component code would require a
rather involved effort to rebuild the component’s parame-
terized specifications. Also, situations may arise where a
component C may not be under the influence of advice, yet
Spec(C) would still be specified over all possibly applica-
ble advice. Therefore, the complexity of the specification
may be unnecessarily complicated. This situation is picto-
rially represented in 2 and further discussed later in this
section. Making suitable restrictions on the behavior of po-
tential advice via the use of language constructs, minimizing
the join point model, providing behavioral constraining as-
sertions by adapting a rely/guarantee [39, 18] methodology,
which is the focus of our previous work [19, 35], and using
predicates and/or functions on specifications themselves as
in [16], which is a focus of our future work, may help allevi-
ate several of these obstacles.

Obliviousness. Annotating the component code with pa-
rameterized specifications by very nature compromises the
traditional oblivious [10] property intrinsic to AOP, in par-
ticular languages such as AspectJ [20]. Thus, by allowing
AOP authors to construct their specifications in a param-
eterized fashion, and to further constrain the behavior of
intangible advice (which would constitute the actual param-
eters), we are indeed forcing them to be at least cognitive
of crosscutting concerns (CCCs). Nevertheless, it has been
shown in [22] that even in (non-AOP) ordinary software, one
must still be aware of CCCs, and [37] suggests that design-
ing components subject to advice also requires the cognition
of CCCs.

Modelling. How do we model specifications that abstract
enough information from the internal details of components
while simultaneously constraining the effects of potentially
applicable advice that manipulates the internal implemen-
tation of these components? We will see later in this paper
how our proposed approach, with the help of traces, may
allow us to write such specifications for AOP.

Composition. Given the specifications of a component
and its applicable aspects, how do we decide if the con-
stituent advice is applicable especially considering that ad-
vice may be bound to lexical and dynamic pointcuts? A
reasoning formalism should account for such situations if it
intends to deal with lexical pointcut designators (LPCDs),
e.g., within(), and/or dynamic pointcut designators (DPCDs),
e.g., cflow(), if(). Then, given that advice is applicable
to component code, how do we utilize the specifications of
the advice and that of the parameterized component spec-
ifications to arrive at the overall behavior of the system,
thus verifying that the software behaves as intended? Con-
versely, how do we derive the behavior of a component in
which no advice is applicable given the nature of the com-
ponents specifications? In fact, the schematic in Figure 1
is somewhat misleading as it fails to mention the situation
where no advice is applicable. That is, in order to derive the
behavior of a component that is not under the influence of
advice we must either (i) obtain the behavior of a component
C taking its parameterized specification and then composing
it with a “empty” aspect specification Anull (portrayed in

20



Spec(Anull)

Anull

Spec(C)

C

Behavior of C

Com
pose

Figure 2: Schematic of behavior derivation using
parameterized specifications of a component C not
under the influence of advice.

Figure 2), or (ii) supply a second specification for each com-
ponent which would correspond to the situation where no
advice is applicable.

The focus of this paper is to (i) present new ideas in
our ongoing work in this area, (ii) discuss our proposals to
combat several of the above mentioned obstacles, and (iii)
facilitate interesting discussion in respects to some of the
open issues that faces our approach, in which we highlight
throughout the paper.

2. CONSTRAINING AND ENRICHING THE
BEHAVIOR OF PROGRAMS

Several approaches [1, 12, 13, 7] have been developed to re-
strict the behavior of AO components in order to reduce the
efforts required in reasoning –both formally and informally–
about such systems. In this paper, however, as mentioned in
section 1, we are interested in specifying the intended run-
time behavior of components under the possible influence of
advice that accounts for the unique evolutionary nature of
AOP; hence, assertions of these components should reflect
this notion. Such a solution seems to call for a technique that
would to need to be more flexible than existing approaches
in the way that constraints on acting advice are expressed.
In this section, we will briefly discuss how behavior of pro-
cesses within concurrent programs are suitably constrained
to achieve interference freedom using the rely/guarantee ap-
proach. This section will draw a parallel with concurrent
programs and that of AOP, outlining our previous work in
adapting the rely/guarantee approach for AOP. In addition,
we will overview how assertions for evolving AO programs
can be written, and how specifications can be composed to
arrive at the effective behavior of the overall system, that is,
the behavior of the components augmented with the behav-
ior of applicable aspects.

Constraining behavior of concurrent programs. Con-
sider a concurrent program with two processes P1 and P2

that share some variables that either of them may read and

write. Standard modular reasoning would require us to rea-
son about each process independently of the other and then
combine the results of the two reasoning tasks in an appro-
priate manner to arrive at the behavior of the whole pro-
gram, [P1//P2]. But since the two processes will be inter-
leaved during execution, whatever conclusions we may have
drawn about each of them when reasoning about them in-
dependently may not, in fact, be valid. In effect, the actions
of each process may interfere with the other process thereby
invalidating whatever results we may have established by
reasoning about that other process.

The rely-guarantee approach [18, 39] addresses the prob-
lem of interference in concurrent programs as follows. Let
σ be the state, i.e., the set of all program variables of the
program consisting of two processes P1 and P2 running in
parallel. When reasoning about P1, we recognize that the
actions of P2 may modify the state. Hence, we write our
assertions in the proof outline of P1 in such a manner that
they continue to be satisfied even in the presence of such
actions. To enable this, we identify a relation rely1() that is
a predicate over two states, σa and σb. This relation means
the following: suppose at some point in the execution of P1

the current state is σa and that some part of P2 is now in-
terleaved in the execution; suppose that the state when P1

gets control back is σb; then rely1(σa, σb) must be satisfied.
In other words, when reasoning about the behavior of P1,
we assume that any interleaved action that P2 (or any other
process in the case of programs with more than two pro-
cesses) may change the state but only within the constraints
specified by rely1(). If this is satisfied, the correctness of
the proof outline of P1 will not be affected by the actions
of P2. Conversely, when reasoning about P2, we introduce a
relation rely2() that imposes constraints on the changes in
the state that may be caused by P1’s actions.

Next, we must verify that P2 and P1 meet the require-
ments contained respectively in rely1() and rely2(). To make
this possible, when reasoning about each process, we es-
tablish a guarantee clause. This clause, denoted guar1()
in the case of P1, is again a relation over two states; it is
a guarantee provided by P1 that any change it makes in
the state when executing any instruction in it will obey the
constraints specified in guar1(). The specification of P1 is
of the form (pre1, rely1, guar1, post1) which denotes: if P1

starts in a state that satisfies pre1 and if all transitions, i.e.,
state changes, made by P2 satisfy the constraints specified in
rely1(); then each transition made by P1 will satisfy the con-
straints specified in guar1(), and the state, when P1 finishes
execution, will satisfy post1(). The parallel composition rule
requires us to check, using guar1() and guar2(), that the
rely clauses of both processes are satisfied.

Constraining behavior of AO programs. As we noted
earlier, reasoning in concurrent programs seems to have some
resemblance to reasoning about AOP. Suppose, for example,
that the code of a component, say a class C, subject to ad-
vice contains an assignment statement assigning a value v
returned from a method call m() on an object obj to a partic-
ular instance variable x of C. When reasoning about the code
of C, we might have established an assertion following the as-
signment that states that the value of C.x would be equal to
v. Suppose now that an aspect is added that encompasses a
piece of after-advice that applies at the call-join point associ-
ated with the invocation of obj.m(). Immediately following
the execution of the assignment of the returned value v to
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C.x, the after-advice would execute and, possibly, invoke a
mutator method of C that assigns a new value to C.x. When
control returns to C, at this point, the assertion we previ-
ously established may no longer satisfied. In other words,
the aspect has interfered with the component code.

While this seems highly analogous to the case of the con-
current program, there are notable differences between the
situation in AOP and that of concurrent programs. Firstly,
AO programs are intrinsically sequential, making the in-
terleaving of their constituent statements more predictable.
Nevertheless, when reasoning about components indepen-
dently we must recognize that advice may be weaved in,
out, or around each join point, thereby detracting this oth-
erwise innate predictability. Secondly, the severity of possi-
ble interference is governed by the join point model of the
underlying AO language. Possible interference is thus dic-
tated by the types of join points, the control structures, and
the mutable contexts that are exposed and available to ad-
vice to manipulate. Thirdly, there is an asymmetry between
components that does not possess the ability to advise other
components, e.g., a method within a class in AspectJ (sans
annotation-based mechanisms such as @AspectJ), and com-
ponents, e.g., aspects, that do possess this ability. In par-
ticular, while advice can intercept the execution of a class, a
class does not intercept the advice. As such, control is solely
at the mercy of aspects as opposed to other paradigms like
concurrent programming, and coroutines [6] where control is
explicitly released and suppressed at various points. Lastly,
in the case of parallel programs, concurrent processes are
typically designed hand-in-hand, while in AO programs as-
pects may be added, removed, and/or changed to a system
at unpredictable intervals as the software evolves.

A key observation underlying our approach is that asser-
tions contained within component subject to advice should
be in the form of a relation over two states σa and σb. Here,
σa refers to the state of the advised component prior to con-
trol transferring to advice, and σb refers to the state of the
advised component immediately following the point where it
reacquires control. Therefore, components subject to advice
can effectively detail the sorts of constraints on advice be-
havior required for it to behave properly regardless if advice
is applicable at the moment. Principally, when reasoning
about a component C we recognize that its behavior may be
modified as a result of aspect(s) being applied to it. As C

executes, if control were to reach a join point that matches
a pointcut at which a particular advice is applicable, control
will transfer to the advice before, after, or around (poten-
tially bypassing) the statement at that point. The advice
would then execute, possibly changing the values of some of
the instance variables of C and/or other accessible parame-
ters. Finally, control would then return to C which would
continue execution.

The approach discussed in this paper is based on aug-
menting leverages a existing technique made for improving
modularity in AO programs. We extend the notion of point-
cut interfaces [13] by annotating pointcuts with associated
specifications that must be met during the execution of the
matching join points by both the component (through a guar
clause) and applicable advice (through a rely clause). We
will discuss related work in more detail in section 4, even
so, it is worth mentioning here that the contractual obli-
gations between advice code and advised code is similar in
spirit to Crosscutting Interfaces (XPIs) [12], however, our

interest lies in establishing run time behavioral properties
exhibited at compile time, i.e., through use of an axiomatic
proof method.

Deriving effective behavior. Unlike concurrent pro-
grams where a prime concern is preserving process interfer-
ence freedom [32], the of addition of aspects typically corre-
sponds to enriching existing program behavior. Indeed, it is
the possibility of such enrichment that is the source of much
of AOP’s power. For this purpose, we introduce the concept
of join point traces (JPTs). A JPT is used when reasoning
about a component C under the potential influence of advice,
to record the flow-of-control through various join points con-
tained within C. These join points are the ones “exposed” by
the pointcut interface of C, where items of advice may be
applied to enrich or otherwise affect its behavior. We will
delve into the details of the structure of JPTs in section 3,
but the central idea is to specify the behavior of C in terms
of assertions involving not just the variables of C but also
abstractly in terms of the state changes caused by various
items of advice that could possibly be applied at the various
join points recorded in C’s JPT, without referencing the ac-
tual advice. When reasoning about C, we will not, of course,
know what these state changes will be since the aspect(s) in
question may not yet have been constructed (or even if they
have been, we have not yet reasoned about them). Hence,
in our reasoning, we have to allow for a range of possible
state changes –subject to the constraints of the appropriate
rely() clauses– that these items of advice may carry out; es-
sentially the assertions characterizing the behavior of C will
allow for various such changes and, corresponding to each,
specify how C will behave. In effect, the behavior of C will
be parameterized with respect to the possible behaviors that
each item of advice code may engage in at the various join
points, with the JPT being used to record the “parameter
values” representing these behaviors. The next step, given
a particular set of advice specifications, is to compose our
JPT-based specification of C with the specified behaviors of
the aspects to arrive at the resulting enriched behavior of
the composed system as illustrated earlier in Figures 1 and
2. Formally, this will be carried out by appealing to our rule
of composition of aspect and the components they advise.

3. SPECIFICATION AND VERIFICATION
In this section, we will explore possible ways to specify

and curtail the behavior of AO programs in order to improve
reasoning in these systems that is natural to the way they
evolve, intuitively similar to what is portrayed in Figure 1.
We will then examine several inference rules using a highly
distilled version of an AspectJ-like AO language that will
allow us to show that the composition of AO components
meets a certain specification. Our goal in this paper is not to
provide a complete formal set of rules but rather to indicate
the types of considerations involved in them. In future work
we intend to define the syntax for a complete but simplified
version of AspectJ, present its operational semantics, extend
our set of proof rules to apply to this language, define a
formal operational model based on the notion of JPTs, and
address questions about soundness and completeness of the
rules with respect to the model.

Specifications and pointcuts. To demonstrate the crux
of our proposal, we will only consider call-join points and af-
ter advice. Before advice could be theoretically handled in
a symmetric manor; around advice, however, poses some in-
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teresting complications as advice could alter both the calling
and callee objects and avoid the execution at the join point
entirely by opting not to call proceed(). We leave around
advice as a problem open to discussion with the possibility
of leveraging existing work from [4]. For further simplicity of
the presentation, we will also not consider such constructs
as lexical pointcut designators (LPCDs) but will consider
them in future work.

The flexibility and expressiveness that we desire with our
specifications may lead to undesired complexity since many
join points may be traversed as a result of a given method
invocation. This complexity, however, depends heavily on
the strength of the associated rely clauses as any applicable
advice must respect it. Thus, although our specifications
will be over the behavior any applicable advice, we do not
need to consider potential behavior that does not abide the
rely assertion. Another possibility would be to follow the
conventions in [1], allowing only external calls to methods
within a component C listed on the interface of C to be sub-
ject to advice, that is, C is “sealed.” Pointcuts appear on
C’s interface in order to export important internal events
within C that the author of the component feels aspects
may be interested in advising. Note that importantly the
author does not examine existing aspects to come to this
decision, instead, she solely examines C to determine which
internal events should be exported on its interface. In much
the same way, in the context of our proposal, the author of
the component determines the necessary constraints to place
on possible advice that would apply to the it based on the
internals of that component alone, deciding what essential
constraints are necessary to place on the behavior of advice
either currently in existence or to be developed in the future.
Moreover, as another possible extension to our approach, it
may be worthwhile to break the sealing of a component for
observer aspects [3]. That way, less intrusive aspects, e.g.,
logging aspects, would be allowed to advise the execution of
the entire program. We leave both of these issues open for
discussion.

A common challenge with providing a reasoning scheme
for software that contains objects (and aspects) is aliasing,
which tends to cloud the vision as to what an object’s state
precisely consists of. A component C, say a class for instance,
will in general define a number of (instance) variables. Some
of these will be of primitive types (int, boolean, etc.), oth-
ers will be of reference types. Consider an instance obj of C.
The state of obj at any time will consist of the values of the
variables of primitive types plus the values of references to
objects. Generally we will not consider the states of objects
that obj contains references to as part of the state of obj.
Only changes to the values of its primitive variables resulting
from execution of methods invoked on obj will be reflected
as changes in the state of obj. As these methods execute,
they will in general invoke methods on objects that obj has
references to, resulting in changes in the states of those ob-
jects; these latter changes are not part of the changes in the
state of obj. In effect, we are assuming that there is a heap
in the background that holds all the objects, retains their
current states, and makes them available to us as needed.
These considerations are, of course, common to reasoning
frameworks for all object-oriented languages. Hence we will
not consider them in any detail when presenting our formal-
ism.

