
De-constructing and Re-constructing Aspect-Orientation
 William Harrison

Department of Computer Science
Trinity College

Dublin 2, Ireland*
(+353) 1-896 8556

Bill.Harrison@cs.tcd.ie

ABSTRACT
Through its decade-and-a-half long evolution, the aspect-
oriented software community has occasionally struggled
with its identity – revisiting the question “What kinds of
technologies make up aspect-oriented software and who
should be interested in it?” We attempt to de-construct
“aspect-oriented” into several issues making up its
foundation, believing that the community is inclusive and
that work exploring or exploiting any of these concepts fits
within the community. Although their historical setting
contributes somewhat to the understanding of why different
authors have emphasized one or more of these issues, we
analyze them from an intrinsic point-of-view, to highlight
broader or deeper issues that may lie behind the constructs
currently made available, in the hope that “aspect-oriented”
software technologies can be extended to provide an even
stronger basis for software than they do today.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Data abstraction,
Information hiding, Languages

D.3.3 [Language Constructs and Features]: Modules,
Packages, Concurrent programming structures

General Terms
Languages, Design

Keywords
Aspect-oriented, separation-of-concerns, encapsulation,
software-composition, event-flow, broadcast, obliviousness,
complex-event-processing, specification, modularity,
malleability.

1. INTRODUCTION
Much discussion has taken place about Aspect-oriented

Programming (AOP) and Aspect-oriented Software
Development (AOSD), both in characterization of the field
as a whole and in attempts to use that characterization to
evaluate its value. The adjective “aspect-oriented” came into
its current use1 to qualify “programming”. As such it
characterized a research view in which different “aspects”
of a program, like distribution or storage layout, were
addressed by different languages and language processors,
with results “woven” together by an aspect weaver [18].
When a single-language focus was adopted that resulted in
AspectJ, the term “aspect” was also refocused, and defined,
for patent purposes, as an “aspect ... comprising: a cross-cut
... and a cross-cut action” [17]. The emphasis here was on
the fact that unlike earlier work, both crosscut specification
and consequent action must occur together in the aspect.
Several other groups of researchers and developers were
pursuing related approaches to the expression of software in
which different concerns are expressed in separate artefacts
linked by exchange of messages [10] [1]. These groups of
researchers coalesced to form the growing community
working on AOSD. In that expanded context, the
characterization of AOP as “quantification and
obliviousness” [7] which was correct for AspectJ is too
limited for AOSD. The subtlety of the distinction between
AOP and AOSD has led to an inclination by the wider
software community to find aspects inappropriate or too
limiting, and even to find AOSD’s success to be
“paradoxical” [27], so it is important to emphasize that
AOSD researcher has always addressed a wider set of
issues.

In fact, the wider set of issues of interest to the AOSD
community is becoming ever more relevant to problems
emerging in future computing environments. The computing
world has undergone considerable change since the advent
of object-oriented technology. From its early development,
Aspect-Oriented technologies [6] have generally avoided
the narrow view of the common object model in which a

1 It had been previously used in [25] for a role-like concept.

* This work is supported by a grant from Science Foundation, Ireland

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific requires prior specific permission and/or a fee.
Seventh International Workshop on Foundations of Aspect-Oriented
Languages (FOAL 2008), April 1, 2008, Brussels, Belgium.
Copyright 2008 ACM 978-1-60558-110-1/08/0004 ... $5.00

message is sent to and handled by an isolated “target”
object. This evasion is prominent in many emerging
technologies as well. Service-Oriented Computing [32],
Grid Computing [31], Ubiquitous Computing [33] and
Complex-Event Processing [21] all provide a view of
software in which the infrastructure re-routes messages or
method calls from the apparent target to one or more real
target objects. Various proxies are employed to filter or
redirect messages. In some cases even, the point-to-point
communication model for sending messages to objects is
being replaced by a broadcast model in which messages are
sent for delivery to whichever objects hold their
implementation.

2. UNDERLYING ISSUES
Much work on aspect-oriented software deals with at least
one of four issues. In roughly the order in which they
emerged, these issues are:

• [aspects] representation of concern-separated artefacts
and control of their interconnection or composition at
points where they must join,

• [pointcuts] identification and exposure of appropriate
points in concerns at which their behaviour should be
joined,

• [context] characterization of complex behaviour and
exploitation of inferred program state, and

• [mining] identification and possible extraction of
concerns from tangled software.

