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Preface
Aspect-oriented programming is a paradigm in software engineering and

FOAL logos courtesy of Luca Cardelli

programming languages that promises better support for separation of concerns.
The sixth Foundations of Aspect-Oriented Languages (FOAL) workshop was
held at the Sixth International Conference on Aspect-Oriented Software De-
velopment in Vancouver, Canada, on March 13, 2007. This workshop was
designed to be a forum for research in formal foundations of aspect-oriented
programming languages. The call for papers announced the areas of interest for
FOAL as including: semantics of aspect-oriented languages, specification and
verification for such languages, type systems, static analysis, theory of testing,
theory of aspect composition, and theory of aspect translation (compilation) and
rewriting. The call for papers welcomed all theoretical and foundational studies
of foundations of aspect-oriented languages.

The goals of this FOAL workshop were to:
• Make progress on the foundations of aspect-oriented programming lan-

guages.

• Exchange ideas about semantics and formal methods for aspect-oriented
programming languages.

• Foster interest within the programming language theory and types com-
munities in aspect-oriented programming languages.

• Foster interest within the formal methods community in aspect-oriented
programming and the problems of reasoning about aspect-oriented pro-
grams.

The workshop was organized by Curtis Clifton (Rose-Hulman Institute of Technology), Gary T. Leavens (Iowa State
University), and Mira Mezini (Darmstadt University of Technology). The program committee was chaired by Shmuel
Katz (Technion–Israel Institute of Technology).

We thank the organizers of AOSD 2007 for hosting the workshop, and Workshops Chairperson William Harrison
in particular for his help with Digital Library publication of these proceedings.
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Message from the Program Committee Chair
FOAL has become one of the primary venues for work on the formal foundations of aspect languages. The reviewing
process for FOAL2007 was, as usual, detailed and thorough, beyond what is typical in a Workshop. Every paper was
reviewed by at least three, and generally four, reviewers, who provided constructive criticism and valuable feedback
for the authors. The promptness and efforts of the reviewers are greatly appreciated, and have again allowed us to
construct an interesting FOAL program. The papers provide a cross-section of work on formal methods and semantics
for aspects, from one on refinement for aspects, to papers on type systems for aspects, treatment of dynamic aspects,
connections to nonmonotonic logic and monads, and issues in bytecode slicing for aspects.

The members of the program committee were: Curtis Clifton (Rose-Hulman Institute of Technology), Rémi
Douence (Ecole des Mines de Nantes, Inria, Lina), Pascal Fradet (INRIA), Stephan Herrmann (Technische Universität
Berlin), Alan Jeffrey (Bell Labs), Shmuel Katz (Technion–Israel Institute of Technology), Ralf Lämmel (Microsoft)
Gary Leavens (Iowa State University), Karl Lieberherr (Northeastern University), David Lorenz (University of Vir-
ginia), Todd Millstein (University of California, Los Angeles), Mira Mezini (Darmstadt University of Technology),
James Riely (DePaul University), and Mitchell Wand (Northeastern University).

The sub-reviewers, whom we also thank, were: Ahmed Abdelmeged, Bryan Chadwick, Christine Hang, and
Therapon Skotiniotis.

I would also like to warmly thank the organizing committee of FOAL, Curtis Clifton, Gary Leavens, and Mira
Mezini, for their untiring work in bringing together the various elements needed to create a vibrant workshop.

Shmuel Katz
FOAL ‘07 Program Chair
Technion–Israel Institute of Technology
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ABSRACT 
This talks describes a number of principles and key concepts un-
derlying concern manipulation, the use of concerns to aid in a 
variety of software development tasks. Concern modeling and 
exploration, query and composition are considered. The principles 
and concepts guided work on the Concern Manipulation Envi-
ronment (CME), which provides both prototype tools supporting 
aspect-oriented software development, and flexible components 
for use in building such tools. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features, D.2.3 [Software Engineering]: Coding Tools and Tech-
niques, D2.13 [Software Engineering]: Reusable Software, D.2.2 
[Software Engineering]: Design Tools and Techniques. 

General Terms 
Languages, Design. 

Keywords 
Aspect-oriented software development, separation of concerns, 
software queries, software decomposition and composition. 

1. INTRODUCTION 
As its name suggests, concern manipulation is about the use of 
concerns in any and all ways that are useful. This includes: 

• Writing software that is modularized by concern. 

• Identifying or mining concerns that were not modular-
ized 

• Modeling concerns and their relationships, and using 
these models to aid in development activities, such as 
assessing impact of change. 

• Extracting concerns that are tangled with others. 

• Composing concerns in flexible ways to yield full sys-

tems.  

This talk is about general principles and key concepts of concern 
manipulation. 

The principles were key considerations in the design and imple-
mentation of the Concern Manipulation Environment (CME) [5]. 
It provides both a set of prototype tools and a set of flexible com-
ponents. The tools are for use during aspect-oriented develop-
ment, and include a Concern Explorer for navigating and populat-
ing an underlying concern model [4], a query tool for searching 
for software elements using a variety of attributes and relation-
ships [8], and a composition tool for composing concerns as 
guided by high-level, mostly simple specifications. The compo-
nents are for tool builders to build upon and researchers to use for 
experimentation and prototyping. They include components for 
concern modeling [4], query [8], composition [7, 2] and related 
sub-activities. Extraction was planned but not implemented. The 
components are general and flexible, intended to be tailorable to a 
variety of AOSD approaches applied to a variety of different 
types of artifacts. 

The CME is an open source project, though not currently under 
active development. It was developed as an Eclipse Technology 
Project, and is now available on SourceForge [1]. 

The rest of this abstract merely lists the principles and concepts 
covered, or alluded to, in the talk. In a few cases, it identifies 
architectural implications for tools aimed at supporting general 
concern manipulation. Further explanation and details, as well as 
discussion of and references to related work, are available in the 
referenced publications. 

2. PRINCIPLES AND KEY CONCEPTS 
This section begins with some general principles and concepts, 
and then discusses concerns, query and composition in separate 
subsections. 

• The various concern-manipulation tools and compo-
nents should provide a unified view and experience. 
This implies sharing of concepts wherever possible, 
such as regarding the body of software being worked 
on. 

• The body of software being worked on is in a universe 
consisting of container spaces of containers made up of 
elements. 

o In the important special case of object-
oriented software, the container spaces are 
type spaces (e.g., Java class paths), the con-
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tainers are types (e.g., classes and interfaces), 
and the elements are members (methods and 
fields). 

o Containers that are referenced but are not to 
be manipulated themselves, such as Java li-
brary classes in most contexts, can be in-
cluded in a special library container space, 
which is considered to be included in all con-
tainer spaces. 

o All names used within a container space must 
be uniquely defined within that space (per-
haps in the automatically-included library 
space). This is necessary for names to be 
properly understood and processed. 

• The universe can, and usually does, involve software ar-
tifacts/elements of various kinds.  

o Architectural implication:  Artifact-kind-
specific code should be isolated, so that the 
bulk of the concern-manipulation support is 
generic. 

• Methoid: a pattern identifying material inside element 
bodies, allowing the matching material to be treated as 
extractable methods for the purpose of identification, 
searching and composition. This allows support for 
code-level join points such as calls, throws and excep-
tion handler bodies. 

• Correspondence: a tuple of corresponding entities (con-
tainer spaces, containers, elements or methoids) that are 
to be composed with one another to form a composed 
entity.  Correspondences identify join points in a sym-
metric way, and correspondence queries are the sym-
metric analogy of pointcuts. 

• Each entity has attributes, which can be used in queries. 
When corresponding entities are composed, their attrib-
utes must be combined. Attributes include: 

o Modifiers: keyword attributes, e.g., “public.” 
o Classifiers: modifiers that serve to classify 

their entities, e.g., “interface.” 

2.1 Concerns 
• Concerns should be first-class entities, explicitly repre-

sented (modeled) and manipulable by users and tools.  

• An underlying symmetric model should be used, with a 
convenient asymmetric façade available. Both symmet-
ric and asymmetric scenarios [6] are important: some 
concerns are naturally peers, possibly freestanding, 
whereas others are naturally extensions or specializa-
tions of base concerns. This approach provides conven-
ient, unified support for both. It is possible because 
asymmetric models are restrictions of symmetric mod-
els. 

• An individual concern can be heterogeneous, involving 
artifacts/elements of multiple kinds. 

• A concern has an intension, indicating the meaning of 
the concern, and an extension, the set of software ele-

ments that currently pertain to it. The intension might 
be expressed by a query. In the degenerate case, the in-
tension can be merely a comment and the extension 
specified explicitly. 

• Software can be written explicitly encapsulated in con-
cerns, such as in modules or packages that represent 
concerns. Concerns can also be obtained by identifying 
or mining elements scattered across other concerns. 

• A concern, unlike a container space, may contain names 
that resolve to definitions not included in the concern. 
In general, obtaining container spaces from concerns 
requires extraction, which must deal with such names 
(perhaps by including definitions, or requires declara-
tions, within the space). 

2.2 Query 
• Queries are needed in many contexts, such as for explo-

ration, definition of concern intensions, and correspon-
dence identification for composition.  

• Uniform query support should be available in all con-
texts, and the same query language(s) be usable 
throughout. 