Join point traces. From this point forward we will typ-

ically consider the situation where we wish to specify and
verify a method in a class that may potentially be under
the influence of advice. It is not inconceivable to conversely
apply our proposal to reasoning about a piece of advice in
an aspect which itself may be open to advice (possibly even
itself), however, as noted earlier, around advice does pose
several interesting problems (e.g., constraining the behavior
of calls to proceed()). For now, however, consider, in gen-
eral, a method m() of a class C. The JPT for this method will
record the flow-of-control through the various join points in
the body of m() where items of advice defined in various
(perhaps yet-to-be-developed) aspects may apply. Each join
point is a call to a method either of the same class C or of
a different class. Note that we do not have to worry about
every call that appears in the body of m(). Suppose there
is a call to a method n() of a class D. If n() appears in an
exported pointcut on the pointcut interface of D, then this
call, in our current approach, will be recorded on the JPT of
m(). If not, however, it will not be record since this call in
this case would have no advice applicable to it. The design-
ers of D are responsible for deciding whether or not calls to
D.n() should be included in one of the pointcuts of D. Our
specifications, using JPTs, will reflect these decisions.

Traces of various kinds have been widely used for specify-
ing the behaviors of different types of systems ranging from
ADTs [16, 17] to processes in a distributed system [15, 28].
In each case, elements in the traces are used to record infor-
mation about important events in the system; the ordering
of the elements in the trace represents the order in which
the corresponding events took place. Specifications of the
systems are written in terms of conditions that must be sat-
isfied by the structure of the trace and by the information
recorded in the individual elements. In the case of JPTs,
the events of interest are the arrival of control at various
join points. Since the only kind of join point we are consid-
ering is the call-join point and since the only type of advice
we are considering is after advice, each element of the JPT
will correspond to the completion of a call. In order to deal
with DPCDs such as cflow ad cflowbelow, it is also conve-
nient, from the point of view of specifying our methods, to
record on the JPT the events corresponding to the start of
method execution as well as its end.

Let us now consider the structure of the elements that ap-
pear in a JPT. Consider the completion of a call of a method
m() of a class C invoked on object obj. Suppose we have a
pointcut pc defined in the pointcut interface of C that in-
cludes calls to m(). Suppose A is an aspect that includes an
(after) advice that applies to this pointcut. We will assume
that any variables defined in A will be of primitive types.
The code of the advice may update the values of these vari-
ables and also update the state of obj by updating values of
the primitive variables in that state. For simplicity in the
presentation, in this paper, we will not consider the possi-
bility of A invoking additional methods. Trace models are,
in general, powerful enough to handle such complications
but the resulting specifications tend to be rather complex.
The exclusion of such calls means we do not have to worry
about additional items of advice associated with calls to such
methods being triggered. Nevertheless, we encourage open
discussion on how some of these restrictions may be relaxed.

During actual execution of the system, if an aspect such
as A considered above had been defined, control will transfer
to the corresponding advice code. That code will execute,
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possibly resulting in changes in the state of the aspect as
well as in the state of obj (e.g., through exposing context at
the join point using the target() PCD), or even the caller of
obj.m() (e.g., through exposing context at the join point us-
ing the this() PCD). Hence, in this element of the JPT, we
will record the state of obj at the time that control reached
the completion of the call to obj.m() and its state when
control returns from the advice, and likewise for the calling
object of obj.m(). If there is no applicable advice, either
because calls to obj.m() are not included in any pointcut,
no aspect such as A had been defined to apply at the point-
cut, or because the conditions for the advice to be applied
are not satisfied, these two states will be identical, since the
state will not, in this case, change between the time that the
call completes and the code of the calling method continues
execution.

However, the completion of the call to obj.m() is not the
only point at which advice may apply. That is, calls made
to additional methods within the body of C.m() may them-
selves be subject to advice. As such, the specifications of
these method calls will also be parameterized over applica-
ble aspects. Thus, although until now we have been consid-
ering an individual method m() of a class C and described
the JPT as if it corresponded to just (a single call to) this
method, there is, in fact, a single JPT for the entire sys-
tem. This JPT is initialized, at the start of the system’s
execution, to the empty sequence. We will use the symbol
γτ to denote this (global) trace. Each time a method is
called, an element is added to the JPT to record the start
of this invocation. And when the method call completes, an
element corresponding to the completion is added to the
JPT, in fact, this element corresponds to the join point
at that location. The effect of any (after) advice that ap-
plies at this call-join point is recorded in this latter element.
The completion elements of the JPT will have the structure
(oid ,mid , aid , args, res, σ, σ′) where mid is the identity of
the method whose call just completed; oid is the identity
of the object on which the method mid was invoked; aid is
the identity of an applicable aspect instance, args and res
are the arguments and result (if any) of this method. σ
and σ′ are state vectors as follows. σ[oid ] is the state of
the callee object at the time the method call completed (im-
mediately prior to transferring control to the advice if any)
and σ′[oid ] the state at the time immediately following the
completion of the advice code. Likewise, σ[this] is the state
of the calling object at the time the method call completed
and σ′[this] the state at the time immediately following the
execution of advice. If there is no applicable advice at this
join point, then σ[this] = σ′[this]. These state vectors also
contain the state of aspects in a similar fashion. Specifically,
σ[aid ] refers to the the aspect state immediately following the
completion of the execution of the method, whereas σ′[aid ]
is the aspect state immediately following the completion of
the advice code. If there is no applicable advice at this join
point, these elements will not be included. We should note
again that the above description is an operational picture of
the JPT.

Let us now consider the structure of the elements of the
JPT that record method call invocations. Consider again
the call of a method m() invoked on object obj. If we wanted
to account for before advice that might apply at this point,
the element of the JPT recording this invocation would have
to include information very similar to the above. In this

paper though, we are only considering after advice, hence
we can omit much of this information. The only information
that does need to be included are the identities of m() and
obj since these may be used to control the applicability of
some advice, especially those point to pointcut expressions
containing DPCDs.

Inference rules. We will consider three rules correspond-
ing respectively to accounting for the advice that may apply
when a method call completes; for the call a method body
makes to another method; and for combining the specifica-
tion of a method C.m() with that of the aspects that apply,
including those that apply to the various methods that m()

calls during its executions to arrive at the resulting “en-
riched” behavior of m(). Let us first consider the rule de-
picted in Figure 3 corresponding to completion of a method
call to C.m(). The specification of such a method will be a
4-tuple, (pre, post , guar , rely). Here, guar is obtained from
the conjunction of each guar clause of each exported point-
cut which corresponds to calls to C.m(). rely is obtained in a
similar manor except that it is derived from the disjunction
of each rely clause. This specification annotation means that
if pre is satisfied when C.m() is called; and if the methods
called in the body of C.m() satisfy their respective specifica-
tions –these calls may be to methods of C or other classes or
both–; and if any advice applicable to calls to C.m() satisfy
the rely clause; then when body of C.m() finishes execution,
it will satisfy post as well as the requirements specified in
the guar clause. Note that the post-condition will, in gen-
eral, involve the JPT since that is what will allow us to later
enrich this specification, accounting for the action of advice
defined in any aspect that may be developed to apply to calls
to C.m(). But this JPT is not the global JPT, γτ ; rather,
it corresponds to a single execution of this method and we
will use the symbol λτ to refer to it.

pre ∧ [λτ = 〈(inv , C.m)〉]⇒ p
{p}S{q}

q ⇒ guar(σ[this])ˆ
q ∧ rely(σ[this], σ′[this])

˜
⇒

post [λτ ← λτb(this, C.m, ?, args, res, σ, σ′), σ ← σ′]

C.m :: 〈pre, post , guar , rely 〉

Figure 3: Rule for method specification.

S is the body of the method, with pre-condition p. This
differs from pre since pre does not give us any information
about λτ ; thus the first line essentially tells us that when
the method body starts execution, λτ has been initialized to
contain the element representing the start of the invocation
(inv) of this method (C.m(). The post-condition of S is as
denoted q. The second line of the rule requires us to show
that when S completes, q will indeed hold. Moreover, C.m()
will, in general, provide a guarantee to any advice that may
apply when the call to C.m() completes. This guarantee
is represented by guar and this has to be satisfied when
S finishes; i.e., the post-condition q of S must imply this
assertion.

The next requirement, split over the next two lines of the
rule, essentially allow us to go from the post-condition q of
the body of the method to post , the post-condition of the
method. The difference between these two assertions arises
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because the JPT has an extra element added to it to repre-
sent the completion of this method; and the state might be
modified from σ to σ′ as a result of an advice that has been
defined to apply at the completion of a call to this method.
Any such advice is required, as indicated in the third line, to
satisfy the rely clause. The element being appended to λτ
at this point corresponds to the completion of this method
call. The first element denotes the fact that the object in
question is simply the this object. The aid element repre-
sents the identity of the aspect, if any, that may apply at
this point. Since we are only considering the method at this
point, we have no requirements with respect to an aspect
state, hence the question mark. But the state of the cur-
rent object may itself change; this change is represented by
the elements denoted σ[this] and σ′[this]; these elements
may, as just noted, be assumed to satisfy the rely clause of
this method (since if not, the aspect is considered unaccept-
able). Once we have added this method completion element
to the JPT, we change the state of the object to whatever
the aspect assigns to it. The rule requires us to show that,
following this assignment, post , the specified post-condition
of the method is satisfied.

The rule looks rather involved but much of it is notational
complexity. Intuitively, the rule may be summarized by say-
ing, it requires us to show that the body S of C.m() behaves
according to its specification; and that when S finishes, the
state satisfies the requirements specified by the guar clause
so any after advice that is defined can legitimately assume
this clause. The rule also requires us to take account of
the fact that when the method is invoked, before the body
starts execution, the trace must be appropriately initialized.
And when the method finishes, the trace must be finalized
by adding a completion element that also records the effect
of any advice that may be applied corresponding to calls to
this method.

Next let us consider the rule portrayed in Figure 4 for deal-
ing with a method call. Suppose the method invocation is of
obj.m(args) where m() is a method of the class C. Let us as-
sume that the specification of C.m() is 〈pre, post , guar , rely〉.
Let us further assume that the (local) JPTs for the calling
and called methods are named λτ1 and λτ2, respectively.
At the start of the method, we have to account for the fact
that the object obj of the calling method will play the role
of the this object of the called method and substitute the
actual arguments for the formal parameters of C.m(). We let
p[x/e] denote p where all free occurrences of a variable in the
list x are replaced by its respective expression in e. When
the method finishes, we have to substitute in the reverse
direction and append λτ2 of C.m() to λτ1 of the caller.

p⇒ C.m.pre[pars/args]
C.m.post ⇒ q[λτ1/λτ1bλτ2, args/pars]

{ p } obj.m(args) { q }

Figure 4: Rule for method call

Essentially, the JPT records appropriate information about
the various (potential) join points through which control
flows. The value of λτ1 at the time of the method call, i.e.,
just prior to control being transferred to C.m(), represents
all join points we have encountered thus far in the calling

method. Now control continues in the body of C.m(). As
that body is executed, additional methods may be called and
information about the corresponding call-join points should
be accumulated in λτ2, the local JPT of C.m(). But this
is, in fact, simply a record of the additional join points that
we are encountering as execution continues. Hence, as con-
trol returns from C.m() to its caller, we need to append this
record to the JPT that we already had immediately prior to
the call, i.e., to λτ1. This will ensure that, in λτ1, we will
have a complete record of the control-flow along join points
that occurs during the entire execution of the caller of C.m(),
including the flow that occurs during the execution of the
methods that are called.

The final rule (Figure 5) we consider is for applying an
aspect to a class, in particular to a class method, to arrive
at the resulting enriched behavior of the method. More pre-
cisely, this aspect has been defined to apply at a pointcut
that includes the call join point to C.m() and we want to
arrive at the enriched behavior of this method as a result of
this aspect. Let us first consider a simpler form of the rule
ignoring the possibility of DPCDs. A refers to the aspect
being applied and Aadv is the applied advice defined in the
aspect.

{ guar(σ) ∧ ap } Aadv {rely [σ/σ@pre, σ′/σ] ∧ aq }
C.m :: 〈pre, post , guar , rely 〉
{pre ∧ ap } C.m() + A {post ∧ aq }

Figure 5: Rule for aspect application (simple ver-
sion)

In this rule, the rely and guar clauses are part of the spec-
ification of C.m(). The σ@pre notation denotes the state
at the start of the execution of this code. The first line
thus requires us to check that this code meets the rely and
guar clauses. In particular, the post-condition of Aadv en-
sures that the rely clause with σ@pre playing the role of the
starting state of the clause and σ playing the role of end-
ing state, is satisfied. The ap and aq are assertions over
the state of the aspect. The second line simply states that
we have already established the required result about C.m().
The post-condition in the conclusion of the rule shows us
the effect of the enrichment resulting from the application
of the aspect.

There are some problems with this rule. First, the pre-
condition requires not only the expected pre-condition of
the method is satisfied but also, ap, which is a condition
over the aspect state. The value of this state would not be
affected by the execution of the body of C.m(), so if it is
satisfied at the start of the execution of this body, it will
also be satisfied when the code Aadv starts execution. But
how will we ensure that this condition is, in fact, satisfied
at the start of C.m()? This state is going to be modified only
as a result of execution of various pieces of advice code of
this aspect, not by the body of C.m(). Nevertheless, there
is nothing in the pre-condition of C.m(), as we have it so
far, that will ensure that the aspect state, as it existed at
the start of C.m(), satisfies this assertion. Hence we need to
add this as an additional part of the pre-condition of C.m().
Therefore, this information needs to be provided as part of
the invocation element that is added to the JPT at the start

25



of C.m().
However, although the execution of the body of C.m() will

not directly modify the state of the aspect, there may be calls
in this body to other methods, and those methods might be
subject to this same aspect as well. Thus the state of the
aspect when the execution of the body of C.m() completes
and control is transferred to the advice code may not be the
same as it was when C.m() started execution. Instead, it will
be whatever it was when the most recent such call finished
execution. These calls will, of course, be recorded on the
JPT as per our method call rule. Further, the effect of the
advice acting on the called methods will result in the aspect
state that exists at the end of each such call to be recorded
on the JPT. We can address these considerations by making
two changes to the above rule. First, we modify the pre-
condition of A so that the assertion ap applies to the state
of the aspect as recorded in the invocation element of the
JPT. Second, we need to modify the post-condition so that
the assertion aq applies to the (final) aspect state recorded
in the JPT when this method returns to its caller.