Let us look in some more detail at the characteristics of the
solutions proposed.

2.1 Aspects and Composition
Many AOSD approaches allow the state and behaviour of
objects to be separated into elements that can be re-grouped
into “subjects” [10] or “aspects” [16] to address separate
issues of concern to the architecture or implementation. The
various elements of objects in the separated concerns are put
back together by a process of composition or weaving.

Several reasons have been put forward to motivate the
importance of aspects:

• attachment of systemic1 behaviour to objects, to support
transactions, persistence, etc. [1][24]

• enhanced development characteristics such as simple
extension and concurrent development of functional
concerns like editing, verification, or display in an IDE
[10]

• support for late selection and combination of functional
features of product-lines [15]

1 Often called non-functional, although most customers would

prefer to reject software that does not function or provides no
function.

• support for large-scale middleware construction [5]

In its broadest form, software aspects are generally
modelled as a body of material which, when executed,
produces events or cooperative method calls. In object-
oriented formulations, aspects may be classes or may
associate fields and methods with one or more classes.
Aspects need not form complete programs, although some
aspect-oriented approaches require completeness of some
aspects.

Composition, or weaving, can be thought of as a form of
dispatch, but one which employs more complex delivery
rules than does the common target-directed model for
objects, and one in which the message may result in
behaviour that was defined in several aspects. While
Subject-oriented Programming and Aspect-oriented
Programming treat events in terms of a broadcast and focus
on the end-points of message delivery, other work attempts
to deal with the handling of messages in a way that allows
each object along the path to influence the delivery targets
[20] [11].

2.2 Pointcuts and Join-Points
The second prominent issue among AOSD researchers is the
specification of points in an aspect at which the events or
cooperative method calls originate. The call’s points of
origin form a set of “join-points” – the points at which
aspects join. They generally provide the means by which the
various aspects of an object’s behaviour are woven together.
In Subject-oriented Programming, the join-points were
specifically identified to be method calls because they
represent the points at which a software developer using
subject technology might “expect” unknown or additional
behaviour to take place [23]. At method-call points,
subclasses may provide overridden or extended behaviour,
or target objects might have extended behaviour. This
restricted view avoided the breaking of encapsulation, but
made development of subjects require the same careful
thought about extensibility as does the development of
frameworks. AspectJ [16] introduced the concept of a
pointcut – a query-specified cut through a program that
identifies a set of join-points. The pointcut query is
associated with an advice, identifying which of the join-
points originate messages to be delivered to the advice
body. In AspectJ, the advices and their pointcuts lie outside
the base aspect to which the queries are applied, in-effect
“injecting” additional behaviour into the base. Because
these join-points are injected without participation of the
original developer, they have been criticised as breaking the
encapsulation. But they also greatly increase the degree of
“obliviousness” [7] and provide for a much wider spectrum
of points at which aspects may join.

The underlying concept behind “pointcut” as a set of join
points has evolved and variations are in use by authors of a
number of approaches for AOSD:

• Cooperative operation [10], behaviours in aspects are
attached to the set of execution points that are method
calls intended to allow for extended behaviour

• Pointcut [16], a query identifying specified a set of
points in execution, used as a clause in an aspect’s
advice declaration. Viewed as a query, the pointcut’s
variables are bound when matched to an instance. These
bindings can be passed as parameters to be advice body.
A user-defined pointcut is given a name and signature.
The signature selects from the variables bound by the
query. An abstract pointcut is a user-defined pointcut
that omits the query. It may be used as a clause in an
aspect’s advice but must eventually be made concrete by
associating it with a particular query that provides
bindings for its parameters

• Exported pointcut [9], is a user-defined pointcut that is
specified in a module of the base rather than in an
attached aspect. This effectively produces a cooperative
operation, but expressing it as a query over the module’s
content makes it useful for after-the-fact use in the
module.

• Methoid [12] explicitly treats an exported pointcut as a
call to a method. To do so, the query specifies a set of
regions in the execution of material to which it is
applied. The content of the region is treated as a method
that can be reduced to a single join-point - a cooperative
operation call to that method. The method can be
extracted or materialized as to perform the behaviour
identified by the query if needed to form compositions.