• Different query languages and underlying engines are 
appropriate for different AOSD approaches and experi-
ments. 

o Architectural implication:  Query languages 
and engines should be extensible and plug-
gable. 

• Despite this variation, to provide the uniform support 
desired, a query language must provide at least the fol-
lowing capabilities: 

o Selection of elements based on names (includ-
ing parameter signatures for methods), modi-
fiers, classifiers, attributes and containment. 

o Selection of methoids, based on their patterns. 

o Selection of relationships, based on their 
names and characteristics of their end points. 

o Selection of correspondences: tuples of corre-
sponding elements related as desired (e.g., 
having the same unqualified names in differ-
ent scopes). 

o Navigation via relationships, including transi-
tive closure. 

o Predicates and set operations. 

o Variables and unification. This is absolutely 
required for correspondence queries used for 
composition, and us useful in other contexts 
also. 

2.3 Composition 
• Static composition is sufficient to support dynamic join 

points and pointcuts. Dynamic residue, where the para-
digm requires runtime tests (or other activities) to be 
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performed at join points during execution, is handled by 
generating code to perform the appropriate tests and 
composing it statically at the right locations. This is, in 
fact, what aspect compilers typically do. 

• Three composition levels are important, with different 
needs and tradeoffs: 

o Concern assembly level: the lowest level, at 
which the key issue is the nitty-gritty details 
of composing specific artifacts, such as Java 
class files. 

o Reusable component level: the middle level, 
at which the key issue is providing tool build-
ers with flexible alternatives, allowing them 
to realize different composition paradigms. 

o Tool level: the highest level, at which the key 
issue is providing AOSD developers with 
convenient language constructs that support a 
particular paradigm. 

2.3.1 Concern Assembly 
Concern assembly involves some concepts specific to the low-
level details of synthesizing composed artifacts from source arti-
facts: 

• Mapping and translation, enabling a formal element, 
such as a method body, to be copied correctly from its 
source context to the composed context with proper 
name resolution. 

• Relationships among elements, such as subtyping. 

• Method combination graphs, specifying the details of 
how multiple, corresponding methods should be com-
bined, including such issues as sequencing, exception 
handling and parameter mapping. 

• Primitives for: 
o Container and element creation. 
o Mapping and relationship specification. 
o Copying and translating formal elements. 
o Generating code based on method combina-

tion graphs. 

2.3.2 Reusable Composition Component 
The CME composition component provides great flexibility by 
allowing composition to be specified in terms of the following 
concepts: 

• Weaving directives specify composition details. 

• What elements are to be joined: correspondences. 

• How elements are to be joined:  
o Selection, indicating which are to be included. 
o Ordering, specified by combination graphs. 
o Structure, specifying how the component ele-

ments are to be related in the composed result 
(e.g., facets of the same object, separate ob-
jects, separate object and aspect, etc.) [3]. 

• Making assumptions explicit: 

o Encapsulation indicates at what level name-
matching is to be applied, if at all. 

o Opacity indicates whether class hierarchy 
structure is to be taken into consideration dur-
ing composition, or if all classes are to be 
“flattened” before composition by having 
their inherited members explicitly included. 

• Resolving multiple weaving directives that apply to the 
same element: 

o Exclusivity indicates whether multiple direc-
tives can cooperate to produce a single com-
posed result, or whether just one must be se-
lected. 

o Precedence  determines the order of selection. 

2.3.3 Tool-level composition 
The concepts at the tool level are dependent on the paradigms 
(aspect languages or approaches) being implemented: the whole 
intent is that each tool be able to provide its own model and con-
cepts. There is thus great variation at this level, but the following 
general concepts apply: 

• Ideally, a composition tool should provide composition 
capabilities that are convenient and easy to understand. 
It need not necessarily provide the full flexibility of the 
lower levels, which are intended to be able to support 
multiple paradigms. 

• Concerns should be first-class elements in composition 
specifications.   

o In general, obtaining container spaces needed 
for the lower levels of composition from con-
cerns requires extraction, as noted earlier. 

• For full integration with concern modeling, the compo-
sition specifications should be expressed as composition 
relationships between elements of the concern model. 

• The composition specifications supported by the tool 
should be compiled down to the directives offered by 
the reusable composition component. 

• Dynamic residues are handled at the tool level, since 
their details are paradigm-specific. The tool should gen-
erate methods that perform the desired runtime tests or 
other activities, together with directives causing the 
composition component to include them where appro-
priate.  

• An attribute rewriting system, capable of transforming 
attributes of high-level composition specifications to 
those of mid-level weaving directives can provide some 
generic support for implementing diverse composition 
paradigms. The transformation is based on rules that 
(partially) define the paradigm. 

3. CONCLUSION 
This abstract described a number of principles and key concepts 
of concern manipulation. They were used in the design and im-
plementation of the CME, but validation is limited due to the 
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limited number of tools built on the CME and limited experience 
obtained with them.  
Follow-on research is an open area, including: validation and 
improvement of these concepts, exploration of alternatives and of 
design and implementation details, implementation of varied 
AOSD paradigms in terms of them, and exploration of new issues, 
such as handling of concerns containing artifacts that are ver-
sioned in an SCM system. 
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ABSTRACT
The goal of this work is to treat safety and security policies
as requirements to be composed in an aspectual style with
a developing application. Policies can be expressed either
logically or by means of automata. We introduce the concept
of transformation automaton, which is an automaton whose
transitions are labeled with program transformations. A
transformation automaton is applied to a target program by
a sound static analysis procedure. The effect is to perform a
global transformation that enforces the specified policy. The
semantic effect of this global transformation is explored.

In previous work we discussed how the intent of an AspectJ-
style aspect can be expressed precisely and abstractly as a
state invariant. Here, this result is generalized to handle
invariants that are conditional and stated over both events
and state properties. A policy stated in such a logical for-
mat can be translated to a transformation automaton that
enforces it in a target program. The translation process is
defined by a collection of inference schemes that can be me-
chanically instantiated and then solved, at least partially
automatically, by deductive calculations.

1. INTRODUCTION
This paper takes steps toward a deep integration of two
worlds - the burgeoning field of Aspect-Oriented Software
Development (AOSD) and the field of formal software de-
velopment by mechanized refinement. These two fields have
much to offer each other. Viewing each from the point of
view of the other provides insights leading to cross-fertilization
and new generalizations of both.

Formal software development starts with real-world require-
ments that are formalized into specifications. Specifications
are then subjected to a series of refinements that preserve
properties while introducing implementation details. Most
work on development-by-refinement takes a posit-and-prove
approach: a refinement is manually written that adds im-
plementation detail to the current design specification, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Foundations of Aspect-Oriented
Languages (FOAL 2007), March 13, 2007, Vancouver, BC, Canada.
Copyright 2007 ACM ISBN 1-59593-671-4/07/03 ...$5.00.

the refinement is proved correct on the side. In contrast,
our work has focused on generating refinements by apply-
ing representations of abstract design knowledge and using
automated reasoning [20, 21]. To achieve wider acceptance
and lower lifecycle costs, it is necessary to develop highly
automated means for generating refinements.

A crucial fact of complex system design is that no matter
how one designs the hierarchical structure of a system, there
are always concerns that cross-cut the component struc-
ture and introduce dependencies that are not exposed at
the component interfaces. These dependencies complicate
the understanding and evolution of the system. We view
cross-cutting concerns (such as aspects, safety and security
policies, nonfunctional requirements) as behavioral require-
ments on a system.

The main contribution of AOSD is the development and
popularization of means for expressing these cross-cutting
requirements, or at least implementation prescriptions for
them, in modular syntax, and providing automatic methods
for weaving or composing them into one’s design. What has
been lacking is means for specifying the intent of aspects.
In previous work [22] we showed how many AspectJ-style
aspects can be specified by means of state invariants, and
how aspect weaving can be performed as invariant mainte-
nance. By starting with a logical specification of the intent
of a cross-cutting concern, we showed how to derive what are
called the pointcuts and advice of AspectJ aspects [10]. The
derivation process provides assurance that the joinpoints are
complete and that the advice correctly implements the spec-
ification.

This paper continues our focus on abstract, yet precise means
for specifying the intent of cross-cutting requirements. Our
previous results are generalized to handle invariants that
are conditional and stated over both events and state prop-
erties. In particular, the specification of safety and security
policies typically requires taking behavioral context into ac-
count when deciding whether current actions are acceptable.
Policies can be expressed either logically or by means of au-
tomata, as convenient.

To implement cross-cutting requirements, we introduce the
concept of transformation automata, which are automata
whose transitions are labeled with program transformations.
A transformation automaton is applied to a target program
by a sound static analysis procedure. The effect is to per-
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form a global transformation that enforces the specified pol-
icy by applying a collection of local transformations. We
show how to calculate transformation automata from spec-
ifications of cross-cutting requirements.

Formal development poses several questions. What is the se-
mantic effect of mechanically composing a cross-cutting re-
quirement into a program? Is the requirement correctly and
completely realized? Do previously satisfied requirements
remain satisfied? We examine these issues in the context of
a variety of examples.

The goal of this work is to treat cross-cutting concerns as
requirement specifications, and to introduce the broadest
possible range of mechanisms for composing/weaving those
cross-cutting concerns in the context of a refinement process
that generates correct-by-construction code. After introduc-
tion of notations, we work through a series of examples.

