
A synchronized block join point for AspectJ

Chenchen Xi Bruno Harbulot John R. Gurd

The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

xic AT cs.man.ac.uk bruno.harbulot AT manchester.ac.uk jgurd AT cs.man.ac.uk

Abstract
Designing and implement model for a synchronized block
join point to encapsulate crosscutting synchronization con-
cerns into single unit in AspectJ.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Language.

Keywords Synchronized Block Join Point, AspectJ.

1. Introduction
Synchronization is a concern that developers of distributed
systems must deal with whenever guarded access to a shared
resource is required. Access to devices, files and shared
memory are all situations that typically require synchro-
nization, and they also often require careful management of
multiple threads and synchronization devices such as locks.
Avoiding tangling of the code responsible for these various
concerns is difficult, as is encapsulating them for reuse in
diverse situations.

In the context of distributed Java programs, three distinct
synchronization situations are encountered, namely, shar-
ing data among multiple threads, sharing among clusters of
JVMs and sharing among clusters of physical computers.
The former is the logical concern of sharing data between
concurrent threads; the latter two are practical concerns
about the particular ‘distributed environment’ in which the
code is executed. The problem is how to distribute the logi-
cally necessary Java threads transparently across the physi-
cal vagiaries of the distributed environment.

Moreover, parallel programming is often difficult sim-
ply due to the complexity of dealing with lock-based syn-
chronization. As a result, there have been proposals to sim-
plify parallel programming by using various forms oftrans-
actional memoryto replace lock-based synchronization in
existing parallel Java programs. OnceJava Memory Model
(JMM) issues have been addressed, conversion of lock-based
synchronization into transactions is largely straightforward.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Seventh International Workshop on Foundations of Aspect-Oriented Languages
(FOAL 2008), April 1, 2008, Brussels, Belgium.
Copyright c© 2008 ACM ISBN 978-1-60558-110-1/08/0004. . . $5.00

However, it is still problematic to avoid code tangling while
effecting this conversation.

Aspect-Oriented Programming(AOP) has the potential
to modularise such synchronizations so that user code can
become oblivious to the distributed environment. Indeed, a
join point based on thesynchronized method has been
proposed. However, thesynchronized block has not yet
been treated inAspectJ.

This paper1 shows how to separate the synchronization
concern by designing and implementing models for a syn-
chronized block join point and a synchronized block body
join point to encapsulate crosscutting synchronization con-
cerns into logical units using the concepts ofAOP. It is also
shown how the two new join points can help such modular-
ization to plug into theJMM so as to maintain its semantics,
along with the semantics defined in theJava Language Spec-
ification. The models achieve reusability of synchronized
code and thread control management in Java to such an ex-
tent that concurrency can be fully handled by a single aspect.
The models augment the capabilities of join points for syn-
chronized methods in intercepting and modifying synchro-
nization actions in distributed, Java-based, aspect oriented
software. The work is applicable in any aspect oriented en-
vironment, but emphasis is placed on compatibility with the
most commonly used languageAspectJ.

The proposed join point model is enhanced with a mech-
anism for removal of unnecessary synchronization, which is
vital for reducing overheads associated with the lock. There
is also a facility for re-introducing necessary synchroniza-
tion that has previously been removed.

Consider the above simple example, which is captured
by the synchronize() pointcut. With transactional exe-
cution, there is no need to use anything other than a non-
locking HashMap since the caller specifies its atomicity re-
quirements. Therm proceed() method provides the ability
to remove the synchronization on HashMapmap andatomic
warp it as a transactional object. Extensions for theabc com-
piler which implement the two new join points are briefly
presented and are shown to meet the requirements of various
applications.

1 Full text can be found at http://www.cs.man.ac.uk/˜xic/SBJP AspectJ.pdf