2.3 Context: Gross Program State, CFlow, and
Complex-Event Processing

AspectJ’s pointcuts included the ability to filter the
circumstances of a join, on the basis of dynamic information
much like the filters of composition filters [1]. Among the
filtering criteria is the “cflow” construct. An important use
of cflow is in determining the gross program state of a base
so that the aspect can respond in an appropriate manner. In
the example in [2], the authors employ a series of correlated
pointcuts using cflow to track processing within wizards.

But cflow is a weak mechanism for attacking an important
problem. The gross program state of a system is often a
more complex function of its flow history than examination
of the current flow stack will reveal. So it is advantageous to
use an aspect follow the series of occurrences in a system
that indicate a change in gross state This is done in [28],
where the authors observe that “interesting states of the
system can be described in terms of previous events and the
ordering of them.” The aspect can summarize the state in a
variable used in the pointcuts of other aspects. Such an
aspect can be used to perform the kind of task usually
associated with complex-event processing [21].

2.4 Aspect Mining: Analysis, Identification and
Extraction of Concerns

As the value of concern-separated software became more
evident and greater tool support for its use became
available, the importance of being able to deal with the
concern structure of legacy software grew. Program-slicing
had been of interest for a long while, but was generally
viewed as a compilation or debugging technique, perhaps
for lack of ability to reflect the sliced program as a proper
software artefact. A good review of work in this area can be
had in [3].

3. OPPORTUNITIES
 Much service-oriented software today treats services like
objects, with composite services managed as intermediate
objects that route calls to the objects they use internally.
Exploiting aspect-oriented constructs allowing us to treat
services as behaviour attached to cooperative operations
offers the opportunity to introduce a much more flexible and
malleable service structure.

Software builders conventionally work as if they have a
complete view of the software they are building. This point-
of-view is reinforced by the constructs we use in thinking
about problem decomposition. Perhaps the deepest is the
“call” construct. It is traditional for a developer to look at a
specification for some service and develop an algorithm for
satisfying it, examining and selecting from available
software components to perform services that the algorithm
itself needs in turn. Traditionally, this examination looks far
deeper into the component than any formal specification.
The developer may look at issues like:

• the performance characteristics, perhaps determined by
examining the code if not the present in the
documentation,

• the malleability or extendibility of the code, perhaps
reflecting the need to create subclasses or attach aspects,

• the “burden” – additional options provided that
contribute to overhead but are not needed,

• the stability of the code base, reliability of its developer,
etc.

This analysis takes place even if the component is a built-in
element of the programming language, like those that
perform arithmetic on numbers, but the characteristics
become ingrained to form part of a developers’ natural
repertoire. Having selected a component, the developer
often adapts the algorithm under development to reflect
additional choices and capabilities potential in its use by, for
example exploiting public or private knowledge about the
logic, state representation, or class structure of the
component being used. The resulting dependencies are
called EEK in [29].

This is, to some extent, changing. There is an impetus to
treat components as “services” [22], contracted for when
software is executed, rather than when it is written. While it
may seem a small change, the impact is enormous because
the trade-offs described above can no longer be made by the
developer, but must be made later when the “service-finder”
is operative. Fully exploiting these changes requires a
change in the programming languages we use to make the
artefacts more malleable and the information on which they
depend more manifest to the service-finding mechanisms.
The Continuum programming language [30] is being used
as the basis for researching both the language and the
implementation issues involved in this shift.

Most aspect-oriented approaches lie somewhere in-between
these extremes of early- and late-bound selection. In
asymmetric approaches, binding activities are performed by
the developer of the attached aspect rather than the
developer of the base aspect. This effectively reverses the
usual situation by having the service (aspect) developer
become familiar with the details of the client (base).

Symmetric treatments of aspects forgo assigning
responsibility to either component developer, and require
the developer of composition rules to be familiar with both
(or all) participating services. As it is for a software
“service-finder,” the developer’s task is made simpler, or
indeed possible, if the needed information is made explicit
in the software rather than having to be dug out from its
latent places in the code.

The following parts of this section explore how the
generalisation from aspects to services provides potential for
change in the way we deal with some important issues.