2. PRELIMINARIES
A behavior of a program can be represented graphically as
a trace of alternating states and actions

state0
act0 // state1

act1 // state2
act2 // state3 · · ·

or more formally as a sequence of transition triples of the
form

〈statei, acti, statei+1〉,
where states are a mapping from variables to values, and
actions are state-changing operations (i.e. program state-
ments). If x is a state variable and s a state, then s.x denotes
the value of x in s. Further, in the context of the transi-
tion triple 〈state0, act, state1〉, x will refer to the value of x
in the preState, state0.x, and x′ refers to the value in the
postState, state1.x.

For concreteness, an action is represented by abstract syn-
tax so that we can perform pattern-matching and other
syntactical operations and tests. The following operators
construct sequences, including traces: nil, written [], and
append(S, a), written S :: a for sequence S and element a.

The semantics of a system S is given by a set of traces
Traces(S). To specify a system, we determine the obser-
vations that a stakeholder could make, and then write con-
straints on the observable state properties and event order-
ings. Here we assume that the observables of the system
are exactly the states and actions of a trace; e.g. we cannot
observe the state while a (primitive) action is taking place.

Actions are specified in a pre- and post-condition style. For
example, the specification

assume: x ≥ 0
achieve: x′ ∗ x′ = x ∧ x′ ≥ 0

is satisfied by the action x :=
√

x.

A refinement is a morphism in a suitable category of specifi-
cations. Intuitively, a refinement morphism preserves struc-
ture and properties. For algebraic specifications, a refine-
ment morphism maps vocabulary such that typing is pre-
served, and formulas/sentences remain provable under trans-

lation (i.e. theorems are preserved). This means that prop-
erties are preserved. For behavioral specifications, a refine-
ment morphism maps vocabulary such that typing is pre-
served, theorems are preserved, and domain behavior is sim-
ulated by codomain behavior [15]. The last condition im-
plies that if system S refines to system T then Traces(T ) ⊆
Traces(S), or more generally that there is a simulation map
from traces of T to traces of S.

Reification

In order to specify requirements that express cross-cutting
features, we often need to reify certain extra-computational
values such as history, the runtime call stack, the runtime
heap, or external agents.

Suppose for example that we need some way to discuss the
history of the program at any point in time. The execu-
tion history of the program can be reified into the state by
means of a specification variable (sometimes called a shadow
or ghost variable). That is, imagine that with each action
taken by the program there is a concurrent action to update
a variable called hist that records the history up until the
current state; so each transition has the form

〈sti, (acti || hist := hist :: 〈sti, acti, sti+1〉), sti+1〉
where α||β denotes parallel composition of actions α and
β. Obviously this would be an expensive variable, but it is
only needed for specification purposes, and typically at most
a residue of it will appear in the executable code.

Other common examples of values to reify include the call
stack (to constrain dynamic control context), heap (to con-
strain dynamic data context), time (to state performance
constraints), and agency (to express the principals who are
responsible for system actions).

3. EXAMPLE: AUTOSAVE REQUIREMENT
Suppose that we are developing a data editing application,
and we desire to impose an autosave requirement (adapted
from [1]): every 6 changes to the data from a file, save the
data back out. With the aid of the reified variable hist, a
specification of this requirement is easily stated:

2 cnt = (length · dataop? . action ? hist) mod 6
2 cnt = 5 =⇒ data = file

where
(1) the action function selects the action from a transition
〈statei, acti, statei+1〉
(2) ? is the image operator, so action ? hist is the list of
actions performed up to the present
(3) dataop? holds for the representation of an action that
changes the data of concern
(4) . is the filter operator, so dataop? . action ? hist is the
list of dataops performed up to the present
(5) 2 the always modality of temporal logic [12]; 2φ asserts
that the state (or transition) formula φ holds invariantly at
every state of a trace.
In words, the two formulas assert that in every observable
state, the variable cnt records the number of dataops modulo
6 that have occurred to that point in the current behavior
(which is recorded in hist), and furthermore, in each state
in which cnt has value 5, the data and the file have the same
contents.
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3.1 Establishing the Invariant
We have two invariants to establish, and we proceed along
the lines presented in [22], by simultaneously deriving the
essential parts of a inductive proof and the transformations
that carry them out.

The first step is to generate code to establish the invariant
initially, by satisfying the following two specifications:

assume: hist = []
achieve: cnt′ = lengthDataops mod 6

where we abbreviate

length · dataop? . action ? hist

by lengthDataops. The postcondition can be simplified as
follows:

cnt′ = (length · dataop? . action ? hist) mod 6

⇐⇒ { using the definition of hist and simplifying }

cnt′ = 0

which is satisfied by the initialization code

cnt := 0.

Generating initialization code for the other invariant is sim-
ilar:

assume: hist = [] ∧ cnt = 0
achieve: cnt = 5 =⇒ data = file

The postcondition can be simplified as follows:

cnt = 5 =⇒ data = file

⇐⇒ { using the assumption and simplifying}

true

which is vacuously satisfied (i.e. by the empty code, or skip).

More generally, when the invariant contains reified variables,
the following scheme specifies code for establishing an invari-
ant I(x) in the initial state:

assume: hist = []
∧ . . . initialization constraints on other reified variables

achieve: I(x)

3.2 Specifying Disruptive Code and Deriving the

Pointcut
To proceed with the inductive argument, we must maintain
the invariant for all actions of the target code. Since most

actions of the target code have no effect on the invariant,
for efficiency it is useful to focus on those actions that might
disrupt the invariant. We will then generate code for main-
taining the invariant in parallel with the disruptive action.
The set of all code points that might disrupt the invariant
corresponds to the AspectJ concept of events that satisfy a
pointcut.

An exact characterization of the disruption points is given
by

I(x) 6= I(x′). (1)

That is, any action that satisfies (1) as a postcondition is a
disruption point. More generally, any action that satisfies
a necessary condition on (1) is a potential disruption point.
We can simplify (1) a little by assuming that I(x) holds be-
fore the action, so all we need is to find a necessary condition
on ¬I(x′).

In our example, we set up the following inference task:

assume: cnt = lengthDataops mod 6
∧ hist′ = hist :: 〈 , act, 〉
∧ cnt′ = cnt

simplify: ¬(cnt′ = lengthDataops mod 6)

In words, we assume that the invariant holds before an ar-
bitrary action act, and that the hist variable is updated in
parallel with act. Moreover, we add in a frame axiom that
asserts that act does not change cnt since it is a fresh vari-
able introduced by the invariant.

Intuitively, one would expect to derive dataop? as the char-
acterization of actions that could disrupt the invariant, and
that is indeed the case. Since the details of the calculation
are similar to examples in [22], we omit them here, in favor
of later examples that exhibit new features.

For the other invariant, we set up the following inference
task:

assume: cnt = 5 =⇒ data = file
∧ cnt = lengthDataops mod 6
∧ hist′ = hist :: 〈 , act, 〉
∧ dataop?(act)
∧ cnt′ = (cnt + 1) mod 6

simplify: ¬(cnt′ = 5 =⇒ data′ = file′)

We calculate a pointcut specification as follows:

¬(cnt′ = 5 =⇒ data′ = file′)

⇐⇒ { simplifying }

cnt′ = 5 ∧ data′ 6= file′

⇐⇒ { using postcondition of dataop }

cnt′ = 5
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⇐⇒ { using assumption on cnt′ }

(cnt + 1) mod 6 = 5

⇐⇒ { simplifying }

cnt = 4.

That is, it is only the occurrence of a dataop action when
cnt = 4 that could possibly disrupt the invariant.

Generally, the task to infer a pointcut is given by the infer-
ence scheme in Figure 1.

assume: I(x)
∧ hist′ = hist :: 〈 , act, 〉
∧ ... updates of other reified variables ...
∧ ... relevant frame conditions ...

simplify: ¬I(x′)

Figure 1: Inference Scheme for Joinpoint Specifica-
tion

The simplified result will typically contain a mixture of con-
straints, some of which constrain the action code (which
actions might violate the invariant), and some of which con-
strain the state in which the action is taken.

3.3 Specification and Derivation of Maintenance

Code
To complete the induction, for each potentially disruptive
action (using the derived pointcut specification), we gener-
ate maintenance code to reestablish the invariant in parallel
with it. Consider the second derived pointcut specification.
Suppose that act is an action such that dataop?(act) and
suppose that cnt = 4. In order to preserve the invariant, we
need to perform a maintenance action that satisfies

assume: (cnt = 5 =⇒ data = file)
∧ cnt = lengthDataops mod 6
∧ dataop?(act)
∧ cnt = 4
∧ hist′ = hist :: 〈 , act, 〉
∧ cnt′ = (cnt + 1) mod 6

achieve: cnt′ = 5 =⇒ data′ = file′

The postcondition simplifies straightforwardly to the post-
condition data′ = file′ which is satisfied by an operator,
say saveData, that saves data into the file. Similarly, we
calculate the straightforward maintenance postcondition

cnt′ = (cnt + 1) mod 6

for the first derived pointcut from Section 3.2.