The third problem with the rule has to do with bound
pointcut expressions containing DPCDs. The rule above as-
sumes that the advice code Aadv will apply to the execution
join point of C.m(). But it may not. Or, rather, we may have
a condition that depends on the call stack (as is the case
with such DPCDs as cflow) that will determine whether or
not it is applicable. And this, of course, cannot depend on
anything that is contained in the body of C.m() nor can it be
specified as part of the pre-condition of C.m(). Instead, it will
depend on the state of the call stack for each call to C.m()
that we have to deal with in reasoning about the behavior
of the overall system. In order to handle this, when reason-
ing about C.m(), if the pointcut associated with this advice
is dynamic, we will allow for both possibilities – when the
associated condition is satisfied and when it is not satisfied.
For this purpose, we will have two (possibly) distinct post-
conditions with the method, corresponding respectively to
the cases when the method is called with the state of the
call stack satisfying the condition of the dynamic pointcut
and when this condition is not satisfied. These are marked,
in the rule depicted in Figure 6, with the labels d and ¬d
respectively, d being the condition specified in the dynamic
pointcut for deciding whether or not the advice should apply
when the execution of C.m() finishes.

{ guar(σ) ∧ ap } Aadv {rely [σ/σ@pre, σ′/σ] ∧ aq }
C.m :: 〈pre, post , guar , rely 〉

{pre ∧ ap } C.m() + A {〈d : post ∧ aq , ¬d : post ∧ ap〉 }

Figure 6: Rule for aspect application (revised ver-
sion)

There is one final complication – the combination of the
two problems identified above. That is, the items of advice
applicable to methods called within the body of C.m() may
also have dynamic pointcuts associated with them! This
means the effect of dynamic pointcuts is not going to re-
sult in just two possibilities in the post-condition of C.m()
but rather all possible combinations of the conditions cor-
responding to these various dynamic pointcuts being or not
being satisfied! In the worst case, this would give rise to

2n possibilities, n being the number of calls in the body of
C.m(). What this tells us is that while dynamic pointcuts
are undoubtedly powerful, using them too liberally can lead
to systems that are extremely difficult to specify or reason
about. In fact, it is precisely this problem that forced Kr-
ishnamurthi et al. [23], in their model checking approach,
to introduce a depth parameter that is used as threshold to
combat this explosion. This problem is indeed more general
as illustrated above as it would also be encountered when
a join point resides either in a loop or is traversed multiple
times as a result of recursion. We will not present a for-
mal version of the rule that accounts for this problem as a
solution is currently being investigated.

4. RELATED WORK
Several authors have proposed restrictions to AOP in or-

der to address the complexity of the associated reasoning.
Clifton and Leavens [5] present MAO, a language that ex-
tends AspectJ [20] with concern domains and control-limited
advice. MAO, via static analysis, allows developers to re-
strict the behavior of advice, e.g., to allow accesses to only
certain parts of the heap belonging to a particular concern
domain. MAO also allows for restricting the manipulation of
control-flow by advice thereby forbidding it to perturb the
control-flow of the base-code in inappropriate ways. Such
restrictions are expected to help simplify reasoning about
AOP since developers can examine the signatures of each
advice declaration to reason about its potential effects. Sim-
ilar restrictions are also conceivable using our proposed rely
clauses; however, our advice restrictions are more flexible
and fine-grained in that rely clauses take an arbitrary asser-
tion over two states σ and σ′, the state at the point in which
advice obtained control and the state corresponding to the
point when it released it, respectively. Furthermore, MAO
does not provide the proper facilities to combine the spec-
ifications of the base-code and the advice to arrive at the
overall behavior exhibited by the augmented system. Nev-
ertheless, it should be possible to borrow some of MAO’s
ideas to help simplify our formalism.

Dantas and Walker [7] propose “Harmless Advice,” a re-
stricted form of advice that has minimal effects on the base-
code, and develop a type system that enforces such behavior
statically. Harmless advice cannot alter state (with the ex-
ception of I/O) and control-flow that is visible to the base-
code. What is interesting about such advice is that, al-
though highly constrained, it is shown to be quite useful
especially in the domain of security. With the use of rely
clauses, our approach could conceivably be adopted to relax
some of the constraints on harmless advice in order to make
it more “helpful” while maintaining effective local reasoning.
This would allow the base-code developer to explicitly state
on a fine-grained level what kinds of advice behavior he or
she considers “harmless” by means of a less restrictive rely
assertion, and then use JPTs to reason about the overall
effects of the advice applied to the base-code.

Krishnamurthi et al. [23] propose a verification technique
which can, using model-checking [2], modularly verify advice
independent of the base-code. The proposal, given the base-
code represented as a finite-state model, a set of properties
that the augmented system (i.e., the base-code combined
with the aspects) must satisfy, and a set of pointcuts where
potential advice may be applicable, automatically generates
enhanced interfaces which can be used for verifying the ad-
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vice when it becomes available. Essentially, the interface
captures the state of the model checking process prior to
advice being added to the system. Goldman and Katz [11]
present a related technique using their MAVEN tool. While
these approaches, as well as the approach presented in this
paper, all employ techniques that do not require repeated
analysis of the entire augmented system each time a de-
veloper adds, removes, or changes advice, there are several
key differences. Firstly, our proposed proof technique relies
on deductive logical reasoning while model-checking entails
a fundamentally different approach in which an abstract
model is exhaustively examined for violations of a certain
property. Furthermore, our approach is centered on com-
bining the specifications of the base-code and that of the
aspects using JPTs in order to assist developers in obtain-
ing the overall behavior of the system. As such, our proposal
does not require a specific property that neither the base-
code nor the augmented system must exhibit.

Devereux [9] also attempts to exploit the similarities be-
tween AOP and concurrent programs. The approach trans-
lates an aspect-oriented program into to an equivalent, low-
level concurrent program in an alternating-time logic for-
malism. The reasoning then is performed on this concur-
rent program using an assume-guarantee paradigm [14]. The
modus operandi is focused on preserving particular proper-
ties of the base-code despite the addition of advice. Our ap-
proach, through the use of JPTs, on the other hand, allows
a developer to reason about the behavior of the base-code
parameterized over any applicable aspect; therefore, reason-
ing about the base-code does not need to be reconstructed
for each property being verified nor a specific property that
the base-code must evince. We are interesting in obtaining
the enriched behavior of the combined system as opposed
to solely verifying the existence of interference freedom [32].
Moreover, transformation from an aspect-oriented program
to a concurrent program may cause the task of reasoning
about the original program to be more difficult. That is, a
change to either the base-code or an aspect could possibly
result in previous reasoning efforts being invalidated. Also,
assume-guarantee reasoning in concurrent programs are nor-
mally leveraged with the acknowledgement that other pro-
cesses may exist in the system. In AOP, nevertheless, as-
pects may not even have been developed yet or may be in-
terchanged between different systems. As such, the proposal
presented in this paper is designed more towards how AOP
is used, especially to the plug-n-play capability inherent to
aspects.

Several approaches [1, 12, 13, 25] attempt to augment
traditional interfaces with various degrees of information re-
garding crosscutting concerns in order to improve reasoning.
In particular, Kiczales and Mezini [22] argue that in the pres-
ence of crosscutting concerns we cannot expect to work with
the standard interfaces provided by a class’ methods and
their behaviors. Instead, we must define a more detailed in-
terface for the class that includes information pertaining to
how the system is intended to be deployed. These aspect-
aware interfaces, which include the various join points at
which advices defined in the aspects are applicable, accom-
pany traditional interfaces, thus adding to their usefulness.

5. FUTURE WORK AND CONCLUSION
Reasoning, specification, and verification of AO programs

indeed presents unique challenges especially as such pro-

grams evolve over time. Constructing an approach general
enough to reason about components subject to the unpre-
dictable frequency of advice applicability poses many ob-
stacles including but not limited to usefulness, complexity,
obliviousness, abstraction, and composition. In this paper,
we have presented our ongoing work in developing such a
technique that attempts to overcome these obstacles in an ef-
fort to enable tractable evolution of AOP. We propose an ap-
proach that is aimed at tailoring specifications of these sys-
tems to their evolutionary plug-n-play nature and enhancing
the expressiveness of constraints made on their constituent
components.

In future work we intend to extend our set of proof rules
to account for many additional AOP mechanisms. We also
intend to define a formal operational model based on the
notion of JPTs and address questions about soundness and
completeness of the rules with respect to that model. One
interesting direction for further work is to investigate multi-
ple aspect instances as provided by the association facilities
(e.g., perInstance) of AspectJ. The close relation between
an aspect instance and an object should be reflected in rea-
soning mechanisms expressing the tight connection between
the object state and the state of the aspect instance. We also
plan to address mechanisms for member introduction and
class hierarchy modifications, possibly utilizing techniques
employed in [27]. Another possible avenue to explore is the
notion of specification weaving as it may help in prevailing
over some of the aforementioned hurdles. Additionally, we
have listed several unresolved issues below in hopes of pro-
voking interested and related discussion.

Execution-join points vs. call-join points: Suppose
we have two classes C and D and there is a call in the body
of C.m() to the method D.m′(). Further suppose there is an
aspect that contains advice that applies (on calls to) D.m′().
When reasoning about what the advice code does, we are
allowed to assume the guar clause given to us as described
in section 3, but how it is exactly derived is not yet clear. It
seems it should solely be from D.m′(). But we discuss how, at
various points in the body of a method, the rely/guar clause
can be assumed (for rely) or must be shown hold (for guar).
That would mean we are referring to C.m(). But the advice
that applies to the call-join point associated with the call
to D.m′() is not concerned with C.m(); it is concerned with
D.m′(). Furthermore, it is not concerned with what happens
inside the body of D.m′() because it is associated with the
call-join point, meaning that the question is only about the
state at the end of D.m′(). Thus, is there a need to consider
the rely/guar clauses in the middle of various methods?

Classes vs. objects. We are supposed to be specifying
classes but we often treat it as if we are dealing with a spe-
cific object with a specific history (of method calls, etc.).
Such an approach makes sense when dealing with processes
in a concurrent language because each process is an actual
run time entity and there is only one instance of a given
process; but there can be any number of instances of a given
class and the approach presented in this paper does not cur-
rently deal with this appropriately.

Heap access. We assume that we can access the states of
all the relevant objects in the system. However, our formal-
ism does not have any provision to ensure that the heap is
properly updated, etc. That is, we are assuming that there is
an operational system “running alongside” that keeps track
of the heap and gives us the states of all the objects when-
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ever we need them. This notion conflicts, however, with our
goal of developing an axiomatic reasoning approach. Addi-
tionally, we assume access to the state of the aspects, e.g.,
ap and aq in the rules depicted in Figures 5 and 6. However,
how is the state of the aspect maintained and how can we
access it? This is especially problematic if there are mul-
tiple instances of the class that an aspect applies to, or if
an aspect applies to multiple classes, because each method
applied to each instance of a given class C will, potentially,
trigger the aspects associated with C to execute and have
that state modified. Somehow, we will have to keep track of
this state; essentially, we are treating the aspect state as if it
was part of the “static state” of the class C without having,
in the formalism, any way to deal with such state. And the
situation is, of course, worse for aspects that apply to mul-
tiple classes since then this state becomes part of the static
state of each of these classes.
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ABSTRACT
Often, insertion of several aspects into one system is desired
and in that case the problem of interference among the dif-
ferent aspects might arise, even if each aspect individually
woven is correct relative to its specification. In this type
of interference, one aspect can prevent another from having
the required effect on a woven system. Such interference is
defined and specifications of aspects are described. An in-
cremental proof strategy based on model checking pairs of
aspects for a generic model expressing the specifications is
defined. When an aspect is added to a library of noninter-
fering aspects, only its interaction with each of the aspects
from the library needs to be checked. Such checks for each
pair of aspects are proven sufficient to detect interference or
establish interference freedom for any order of application
of any collection of aspects in a library. Implemented exam-
ples of interfering aspects are analyzed and the results are
described, showing the advantage of the incremental strat-
egy over a direct proof in space needed for the model check.
Early analysis and detection of such interference in libraries
of aspects will enable informed choice of the aspects to be
applied, and of the weaving order.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model Checking ; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms
Verification, languages

Keywords
Aspects, interference, model-checking, detection, specifica-
tion
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Aspects have proven useful for a wide variety of tasks, and
aspect languages, such as, e.g., AspectJ [12], have become
increasingly popular. Often reuse of aspects is desired, as
the same concern might arise in many different systems. In
some cases there is more than one aspect we would like to
reuse in multiple systems of similar purpose, and then a
library of reusable aspects is created. This is the case, for
example, in [13], where a library of aspects was created to
implement the ACID properties for transactional objects.

However, use of aspects raises many questions of reliability
and correctness. It is crucial to establish both that each as-
pect individually is correct when woven alone, and also to
consider possible interference among multiple aspects wo-
ven to the same underlying system. This paper considers
the second question, giving a precise definition of semantic
interference among aspects, showing how to detect it, and
how to use examples of interference to modify the aspects or
their specifications. The technique is most appropriate for
establishing usage guidelines for reusable aspects, especially
as libraries of reusable aspects are developed.

We define an incremental proof strategy based on model-
checking that establishes whether there exists a legal under-
lying system in which the aspects interfere. For this strategy,
assume-guarantee specifications of aspects described in Sec-
tion 2 are used to define interference freedom in a way anal-
ogous to interference freedom among processes in shared-
memory systems [16]. In that classic work, interference free-
dom among processes is defined in terms of whether inde-
pendent and local Hoare-logic proofs of correctness for each
parallel process are invalidated by operations from other
processes. The individual proofs that each aspect is cor-
rect when woven alone correspond to the n local proofs of
[16], while the approach in this paper deals with the n2

checks of interference-freedom. A key point, also adapted
here, is that the other processes may change the values of
shared variables, but there is no interference as long as the
independent proofs are not invalidated. The level of inter-
leaving in shared memory systems is much finer than for
aspects: every local assertion about memory values can be
invalidated by another assignment by a different processor.
The fact that aspect advice is only activated at joinpoints
means that less stringent conditions can be used, and that
modular model checking can be used as a proof component.

The work presented here is the first definition of semantic
interference for aspects that uses the specification of the as-
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pects as the interference criterion, and applies model check-
ing to detect interference or establish noninterference among
collections of aspects. In our method the interference checks
are performed on pairs of aspects, and the results of these
pairwise checks are shown to be sufficient to determine inter-
ference freedom for all the aspects in the library. However,
as shown in Section 4, to enable such incremental proofs we
have to “pay” by additional incompleteness.

There has been previous work on detecting whether the
pointcuts of aspects match common joinpoints or overlap-
ping introductions [4, 7]. This is important because the
semantics of weaving can be ambiguous at such points, and
be the source of errors. However, as will be shown, aspects
can interfere even if there are no common joinpoints.

Some work has also been done in identifying potential influ-
ence by using dataflow techniques showing that one aspect
changes (or may change) the value of some field or variable
that is used and potentially affects the computation done
by the advice of another aspect [17]. Slicing techniques for
aspects [20, 1, 18] can also be used for such detection. Since
such potential influence is often harmless, many false posi-
tives can result.

Interferences between an aspect and the base program were
discussed in [11]. The reasoning about the influence of the
aspects on the base system is based on the assume-guarantee
paradigm, which is also used in our specifications of aspects.
However, in [11] interactions between aspects are not consid-
ered, and no automated verification procedure is presented.