3.1 Classic vs. Co-operative Method Call
Much discussion of aspect attachment could be clarified by
explicit recognition that the named, parameterized pointcut
effectively defines a cooperative method call and that the
rest of the mechanisms for dealing with aspects can be
applied in general. Except for the issue of where the
pointcuts are specified and applied, there is often no natural
difference between the structures of the concerns
themselves. Implementations of functionality can as easily
be placed in one concern as another, in a way that reflects
requirements rather than a dominant decomposition like
“class”. Attaching it as an aspect can yield equivalent results
as keeping it in the base. In fact, it has been observed [26]
that even “class” is just another dimension for separating
concerns. This effectively points out that whether the
developer of a class decides to put it in the base or to put it
in a separate concern makes little difference to the operation
of the base. Of course, depending on the AOSD approach in
use, it may affect the syntactic expression.

No matter where the pointcuts are specified that expose
them, the join-points in a concern effectively become points

of cooperative method call [10]. From a mechanistic point-
of-view, a cooperative method call can be thought of as
identical to a classic method call. Classically, we think of a
method call as belonging to (defined by) a client or
consumer, the one who makes the call. But the cooperative
method-calls in a concern are the join-points it exposes.
Ordinary method-call is concerned with what the call will
do for the client. But cooperative method call is concerned
with what the call can do for the community as well.
Behaviour provided in the originating concern or in any
other concern cooperates to provide the actual behaviour
associated with the cooperative call. So, from the point-of-
view of system-structure, dispatch resolution, intention,
specification, etc, classic method call and cooperative
method call have quite the opposite conceptions even
though they are mechanically identical. Potential impact on
several of these areas is addressed in the following sub-
sections. A common way to look at their mechanical
similarity is discussed in Section 3.2. The fact that this
reversal can exploit more information about intent is
discussed in Section 3.3. Section 3.4 explores potential for
availing of greater concurrency in the software we write,
and Sections 3.5 and 3.6 discuss language support that both
increases dynamicity and malleability and enables the more
concurrent style.

3.2 Event Flow and the Dual Role Of The Base
The role of the “base” is perhaps the most vexing issue in
treating AOSD [19] [13]. Virtually all approaches connect
the behaviour in the separated concerns with cooperative
method calls in the base, specified implicitly or via
pointcuts. The base acts both as a body of code making
cooperative method calls to which aspect behaviour can be
attached and as an aspect providing some of the behaviour
for them. In order to accommodate the diverse collection of
emerging technologies that can all benefit from aspect-
oriented approaches, we should separate event behaviour
attachment from the description of overall event flow. In
this view, the base contains no code itself. It is a
specification of a sea of events on which the aspects float,
each associating its behaviour with some of the events. The
differentiation of cooperative method calls from classic
method calls becomes the role of the base. This view intends
to accommodate either view of joinpoints – that they are
intended or that they are injected, as explored further in
Section 3.3

Separating the abstract model of the underlying flow of
behaviour from the attachment of providers’ behaviour can
give some insight into the role of pointcuts and their
relationship to the base. Specifically, we can construct the
“base” from the collection of abstract pointcuts whose
behaviour is provided by the aspects. In Figure 1, we show
an aspect concern both exporting some pointcuts
(cooperative method calls) and providing behaviour for
others. The base could be specified separately, as part of an

overall system design, or could be derived from information
in the aspects making up the system. In either case, it could
be thought of as a simple list of events identified as abstract
pointcuts, a constrained event specification, a work-flow
diagram, or as hinted at in [28], in the form of the sequence
diagrams forming the system’s design.

aspect x;
export {
 pointcut p(int a):
 call(* X.foo(int a));
}
provide {pointcut n(int a, real b);}
class Y {when2 p(int a) {...}}

Figure 1- a symmetric aspect

In addition to the specification of exported and provided
pointcuts, the aspect contains behaviour that is attached to
the events and is subject to the exports. For an aspect to be
attached to a base, its specification of the cooperative calls
required must be consonant with those of the base An
aspect not in the base has no exported pointcuts. A base
with no advice for other aspects has no “provides”. While
not exploiting this syntax, Continuum’s “service” construct
explicitly lists the cooperative behaviours provided and
describes their dependencies on earlier flow.

3.3 Whose Is The Specification - Join Points By
Intention or Injection

In a classic call, the client developer keeps in mind the
services needed (e.g. “a hash table into which objects can be
put”) while finding a suitable implementation for the
service. In many object-oriented languages this decision is
consolidated by naming the pre-existing class or interface
that is associated with the selected implementation. When
providing a local implementation, the class or interface
created by the developer may be sketchy, or it may be well
documented and meet the expected standards for reusable
software. But in all cases, the focus is on what the service
does or on what the client needs.