More generally, suppose that static analysis has identified
an action act as potentially disruptive of invariant I(x). If
act satisfies the specification

assume : P (x)
achieve : Q(x, x′)

then the maintenance code can be specified as in Figure 2.
In this schematic specification we compose the aspect with
the base code by means of a conjunction. Note that this
specification preserves the effect of act while additionally
reestablishing the invariant I. If it is inconsistent to achieve
both, then the specification is unrealizable.

assume : P (x) ∧ I(x)
∧ hist′ = hist :: 〈s0, act, s1〉
∧ ...updates to other reified vars...

achieve : Q(x, x′) ∧ I(x′)

Figure 2: Inference Scheme for Maintenance Speci-
fication

We are not finished with this example yet. It remains to
explain the mechanism whereby the parts of the induction
argument, derived above, are carried out on the target sys-
tem design. The next section introduces the required mech-
anism, and then completes the example.

4. TRANSFORMATION AUTOMATA
Program transformations have long been used to effect change
on program designs, for example as in the optimizing trans-
formations in compilers. Traditionally, a transformation has
the form

sourcePat → targetPat if C

which applies to an expression expr in a program context
if (1) expr matches sourcePat with certain bindings; i.e.
θ = match(expr, sourcePat) where θ is a substitution, and
(2) the condition C holds in context; i.e. Cθ can be proved
in context. The effect of the transformation is to replace
expr with targetPatθ.

Clearly, a transformation produces a local change in a pro-
gram text. In general there is little that can be said about
the semantic effect of a transformation, since expr can be re-
placed with arbitrary code. Typically however, most trans-
formations are used to replace an expression with an equal
expression (modulo context), so the effect is to preserve the
semantics of the whole despite a syntactic change to a local
part. We are concerned with the more general problem of
whether a collection of local changes enforces a global policy
and effects a global refinement.

To enforce an invariant global policy/requirement on a sys-
tem, it is necessary to ensure that the invariant holds in all
transitions in all system traces. We introduce the notion of
a transformation automaton as the means for carrying out
a systematic collection of local transformations that achieve
a desired global effect.

A transition transformation has the form

[P ]{actPat}[Q] → [A]{newActPat}[B] if C

where P, Q, A, B are state predicates, actPat and
newActPat are patterns (expressed over the specification
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language and using appropriate pattern notations), and C is
a state predicate that expresses the conditions of the trans-
formation.

A transition transformation matches an action act if (1) act
matches actionPat with bindings θ, and (2) act satisfies the
pre/postcondition [Pθ, Qθ]; i.e.

Pθ =⇒ wp(act, Qθ)

holds, where wp is the weakest precondition operator [6].
The intention is that a transition transformation matches a
system action either via pattern matching with the actionPat,
or by satisfying a pre/post-condition specification, or by a
combination of the two. Deciding whether an transition
transformation is enabled is undecidable in general. A prac-
tical implementation of this approach must restrict the lan-
guage and logic to allow efficient decision procedures. Of
course, by forgoing the use of the pre/postcondition specifi-
cations, one has ordinary transformations on each transition,
and therefore fast matching.

When a transition transformation matches action act with
substitution θ, then its effect is to replace act by a new
action

if Cθ then newAct else act

where newAct satisfies the right-hand side (RHS) specifica-
tion; i.e. such that

θ′ = match(newAct, newActPatθ)

and

Aθθ′ =⇒ wp(newAct, Bθθ′)

holds.

A Transformation Automaton (TA) is an automaton whose
transitions are labeled with transition transformations. We
write transformation automata using a Java-like syntax of
the form

TA policyName {
variable-declaration*
transition-declaration*

}

Each variable-declaration introduces a local variable to the
policy and is declared using Java-like syntax (* is used to
denote zero or more occurrences).

Each transition-declaration specifies a transition transfor-
mation as described above. Policy variables can be initial-
ized, referenced, and modified by the transition transforma-
tions. In addition, each transition transformation can have
local metavariables in its patterns that are bound to system
action expressions. For purposes of this paper TAs do not
have a mechanism to bind system values/objects to local
variables. This simplifies the presentation and process of
applying TAs, but prohibits the application of more than
one instance of a policy to a system design. The extensions
needed to capture source system values and support multiple
policy instances can be found in [23, 24].

Since TAs track both state properties and events, they can
represent the checking and enforcement of a variety of kinds
of requirements, ranging from event ordering to temporal
logic properties and combinations of these.

Returning to the AutoSave example, we assemble a TA
from the pieces of the inductive argument that were derived
above:

TA AutoSave {
Nat cnt
{init} → []{}[cnt′ = 0]
{dataop?(act)}

→ [actpre]{}[actpost ∧ cnt′ = cnt + 1]
{dataop?(act)}

→ [actpre]{}[actpost ∧ data′ = file′]
if cnt = 4

}

where init is a no-op action at the beginning of the program.
The init-enabled transition transformation serves to initial-
ize state and uses the postcondition cnt′ = 0 derived in Sec-
tion 3.1. The remaining transition transformations are as-
sembled from the derived pointcut specifications (from Sec-
tion 3.2) and corresponding derived maintenance code spec-
ifications (from Section 3.3). Each derived pointcut specifi-
cation forms the left-hand side (LHS) and the correspond-
ing specification of maintenance code forms the right-hand
side(RHS). The predicates actpre and actpost denote the pre-
and post-conditions of act, respectively. Also, we use a pred-
icate on actions in place of a pattern, here dataop?. This is
more concise for communication purposes and avoids some
of the formal noise which is necessary in particular pattern
languages. Also we omit the pre- and post-conditions, action
patterns, and conditions when they provide no constraints.

The AutoSave TA can be made more concise by using some
abbreviations for transformation patterns that are both com-
monly occurring and have pleasant semantic properties. Each
of these abbreviations effects a refinement - it preserves
properties of the system action as well as establishing a new
property.

Abbreviation RHS pattern
achieve R [actpre]{}[actpost ∧ R]
maintain I [actpre ∧ I]{}[actpost ∧ I]
ensure [P, Q] [actpre ∧ P ]{}[actpost ∧ Q]
ok {act}

Figure 3: TA Abbreviations

With these abbreviations, the AutoSave TA can be expressed
more compactly as

TA AutoSave {
Nat cnt
{init} → achieve [cnt′ = 0]
{dataop?(act)} → achieve [cnt′ = cnt + 1 mod 6]
{dataop?(act)} → achieve [data′ = file′ ]
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if cnt = 4
}

or, after carrying out the straightforward syntheses,

TA AutoSave {
Nat cnt
{init} → {cnt := 0}
{dataop?(act)} → {act; cnt := cnt + 1 mod 6}
{dataop?(act)} → {act; saveData} if cnt = 4

}

The deductive calculations that translate a logically stated
policy into a TA are similar to those performed in the Fi-
nite Differencing transformation [14, 20]. They can be auto-
mated over some domains, but in general may require some
user interaction.

Applying Transformation Automata
The application of a transformation automaton to a system
design is accomplished by a form of sound static analysis.
Requiring the analysis to be sound means that the transition
transformations are applied locally to all program actions
to which the transformations apply. This means that in all
traces and all transitions in each trace, if a TA transition
transformation applies, then it has been applied. There are
no false negatives. This key property enables us to assert
strong semantic claims about the design after transforma-
tion by a TA.

Since we are consumers and not developers of static analy-
sis technology, we only informally specify the necessary tech-
niques here. The analysis algorithms are well-known, e.g. [5,
18, 2], although practical implementations must pay careful
attention to efficiency.

The strategy for applying a transformation automaton pro-
ceeds in stages, as presented below.

The first stage is a flow-sensitive interprocedural dataflow
analysis that simulates the transformation automata over
the Control Flow Graph (CFG) of the system design. The
result of TA simulation includes (1) a map from each source
control point to a representation of possible policy variable
values, (2) a map from each source code action to a set of
policy transitions, and (3) a summary of the state changes
effected by method calls.

In the second stage, the transition transformations that label
each system action are applied. Schematically, let act be a
system action that is labeled with policy transition

act → newAct if C

and suppose that the control point just before act has for-
mula V as the representation of possible policy variable val-
ues. Soundness of static analysis means that V characterizes
a superset of values that the policy variables can take on over
all possible system traces. As discussed above, the effect of
applying the transition transformation is to replace act with

if Cθ then newAct else act.

Simplifying Cθ with respect to V can simplify the whole
conditional, especially if Cθ reduces to true or false.

For example, suppose that Transpose is a system action
that satisfies dataop?. Then the AutoSave transition

{dataop?(act)} → {act; saveData} if cnt = 4

matches and it results in the replacement of Transpose by

if cnt = 4
then (Transpose; saveData)
else Transpose.

If the contextual property representation V is cnt ∈ {0..5},
then no simplification can be performed. If V is cnt ∈ {4},
then the conditional simplifies to just the then-branch.

Finally, any necessary synthesis is performed on pre/post-
condition specifications that have been inserted into the de-
sign. Aside from the synthesis subtasks, a TA can be applied
automatically.

Returning to the AutoSave example again, the net effect of
applying TA AutoSave to a design D0 resulting in design
D1 is to enforce the invariants, allowing us to assert

D1 ` 2 cnt = (length · dataop? . action ? hist) mod 6

and

D1 ` 2 cnt = 5 =⇒ data = file.

In this case it is also clear that D1 is a refinement of D0
because we have only used refinement-inducing transition
transformations.