Verification based on model checking has mainly concerned
the verification of a single aspect relative to an underlying
system. In [14] a modular approach is presented to show
that assertions true of a given underlying system remain
true when an aspect is added. In [5] a modular verification
of an aspect relative to the specifications considered here
is shown. Both of these techniques can be used as compo-
nents in the checking of interference defined here, but the
tool presented in [5] is used in this paper. Other work based
on model checking determines whether the weaving of as-
pect scenarios is done correctly [8], or whether a full woven
system is correct, using annotations that help construct the
(non-modular) proof task for each weaving [10].

2. SPECIFICATIONS OF ASPECTS
A specification of an aspect consists of two parts: its as-
sumption about any system into which it may reasonably
be woven, and its result assertion (also called its guarantee)
about properties of the result of weaving the aspect into any
system satisfying the assumption.

The form of the specification is an instance of the assume-
guarantee paradigm but generalized to relate to global prop-
erties of the system. The assumption of an aspect can in-
clude information on what is expected to be true at join-
points, global invariants of the underlying system, or as-
sumed properties of instances of classes or variables that
may be bound to various parameters of the aspect when it
is woven. (If the assumption states only properties required
from the join-points of the aspect, then it can also be called
the precondition of the aspect, otherwise the term precondi-

tion might be misleading.) The result assertion can include
both new properties added by the aspect, and those prop-
erties of the basic system that are to be maintained in a
system augmented with the aspect. Both parts of aspect
specification are expressed in linear temporal logic.

Note that, as all the desired properties of the join-points
are encapsulated by the assumption, the influence of the
pointcuts on the behavior of the aspect is also hidden in it.

In general, there might be a large number of properties of
the base system that should be maintained by the aspect.
However, due to the analysis presented in [9], many of these
properties do not need to be explicitly mentioned in the
guarantee of the aspect. In that work ( [9]) syntactically
identifiable categories of aspects are presented. For each
category of aspects broad classes of syntactically identifi-
able temporal properties preserved by all the aspects of this
category are identified. Thus for each aspect and for each
temporal property of the base system that should be main-
tained in the woven system as well, it is possible to efficiently
decide whether or not this property should be explicitly in-
cluded in the aspect’s guarantee. Once we have stated, for
example, that all safety properties of the base system are
also true in the woven system, instances of such properties
do not have to be listed in the guarantee. Treating such
properties separately makes specification and verification of
the rest of the properties much easier.

Definition 1. An aspect is correct with respect to its
assume-guarantee specification if, whenever it is woven (by
itself) into a system that satisfies the assumption, the result
will satisfy the guarantee.

The question of determining “interference” between an as-
pect and a base system, i.e., whether or not the aspect
maintains all the desired properties of the base system, and
whether or not the aspect succeeds to ensure its guarantee,
is taken care of in [5] and is out of scope of the current
paper. In this paper we assume that all aspects are cor-
rect with respect to their specifications, and consider only
possible interference among multiple aspects.

3. FORMALIZING SPECIFICATIONS, NON-
INTERFERENCE AND PROOFS

We will first define semantic interference between two as-
pects and present a proof strategy for interference detec-
tion. Then it will be shown that performing these pairwise
checks is enough to determine non-interference between any
collection of aspects.

Given two aspects and their specifications, we can estab-
lish whether they interfere semantically, independently of
any specific underlying system, while we rely on the cor-
rectness of the weaving process of the language in which
the aspects are written. There might be some ambiguity
in the weaving process, for example regarding the order of
weaving aspect advices at a common joinpoint. However,
here we assume a standard weaving strategy consistent with
the aspect language used for implementation. First let us
define system-dependent interference, and then define inter-
ference independent of any underlying system. (Recall that
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we assume that each aspect is correct with respect to its
specification.)

Definition 2. Given two correct aspects A and B, and
an underlying system S that satisfies the assumptions of both
A and B, we say that A does not interfere with B with re-
spect to S if the following property holds: Let S′ be a system
obtained from S by first weaving A into S, and then weaving
B into the resulting system. Then in S′ the guarantees of
both A and B hold.

Definition 3. Given two correct aspects A and B, we
say that A does not interfere with B if for every system
S satisfying the assumptions of both A and B, A does not
interfere with B with respect to S.

Notice the non-symmetry in the above definition of non-
interference: if A does not interfere with B, it does not nec-
essarily mean that B does not interfere with A, and vice
versa.

Two aspects are semantically non-interfering if each does
not interfere with the other in terms of Definition 3. Note
that an aspect can change the values of variables used by the
other even if they do not interfere, as long as the correctness
of the specification is unchanged.

Let (PA, RA) be the specification of aspect A, where PA

is the Precondition of A (called the assumption), and RA

- its Result assertion (called the guarantee). In the same
way, let (PB , RB) be the specification of B. Note that P
relates to a system before the aspect has been woven into it,
and R to that system augmented by the aspect, and each
aspect is by itself correct. The correctness of the aspects is
in terms of Definition 1, and it means that we assume that
for every base system that satisfies PA, the result of weaving
A into this system satisfies RA, and for every base system
that satisfies PB , the result of weaving B into this system
satisfies RB . Then for an underlying system S satisfying
both assumptions (PA and PB), we need to prove that both
sequential weavings - that of A before B and that of B before
A - result in a system satisfying both guarantees (RA and
RB).

Definition 4. In general, a set {A1, . . . , An} of aspects
is interference-free if whenever the assumptions P1, . . . , Pn

hold in a system, the augmented system obtained after weav-
ing the aspects in any order satisfies the guarantees R1, . . . , Rn.

Now let us describe non-interference and its proof more for-
mally: The specifications of aspects we consider here are
written in Linear Temporal Logic [15]. They relate to com-
putations, which are sequences of states. (In fact, the defin-
itions also hold for branching temporal logic, but the proof
method does not.) The notation S |= ψ is used to say that
a temporal logic property ψ holds for every computation of
a system S. Similarly, to say that a state predicate p holds
at a state s of S we write s |= p.

To prove that A does not interfere with B, we need to show
that

OKAB = ∀S((S |= PA ∧ PB) → ((S +A) +B |= RA ∧RB))

holds, where by (S+A) we denote the result of weaving A
into S (and by ((S+A)+B) - the result of weaving B into
(S+A)). In the same way, to prove that B does not interfere
with A we need to show

OKBA = ∀S((S |= PA ∧ PB) → ((S +B) +A |= RA ∧RB))

Notice that these are two distinct statements, as in many
cases the result of weaving A before B, (S + A) + B, will
differ from the result of weaving B before A, (S + B) + A,
as the advice of the previously woven aspect may not apply
to the last-woven one. For the same reason both orderings
above might differ from the result of simultaneous, AspectJ-
like, weaving - the relation between them will be discussed
in Section 7. The order of weaving will matter, for example,
in the Composition Filters model [2], and in languages with
dynamic aspects introduction. Moreover, even in AspectJ,
if we first weave A into S and compile the program, and then
weave B into the obtained Java bytecode, we do not get the
same result as if A and B were woven into S at the same
time by the AspectJ weaver.

There exists a way to prove the two above statements -
OKAB and OKBA - directly, that will be described later,
but it has several disadvantages. The following theorem will
enable us to use an incremental step-by-step method:

Theorem 1. Let A and B be two aspects with the spec-
ifications (PA, RA) and (PB , RB) respectively, and assume
that both aspects satisfy their specifications. Then to prove
that A does not interfere with B it is enough to show that
the following statements hold:

KPAB = ∀S((S |= PA ∧ PB) → (S +A |= PB))

(“Keeping the Precondition of B when weaving A before B”)
and

KRAB = ∀S((S |= RA ∧ PB) → (S +B |= RA))

(”Keeping the Result of A when weaving A before B”)

Proof.
In other words, we need to prove that if A and B are correct
aspects, and the KPAB and KRAB statements hold, then A
does not interfere with B. The KPAB statement means that
the weaving of A into a system S satisfying the assumptions
of both aspects does not invalidate the assumption of B.
Such an S, in particular, satisfies the assumption of A. We
know that after weaving A into a system S that satisfies PA,
RA is true, for it is assumed as proven that A satisfies its
specification. Thus together we have that (S+A) will satisfy
not only the assumption of B, but also the guarantee of A,
and the following statement will be true:

KP ′
AB = ∀S((S |= PA ∧ PB) → (S +A |= RA ∧ PB))

KRAB means that weaving B into a system in which the
guarantee of A holds does not invalidate this guarantee. B
also satisfies its specification, so in the same way as for A,
S +B from KRAB satisfies RB , and we have

KR′
AB = ∀S((S |= RA ∧ PB) → (S +B |= RA ∧RB))
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Now we can combine KP ′
AB and KR′

AB by substituting
S+A instead of S into KR′

AB . As a result we will obtain
the desired property, OKAB .
Q. E. D.

Symmetrically, to prove that the weaving of A can be per-
formed after the weaving of B we need to show KPBA and
KRBA, which, combined, will imply

OKBA = ∀S((S |= PA ∧ PB) → ((S +B) +A |= RA ∧RB))

Theorem 2. Let A1, . . . , An be aspects with the specifi-
cations (P1, R1), . . . , (Pn, Rn) respectively, and assume all
these aspects satisfy their specifications. Assume also that
for every pair of indices i, j KPi,j and KRi,j are true. Then
the set {A1, . . . , An} is interference-free.

In order to prove the theorem, the following lemma will be
useful:

Lemma 1. For every set of n ≥ 2 aspects {A1, . . . , An}
satisfying their specifications (P1, R1), . . . , (Pn, Rn), if for
every pair of indices i, j KPi,j is true, then for every base
system S such that S |= P1∧. . .∧Pn, the following holds: For
every 0 ≤ k < n, (. . . (S+A1)+ . . .+Ak) |= Pk+1 ∧ . . .∧Pn

(where the case of k = 0 means that no aspects are woven
into the system S).

Proof (Lemma 1).
The proof is by induction on k.
Basis: k = 0. We need to show that S |= P1 ∧ . . . ∧ Pn, but
this statement is one of the premises of the lemma.
Induction step: Assume that for every k such that 0 ≤ k <
m < n the statement holds, and let us prove it for k = m.
Let S be a system such that (S |= P1 ∧ . . . ∧ Pn). Let us
denote the system (. . . (S + A1) + . . . + Am−1) by S′. We
need to show that (S′ + Am) |= Pm+1 ∧ . . . ∧ Pn. From
the premises of the lemma, for every m + 1 ≤ i ≤ n the
KPm,i property holds. Also, from the induction hypothesis,
S′ |= Pm ∧ . . . ∧ Pn, and, in particular, S′ |= Pm ∧ Pi.
Together we have that indeed (S′ + Am) |= Pi for every
m+ 1 ≤ i ≤ n.
Q. E. D.(Lemma 1)

Now let us prove Theorem 2. Let us be given a permutation
(i1, . . . , in) of indices. Without loss of generality, we can call
them (1, . . . , n). (Clarification: We can always permute the
aspects in the library so that for every j, aspect number ij
will stand on the j-th place. Then the order 1, . . . , n on the
permuted library will give the same sequence of aspects as
the order i1, . . . , in on the original one.) We need to prove
that for every base system S, if S |= P1 ∧ . . . ∧ Pn) then
(. . . (S + A1) + . . .+ An) |= R1 ∧ . . . ∧ Rn. The proof is by
induction on n.
Basis: If n = 1, there is only one aspect, A1. Let S be a sys-
tem satisfying P1. The aspect A1 satisfies its specification,
thus the statement (S |= P1) → (S +A1 |= R1) holds.
Induction step: We assume that the statement holds for any
1 ≤ k < m aspects from the n given, and prove it for k = m.
Let us be given a base system S satisfying P1∧ . . .∧Pn. We
will denote by S′ the system (. . . (S+A1)+. . .+Am−1). From

the induction hypothesis we have that S′ |= R1∧ . . .∧Rm−1.
Lemma 1 is applicable here, so we also have that S′ |=
Pm ∧ . . . ∧ Pn. In particular, S′ |= Pm. Thus, as Am

is correct according to its specification, S′ + Am |= Rm.
And for every i 6= m, 1 ≤ i ≤ n, the KRi,m property
holds, thus from the fact that S′ |= Pm ∧ Ri it follows
that indeed S′ + Am |= Ri. Together we get that indeed
(. . . (S +A1) + . . .+Am) |= R1 ∧ . . . ∧Rm.
Q. E. D.

A proof that uses Theorem 1, that is, a proof that shows the
assumption of the second woven aspect and the resulting as-
sertion of the first one are preserved, is called an incremental
proof. A direct proof merely shows that the weaving of the
two aspects achieves both results.

Note that, as opposed to the incremental proofs assumed in
Theorem 2, a direct proof of non-interference among pairs of
aspects does not generalize to weaving of more than two as-
pects: even if aspects A, B, and C are pairwise interference-
free, and are correct relative to their assumptions and guar-
antees, weaving of all three into a system with PA∧PB ∧PC

does not guarantee RA ∧ RB ∧ RC in the resulting system.
For example, S + A might not satisfy PC , and thus, when
B and C are woven, RC might not result (even though just
weaving C would give RC). Thus the incremental method
is essential for showing interference-freedom among groups
of aspects of any size.

In some cases a conflict in the specifications of the aspects
exists, which means that the specifications do not allow some
composition of the aspects. Then for some order of weaving
these aspects will always interfere, regardless of their advice
implementation, as will be seen in Section 5.2. This compo-
sition of the aspects will be called not feasible according to
the following definition:

Definition 5. Given two aspects A and B with specifica-
tions (PA, RA) and (PB , RB) respectively, the composition
of A before B is feasible iff all the following formulas are
satisfiable: PA ∧ PB, RA ∧ PB, RA ∧RB

If a composition of A before B is not feasible, it means that
A has to interfere with B. Thus as a first step in detection
of interference, a feasibility check can be performed - i.e., a
satisfiability check on the appropriate formulas. It is rec-
ommended to perform a feasibility check before starting the
full verification process described below, because this check
is much easier and quicker, and then proceed to the ver-
ification only if the composition of the aspects is feasible.
However, this is not an obligatory stage of the verification
process, because if some contradiction exists, the verifica-
tion method below will also detect interference and provide
a counterexample.

4. PROOF IMPLEMENTATION USING MAVEN
In order to perform a verification without having to con-
sider each possible underlying system, we use and adopt
to our purposes the proof method suggested in [5] and the
MAVEN tool presented there, while also improving MAVEN
and making it more robust. The basic idea of that work, de-
scribed for the verification of a single aspect relative to its
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specification, is that a single model can be generated from
the aspect assumption, the pointcut description, and the
advice, and used to model check the result assertion. If
that model check succeeds, the augmented program result-
ing from the weaving of the aspect to any underlying system
satisfying the aspect assumption is guaranteed to satisfy the
result assertion of the aspect.