In cooperative call, there is more that needs to be said: what
the client is doing in a cooperative sense. A call to
hash.put(…) may have been written because of the intention
“put a book into the library records”. It is this intention
which is the link that ties the cooperating concerns together.
When written with respect to a particular base, a pointcut
specification needs to supplement the call, to fill-in just this
information about intention.

We say that the purpose of pointcuts, whether injected or
intentionally exported, is to distinguish cooperative calls

2 “When” is used as an alternative to before, after, event, around,

etc. denoting behaviour to be performed sometime between
before and after but not needing to be wrapped around other
behaviour.

from ones that are hidden from cooperative attachment. But
distinguishing the cooperative calls does not suffice to
provide the specification of their intention. If we expect the
cooperator to be found by a mechanical service-finder rather
than by the client developer, it is clear that additional
documentation must be available. In fact, the entire issue of
malleability of call structures becomes more critical for
cooperative calls than for hidden ones. The same method,
identified by its name and signature, may be used to support
many different intentions. This argues that the intention and
characterization information must be separately attached to
the name. In the interest of service-finding, we can employ
glossary or ontology references associated with methods
and their parameters to supply information concerning:

• the actual intention expressed at the cooperative call
• the separate functional expectations of a call so that they

might be realised by separate aspects composed later
• the functionality provided by other aspects available
• the roles of parameters of the call in an order-free

manner to give greater flexibility in matching server to
client

Not all join-points need be originally written as method-
calls. Those which are not must to be injected or exported,
as mentioned in Section 2.2, using a pointcut to turn them
into cooperative method calls. The information about
intention can be supplied at the point where the pointcut is
defined.

The issue of control of the specification is closely related to
a phenomenon that could be termed “function bundling”.
Function bundling reflects the fact that many methods
perform a multiplicity of functions. For example, an analysis
of the Unix “sort” command was conducted and it was
found to be reasonably represented as the composition of 30
concerns [4]. Bundling of this sort is often signalled by the
presence of option parameters or of optional parameters –
reference parameters that may be null. The bundling reflects
the developer’s statement of the specification as a
“maximum” for the component being developed. It often
contains excessive functionality contributing to the bloat of
its clients [8]. An aspect-oriented realization could
encourage independent functions to be presented in separate
aspects, combined later by the service-finder at run-time
rather than by the developer at development time.

3.4 Raising Concurrency with Aspects
3.4.1 Attaching Aspects to Events
The fact that we are reaching fundamental limits in
increasing the speed of sequential processors indicates a
growing need to increase the parallelism and asynchrony
that is potentially available even in the ordinary software we
write. One way to go about this is to bring the use of
asynchronous events more into the mainstream by
simplifying programming language constructs to encourage

their use. The metaphor of software as aspects floating on a
sea of events may offer us an opportunity to do so because it
emphasizes the attachment of behaviour to events rather
than the construction of sequences of control to arrange for
their execution. While it is important to preserve the flexible
synchronous combinators, like before, after, with, around,
etc., used for aspect behaviour, not all aspect behaviour
needs to complete before the cooperative method call that
calls for it can continue. For example, the behaviour
provided by a logging aspect can often be attached as an
event since the continuation of the base does not depend on
its early completion. Event attachment is irrevocably
concurrent. The originating client can have no expectation
about the time of its execution, which may even be deferred
until the client completes.

3.4.2 Sending Events and Passing Commitments
Attachment of aspects as events is a helpful first step, but
does little to encourage more concurrency within the base
itself. A second step forward is to permit cooperative
method calls to be sent as explicit events. All recipients run
concurrently with the continuation of the base. The
declaration of method one in Figure 2 suggests how a
commitment for the eventual invocation of an event can be
passed declaratively from one method to another. The
“sends” clause in the declaration of method one indicates
that it is committed to the ultimate sending of event two,
either on its own or by passing the commitment forward. In
Figure 2 the commitment might be passed to method three
(assuming its unshown declaration has a similar “sends”
clause).