5. MORE EXAMPLES
5.1 Access Control
Essentially, access control policies prescribe which agents are
allowed to access which resources. More elaborate policies
may also take into account the type of access, the time of
access, roles, and other features. Lampson’s permission ta-
bles [11] are the basic extensional way to represent a policy
– as a relation between agents/subjects/principals, and re-
sources/objects (and possibly action-type, time, etc.). Role-
Based Access Control [8] is a leading current approach to
represent the permissions tables in a rule-based way that
(1) is natural and compact and (2) allows easier mainte-
nance/evolution than a tabular/relational format.

Our overarching concern is to formally specify and enforce
cross-cutting requirements on a system. Many requirements
can be specified as state invariants that are given by a state
predicate that is required to hold before and after each sys-
tem action. Other requirements place constraints on the
order of system actions. Access control policies are require-
ments on both events (an action to access a protected re-
source) and state properties (the current permission table).

Intuitively, access control (or authorization) is a requirement
that whenever a system action act whose principal or agent
a accesses resource r, then a has current permission to ac-
cess r. Although the policy is easy to state in a positive
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way (i.e. what behaviors are allowed), it is applied with the
understanding that the target design may not satisfy the
requirement, and there may be a need to deal with excep-
tions to it. If we think of the policy as expressing normal
behavior, then ultimately the specification of it must deal
with possible departures from normal behavior.

In order to formalize access control we need some way to
discuss the principal of an action, and current permissions.
Both of these are extra-computational entities, so we must
reify them in order to mention them in a formal requirement.

Reifying Agency and Permissions

To formalize access control, we must reify the agents who
are the initiators of system actions. To do so, we introduce
a finite type Agent, and label each action in a trace with an
Agent. Not all labelings make sense - there are constraints on
consistent labelings. The main constraint is that if system
action αi is labeled with agent a (meaning that a is the
principal behind action αi), and the control of the system
naturally flows from αi to αi+1, then αi+1 is also labeled
with agent a. Since each action in a trace has a unique
label, we write prin(act) to denote that label.

The semantics of the system is now all possible system traces
with all possible consistent labelings of system actions with
agents.

The other reification we need is the permissions. We add
a finite type Resource and a finite map ACP : Agent ×
Resource → Boolean (Access Control Permissions). We’ll
assume that ACP is a variable and that it can change from
system state to system state. It is not obvious what kinds
of constraints to put on these changes, so we won’t assume
any.

The semantics of the system is now all possible system traces
with all possible consistent labelings of system actions with
Agent s and with all possible values of ACP at system states.

Comments on this semantics:

1. Messages – A service (method) that passively waits for
control and data, acquires the agency of the invoker.
On the other hand, a process B that receives a message
from process A naturally continues on its course with
its agency unchanged.

2. Delegation – The situation in which agent A temporar-
ily endows agent B with some of A’s permissions is
handled in traces by B temporarily gaining additional
permissions. What is not modeled is the situation in
which A passes her credentials to B so that B can act
as A – credentials are an implementation concept used
to satisfy requirements on authentication and access
control. The semantic model here is more abstract
and admits both credential-based implementations as
well as others.

3. Permission table modifications – Agent actions that
modify the ACP (permission table) are not modeled.

Again, the idea is to abstract away implementation
detail. A more elaborate semantical model would in-
clude (i) the principal behind the actions that change
the access control policy (ACP ) and (ii) permissions
to effect such changes.

This is a fairly simple semantics for reifying identity in a
system. Doubtless a more elaborate model could be con-
structed. This one is accurate enough for present purposes.

Access Control Requirement

We can now specify the access control requirement on system
S; for each trace tr : Traces(S), transition 〈s, act, s′〉 ∈ tr,
and resource r : Resource:

access?(act, r) =⇒ s.ACP (principal(act), r)

where access?(act, r) holds if action act directly accesses
resource r. The requirement states that if the current action
directly accesses resource r, and the principal behind the
action is a, then ACP (a, r) holds in the prestate (i.e. agent
a has permission to access resource r). Naturally, there are
many variants and elaborations of this requirement, but this
form lets us treat the essential ideas.

The reader should not confuse a simple clear specification
with the ease of implementing it - accurate tracking of iden-
tity in a system is a notoriously difficult problem.

Enforcing the Requirement

In order to correctly realize the requirement in the target
code, we proceed by direct synthesis.

First, we can derive a joinpoint specification as a necessary
condition that a system action violates the requirement. We
instantiate the inference scheme in Figure 1 as follows.

assume: hist′ = hist :: 〈s, act, s′〉
simplify: ¬(access?(act, r) ⇒ s.ACP (prin(act), r))

and calculate a pointcut specification as follows:

¬(access?(act, r) =⇒ s.ACP (prin(act), r))

⇐⇒ { simplifying }

access?(act, r) ∧ ¬s.ACP (prin(act), r)

as one expects. The constraint on the system action,
access?(act, r) will serve as a joinpoint specification, and
the state predicate ¬s.ACP (prin(act), r) will serve as the
condition on a policy transition in a TA.

Next, suppose that the current action act satisfies the join-
point specification and has the particular specification

assume : P (x)
achieve : Q(x, x′)
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then the code to enforce the requirement can be specified by
instantiating the inference scheme from Figure 2.

assume: P (x) ∧ access?(act, r)
∧ hist′ = hist :: 〈s, act, s′〉

achieve: Q(x, x′)
∧ (access?(act, r) ⇒ s.ACP (prin(act), r))

We refine the postcondition as follows:

Q(x, x′) ∧ (access?(act, r) ⇒ s.ACP (prin(act), r))

⇐⇒ { simplifying }

Q(x, x′) ∧ s.ACP (prin(act), r)

⇐⇒ { ordering the evaluation }

if s.ACP (prin(act), r)
then Q(x, x′)
else false.

We have derived a postcondition specification for an action
that would jointly realize both the current action and satisfy
the access control requirement. The fact that the postcondi-
tion is false in one case is the essence of the semantic problem
- we have deduced inconsistency between the current system
design and the access control policy. Although we have cal-
culated a correct refinement, it specifies a step in the design
that is unimplementable! Just as any specification refines to
the inconsistent specification, it is mathematically sound to
have an action specification refine to an inconsistent action
specification.

A transformation automaton to realize the policy as calcu-
lated above is

TA AccessControl {
Resource r
{access?(act, r)} → achieve [false]

if ¬ACP (prin(act), r)
}

What we can say is that if the source design D0 satisfies
invariant R; i.e. D0 ` 2R, and D1 results from the appli-
cation of TA AccessControl, then

D1 ` (R ∧AC) W false

where AC is the access control invariant and W is the unless
modality of temporal logic [12]. In words, D1 traces satisfy
the state/transition property R∧AC up to the point (if any)
that the transition has a false postcondition. Another way of
putting it is that the composition of the policy and D0 has
preserved its safety properties, but has possibly decreased
its liveness properties.

Of course, we cannot have a program with an unimple-
mentable action in it. The solution is to weaken the post-
condition to something implementable. The following TA
specifies the throwing of an exception

TA AccessControl1 {
Resource r
{access?(act, r)} → {throw new error(“...”)}

if ¬ACP (prin(act), r)
}

Current work on self-healing systems attempts to deal with
situations like this, albeit dynamically. Ideally, there is a
way to lift out of the black hole of an inconsistency and
take an action that allows the system to continue toward its
goals.

5.2 A Simple Information Flow Policy
Consider the following simple security policy which is adapted
from [19]. If a process ever reads from a particular file f , it
is henceforth not allowed to send any messages. The policy
states an information flow requirement. One might want to
automatically enforce an instance of this policy on an applet
downloaded onto a personal computer.

This example is distinguished from previous examples in
that it is a pure event ordering constraint, whereas AutoSave
is a state invariant and AccessControl constrains an action
and the state in which it executes.

The reification of history allows us to represent the event
ordering as a state invariant. If Send matches any send(..)
action and Readf matches any action that reads file f , then
the policy can be expressed as an invariant: for all traces
tr : Traces(S) and transitions 〈s, act, s′〉 ∈ tr

Send(act) ⇒ ¬∃(a)(a ∈ action ? hist ∧ Readf(a))

however, this seems less than straightforward. Constraints
on the order of events are often more naturally expressed us-
ing the tools of language theory: regular expressions, recog-
nition automata, grammars. Using regular expressions for
example allows the straightforward formulation

Send∗Readf∗

and a corresponding automaton is similarly clear. Note that
all of these formulations specify normal or allowed behaviors
but do not prescribe what to do with violations.

Our approach is to generate a TA that effects the specified
policy, allowing developers to fill in how to handle violations.

TA InfoFlow {
Boolean rf
{init} → achieve [rf ′ = false]
{Send} → ok if ¬rf
{Readf} → achieve [rf ′ = true]

}

where rf flags whether a Readf action has occurred. Using a
derivation similar to that for AutoSave and AccessControl,
we can derive the point of inconsistency (sending when con-
dition rf holds). Here we manually weaken the inconsistent
specification to abort resulting in

12



TA InfoFlow {
Boolean rf
{init} → achieve [rf ′ = false]
{Send} → abort if rf
{Readf} → achieve [rf ′ = true]

}

6. RELATED WORK
This work ties together research in a wide range of topic
areas. The refinement view offers the opportunity to ab-
stract aspects to the level of requirement specification and
to treat aspect weaving as a powerful new tool for generating
specification refinements. There is an opportunity to unify
aspect weaving with other related techniques, including in-
trusion detection [26], Software Fault Isolation [7], security
policy enforcement [19], and others, in addition to software
development by refinement.