The single model to be checked is built from the tableau
(state machine) that corresponds to the linear temporal logic
assertion of the aspect assumption. This tableau is a generic
model for all the systems satisfying the assumption of the
aspect, and the state machine fragments that correspond
to the advice are woven according to the pointcut descrip-
tions. The tableau contains all the possible behaviors of the
base systems into which the aspect can be woven. In other
words, for any given underlying system that satisfies the as-
sumption of the aspect, for every computation of this system
there is a corresponding computation of the tableau, satisfy-
ing the same LTL properties. In [5] it is shown that the same
holds for the woven systems: if the system S1 results from
weaving the aspect into some appropriate base system, and
the system S2 is the result of weaving the aspect into the
tableau, then for every computation of S1 there exists a cor-
responding computation of S2. The properties we check are
LTL properties, and an LTL property holds in a system iff
each computation of this system, taken alone, satisfies this
property. So if there exists a “bad” base system S such that
S satisfies the assumption of the aspect, but the resulting
assertion of the aspect is violated when it is woven into S, it
means that there exists a “bad” computation in the woven
system, violating the guarantee of the aspect, and for this
bad computation there exists a corresponding bad computa-
tion in the (tableau + aspect) state machine. It follows that
indeed it is enough to model-check the resulting assertion of
the aspect on the (tableau+aspect) system only.

The state-machine fragments corresponding to the advice
can be obtained from high-level code, e.g. in AspectJ or
Java, using existing tools, such as Bandera [6]. Alterna-
tively, the state machines can be created at earlier stages of
the programming cycle to serve as abstract models of aspects
during their design, before code is generated. Note that the
aspect can consist of multiple pointcuts and advices, but not
only the correctness of theorems 1 and 2 from Section 3 is
not invalidated in this case, but this case is also supported
by the implementation of the proof method presented be-
low. However, if such complicated aspects do interfere, the
diagnosis of the interference cause would be more efficient
if the aspects were split into simpler ones, each with one
advice only - if such a splitting is possible.

In order to use the MAVEN tool, we have to pose one re-
striction on the aspects: they should both be of the weakly
invasive category, as defined in [9]. An aspect is weakly
invasive if whenever its advice completes its execution, the
resulting state, when the local variables and private objects
of the aspect are ignored, already existed in the original un-
derlying system. Notice that the advice can change state
variables of the underlying system during its execution, and
that local aspect variables can be modified with no restric-
tion. The restriction to weakly invasive aspects is not a
strong one, as most aspects fall into this category, including

all of our examples. When an aspect is not weakly invasive,
it may return control to the basic system in a state that was
not previously reachable, and thus the effect of the base sys-
tem’s code is not limited by the assumption. The restriction
on the aspects is not necessary theoretically: our statements
are sound for all types of aspects. As MAVEN improves, or
other verification tools for aspects become available, this re-
striction may become unnecessary.

Note also that a verification using MAVEN is relative to the
standard weaving strategy built into that tool. Again, this
is not inherent to our approach.

In order to use MAVEN as a subsystem for our technique,
it was extended in several ways. Most significantly, - now
it is possible to automatically determine whether the aspect
verified is weakly invasive. In the first version of MAVEN the
given aspect could be woven only into a tableau built from
its assumption, while now it is possible to weave an aspect
into an arbitrary transition system (in the NuSMV format).
It also now allows initializing aspect variables globally, and
preserving aspect values between activations of advice.

In our context, to show that A does not interfere with B,
we will use the incremental method. The verification can be
preceded by a feasibility check of the composition of aspects.
The verification process, based on Theorem 1 and using the
improved MAVEN tool, will be as follows:

1. To prove KPAB , build a tableau that corresponds to
the conjunction of the assumptions of the aspects, PA∧
PB , weave the advice of A and show that the assump-
tion of B, PB , is true of the result.

2. In order to prove KRAB , a tableau that corresponds
to the conjunction of the assumption of B and the
guarantee of A, RA ∧ PB , is built. Then after the
advice of B is woven in, show that the guarantee of A,
RA, still holds for the result.

The proof that B does not interfere with A is symmetric.
When we prove non-interference in both directions, although
there are four steps of verification, we need to build only
three different tableaus: one for the proofs of KPAB and
KPBA, and the other two - for the proofs of KRAB and
KRBA, respectively.

The above method is sound, due to Theorems 1 and 2, but
not complete. There are two cases when the OKAB check
fails though the aspects do not interfere (the case of OKBA

is, of course, symmetric): The first case is a failure due
to the incompleteness of the model-checking itself. If the
model we are model-checking is infinite, or finite but too
large, the model-checking will collapse without providing
any answer. So, as always when model-checking is used,
the models and the verified properties should be described
at a sufficient level of abstraction. The second case is when
the specification of some aspect is not the most general pos-
sible. Then there are two possibilities for failure - one arises
when the assumption of aspect B, PB , is not the weakest
possible, and the other - when the guarantee of A, RA, is
not the strongest possible. In the first case, as PB is not
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the weakest possible, it might happen that aspect A does
not preserve the assumption of aspect B, but assures some
other property, P ′

B , that is enough for aspect B to oper-
ate correctly. Then the KPAB check fails, but the OKAB

is true. In this case, if PB was the weakest possible (i.e.,
such that (S |= ¬PB) → (S + B |= ¬RB)), this possibil-
ity of interference would be eliminated. In the second case,
symmetrically, it might happen that we can not prove that
aspect B preserves the guarantee of A, because the assump-
tion RA ∧ PB is not strong enough to ensure RA after B is
woven, but the OKAB property is true because A guaran-
tees a stronger statement, R′

A, and with this assumption B
is able to preserve RA (for every system S, if S |= R′

A ∧PB ,
then S+B |= RA). Notice some non-symmetry in the above
statement - we have to assume R′

A, but can guarantee only
RA, because that is the property proven by the successful
OKAB check. In fact, by demanding that aspect B will pre-
serve RA when woven into any system that satisfies RA∧PB ,
we pose too strong a restriction, because we are interested
in this statement only for base systems in which aspect A
is present. This is an additional source of incompleteness in
this case.

One could try to eliminate the second cause of incomplete-
ness by verifying the OKAB statement directly: Build a
tableau that corresponds to the conjunction of the assump-
tions of the aspects, PA ∧ PB , weave the advice of A into
the above tableau, and then weave the advice of B into
the resulting state machine. Then verify both guarantees,
RA∧RB , on the result. However, as we saw before, the direct
method can not be generalized to more than two aspects.
Moreover, even if we are interested only in detecting inter-
ference between two aspects, the analysis below shows that
the space complexity of the direct method is higher than that
of the incremental one, and thus the model-checker might
fail to perform the direct verification, while succeeding to
perform the incremental one.

For the complexity analysis, we assume, for convenience
of presentation, that all the specifications are of (approx-
imately) the same size, and all the advice machines are of
(approximately) the same size as well. Given two aspects,
A and B, with the specifications (PA, RA) and (PB , RB) re-
spectively, we denote by r the maximal length of a formula
from the aspect specifications (max(|PA|, |RA|, |PB |, |RB |)),
and by M - the maximal size of the advice model of the
aspects (max(|MA|, |MB |)).

Lemma 2. The space complexity of the incremental method
is O(23r ·M).

Proof.
The size of the tableau built from an LTL formula of length
k is O(2k) (as shown in [3]). In our case the tableau is
always built from two properties, so the size of the tableau
is O(22r), and the size of the woven system on which the
resulting assertion is model-checked is O(22r ·M). When a
formula of size k is verified on a model of size m, the space
complexity of the model checking is O(m · 2k) ( [3]). In our
case, m = O(22r ·M) and k = r, so the altogether space
complexity is O(22r ·M · 2r) = O(23r ·M).
Q. E. D.

Lemma 3. The space complexity of the direct method is
O(24r ·M2).

Proof.
Here first the assumptions tableau is built from the two
assumptions of the aspects, and its size is O(22r). Then
two advice models are woven into it, one after another, so
the size of the woven system is O(22r · M2) (M2 appears
here because there might be join-points of the second as-
pect inside the advice machine of the first). The property
verified on this woven system is the conjunction of the two
resulting assertions of the aspects, so the property size is
O(22r). Together we have that the space complexity is
O(22r ·M2 · 22r) = O(24r ·M2).
Q. E. D.

5. EXAMPLES
5.1 Encrypting Passwords
In this example we discuss two reusable aspects, E and F,
that may appear in a security-aspects library and might be
used in a password-protected system. An example of such
a system can be the internet terminals of a bank, providing
the possibility of viewing and/or updating the user’s account
via the internet.

Aspect E is responsible for encrypting the passwords before
sending.The joinpoint E advises is the moment when the
password-containing message is to be sent from the login
screen. E’s advice is a “before” advice, that encrypts the
message. E should guarantee that each time a password is
sent, it is encrypted, and the assumption of E might be that
password-containing messages are sent only from the login
screen in the base system. In fact, there is more to E: each
time a password is received, it is be decrypted. But this
part is irrelevant to our example, so we’ll ignore it here. A
possible specification for E can thus be that E assumes that
password-containing messages are sent only from the login
screen in the base system, and guarantees that each time a
password is sent, it is encrypted. More formally it can be
written as follows:

PE = G(psw_send↔ login_psw_send)

and

RE = G(psw_send→ encrypted_psw)

where the predicate psw_send means that a message con-
taining a password is being sent, and login_psw_sendmeans
that the password is being sent from the login screen. The
assumption of the aspect might seem arbitrary, but this
choice was guided by a possible implementation of the as-
pect. It might be the case that the aspect is unable to iden-
tify password-containing messages from the message content
only, and then the pointcut could be defined as the creation
of a message containing information from some specific field
of the graphic user interface. Note that the aspect is generic
(to enable reuse), and thus the field from which the infor-
mation is taken should be a parameter bound to the aspect
when adding the aspect to a concrete system.

Aspect F is responsible for treating a situation when the user
forgets the password. Usually in password-guarded systems
there is a way of retrieving your password once you forget
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it. F provides a list of security questions to the user, and
if the questions are answered correctly, F guarantees that
the user will get his password via an e-mail. In order to
add this functionality to the system, F should add some in-
troductory operation. For example, a new button - “Forgot
my password” - can be added to the system so that we can
define the pointcut of F as the moment when this button is
pressed. F’s advice then provides the dialog with questions,
checks the answers and in case all the answers are correct
- sends an e-mail to the user. The button is added by F
itself, thus one of the possible ways to specify F is to say
that F assumes nothing about the system (because F itself
adds to the system the possibility to report forgetting the
password), and guarantees that whenever the security check
is passed, the forgotten password will be sent to the user
(and if the check is never passed, the password remains for-
gotten forever as it was in the base system). More formally,
F’s assumption is

PF = true

And F’s guarantee is

RF = [G((button_pressed∧quest_answered) → F (psw_send)))]

where button_pressed is the flag that means forgetting the
password has been reported and not yet treated.

Let us check the possibility of sequential weavings. F’s as-
sumption is true, thus E can not violate it. Thus in order
to check the possibility of weaving F after E, we need to
prove only that the weaving of F maintains the guarantee of
E (the KREF statement):
∀S((S |= G(psw_send → encrypted_psw)) →
(S + F |= G(psw_send → encrypted_psw )))
This statement seems to be reasonable, and the feasibility
check succeeds, but the advice of aspect F is implemented in
such a way that the password sent from it is not encrypted.
Thus when trying to verify the KREF statement, a coun-
terexample is obtained. It is a computation in which at some
state s1 the predicate button_pressed became true, and at
the same time the predicate encrypted_psw was false. Two
states after that, at a state s2, due to the operation of the as-
pect F, quest_answered became true (while button_pressed
was still true), and in the next state, s3, psw_send be-
came true. But F does not encrypt the passwords, thus
encrypted_psw was still false at s3, contradicting the impli-
cation in RE , so the verification failed.

In order to check the possibility of weaving E after F, we
need to prove that the weaving of F to a system satisfying
both assumptions maintains the assumption of E (theKPFE

statement):
∀S((S |= G(psw_send↔ login_psw_send) ∧ (true)) →
(S + F |= G(psw_send↔ login_psw_send))).
However, the implementation of the advice of F leads to
violation of the assumption of E, because F does not send
the password from the login screen. Note that in this case,
again, there is no contradiction in the specifications of E and
F, so the feasibility check succeeds, and the interference is
detected during the verification only.

Two remarks about the example: (1) If E and F were the
only two aspects existing in the library, it would be very
easy to detect the interference just by looking at the library,

but, as already noted, in real life many different aspects are
added to systems and libraries by different groups of people,
and an automated solution is needed. (2) In this example we
see that the conflicting aspects do not share any joinpoints,
and the interference doesn’t emerge from updating common
variables.

A variant of this example, both as Java code and abstract
models, is presented at http://www.cs.technion.ac.il/

ssdl/pub/SemanticInterference/

It includes the input for verification by the indirect method,
checking whether E interferes with F, including aspect de-
scriptions in the NuSMV format, and appropriate LTL as-
sertions (the KPEF stage is not interesting in our case, so
only the KREF stage is presented), and the output of the
verification - the counterexample provided by NuSMV. Some
statistics for this variant, comparing the verification by in-
direct and by the direct method, appear in Figure 1. |M.|
means the model size and is measured by the number of
BDD nodes in the model, and |Ex.| means the number of
states in the counterexample found (0 means the result of
verification was true). These statistics show the additional
disadvantage of the direct method: not only is this method
applicable only for the case of two aspects, but also the mod-
els it creates for verification of two aspects interference are
much bigger than those created by the incremental method.
In average for this example the models created by the direct
method are more than 4 times bigger than those created by
the incremental, and the maximal ratio of model sizes for
this example is almost 7.

Remark: as a result of verification of KPFE , a counterex-
ample was obtained. Thus it would be possible to stop
the verification at this stage and try to amend the aspects
and/or their specifications before continuing to verification
of KRFE .

Direct method Incremental method
Check |M | |Ex| Check |M | |Ex|
OKEF 7778 18 KPEF 1127 0

KREF 1283 12
OKFE 8700 18 KPFE 2375 12

KRFE 2450 0

Figure 1: Security example statistics

5.2 ATM Communication and Card Theft
In this example we consider two aspects that can be used
in a system with remote authorized access. They are most
useful for systems in which each user can have only one open
session at a time. The first aspect (aspect C below) treats
communication failures in the system, that occurred dur-
ing authorization process or while some authorized user was
logged in. Its goal is to assure that the user will be able to
log in again after the communication is restored. The second
aspect (aspect T) prevents identity-theft: for example, if a
wrong password is provided in several consequent attempts
of logging in, the aspect guarantees that the user is blocked.
One possible system in which these aspects might be used
is an ATM system of a bank, consisting of several ATM ma-
chines and a server. The user interacts with this system by
first inserting a card and code, and then, if permission is
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granted, entering a request for some bank operation (money
withdrawal, or account balance check).The ATM machine
communicates with the server to process user requests, and
the server grants or denies permission to perform operations,
and processes the operations permitted. From the point of
view of the aspects, the card serves as a user-login, and code
- as a password. To make the example more intuitive, all the
descriptions below are written in terms of the ATM system
(note that the aspects are still general and reusable, even
after this concretization, because many different implemen-
tations of the above-described ATM system are possible). A
more detailed description of the aspects is as follows:

Aspect C (for Communication) is responsible for treating
communication failure between the server and an ATM ma-
chine. In case of communication failure, the aspect checks
whether there is a card stuck in the ATM machine, and re-
turns it to the user. One of the reasonable specifications of
C is: C assumes that the only case when a card can get stuck
in a machine is when a communication failure occurred while
the card was in the machine. In such a case C guarantees
that a card is never stuck in a machine forever. Formally,

PC = G(card_in→ F (¬card_in ∨ comm_fail))

(which means that if a card was inserted, either it will be
eventually returned, or a communication failure - indicated
by comm_fail predicate - will happen), and

RC = G(card_in→ F (¬card_in))

(which means that if a card was inserted, it will eventu-
ally be returned). Note that the comm_fail predicate does
not necessarily represent a general communication failure in
the whole system. Our abstraction here is that the flags
comm_fail and card_in relate to a communication failure
and card status at a particular ATM.