3.4.3 Future Event Handling
People describe problem solutions sequentially, although
they can break off chunks described to be done
concurrently. And they seldom think of subtasks as subject
to long potential delays. The ability to send method calls
asynchronously is not a new construct, and like
asynchronous aspect attachment yields only a small
improvement in the overall concurrency behaviour of
software. Both require the software developer to break the
train of sequential thought, and both require the high
intellectual overhead of creating new classes, methods, etc.
We need to provide developers with a construct that allows
them to think sequentially about activities that can be
deferred or executed concurrently. We can build on the
concept of passing commitment to provide it. In Figure 2,
imagine that the developer knows that after doing method
four, some other tasks must be performed. Perhaps method
four makes a bank transfer, and a receipt must then be
presented. This is a sequential thought that would generally
be represented by invoking method four and then
performing the receipt processing, shown as “…”. We want
to allow the developer to express the sequential dependency
without holding up the return from method one. (If we

imagine method one is called inside a loop, then allowing it
to return without waiting for method four to execute means
that many executions of method four are started by the loop,
and all can run concurrently.) But syntactically, we avoid
interrupting the developer’s train of expression, by allowing
the receipt processing to be written as part of the call to
method four using a commitment that it will eventually send
message five.

void one(Object x,int y)
 sends two(Object m, real z) {
 send three(this,"hello");
 send four(this, 6)
 expect five(MyClass this, int a) {...}
}

Figure 2 – preserving sequence without synchrony

Eventually, the commitment is met and message five is sent.
Its implementation is as specified in the “expect” clause, and
the receipt is printed. Note that method five cannot access
any of the local state of method one, which may be long
gone. But it can use its parameters to access object state as
usual. The mechanisms for doing this and the meaning of
the “MyClass this” parameter declaration are part of
with the service model of aspects employed in Continuum
and with its model for dynamically extending knowledge
about the methods supported by classes. These are described
briefly in Sections 3.5 and 3.6.

3.4.4 Exceptions
Any construct like “send”, that decouples future execution
but still provides for satisfaction of commitments, must
address the problem of exceptions and failures. Since a sent
message may commit the future invocation of another event,
we must define what happens if it fails to do so. This can be
addressed at two levels. On the static level, a method
declared to send some event must do so on all execution
paths. This can be checked at compile and load time. On the
dynamic level, a logic error may still prevent the future
“send” from taking place by causing an exception to be
thrown. When an exception is thrown, potentially
unsatisfied commitments to send an event are satisfied by
sending the event in such a way as to trigger the exception
immediately on entry to the called method.

3.5 Generalizing Aspects as Services
Ever since the programming language community adopted
the target-directed method invocation model for the
dominant languages, software developers have been
compelled to escape from it by moving dispatch from the
language to the middleware. We see this escape in the all
the emerging technologies mentioned above: Aspect-
Oriented, Service-Oriented, Grid, Ubiquitous, and Complex
Event Processing. In the infrastructure for all of these,
method calls are directed to objects other than the “target”
presented by the client. Widening the concept of “aspect”
provides the opportunity to address this need. The

programming language Continuum makes the escape
explicit by integrating with the language and VM a
dispatcher whose mechanisms are constrained to assure
delivery and freedom from ambiguity but are otherwise
explicitly unspecified [14]. This is a step beyond the
flexibility introduced by aspects, most approaches to which
still hold the definition of dispatch closely.

Continuum introduces the “service” construct into the
language. Its role is to provide methods with access to the
state of one or more the objects they are passed as
parameters. This process is called decapsulation and can
only be applied to parameters of the method’s class – the
same ones that govern dynamic dispatch to the method
itself. Like advices, the methods provided by services are
added to the behaviour performed when the cooperative
method is invoked. Services have several other roles. They
act as encapsulation boundaries, with explicit specification
of the cooperative methods and events they support and
require, They also draw boundaries that contain the
propagation of ambiguity so that it remains within a service.
This limits the scope of the checking that must be
performed when a class is added to a service. Services each
have an independent representation of objects’ states, so
that references to objects may be represented as other than
opaque pointers without losing their ability to convey
information assuring support for methods. Non-opaque
references can be passed between services that are
distributed around the network.