Runtime verification is a recent field that foregoes full pro-
gram verification in favor of runtime monitoring of code with
respect to a specified property of interest [3, 9]. Transfor-
mation automata can be seen as a generalization of runtime
verification. Although we haven’t emphasized it, when static
analysis cannot decide whether a policy transition applies,
then the decision must be pushed to runtime when more
information is available. As such, runtime monitoring of a
property then becomes a special case of applying a TA in
which we defer all decisions to runtime. The static analy-
sis performed in our approach has the effect of optimizing
the runtime monitors - if we can prove statically that a cer-
tain property holds at a code location for all behaviors, then
there is no need to monitor it. Also, static analysis may be
able to simplify the monitoring code without eliminating it
entirely, resulting in lower overhead.

The next step is to both monitor the code and take action
when the policy is about to be violated. Schneider [19] de-
fines a class of enforceable security policies as a subclass of
safety properties, and uses a form of finite state machine
(labeled with an event vocabulary) to express them. The
effect of applying a security policy is to abort the system
whenever it is about to violate the policy. In [7] the authors
inject the policy automaton at each code location and then
use partial evaluation to optimize away all or most of the
inlined code. In [4] Colcombet and Fradet propose a similar
approach except that static analysis (vs partial evaluation)
is used to optimize away unnecessary runtime code. Static
analysis can exploit more context and can in general opti-
mize away more of the runtime monitoring code.

TA’s generalize previous work in transformations in the fol-
lowing ways. The automaton provides behavioral context for
the transition transformations, thereby providing more flex-
ible and coordinated control over when they are applied. By
packaging a collection of related transformations and using
static analysis to explore the behaviors of the target system
code, a new range of global effects are enabled. Also, the use
of optional pre/post-condition specifications for both match-
ing and target code generation is unique to our knowledge,
although our Refine [17] system allowed a limited postcon-
dition capability in specifying target code.

Recent work in AOSD has extended AspectJ concepts in

various dimensions. Several authors have proposed general-
izing pointcuts to take behavioral context into account, e.g.
tracecuts [1], Jasco [25], PQL [13], [27], and our own pol-
icy automata [23]. Other works have increased the amount
of static and reflective context that can be picked up at
program points. TA’s generalize previous work on AOP, in-
cluding work on behavioral pointcut specifications. One can
include stacks and other data structures internally to gain
full computability power. Also, one could write TA’s that
have arbitrarily complex pre/post-conditions on their RHS
which would entail arbitrarily hard synthesis problems to
effect them. Effective implementations of TA’s would likely
place restrictions on the expressiveness to gain full automa-
tion of the enforcement process. As a special case, if no
synthesis tasks appear on the RHS of transitions, then ap-
plication of a TA can be fully automatic.

To our knowledge, the work on retrenchment by Poppleton
and Banach [16] is the only other work that confronts the
issue of transformations that impose limitations on a de-
sign from a refinement point-of-view. Their solution is to
define a generalization of refinement that allows precondi-
tions to strengthen and postconditions to weaken in some
situations. Their approach is broadly consistent with the
discussion above: enforcing a policy typically strengthens
the guards on actions, and in the case of a derived inconsis-
tency, we are forced to weaken an inconsistent postcondition
to make progress.

7. CONCLUDING REMARKS
This paper takes a step in the direction of integrating and
cross-fertilizing the two fields of AOSD and software devel-
opment by refinement. The unification requires generaliza-
tions of concepts from both fields.

This paper advocates the following process for enforcing
global system requirements. First, a natural specification of
a requirement is translated, via some deductive calculation,
into a transformation automaton. Static analysis simulates
the TA over the target system design, and then applies the
component transformations of the TA. The resulting trans-
formed design satisfies the given requirement, and under cer-
tain conditions, is a refinement of the starting design. The
composition process preserves the invariants of the starting
design, but may reduce its liveness. That is, the enforcement
of safety and security policies on a design may result in the
curtailment of some behaviors that violate the policies.

This overall process enriches previous approachs to refine-
ment by offering an automated technique for folding require-
ments into a design. The refinement process starts by focus-
ing on a subset of requirements, say, to meet key functional
and performance needs. Then, one can add in other re-
quirements incrementally. Feedback from the enforcement
process informs the revision of earlier design decisions, hope-
fully leading to designs that satisfy all requirements under
a broader range of conditions.
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Abstract
We present a preliminary report on typing systems for polyadic
µABC, aspect oriented programming—pointcuts and advice—and
nothing else. Tuples of uninterpreted names are used to trigger ad-
vice. The resulting language is remarkably unstructured: the least
common denominator of the pi-calculus and Linda. As such, devel-
oping meaningful type systems is a substantial challenge.

Our work is guided by the translation of richly typed languages
into µABC, specifically function- and class-based languages aug-
mented with advice. The “impedance mismatch” between source
and target is severe, and this leads us to a novel treatment of types
in µABC.

1. Introduction
Research on the foundations of aspect-orientation has followed sev-
eral directions. Much work has found inspiration in functional lan-
guages (for example [4, 9]), whereas others have looked to objects
(for example [3]). These works follow the view that aspects trans-
form code from some underlying paradigm. In line with our prior
work, this paper follows a different route, attempting to understand
aspects, in so far as possible, in isolation.

By removing the underlying computational mechanisms, how-
ever, it is not clear what aspects are meant to advise. In µABC,
which we study here, aspects advise tuples of names, drawing in-
spiration from the pi calculus and coordination languages, such as
Linda. A surprisingly expressive computational model emerges, but
it is not without difficulties. In particular, the language is almost
shockingly unstructured, making any form of analysis seem rather
hopeless. Here we make a first attempt at redressing this situation.

µABC was introduced in [2] to study as aspects “as primitive
computational entities on par with objects, functions and horn-
clauses”. In that paper, we sketched an encoding of core minAML
[11, 9] into µABC, but did not provide a full translation. Indeed,
we observed that

µABC was deliberately designed to be a small calculus that
embodies the essential features of aspects. However, this
criterion makes µABC an inconvenient candidate to serve in
the role of a meta-language that is the target of translations
from “full-scale” aspect languages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Sixth International Workshop on Foundations of Aspect-Oriented Languages (FOAL
2007), March 13, 2007, Vancouver, BC, Canada.
Copyright 2007 ACM ISBN 1-59593-671-4/07/03 ... $5.00

Echoing this sentiment, Ligatti, Walker and Zdancewic [9] note that
“it is unclear what sort of type theory would be needed to establish
that [. . . ] translations [into µABC] are type-preserving.” Here, we
take the first steps at providing such a theory, in an attempt to bridge
the gap between the chaos of pure aspects and the relatively well-
behaved worlds of functions and objects.

As our point of departure, we use the polyadic version of µABC
introduced in [5]. In this variant, the events upon which advice
triggers are otherwise uninterpreted tuples of ordered names. When
modeling a functional language, the elements of the tuple may
represent the function and its arguments. When modeling an object
language, the elements instead may represent the source and target
of a message, along with the message name and arguments. µABC
itself imposes no interpretation.

When defining a pointcut in µABC, one must specify the arity
of the events (ie, the length of the tuples) upon which it will trig-
ger. One may treat all of the elements of the tuple as arguments—in
which case the pointcut will trigger on any event of that arity—or
one may fix some names in the pointcut so that the pointcut will
only trigger on events that include the same name in the corre-
sponding position. In addition, one may specify bounded match-
ing, so that any name ordered below the one specified will serve
to satisfy the pointcut. In this way µABC advice resembles tuple
matching Linda.

The chief insight of our work is that the ordering on names
suffices to encode simple type systems for function and object
languages, as long as one may impose some structure on names. By
systematically selecting bounds, and relating the bounds between
elements of a tuple, one may specify constraints on the tuple shapes
which are allowable. For example, one might require that if the first
element of a triple is a subname of int�int, then the second must
be a subname of int, and the third a subname of int-1. Here int,
int�int and int-1 are simply names, albeit with some structure.
One may view this as a protocol that imposes an interpretation on
subnames of int, int�int and int-1. Tuples that use such subnames
must satisfy requirements such as that stated above.

One would expect that the protocol used by a functional lan-
guage would be different than that of an object language, and again
from a logic language. µABC may be adapted to any system by
specifying both a structure on certain names (ie, those that corre-
spond to types) and a protocol for tuples that “match” them.

We are interested in discovering a general theory of such pro-
tocols and establishing its validity in µABC. As of yet, we have
not reached this ideal, but we have discovered some intermediate
results that may be of interest to the FOAL community.

As a first step toward full typing, we have specified a sorting
for µABC, in the flavor of sorting systems for the pi calculus. The
sorting is sufficient to guarantee that computation never terminates.
We believe that the sorting system is an important first step toward
developing a proper typing system; however, in terms of semantic
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equivalence, sorting itself is clearly inadequate: all well-sorted
programs are indistinguishable! Being a continuation calculus, like
pi, there is no clear notion of value at which one might terminate.
Our vision of typing is that well-typed terms either nonterminate or
terminate on a tuple of a particular shape, allowing a richer notion
of equivalence based on barbed congruence [10]. However, we have
not yet developed the technical machinery to specify this.