Another aspect, T (for Theft), comes to prevent card-theft.
A possible specification is: T assumes that there exists a
possibility to detect that the card is stolen, and if the card
is stolen it will remain stolen forever. T ensures that such a
card will never return to the user. Formally,

PT = G(card_stolen→ G(card_stolen))

and

RT = G((card_in ∧ card_stolen) → G(card_in))

Let us examine the possibility of sequential weaving of T
after C. One of the statements we need to show is that T
does not violate the guarantee of C,KRCT :
∀S((S |= (G(card_in → F (¬card_in))∧ (card_stolen →
G(card_stolen))))→ (S+T |= G(card_in→ F (¬card_in)))).
There is a contradiction in the requirement from S+T : On
one hand, we require RC , that says that an inserted card will
eventually be returned in every case. On the other hand, T
satisfies its specification, and PT was true in S, thus RT

should be true in S + T . By that we require that in some
special case (that of a stolen card) the card will never be
returned, which contradicts our first requirement (which is
the RC assertion). This contradiction is found when the
RC assertion is model-checked on the Tab+T system, built
by weaving T into the tableau Tab of RC ∧ PT . Thus it is

impossible to weave T after C, at least not with such a spec-
ification. Note that in this case the feasibility check is also
able to detect interference, because there is a contradiction
between RC and RT . Similarly, we will find a contradiction
and counterexample to the weaving of C after T.

Verification statistics for this variant, comparing the verifi-
cation by indirect and by the direct method, appear in Fig-
ure 2. Note that here, as in the previous example, the model
sizes of the incremental method are much smaller than those
of the direct (about 1

3
of their size).

Direct method Incremental method
Check |M | |Ex| Check |M | |Ex|
OKCT 3154 8 KPCT 1038 0

KRCT 776 8
OKTC 3045 5 KPTC 1028 8

KRTC 1098 11

Figure 2: ATM example statistics

6. ERROR ANALYSIS
When interference has been detected between two aspects,
the cause of the verification failure should be localized -
which property was violated, and which advice is “guilty”.
The verification process is divided into stages, making the
localization straightforward: if we fail to prove the OKAB

and there is a problem in violating the assumption of B, the
proof of KPAB will fail, and if the advice of B violates the
guarantee of A, the failure will occur in the proof of KRAB .

After the cause of the failure is localized, one needs to decide
on what steps should be taken next. In many cases there is
a need to add the functionality of both aspects to the base
system, in spite of the interference detected between them.
There are several possible ways to handle this problem, de-
pending on the type of the interference detected, and the
results of the feasibility check (thus it is recommended to
perform the feasibility check of the specifications as a first
step of error analysis in case an interference is detected).
One should then decide whether to change the advice of one
of the aspects (or both), and whether the specification of the
aspects should be refined. For the examples from Section 5,
the way to interference elimination might be as follows:

For the example in Section 5.2, the weaving of C before T
appears to be non-feasible, thus the first step to elimination
of the interference is to try and refine the specification of the
aspects in such a way that the composition becomes feasible.
And indeed, there is a possibility of such a refinement: if
we knew of the possibility of stealing the card, or, more
generally, of special events other than communication failure
that can cause the card to be stuck, we could update the
guarantee of C to treat these events: RC = G((card_in) →
F (special_event∨¬card_in)), and then add (card_stolen→
special_event) to PT . Then C would not interfere with T.
Note that if such a refinement is possible, it means that the
specification provided by the user for one of the aspects (or,
maybe, for both) was too strong.

For the example in Section 5.1, on the other hand, aspect
F interferes with E, though the composition of E after F is
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feasible. In this example it is impossible to eliminate the in-
terference by changing only the specification of the aspects,
and a change in one advice, or in both, is necessary. For
instance, we can change the advice of F to bring the user
to a version of the login screen where the password can be
changed, instead of sending the e-mail with the password. In
this case, if E is woven after F, the password-sending opera-
tion of F is done by the user as another login-password send
and thus will be a legal joinpoint of E. Therefore the advice
of E will be performed and no password will be sent unen-
crypted. More formally: the specification of F can stay the
same, but as a result of the change in the advice, whenever
psw_send is true, so is login_psw_send. Aspect E and its
specification will stay as before. Now the verification will be
of F’s new code relative to the specifications, so that KPFE

and KRFE now will hold. This means that the sequential
weaving of first F and then E is possible. Notice, however,
that weaving first E and then F would still be problematic.

7. JOINT WEAVING
The above discussion treated only sequential weaving. Let
us now consider the case of simultaneous weaving. Such a
weaving at every point of the program decides whether to
apply A, or B, or both, and in which order (as opposed to
sequential weaving, where the possibility of inserting only
one aspect at a time is checked). One approach is to re-
duce joint weaving to sequential weaving, whenever possi-
ble. Then given aspects A and B, we would like to check
whether weaving both A and B together into some base sys-
tem is equivalent to one of the sequential weavings (A after
B or B after A) into the same base system. If A and B
have a common join-point, then the ordering of application
may not be well defined, and this is well-known to create
possible ambiguity. The lemmas below assume no common
join-points, because some of the alternative semantic mean-
ings violate the lemmas.

The following definitions will be useful to us:

Definition 6. Let S be a system, and A and B - two
aspects. Let us denote by J the set of all the joinpoints that
are matched by B in S, and by J ′ - the set of all the joinpoints
that are matched by B in (S+A). We say that A creates a
joinpoint matched by B if there exists a joinpoint j1 ∈ J ′

such that j1 is not in J (that is, J ′ is not included in J).
We also say that A removes a joinpoint of B if there exists
a joinpoint j2 ∈ J such that j2 is not in J ′ (that is, J is not
included in J ′)).

Thus if A does not create or remove joinpoints matched by
B, it means that the joinpoints matched by B in the original
system S are exactly the same as in (S+A) - the system
obtained by weaving A into S.

The following lemma shows that if weaving aspect B into a
base system does not affect join-points of A (i.e, the join-
points of A in the woven system are the same as in the base
one), and the symmetric statement holds - weaving aspect
A into a base system does not affect join-points of B - then
the order of weaving of the aspects “does not matter” for
the final result:

Lemma 4. Let S be a system such that there is no join-
point in S matched by both A and B, and they do not create
or remove joinpoints matched by each other. Then the si-
multaneous weaving of A and B into S (S+(A,B)) is equiv-
alent to both sequential weavings: of A before B ((S+A)+B)
and of B before A ((S+B)+A). That is, the weaving is both
associative and commutative.

It is also not difficult to treat the possibility of adding join-
points of the second woven aspect in the advice code of the
first, as seen in the following lemma.

Lemma 5. Let S be a system such that there is no join-
point in S matched by both A and B, and B does not create or
remove joinpoints matched by A. Let it be possible for A to
create joinpoints matched by B, but only inside its (A’s) own
advice and without removing joinpoints matched by B. Then
the simultaneous weaving of A and B into S (S+(A,B)) is
equivalent to weaving A before B ((S+A)+B). That is, the
weaving is associative, but not necessarily commutative.

The proofs of the lemmas appear at the same site as the
example. In order to check that the above lemmas can be
applied, we need to establish that A and B do not match
common joinpoints. For that purpose existing tools men-
tioned in Section 1 can be used ( [4, 7]).

8. CONCLUSIONS
In this paper we have defined semantic interference among
aspects relative to their specifications and shown an effective
way to detect interference or prove interference-freedom of
multiple aspects in a library.

The interference-detection method is modular: the library of
aspects is checked independently of any base system. Thus
when the user would like to weave multiple aspects from the
library into some base system, the only check that should be
performed is that the base system satisfies the assumptions
of all the aspects that will be added to it.

The result of the verification process is not a “yes” or “no”
answer, stating whether or not the current library is interference-
free: the results of the verification are more informative. For
each aspect we know with which aspects it does not inter-
fere, and also for every aspect with which an interference
exists, we know what is the cause of the interference, and in
which order of weaving it occurs. All this information can
serve as usage guidelines for the developers who would like
to use aspects from the verified library. In case the library
as a whole is not interference-free, a developer might chose
some interference-free subset of the library (recall that pair-
wise interference-freedom of the aspects in any set is enough
to guarantee interference-freedom of the set as a whole), or
decide on an appropriate weaving order of the aspects to
prevent interference.

There already exist libraries of reusable aspects. One of
them - a library implementing ACID properties for trans-
actional objects - is described in [13], and different kinds
of interference among the aspects from this library are men-
tioned there. As future work we would like to apply our ver-
ification method to detect interference among aspects from
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that library, and analyze the different types of interference
described in that paper.

Currently we have started to work on an aspect case study
demonstrator of the AOSD-EUROPE project, based on the
Toll System [19] written by the Siemens company: a system
designed for computing fees and charging the drivers for the
use of toll roads. The goals of the case study are formal-
ization and verification of aspects from the Toll System and
include detection of possible interference among them. As
one example, we have discovered and are analyzing inter-
ference between an aspect to impose fines and an aspect to
give discounts on the use of the toll road.

This paper deals with interferences between the aspects, but
the formalization and proof methods it provides can be eas-
ily extended to treat some other types of aspect interactions
that can be formalized and checked by similar means. For
example, aspects may work cooperatively when one aspect
is dependent on another to establish its assumption and can-
not be woven into a system unless that other aspect is also
there.
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Abstract
Designing and implement model for a synchronized block
join point to encapsulate crosscutting synchronization con-
cerns into single unit in AspectJ.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Language.

Keywords Synchronized Block Join Point, AspectJ.

1. Introduction
Synchronization is a concern that developers of distributed
systems must deal with whenever guarded access to a shared
resource is required. Access to devices, files and shared
memory are all situations that typically require synchro-
nization, and they also often require careful management of
multiple threads and synchronization devices such as locks.
Avoiding tangling of the code responsible for these various
concerns is difficult, as is encapsulating them for reuse in
diverse situations.

In the context of distributed Java programs, three distinct
synchronization situations are encountered, namely, shar-
ing data among multiple threads, sharing among clusters of
JVMs and sharing among clusters of physical computers.
The former is the logical concern of sharing data between
concurrent threads; the latter two are practical concerns
about the particular ‘distributed environment’ in which the
code is executed. The problem is how to distribute the logi-
cally necessary Java threads transparently across the physi-
cal vagiaries of the distributed environment.

Moreover, parallel programming is often difficult sim-
ply due to the complexity of dealing with lock-based syn-
chronization. As a result, there have been proposals to sim-
plify parallel programming by using various forms oftrans-
actional memoryto replace lock-based synchronization in
existing parallel Java programs. OnceJava Memory Model
(JMM) issues have been addressed, conversion of lock-based
synchronization into transactions is largely straightforward.
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However, it is still problematic to avoid code tangling while
effecting this conversation.

Aspect-Oriented Programming(AOP) has the potential
to modularise such synchronizations so that user code can
become oblivious to the distributed environment. Indeed, a
join point based on thesynchronized method has been
proposed. However, thesynchronized block has not yet
been treated inAspectJ.

This paper1 shows how to separate the synchronization
concern by designing and implementing models for a syn-
chronized block join point and a synchronized block body
join point to encapsulate crosscutting synchronization con-
cerns into logical units using the concepts ofAOP. It is also
shown how the two new join points can help such modular-
ization to plug into theJMM so as to maintain its semantics,
along with the semantics defined in theJava Language Spec-
ification. The models achieve reusability of synchronized
code and thread control management in Java to such an ex-
tent that concurrency can be fully handled by a single aspect.
The models augment the capabilities of join points for syn-
chronized methods in intercepting and modifying synchro-
nization actions in distributed, Java-based, aspect oriented
software. The work is applicable in any aspect oriented en-
vironment, but emphasis is placed on compatibility with the
most commonly used languageAspectJ.

The proposed join point model is enhanced with a mech-
anism for removal of unnecessary synchronization, which is
vital for reducing overheads associated with the lock. There
is also a facility for re-introducing necessary synchroniza-
tion that has previously been removed.

Consider the above simple example, which is captured
by the synchronize() pointcut. With transactional exe-
cution, there is no need to use anything other than a non-
locking HashMap since the caller specifies its atomicity re-
quirements. Therm proceed() method provides the ability
to remove the synchronization on HashMapmap andatomic
warp it as a transactional object. Extensions for theabc com-
piler which implement the two new join points are briefly
presented and are shown to meet the requirements of various
applications.

1 Full text can be found at http://www.cs.man.ac.uk/˜xic/SBJP AspectJ.pdf
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ABSTRACT 
In software engineering community, semantic interoperability 
usually has been ignored despite its significant importance. To 
achieve semantic level interoperability, ontology as a powerful 
means of expressing and sharing knowledge can be used to add 
meaningful standard semantics to syntactic annotations. In this 
paper we describe semantic pointcuts based on ontology 
modeling. Current AOP models, like many other programming 
models, primarily rely on a syntactic representation and mostly 
ignore pointcut expression at semantic level. We present a 
pointcut modeling approach based on semantics instead of 
underlying program's syntax, by using ontology modeling to 
conceptually modularize crosscutting concerns.  

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – Classes and object; F.3.2 [Logics and Meanings of 
Programs]: Semantics of Programming Languages – 
Denotational semantics. 

General Terms 
Algorithms, Design, Languages. 

Keywords: Semantic Pointcuts, Ontology, Onspect.  

1. Onspect 
In AOP community, like most other software engineering 
communities, less attention has been paid to semantic 
interoperability and semantic pointcuts, and most current 
mainstream AOP techniques separate crosscutting concerns based 
on mere syntax. Lack of semantics in AOP has led to problems 
such as fragile pointcuts, due to tight dependence of aspects on 
the syntax  [1] [4]. Various solutions have been proposed by 
different researchers to define semantic pointcuts, such as  [5], 
 [4] [4],  [2]. Though most of the above works address the fragile 
pointcut problem through use of semantic elements, neither 
focuses on a standard semantic modeling tool such as ontology to 
provide semantic interoperability and unambiguous sharing of 
pointcut semantics. In our work, we present a new approach 
toward semantic aspect modeling based on ontology, called 
Onspect. Ontology as an explicit specification of a 

conceptualization can be used as a powerful tool for adding 
semantics to syntactic forms, and for sharing knowledge 
unambiguously among different implementations and 
organizations  [1]. Using ontology for modeling aspects allows for 
conceptual modularization of crosscutting concerns among 
heterogeneous nodes, thus reducing problem of fragile aspects. 