3.6 Overcoming the Drawbacks of Obliviousness
Much work has been done on the dynamic introduction of
aspects, but if the base is intended to be “oblivious,” it is
hard to extend this work to use aspects as general dynamic
service providers – service calls are obvious rather than
oblivious in the client. Dynamic service provision suggests
that the client knows about the methods and expects to call
them even though the methods’ implementations are not
available when the client is started. The service model
described above provides for the dynamic introduction of
services. To complement it, Continuum’s assurance model
is also dynamic. A class does not specify or limit the
interfaces that it supports, allowing services to add to
growing knowledge about which methods are supported [14].

void meth(Store{put(Store,Item}} store1,
 Store store2);
Store{put(Store,Item),
 boolean inStock(Item,Store)} more;
more =
 ({boolean inStock(Item,Store)}) store1;
more = store2;
boolean t = inStock(item,store2);

Figure 3 – dynamic knowledge about classes

In Figure 3, the first assignment statement to “more” adds
the knowledge that “inStock” is assured safe to call with

any object in the class Store, allowing this knowledge to be
transferred later to store2. Each service may provide
methods and implementations for various classes, based on
the state information the service possesses. Services can
even provide methods that do not require explicit
knowledge of state, but simply depend on access to that
state provided by other services.

Clients do not know which service provides a method, nor
even which class the method is “in”. This is because
continuum’s assurance model is symmetric, which means
that a service can provide a method dispatched on a
parameter other than some designated target. The assurance
that the method can be safely called is passed through a
generalized concept of interface, shown in Figure 3, even
though the implementation need not lie in the object to
whose reference the interface is attached. Hence, even
though the knowledge that inStock is assured is associated
with “store2”, the implementation may actually reside in
“item”. This helps make the client structure less dependent
on the implementation structure because the client does not
need to know in which objects methods are implemented.

4. CONCLUSIONS AND DIRECTIONS
Aspect-oriented software is broadly focused on the
language and support for separating the design and
implementation work required for differently-motivated
concerns. In conventional object-oriented software, these
are often tangled within a single class or method. While the
language features of some aspect-oriented approaches
emphasize its use for post-facto attachment of functionality
obliviously, others employ it to achieve planned separation
for flexibility, as within product lines, or to achieve
concurrency and event-processing. We are entering a
computing environment that is radically changing to address
the needs of mobility and the challenges of physical limits
on processor speed, and in which broadband services are
encroaching on the traditional point-to-point structures. In
such an environment, there is much room for growth and
exploration in the use of aspect-like constructs to adapt
software to changing environments. We have outlined some
issues that need to be addressed and some approaches that
may address them in the hope that the community can
widen the scope of its thinking about the applicability of
aspects and concern-separated software as we move
forward.

5. REFERENCES
[1] Aksit, M., Bergmans, L., Vural, S., An object-oriented

language-database integration model: The composition
filters approach. In Proc. ECOOP’92, Springer Verlag,
LNCS 615

[2] Bodkin, R., Furlong, J., Gathering Feedback on User
Behaviour using AspectJ. in AOSD 2006 - Industry
Track Proceedings, Chapman, M., Vasseur, A.,
Kniesel, G. (Eds.), Technical Report IAI-TR-2006-3,

ISSN 0944-8535, Computer Science Department III,
University of Bonn, March 2006

[3] Breu, S., Moonen, L., Bruntink, M., and Krinke, J.
(Eds.), Proceedings First International Workshop
Towards Evaluation of Aspect Mining. July 4, 2006,
Nantes, France, Delft University of Technology
Software Engineering Research Group Technical
Report TUD-SERG-2006-012

[4] Carver, L., Building Real-World Applications with
Aspect-Oriented Modules and Hyper/J. Master's thesis,
Univeristy of Califorina, San Diego, Department of
Computer Science and Engineering, June 2002

[5] Colyer, A., and Clement, C., Large-Scale AOSD for
Middleware. Proceedings of the 3rd international
Conference on Aspect-Oriented Software Development
(AOSD 2004), Lancaster, UK, March 22-26, 2004,
ACM, New York (2004), pp. 56-65

[6] Elrad, T, Filman, R. E., Bader, A. Aspect-oriented
programming: Introduction. Communications of the
ACM, Volume 44 Issue 10, October 2001

[7] Filman, R.E. and Friedman, D.P, Aspect-Oriented
Programming is Quantification and Obliviousness. In
Position paper for the Advanced Separation of
Concerns Workshop at the Conference on Object-
Oriented Programming Systems, Languages, and
Applications, Minneapolis, Minnesota, October 2000

[8] Garlan, D., Allen, R., Ockerbloom, J., Architectural
Mismatch: Why Reuse Is So Hard. IEEE Software, vol.
12, no. 6, Nov., 1995

[9] Gudmundson, S., and Kiczales, G., Addressing
Practical Software Development Issues in AspectJ with
a Pointcut Interface. In Proc. ECOOP 2001 Workshop
on Advanced Separation of Concerns, July 2001.