Further, we have defined translations from function and class
based languages into well-sorted µABC and, to a certain extent,
established their correctness. We hesitate to say that we have proved
the correctness of these because the results are stated with respect
to a “structural congruence”. This is a problem for two reasons.

First, as noted above, we have not yet developed techniques to
specify that any structural congruence is “reasonable”. To establish
this requires a meaningful notion of semantic equivalence.

Second, the structural congruence presented here is defined, in
part, using the translation itself. This is clearly inadequate. As we
discuss in Section 4, the standard semantics of aspect-functional
languages [9, 8] specify that proceed substitutions are performed
early, at the time of advice lookup; whereas µABC performs them
late, on demand. This creates technical difficulties relating the two
languages, which we believe are best solved by slowing down
proceed substitutions in the function language, for example by
using explicit substitutions [1]. We do not do this here, however,
and therefore introduce a questionable structural rule to solve the
problem.

The remainder of the paper proceeds as follows. In the next
section we review the syntax and operational semantics of µABC.
Section 3 presents the sorting system. In Section 4, we present
a λ -calculus with advice and its translation into µABC. Given
the caveats stated above, we demonstrate the correctness of the
translation. The following section does the same for a small object
language.

2. µABC
In this section we present the syntax and evaluation semantics
of polyadic µABC. We give some examples of evaluation here;
further examples can be found in Section 4.3.

We assume disjoint sets of names, ranged over by a–y and pro-
ceed names, ranged over by z. Names include int, self, Object as
well as the structured names used in Sections 4 and 5. Integers and
integer-valued expressions are also names, each a proper subname
of int. This treatment of integer-valued expressions simplifies ex-
amples. The syntax of µABC is as follows.

SYNTAX

U,V,S,T ::= Events· |U, â |U,a
P,Q ::= Pointcut Atoms· | P, â | P,x:s
A,B ::= Advice{z.P � M}

D,E ::= Declarations· | D;new a:s | D;adv A
M,N ::= Termscall〈U〉 | z〈U〉 | ~A〈U〉 | D;M

An event, U , is sequence event atoms, where “ · ” is the empty
sequence. Event atoms are either exact names, decorated with a
circumflex, or inexact names, which have no decoration.

A pointcut, P, is a sequence of pointcut atoms. Pointcut atoms
are either exact or inexact. The exact pointcut atom â matches only
the exact event atom â. The inexact pointcut atom x:s matches any
inexact event atoms whose name is a proper subname of name s. At
runtime x is bound to the matching name; for this reason we call it
a pointcut variable.

Advice has the form {z.P � M}, where z is a proceed variable,
P is a pointcut, and M is the body of the advice. The proceed
variable z and the pointcut variables in P are bound in M. We elide

the proceed variable when it does not occur free in the advice body,
writing simply {P � M}.

A declaration sequence, D, is a sequence of declarations. The
declaration new a:s declares name a as a fresh subname of s (s may
also be fresh, in which case a may only be matched exactly). The
declaration adv A declares advice A.

A term M may be prefixed with a declaration sequence D;M.
The new names declared in D are bound in M. We identify (D;E);
M with D;(E;M) and ·;M with M.

Each term has exactly one “current” event. A term consists of a
sequence of declarations, followed by the current event. Events are
marked either with a call, a proceed variable, or an advice sequence.
In ~A〈U〉, U is the current event and ~A is a sequence of pending
advice. Advice is executed right-to-left.

Example 1. Consider the advice

{z. f̂ ,x:int,y:int︸ ︷︷ ︸
Pointcut

� z〈f̂ ,y,x〉︸ ︷︷ ︸
Body

}.

This advice is triggered when the current event is a triple whose
first atom is exactly f̂ , and whose second and third atoms are both
inexact atoms whose names are subnames of int. When it executes,
it switches its second and third names, and proceeds on the new
event. Supposing that this is the most recently declared advice, the
term

call〈f̂ ,10,20︸ ︷︷ ︸
Current Event

〉

evaluates to
~B,{z.f̂ ,x:int,y:int � z〈f̂ ,y,x〉}〈f̂ ,10,20〉

where ~B is previously declared advice that triggers on the same
event. At this point the term evaluates to

~B〈f̂ ,20,10〉. 2

Example 2. Consider the following declaration:

D M= adv A;adv B

A M= {z.f̂ ,x:int � M}

B M= {z.f̂ ,x:int � z〈f̂ ,42〉}
D declares two pieces of advice. Both triggered when the first name
of the current event is exactly f̂ , and the second name is a subname
of int.

Evaluation of D;call〈f̂ ,10〉 proceeds as follows. The call trig-
gers advice lookup. Since both pieces of advice match the current
event, they are both enqueued. B executes first.

D;call〈f̂ ,10〉 → D;A,B〈f̂ ,10〉

B changes the second atom of the event to 42, and proceeds on the
next advice

→ D;A〈f̂ ,42〉

and then the body of A is executed.

→ D;M[x := 42] 2

We now present the operational semantics of the language.
Declarations, D, are used in several definitions. We disallow alpha
conversion on the new names in a declaration when the declaration
is treated as independent syntax—while a and b are bound in the
term “new a;new b;call〈a,b〉,” they are free in the declaration
sequence “new a;new b.”

We begin by defining some auxiliary relations. We write D.a:s
to indicate that a is properly below s in the order defined by D. Thus
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if D = new s:t;new a:s then D . a:t and D . a:s. The relation is
irreflexive; thus D.a:a never holds.

The match relation takes a pointcut P, an event U , and returns
an appropriate substitution σ , if one exists. A substitution is a fi-
nite mapping on names. For instance, if D contains new a:int, then
D.match(x:int, b̂)(a, b̂) = (a := x). If D contained new a:bool in-
stead, then D.match(x:int, b̂)(a, b̂) would be undefined. Matching
is sensitive to exactness; thus D . match(x:int, b̂)(a,b) is always
undefined, since b is exact in the pattern but inexact in the event.

AUXILIARY RELATIONS (D.a:s) (D.match(P)(U) = σ)
σ ::= · | σ ,x := a Name Substitutions

D.a:s if D 3 new a:s
D.a:s if D. t:s and D 3 new a:t

D.match( · )( · ) = ·
D.match(P, â)(U, â) = σ if D.match(P)(U) = σ

D.match(P,x:s)(U,a) = (σ ,x := a) if D.match(P)(U) = σ

and D.a:s and x /∈ dom(σ)

Write “D . match(P)(U)” if D . match(P)(U) = σ for some σ .
Write “D.match(A)(U)” if A = {_.P � _} and D.match(P)(U).

There are two evaluation rules, shown below:

EVALUATION (M → N)

D;call〈U〉 → D;~A〈U〉 if ~A =
(
A

∣∣ D.match(A)(U) and A ∈ D
)

D;(~A,{z.P � M})〈U〉 → D;M[z := ~A,σ ] if D.match(P)(U) = σ

The first rule states that call is executed by searching D for any
advice triggered by the current event. All matching advice then
advises the event. The second rule states that if there is advice
advising the current event, then the current state is replaced by the
body of the advice, with the appropriate substitutions. If the advice
list is empty, or if the pointcut P does not match the event U , then
evaluation is stuck. The sorting system of the next section rules out
stuck terms.

3. Sorting
To avoid getting stuck, two invariants must be preserved by evalu-
ation:

1. if a piece of advice proceeds, there must be at least one piece of
advice in the advice queue, and

2. if a piece of advice proceeds and it modifies the current event,
it must be certain to do so in such a way that it still satisfies the
pointcuts of any remaining advice in the advice queue.

Example 3. In the absence of any other advice declarations, the
following µABC program violates condition (1) above:

adv{z.f̂ , ĝ � z〈f̂ , ĝ〉};call〈f̂ , ĝ〉

The term evaluates to ·〈f̂ , ĝ〉, which is stuck. Since there is no
additional advice, the use of the proceed variable in the advice is
malformed. 2

Example 4. The following µABC program violates condition (2)
above:

adv{z.f̂ ,x:int � z〈f̂ ,42〉};
adv{z.f̂ ,x:int � new g;z〈ĝ〉};
call〈f̂ ,10〉.

In this example, the current event is 〈f̂ ,10〉, and after evaluation,
there will be two pieces of advice queued up advising it. Since
advice is queued in LIFO order, the second piece of advice will
trigger first. It declares a new name g , changes the current event to

the tuple 〈ĝ〉, and proceeds on the new event. The result is that the
first piece of advice now advises the new event 〈ĝ〉, but its pointcut
is no longer satisfied by the current event. 2

In this section, we present a sorting system that guarantees
progress and preservation.

The sort of an event is itself is given using the same syntax as
events. To distinguish the two uses, we use S, T for sorts and U , V
for events.

The sort of an event computes the bounds on inexact atoms in
the expected way. For instance, if we have declared new a:s and
new b:t, then the event 〈a,b, ĉ〉 has sort 〈s, t, ĉ〉.

We sort advice based on its pointcut. For instance, the advice
{f ,x:a,y:b � M} has sort 〈f ,a,b〉.