To represent programming domain ontology, we introduce a 
formal model based on concepts, attributes, relationship and 
constraints to model basic ontology elements of a program. The 
program itself is modeled as an agent; its set of methods and 
functionalities are modeled as behaviors; and objects and their 
roles in the program are modeled as subjects and roles. We then 
map our formal template into a simple and easy-to-use set of Java 
annotations to annotate those semantic units. Java annotations are 
automatically converted into OWL constructs  [6], which is a 
standard ontology modeling language providing a set of necessary 
reasoning and querying operators. The semantic pointcuts are then 
defined using a set of semantic quantifiers that refer to the Java 
annotation elements as semantic concerns. To achieve semantic 
interoperability between heterogeneous remote nodes, we use 
JAsCo’s hook and connector style for declaring Onspects  [3].  

In summary, current approach provides a model for defining 
semantic pointcuts in a heterogeneous environment based on 
ontology to reduce dependability of crosscutting concerns on 
mere syntax. However as a first approach for modeling semantic 
pointcuts based on ontology, current model has its own limitation 
and shortcoming. In our future works, we plan to extend the 
ontology model to provide further semantic information and also 
to develop standard template contents for the ontology model. 
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ABSTRACT 
Through its decade-and-a-half long evolution, the aspect-
oriented software community has occasionally struggled 
with its identity – revisiting the question “What kinds of 
technologies make up aspect-oriented software and who 
should be interested in it?” We attempt to de-construct 
“aspect-oriented” into several issues making up its 
foundation, believing that the community is inclusive and 
that work exploring or exploiting any of these concepts fits 
within the community. Although their historical setting 
contributes somewhat to the understanding of why different 
authors have emphasized one or more of these issues, we 
analyze them from an intrinsic point-of-view, to highlight 
broader or deeper issues that may lie behind the constructs 
currently made available, in the hope that “aspect-oriented” 
software technologies can be extended to provide an even 
stronger basis for software than they do today. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Data abstraction, 
Information hiding, Languages 

D.3.3 [Language Constructs and Features]: Modules, 
Packages, Concurrent programming structures 

General Terms 
Languages, Design 

Keywords 
Aspect-oriented, separation-of-concerns, encapsulation, 
software-composition, event-flow, broadcast, obliviousness, 
complex-event-processing, specification, modularity, 
malleability. 

1. INTRODUCTION 
Much discussion has taken place about Aspect-oriented 

Programming (AOP) and Aspect-oriented Software 
Development (AOSD), both in characterization of the field 
as a whole and in attempts to use that characterization to 
evaluate its value. The adjective “aspect-oriented” came into 
its current use1 to qualify “programming”. As such it 
characterized a research view in which different “aspects” 
of a program, like distribution or storage layout, were 
addressed by different languages and language processors, 
with results “woven” together by an aspect weaver [18]. 
When a single-language focus was adopted that resulted in 
AspectJ, the term “aspect” was also refocused, and defined, 
for patent purposes, as an “aspect ... comprising: a cross-cut 
... and a cross-cut action” [17]. The emphasis here was on 
the fact that unlike earlier work, both crosscut specification 
and consequent action must occur together in the aspect. 
Several other groups of researchers and developers were 
pursuing related approaches to the expression of software in 
which different concerns are expressed in separate artefacts 
linked by exchange of messages [10] [1]. These groups of 
researchers coalesced to form the growing community 
working on AOSD. In that expanded context, the 
characterization of AOP as “quantification and 
obliviousness” [7] which was correct for AspectJ is too 
limited for AOSD. The subtlety of the distinction between 
AOP and AOSD has led to an inclination by the wider 
software community to find aspects inappropriate or too 
limiting, and even to find AOSD’s success to be 
“paradoxical” [27], so it is important to emphasize that 
AOSD researcher has always addressed a wider set of 
issues. 

In fact, the wider set of issues of interest to the AOSD 
community is becoming ever more relevant to problems 
emerging in future computing environments. The computing 
world has undergone considerable change since the advent 
of object-oriented technology. From its early development, 
Aspect-Oriented technologies [6] have generally avoided 
the narrow view of the common object model in which a 

1 It had been previously used in [25] for a role-like concept. 
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message is sent to and handled by an isolated “target” 
object. This evasion is prominent in many emerging 
technologies as well. Service-Oriented Computing [32], 
Grid Computing [31], Ubiquitous Computing [33] and 
Complex-Event Processing [21] all provide a view of 
software in which the infrastructure re-routes messages or 
method calls from the apparent target to one or more real 
target objects. Various proxies are employed to filter or 
redirect messages. In some cases even, the point-to-point 
communication model for sending messages to objects is 
being replaced by a broadcast model in which messages are 
sent for delivery to whichever objects hold their 
implementation.  

2. UNDERLYING ISSUES 
Much work on aspect-oriented software deals with at least 
one of four issues. In roughly the order in which they 
emerged, these issues are: 

• [aspects] representation of concern-separated artefacts 
and control of their interconnection or composition at 
points where they must join, 

• [pointcuts] identification and exposure of appropriate 
points in concerns at which their behaviour should be 
joined, 

• [context] characterization of complex behaviour and 
exploitation of inferred program state, and 

• [mining] identification and possible extraction of 
concerns from tangled software. 

Let us look in some more detail at the characteristics of the 
solutions proposed. 

2.1 Aspects and Composition 
Many AOSD approaches allow the state and behaviour of 
objects to be separated into elements that can be re-grouped 
into “subjects” [10] or “aspects” [16] to address separate 
issues of concern to the architecture or implementation. The 
various elements of objects in the separated concerns are put 
back together by a process of composition or weaving. 

Several reasons have been put forward to motivate the 
importance of aspects: 

• attachment of systemic1 behaviour to objects, to support 
transactions, persistence, etc. [1][24] 

• enhanced development characteristics such as simple 
extension and concurrent development of functional 
concerns like editing, verification, or display in an IDE 
[10] 

• support for late selection and combination of functional 
features of product-lines [15] 

                                                           
1 Often called non-functional, although most customers would 

prefer to reject software that does not function or provides no 
function. 

• support for large-scale middleware construction [5] 

In its broadest form, software aspects are generally 
modelled as a body of material which, when executed, 
produces events or cooperative method calls. In object-
oriented formulations, aspects may be classes or may 
associate fields and methods with one or more classes. 
Aspects need not form complete programs, although some 
aspect-oriented approaches require completeness of some 
aspects.  

Composition, or weaving, can be thought of as a form of 
dispatch, but one which employs more complex delivery 
rules than does the common target-directed model for 
objects, and one in which the message may result in  
behaviour that was defined in several aspects.  While 
Subject-oriented Programming and Aspect-oriented 
Programming treat events in terms of a broadcast and focus 
on the end-points of message delivery, other work attempts 
to deal with the handling of messages in a way that allows 
each object along the path to influence the delivery targets 
[20] [11]. 

2.2 Pointcuts and Join-Points 
The second prominent issue among AOSD researchers is the 
specification of points in an aspect at which the events or 
cooperative method calls originate. The call’s points of 
origin form a set of “join-points” – the points at which 
aspects join. They generally provide the means by which the 
various aspects of an object’s behaviour are woven together. 
In Subject-oriented Programming, the join-points were 
specifically identified to be method calls because they 
represent the points at which a software developer using 
subject technology might “expect” unknown or additional 
behaviour to take place [23]. At method-call points, 
subclasses may provide overridden or extended behaviour, 
or target objects might have extended behaviour. This 
restricted view avoided the breaking of encapsulation, but 
made development of subjects require the same careful 
thought about extensibility as does the development of 
frameworks. AspectJ [16] introduced the concept of a 
pointcut – a query-specified cut through a program that 
identifies a set of join-points. The pointcut query is 
associated with an advice, identifying which of the join-
points originate messages to be delivered to the advice 
body. In AspectJ, the advices and their pointcuts lie outside 
the base aspect to which the queries are applied, in-effect 
“injecting” additional behaviour into the base. Because 
these join-points are injected without participation of the 
original developer, they have been criticised as breaking the 
encapsulation. But they also greatly increase the degree of 
“obliviousness” [7] and provide for a much wider spectrum 
of points at which aspects may join. 

The underlying concept behind “pointcut” as a set of join 
points has evolved and variations are in use by authors of a 
number of approaches for AOSD: 
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• Cooperative operation [10], behaviours in aspects are 
attached to the set of execution points that are method 
calls intended to allow for extended behaviour 

• Pointcut [16], a query identifying specified a set of 
points in execution, used as a clause in an aspect’s 
advice declaration. Viewed as a query, the pointcut’s 
variables are bound when matched to an instance. These 
bindings can be passed as parameters to be advice body. 
A user-defined pointcut is given a name and signature. 
The signature selects from the variables bound by the 
query. An abstract pointcut is a user-defined pointcut 
that omits the query. It may be used as a clause in an 
aspect’s advice but must eventually be made concrete by 
associating it with a particular query that provides 
bindings for its parameters 

• Exported pointcut [9], is a user-defined pointcut that is 
specified in a module of the base rather than in an 
attached aspect. This effectively produces a cooperative 
operation, but expressing it as a query over the module’s 
content makes it useful for after-the-fact use in the 
module. 

• Methoid [12] explicitly treats an exported pointcut as a 
call to a method. To do so, the query specifies a set of 
regions in the execution of material to which it is 
applied. The content of the region is treated as a method 
that can be reduced to a single join-point - a cooperative 
operation call to that method. The method can be 
extracted or materialized as to perform the behaviour 
identified by the query if needed to form compositions. 

2.3 Context: Gross Program State, CFlow, and 
Complex-Event Processing 

AspectJ’s pointcuts included the ability to filter the 
circumstances of a join, on the basis of dynamic information 
much like the filters of composition filters [1]. Among the 
filtering criteria is the “cflow” construct. An important use 
of cflow is in determining the gross program state of a base 
so that the aspect can respond in an appropriate manner. In 
the example in [2], the authors employ a series of correlated 
pointcuts using cflow to track processing within wizards.  

But cflow is a weak mechanism for attacking an important 
problem. The gross program state of a system is often a 
more complex function of its flow history than examination 
of the current flow stack will reveal. So it is advantageous to 
use an aspect follow the series of occurrences in a system 
that indicate a change in gross state  This is done in [28], 
where the authors observe that  “interesting states of the 
system can be described in terms of previous events and the 
ordering of them.” The aspect can summarize the state in a 
variable used in the pointcuts of other aspects. Such an 
aspect can be used to perform the kind of task usually 
associated with complex-event processing [21]. 

2.4 Aspect Mining: Analysis, Identification and 
Extraction of Concerns 

As the value of concern-separated software became more 
evident and greater tool support for its use became 
available, the importance of being able to deal with the 
concern structure of legacy software grew. Program-slicing 
had been of interest for a long while, but was generally 
viewed as a compilation or debugging technique, perhaps 
for lack of ability to reflect the sliced program as a proper 
software artefact. A good review of work in this area can be 
had in [3]. 

3. OPPORTUNITIES 
  Much service-oriented software today treats services like 
objects, with composite services managed as intermediate 
objects that route calls to the objects they use internally. 
Exploiting aspect-oriented constructs allowing us to treat 
services as behaviour attached to cooperative operations 
offers the opportunity to introduce a much more flexible and 
malleable service structure. 

Software builders conventionally work as if they have a 
complete view of the software they are building. This point-
of-view is reinforced by the constructs we use in thinking 
about problem decomposition. Perhaps the deepest is the 
“call” construct. It is traditional for a developer to look at a 
specification for some service and develop an algorithm for 
satisfying it, examining and selecting from available 
software components to perform services that the algorithm 
itself needs in turn. Traditionally, this examination looks far 
deeper into the component than any formal specification. 
The developer may look at issues like: 

• the performance characteristics, perhaps determined by 
examining the code if not the present in the 
documentation, 

• the malleability or extendibility of the code, perhaps 
reflecting the need to create subclasses or attach aspects, 

• the “burden” – additional options provided that 
contribute to overhead but are not needed, 

• the stability of the code base,  reliability of its developer, 
etc.  

This analysis takes place even if the component is a built-in 
element of the programming language, like those that 
perform arithmetic on numbers, but the characteristics 
become ingrained to form part of a developers’ natural 
repertoire. Having selected a component, the developer 
often adapts the algorithm under development to reflect 
additional choices and capabilities potential in its use by, for 
example exploiting public or private knowledge about the 
logic, state representation, or class structure of the 
component being used. The resulting dependencies are 
called EEK in [29]. 
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This is, to some extent, changing. There is an impetus to 
treat components as “services” [22], contracted for when 
software is executed, rather than when it is written. While it 
may seem a small change, the impact is enormous because 
the trade-offs described above can no longer be made by the 
developer, but must be made later when the “service-finder” 
is operative. Fully exploiting these changes requires a 
change in the programming languages we use to make the 
artefacts more malleable and the information on which they 
depend more manifest to the service-finding mechanisms. 
The Continuum programming language [30] is being used 
as the basis for researching both the language and the 
implementation issues involved in this shift. 

Most aspect-oriented approaches lie somewhere in-between 
these extremes of early- and late-bound selection. In 
asymmetric approaches, binding activities are performed by 
the developer of the attached aspect rather than the 
developer of the base aspect. This effectively reverses the 
usual situation by having the service (aspect) developer 
become familiar with the details of the client (base). 

Symmetric treatments of aspects forgo assigning 
responsibility to either component developer, and require 
the developer of composition rules to be familiar with both 
(or all) participating services. As it is for a  software 
“service-finder,” the developer’s task is made simpler, or 
indeed possible, if the needed information is made explicit 
in the software rather than having to be dug out from its 
latent places in the code. 

The following parts of this section explore how the 
generalisation from aspects to services provides potential for 
change in the way we deal with some important issues.  

3.1 Classic vs. Co-operative Method Call 
Much discussion of aspect attachment could be clarified by 
explicit recognition that the named, parameterized pointcut 
effectively defines a cooperative method call and that the 
rest of the mechanisms for dealing with aspects can be 
applied in general. Except for the issue of where the 
pointcuts are specified and applied, there is often no natural 
difference between the structures of the concerns 
themselves. Implementations of functionality can as easily 
be placed in one concern as another, in a way that reflects 
requirements rather than a dominant decomposition like 
“class”. Attaching it as an aspect can yield equivalent results 
as keeping it in the base. In fact, it has been observed [26] 
that even “class” is just another dimension for separating 
concerns. This effectively points out that whether the 
developer of a class decides to put it in the base or to put it 
in a separate concern makes little difference to the operation 
of the base. Of course, depending on the AOSD approach in 
use, it may affect the syntactic expression. 