[10] Harrison, W. and Ossher, H., Subject-Oriented
Programming - A Critique of Pure Objects. In
Proceedings of 1993 Conference on Object-Oriented
Programming Systems, Languages, and Applications,
September 1993

[11] Harrison, W. and Ossher, H., Structure-bound
Messages. IBM Research Report RC 15539, March,
1990.

[12] Harrison, W., Ossher, H., Tarr, P., General
Composition of Software Artifacts. Proceedings of
Software Composition Workshop 2006, March 2006,
Springer-Verlag, LNCS 4089

[13] Harrison, W., Ossher, H., Tarr, P., Asymmetrically vs.
Symmetrically Organized Paradigms for Software
Composition. Research Report RC22685, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY,
December, 2002

[14] Harrrison, W., Lievens, D., Walsh, T., Using
Recombinance to Improve Modularity. Software
Structures Group Report #104, Computer Science
Department, Trinity College, Dublin, March, 2007

[15] Jansen, A., Smedinga, R., van Gurp, J. and Bosch, J.,
First class feature abstractions for product derivation.
IEE Proceedings on Software, Volume: 151, Issue:
4,Aug. 2004

[16] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten,
Jeffrey Palm and William G. Griswold, An Overview

of AspectJ. Proc. 15th European Conference on Ob-
ject-Oriented Programming, 327-353 (2001).

[17] Kiczales, G., Lamping, J., Lopes, C., Hugunin, J.,
Hilsdale, E., Boyapati, C., Aspect-oriented
programming. United States Patent 6,467,086, October
15, 2002

[18] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J., Irwin, J., Aspect-Oriented
Programming. In Proc. ECOOP’97 (Finland, June
1997) Springer-Verlag

[19] Lamping, J., The Role of the Base in Aspect Oriented
Programming. In Proceedings ECOOP Workshops
1999: 289-291

[20] Lieberherr, K. J., Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns. PWS
Publishing Company, 1996

[21] Luckham, D., The Power of Events. Addison Wesley
Professional, May 2002, ISBN: 0201727897

[22] Mendonpa, N.C.; Silva, C.F., Aspectual services:
unifying service- and aspect-oriented software
development. International Conference on Next
Generation Web Services Practices, Aug. 2005

[23] Ossher, H. and Tarr, P., Operation-level composition:
A case in (join) point. In ECOOP ’98 Workshop
Reader, 406–409, July 1998. Springer Verlag. LNCS
1543

[24] Rashid, A., Chitchyan, R., Persistence as an Aspect.
Proc. of International Conference on Aspect-Oriented
Software Development (AOSD 2003), March 2003,
Boston, MA

[25] Richardson, J. and Schwarz, P., Aspects: Extending
Objects to Support Multiple, Independent Roles. Proc.
ACM-SIGMOD Conf., Denver, Colorado, May 1991

[26] Tarr, P., Ossher, H., Harrison, W., and Sutton, S. M.,
“N degrees of separation: Multi-dimensional separation
of concerns.” In Proceedings of the 21st International
Conference on Software Engineering (ICSE '99), 107–
119, IEEE, May 1999

[27] Steimann, F., The paradoxical success of aspect-
oriented programming, In SIGPLAN Notices, Vol. 41,
No. 10. (October 2006), pp. 481-497.

[28] Walker, R. and Murphy, G., Joinpoints as Ordered
Events: Towards Applying Implicit Context to Aspect
Orientation. Proc. ASOC Workshop at ICSE 2001

[29] Walker, R. and Murphy, G.. Implicit context: Easing
software evolution and reuse. In 8th International
Symposium on the Foundations of Software
Engineering, San Diego, CA, USA, November 2000

[30] Continuum Draft Language Specification available
from https://www.cs.tcd.ie/research_groups/ssg

[31] Grid Computing overview available at
http://en.wikipedia.org/wiki/Grid_computing

[32] Service Oriented Architecture overview available at
http://en.wikipedia.org/wiki/Service-
oriented_architecture

[33] Ubiquitous Computing overview available at
http://en.wikipedia.org/wiki/Ubiquitous_computing