No matter where the pointcuts are specified that expose 
them, the join-points in a concern effectively become points 

of cooperative method call [10]. From a mechanistic point-
of-view, a cooperative method call can be thought of as 
identical to a classic method call. Classically, we think of a 
method call as belonging to (defined by) a client or 
consumer, the one who makes the call. But the cooperative 
method-calls in a concern are the join-points it exposes. 
Ordinary method-call is concerned with what the call will 
do for the client. But cooperative method call is concerned 
with what the call can do for the community as well. 
Behaviour provided in the originating concern or in any 
other concern cooperates to provide the actual behaviour 
associated with the cooperative call. So, from the point-of-
view of system-structure, dispatch resolution, intention, 
specification, etc, classic method call and cooperative 
method call have quite the opposite conceptions even 
though they are mechanically identical. Potential impact on 
several of these areas is addressed in the following sub-
sections. A common way to look at their mechanical 
similarity is discussed in Section 3.2. The fact that this 
reversal can exploit more information about intent is 
discussed in Section 3.3. Section 3.4 explores potential for 
availing of greater concurrency in the software we write, 
and Sections 3.5 and 3.6 discuss language support that both 
increases dynamicity and malleability and enables the more 
concurrent style. 

3.2 Event Flow and the Dual Role Of The Base 
The role of the “base” is perhaps the most vexing issue in 
treating AOSD [19] [13]. Virtually all approaches connect 
the behaviour in the separated concerns with cooperative 
method calls in the base, specified implicitly or via 
pointcuts. The base acts both as a body of code making 
cooperative method calls to which aspect behaviour can be 
attached and as an aspect providing some of the behaviour 
for them. In order to accommodate the diverse collection of 
emerging technologies that can all benefit from aspect-
oriented approaches, we should separate event behaviour 
attachment from the description of overall event flow. In 
this view, the base contains no code itself. It is a 
specification of a sea of events on which the aspects float, 
each associating its behaviour with some of the events. The 
differentiation of cooperative method calls from classic 
method calls becomes the role of the base. This view intends 
to accommodate either view of joinpoints – that they are 
intended or that they are injected, as explored further in 
Section 3.3 

Separating the abstract model of the underlying flow of 
behaviour from the attachment of providers’ behaviour can 
give some insight into the role of pointcuts and their 
relationship to the base. Specifically, we can construct the 
“base” from the collection of abstract pointcuts whose 
behaviour is provided by the aspects. In Figure 1, we show 
an aspect concern both exporting some pointcuts 
(cooperative method calls) and providing behaviour for 
others. The base could be specified separately, as part of an 
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overall system design, or could be derived from information 
in the aspects making up the system. In either case, it could 
be thought of as a simple list of events identified as abstract 
pointcuts, a constrained event specification, a work-flow 
diagram, or as hinted at in [28], in the form of the sequence 
diagrams forming the system’s design.  

aspect x; 
export { 
   pointcut p(int a): 
            call(* X.foo(int a)); 
} 
provide {pointcut n(int a, real b);} 
class Y {when2 p(int a) {...}} 

Figure 1- a symmetric aspect 

In addition to the specification of exported and provided 
pointcuts, the aspect contains behaviour that is attached to 
the events and is subject to the exports. For an aspect to be 
attached to a base, its specification of the cooperative calls 
required must be consonant with those of the base  An 
aspect not in the base has no exported pointcuts. A base 
with no advice for other aspects has no “provides”. While 
not exploiting this syntax, Continuum’s “service” construct 
explicitly lists the cooperative behaviours provided and 
describes their dependencies on earlier flow. 

3.3 Whose Is The Specification - Join Points By 
Intention or Injection 

In a classic call, the client developer keeps in mind the 
services needed (e.g. “a hash table into which objects can be 
put”) while finding a suitable implementation for the 
service. In many object-oriented languages this decision is 
consolidated by naming the pre-existing class or interface 
that is associated with the selected implementation. When 
providing a local implementation, the class or interface 
created by the developer may be sketchy, or it may be well 
documented and meet the expected standards for reusable 
software. But in all cases, the focus is on what the service 
does or on what the client needs. 

In cooperative call, there is more that needs to be said: what 
the client is doing in a cooperative sense. A call to 
hash.put(…) may have been written because of the intention 
“put a book into the library records”. It is this intention 
which is the link that ties the cooperating concerns together. 
When written with respect to a particular base, a pointcut 
specification needs to supplement the call, to fill-in just this 
information about intention.  

We say that the purpose of pointcuts, whether injected or 
intentionally exported, is to distinguish cooperative calls 

                                                           
2 “When” is used as an alternative to before, after, event, around, 

etc. denoting behaviour to be performed sometime between 
before and after but not needing to be wrapped around other 
behaviour.  

from ones that are hidden from cooperative attachment. But 
distinguishing the cooperative calls does not suffice to 
provide the specification of their intention. If we expect the 
cooperator to be found by a mechanical service-finder rather 
than by the client developer, it is clear that additional 
documentation must be available. In fact, the entire issue of 
malleability of call structures becomes more critical for 
cooperative calls than for hidden ones. The same method, 
identified by its name and signature, may be used to support 
many different intentions. This argues that the intention and 
characterization information must be separately attached to 
the name. In the interest of service-finding, we can employ 
glossary or ontology references associated with methods 
and their parameters to supply information concerning:  

• the actual intention expressed at the cooperative call 
• the separate functional expectations of a call so that they 

might be realised by separate aspects composed later 
• the functionality provided by other aspects available 
• the roles of parameters of the call in an order-free 

manner to give greater flexibility in matching server to 
client 

Not all join-points need be originally written as method-
calls. Those which are not must to be injected or exported, 
as mentioned in Section 2.2, using a pointcut to turn them 
into cooperative method calls. The information about 
intention can be supplied at the point where the pointcut is 
defined. 

The issue of control of the specification is closely related to 
a phenomenon that could be termed “function bundling”. 
Function bundling reflects the fact that many methods 
perform a multiplicity of functions. For example, an analysis 
of the Unix “sort” command was conducted and it was 
found to be reasonably represented as the composition of 30 
concerns [4]. Bundling of this sort is often signalled by the 
presence of option parameters or of optional parameters – 
reference parameters that may be null. The bundling reflects 
the developer’s statement of the specification as a 
“maximum” for the component being developed. It often 
contains excessive functionality contributing to the bloat of 
its clients [8]. An aspect-oriented realization could 
encourage independent functions to be presented in separate 
aspects, combined later by the service-finder at run-time 
rather than by the developer at development time. 

3.4 Raising Concurrency with Aspects  
3.4.1 Attaching Aspects to Events  
The fact that we are reaching fundamental limits in 
increasing the speed of sequential processors indicates a 
growing need to increase the parallelism and asynchrony 
that is potentially available even in the ordinary software we 
write. One way to go about this is to bring the use of 
asynchronous events more into the mainstream by 
simplifying programming language constructs to encourage 
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their use. The metaphor of software as aspects floating on a 
sea of events may offer us an opportunity to do so because it 
emphasizes the attachment of behaviour to events rather 
than the construction of sequences of control to arrange for 
their execution. While it is important to preserve the flexible 
synchronous combinators, like before, after, with, around, 
etc., used for aspect behaviour, not all aspect behaviour 
needs to complete before the cooperative method call that 
calls for it can continue. For example, the behaviour 
provided by a logging aspect can often be attached as an 
event since the continuation of the base does not depend on 
its early completion. Event attachment is irrevocably 
concurrent. The originating client can have no expectation 
about the time of its execution, which may even be deferred 
until the client completes. 

3.4.2 Sending Events and Passing Commitments  
Attachment of aspects as events is a helpful first step, but 
does little to encourage more concurrency within the base 
itself. A second step forward is to permit cooperative 
method calls to be sent as explicit events. All recipients run 
concurrently with the continuation of the base. The 
declaration of method one in Figure 2 suggests how a 
commitment for the eventual invocation of an event can be 
passed declaratively from one method to another. The 
“sends” clause in the declaration of method one indicates 
that it is committed to the ultimate sending of event two, 
either on its own or by passing the commitment forward. In 
Figure 2 the commitment might be passed to method three 
(assuming its unshown declaration has a similar “sends” 
clause).  

3.4.3 Future Event Handling 
People describe problem solutions sequentially, although 
they can break off chunks described to be done 
concurrently. And they seldom think of subtasks as subject 
to long potential delays. The ability to send method calls 
asynchronously is not a new construct, and like 
asynchronous aspect attachment yields only a small 
improvement in the overall concurrency behaviour of 
software. Both require the software developer to break the 
train of sequential thought, and both require the high 
intellectual overhead of creating new classes, methods, etc. 
We need to provide developers with a construct that allows 
them to think sequentially about activities that can be 
deferred or executed concurrently. We can build on the 
concept of passing commitment to provide it. In Figure 2, 
imagine that the developer knows that after doing method 
four, some other tasks must be performed. Perhaps method 
four makes a bank transfer, and a receipt must then be 
presented. This is a sequential thought that would generally 
be represented by invoking method four and then 
performing the receipt processing, shown as “…”. We want 
to allow the developer to express the sequential dependency 
without holding up the return from method one. (If we 

imagine method one is called inside a loop, then allowing it 
to return without waiting for method four to execute means 
that many executions of method four are started by the loop, 
and all can run concurrently.) But syntactically, we avoid 
interrupting the developer’s train of expression, by allowing 
the receipt processing to be written as part of the call to 
method four using a commitment that it will eventually send 
message five.  

void one(Object x,int y) 
     sends two(Object m, real z) { 
  send three(this,"hello"); 
  send four(this, 6) 
  expect five(MyClass this, int a) {...} 
} 

Figure 2 – preserving sequence without synchrony 

Eventually, the commitment is met and message five is sent. 
Its implementation is as specified in the “expect” clause, and 
the receipt is printed. Note that method five cannot access 
any of the local state of method one, which may be long 
gone. But it can use its parameters to access object state as 
usual. The mechanisms for doing this and the meaning of 
the “MyClass this” parameter declaration are part of 
with the service model of aspects employed in Continuum 
and with its model for dynamically extending knowledge 
about the methods supported by classes. These are described 
briefly in Sections 3.5 and 3.6. 

3.4.4 Exceptions 
Any construct like “send”, that decouples future execution 
but still provides for satisfaction of commitments, must 
address the problem of exceptions and failures. Since a sent 
message may commit the future invocation of another event, 
we must define what happens if it fails to do so. This can be 
addressed at two levels. On the static level, a method 
declared to send some event must do so on all execution 
paths. This can be checked at compile and load time. On the 
dynamic level, a logic error may still prevent the future 
“send” from taking place by causing an exception to be 
thrown. When an exception is thrown, potentially 
unsatisfied commitments to send an event are satisfied by 
sending the event in such a way as to trigger the exception 
immediately on entry to the called method. 

3.5 Generalizing Aspects as Services 
Ever since the programming language community adopted 
the target-directed method invocation model for the 
dominant languages, software developers have been 
compelled to escape from it by moving dispatch from the 
language to the middleware. We see this escape in the all 
the emerging technologies mentioned above: Aspect-
Oriented, Service-Oriented, Grid, Ubiquitous, and Complex 
Event Processing. In the infrastructure for all of these, 
method calls are directed to objects other than the “target” 
presented by the client. Widening the concept of “aspect” 
provides the opportunity to address this need. The 
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programming language Continuum makes the escape 
explicit by integrating with the language and VM a 
dispatcher whose mechanisms are constrained to assure 
delivery and freedom from ambiguity but are otherwise 
explicitly unspecified [14]. This is a step beyond the 
flexibility introduced by aspects, most approaches to which 
still hold the definition of dispatch closely. 

Continuum introduces the “service” construct into the 
language. Its role is to provide methods with access to the 
state of one or more the objects they are passed as 
parameters. This process is called decapsulation and can 
only be applied to parameters of the method’s class – the 
same ones that govern dynamic dispatch to the method 
itself. Like advices, the methods provided by services are 
added to the behaviour performed when the cooperative 
method is invoked. Services have several other roles. They 
act as encapsulation boundaries, with explicit specification 
of the cooperative methods and events they support and 
require, They also draw boundaries that contain the 
propagation of ambiguity so that it remains within a service. 
This limits the scope of the checking that must be 
performed when a class is added to a service. Services each 
have an independent representation of objects’ states, so 
that references to objects may be represented as other than 
opaque pointers without losing their ability to convey 
information assuring support for methods. Non-opaque 
references can be passed between services that are 
distributed around the network. 

3.6 Overcoming the Drawbacks of Obliviousness 
Much work has been done on the dynamic introduction of 
aspects, but if the base is intended to be “oblivious,” it is 
hard to extend this work to use aspects as general dynamic 
service providers – service calls are obvious rather than 
oblivious in the client. Dynamic service provision suggests 
that the client knows about the methods and expects to call 
them even though the methods’ implementations are not 
available when the client is started. The service model 
described above provides for the dynamic introduction of 
services. To complement it, Continuum’s assurance model 
is also dynamic. A class does not specify or limit the 
interfaces that it supports, allowing services to add to 
growing knowledge about which methods are supported [14].  

void meth(Store{put(Store,Item}} store1, 
          Store store2); 
Store{put(Store,Item), 
      boolean inStock(Item,Store)} more; 
more = 
 ({boolean inStock(Item,Store)}) store1; 
more = store2; 
boolean t = inStock(item,store2); 

Figure 3 – dynamic knowledge about classes 

In Figure 3, the first assignment statement to “more” adds 
the knowledge that “inStock” is assured safe to call with 

any object in the class Store, allowing this knowledge to be 
transferred later to store2. Each service may provide 
methods and implementations for various classes, based on 
the state information the service possesses. Services can 
even provide methods that do not require explicit 
knowledge of state, but simply depend on access to that 
state provided by other services. 

Clients do not know which service provides a method, nor 
even which class the method is “in”. This is because 
continuum’s assurance model is symmetric, which means 
that a service can provide a method dispatched on a 
parameter other than some designated target. The assurance 
that the method can be safely called is passed through a 
generalized concept of interface, shown in Figure 3, even 
though the implementation need not lie in the object to 
whose reference the interface is attached. Hence, even 
though the knowledge that inStock is assured is associated 
with “store2”, the implementation may actually reside in 
“item”. This helps make the client structure less dependent 
on the implementation structure because the client does not 
need to know in which objects methods are implemented. 

4. CONCLUSIONS AND DIRECTIONS 
Aspect-oriented software is broadly focused on the 
language and support for separating the design and 
implementation work required for differently-motivated 
concerns. In conventional object-oriented software, these 
are often tangled within a single class or method. While the 
language features of some aspect-oriented approaches 
emphasize its use for post-facto attachment of functionality 
obliviously, others employ it to achieve planned separation 
for flexibility, as within product lines, or to achieve 
concurrency and event-processing. We are entering a 
computing environment that is radically changing to address 
the needs of mobility and the challenges of physical limits 
on processor speed, and in which broadband services are 
encroaching on the traditional point-to-point structures. In 
such an environment, there is much room for growth and 
exploration in the use of aspect-like constructs to adapt 
software to changing environments. We have outlined some 
issues that need to be addressed and some approaches that 
may address them in the hope that the community can 
widen the scope of its thinking about the applicability of 
aspects and concern-separated software as we move 
forward. 
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