If an advice uses its proceed variable, we say that it is non-
final; if it does not use its proceed variable, we say that it is fi-
nal. Nonfinal advice of sort S also has sort S final. For example,
{z.f̂ ,x:int,y:int � call〈ĝ ,y,x〉} can be given sorts 〈f̂ , int, int〉 and
〈f̂ , int, int〉 finalized; it ignores its proceed variable and hence any
advice declared before. The advice {z.f̂ ,x:int,y:int � z〈ĝ ,y,x〉},
instead, can be given only sort 〈f̂ , int, int〉; this advice is nonfinal.
If advice of sort S final has been declared, we say that sort S has
been finalized.

We sort with respect to the environment, Γ, that keeps records
the sorts of names and advice, as well as the sorts that have been
finalized. These concepts are formalized below:

ENVIRONMENTS

Γ,∆ ::= · | Γ,(a:s) | Γ,(z:S) | Γ,(S finalized)

We require that all environments be well formed, in the sense
that each name a occur at most once on the lefthand side of a
declaration a:s. Formally, the environment “Γ,∆” consisting of the
union of Γ and ∆ is undefined if any name occurs in the domain of
both Γ and ∆.

The sorting rules for pointcuts and events are as follows. Point-
cuts produce an environment ∆ which includes all the names bound
by the pointcut.

SORTING (` P : S . ∆) (Γ `U : S)
` (·) : (·) . (·)
` (P, â) : (T, â) . (∆) if ` P : T . ∆

` (P,x:s) : (T,s) . (∆,x:s) if ` P : T . ∆

Γ ` (·) : (·)
Γ ` (U, â) : (S, â) if Γ `U : S
Γ ` (U,a) : (S,s) if Γ `U : S and Γ 3 a:s
Γ ` (U,a) : (S,s) if Γ `U : S and Γ 3 a:t and Γ ` t : s

Similarly to pointcuts, the sorting of declarations extracts the
sorts of the names declared in D, as well as the sorts have been
finalized as a result of the advice declared in D. The judgement
takes the form Γ ` D . ∆.

SORTING (Γ ` A : S) (Γ ` A : S final) (Γ ` D . ∆) (Γ ` M ok)
Γ `{z.P � M} : S if ` P : S . ∆ and Γ,z:S,∆ ` M ok
Γ `{z.P � M} : S final if ` P : S . ∆ and Γ,∆ ` M ok

Γ ` · . ·
Γ ` D;new a:s . ∆,a:s if Γ ` D . ∆ and a /∈ Γ,∆
Γ ` D;adv A . ∆,S finalized if Γ ` D . ∆ and Γ,∆ ` A : S final
Γ ` D;adv A . ∆ if Γ ` D . ∆ and Γ,∆ ` A : S

and Γ 3 S finalized
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Γ ` call〈U〉 ok if Γ `U : S and Γ 3 S finalized
Γ ` z〈U〉 ok if Γ `U : S and Γ 3 z:S
Γ ` ~A〈U〉 ok if Γ `U : S and ∀i. Γ ` Ai : S and ∃i. Γ ` Ai : S final
Γ ` D;M ok if Γ ` D . ∆ and Γ,∆ ` M ok

To see what it means for D to be consistent with Γ, observe that
in order to avoid error condition (1) above, the first declared advice
for any given sort S must be final— that is, it cannot proceed. If
it were to proceed, it would be guaranteed that there would be no
remaining advice, and a runtime error would result. Once a sort has
been finalized, nonfinal advice of that sort may then be declared.

The proof of progress relies on the following properties:

• If ` D . Γ and Γ ` a : s, then D.a:s.
• If ` D . Γ and Γ `U : S and ` P : S . _, then D.match(P)(U).
• If ` D . Γ and Γ 3 S finalized and Γ ` U : S, then D 3

adv{_.P � _} such that D.match(P)(U).

Theorem 5 (Progress). For any term M, if ` M ok, then M → M′

for some M′.

The proof of preservation relies on a substitution lemma, which
in turn relies on compatibility between substitutions and typing
environments.

Definition 6 (Compatibility). Γ ` σ ∼ ∆ if and only if dom(σ) =
dom(∆) and ∀ a ∈ dom(σ). Γ ` σ(a) : ∆(a). 2

For example, if σ = [x := a,y := b] then a:s,b:t ` σ ∼ x:s,y:t.

Lemma 7 (Compatibility). If `D . Γ and Γ`U : S and `P : S . ∆

and D.match(P)(U) = σ , then D ` σ ∼ ∆.

Lemma 8 (Substitution). If Γ,∆,z:S ` D;M ok and Γ ` σ ∼ ∆

and ∀ A ∈ ~A. Γ ` A : S, then Γ ` D;M[σ ,z := ~A] ok.

Theorem 9 (Preservation). If Γ ` M ok and M → M′ then
Γ ` M′ ok.

4. A functional language with advice
In this section, we present an extension of the λ -calculus in which
functions can be named and advised, in the style of [9, 8], and
describe its translation into µABC.

4.1 The source language
Due to space constraints, our presentation is necessarily brief. We
give some examples of evaluation of the source language in Sec-
tion 4.3; for further examples and narrative, see [8], which we fol-
low closely. The language is very expressive. Although declara-
tions are sequential, one can write mutually recursive functions us-
ing advice. As shown in [8], this language is also powerful enough
to capture imperative features. For example, one can create a ref-
erence cell as function which accepts unit and returns the value of
the cell; getting the stored value is achieved by calling the function;
setting the value is achived by placing advice so that the function
returns a different value in future calls.

We annotate each abstraction with its type to facilitate the trans-
lation presented in the following subsection. We often elide these
annotations.

SYNTAX

A,B ::= λx.MT Abstractions
D,E ::= Declarationsfun f =A | adv{z.f̂ � A}

V,U ::= Valuesn | unit | A
M,N ::= TermsV | V U | z U | D;M | let x:T=M;N
T,S ::= TypesUnit | T�S

Γ,∆ ::= Environments· | Γ,x:T

The language is simply typed; nevertheless non-termination is
possible due to the imperative quality of aspects. The typing system
need not be concerned with finality of advice, since only function
names can be advised and functions themselves cannot proceed.

TYPING (Γ � A : T) (Γ � D . ∆) (Γ � M : T)
Γ � λx.MT�S : T�S if Γ,x:T � M : S

Γ � fun f =A . f:T if Γ, f:T � A : T
Γ � adv{z.f̂ � A} . · if Γ � f : T and Γ,z:T � A : T

Γ � unit : Unit
Γ � n : T if Γ 3 n:T
Γ � V U : S if Γ � V : T�S and Γ � U : T
Γ � z U : S if Γ � z : T�S and Γ � U : T
Γ � D;M : T if Γ � D . ∆ and Γ,∆ � M : T
Γ � let x:T=M;N : S if Γ � M : T and Γ,x:T � U : S

Evaluation is defined using lookup, notated ~D(f) = A. Lookup
resolves proceed variables, producing a single abstraction which
includes the advice on the function in addition to the function body
itself. Lookup is defined using the partial function body and total
function advise with forms body(~D)(f)= A and advise(~D)(f)(A)=
B.

EVALUATION (M ⇒ N)
body( · )(f) = undefined

body(D;~E)(f) = A if D = fun f =A
body(D;~E)(f) = body(~E)(f) otherwise

advise( · )(f)(A) = A
advise(D;~E)(f)(A) = advise(~E)(f)(B[z := A]) if D = adv{z.f̂ � B}
advise(D;~E)(f)(A) = advise(~E)(f)(A) otherwise

~D(f) = advise(~D)(f)(body(~D)(f))

~D; f V ⇒ ~D;A V if ~D(f) = A
~D;(λx.N) V ⇒ ~D;N[x := V]

~D; let x=V;N ⇒ ~D;N[x := V]
~D; let x=M;N ⇒ ~D; let x=M′;N if ~D;M ⇒ ~D;M′

4.2 The translation
Our translation of lambda into µABC is based on the translation
of lambda into pi, and thus is parameterized with respect to a
continuation k. Proceed names must be handled specially, and thus
the translation is also parameterized by a list of proceed names,
paired with their pointcuts.

ϑ ::= · | ϑ ,z : f

In the translation, the value unit and both the names and types of
the source language are treated as µABC names. We also assume a
name T-1 for every lambda type T, which is used for continuations.
By convention, we use the names k, j, i to stand for continuations.

TRANSLATION (LVMϑ = (D)(n)) (JDKϑ = D) (JMKϑ
k = M)

LnMϑ M= ( · )(n)
LunitMϑ M= ( · )(unit)
Lλx.MT�SMϑ M= (new f:T�S;adv{f̂ ,x:T,k:S-1 � JMKϑ

k })(f)
where f /∈ fn(M)

Jfun f =λx.MT�SKϑ M= new f:T�S;adv{f̂ ,x:T,k:S-1 � JMKϑ
k }

Jadv{z.f̂ � λx.MT�S}Kϑ M= adv{z.f̂ ,x:T,k:S-1 � JMKϑ ,z:f
k }

JVKϑ
k

M= D;call〈k̂,n〉 where LVMϑ = (D)(n)
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JV UKϑ
k

M= D;E;call〈ĝ ,n,k〉 where g /∈ dom(ϑ)
and LVMϑ = (D)(g) and LUMϑ = (E)(n)

Jz UKϑ
k

M= E;z〈f̂ ,n,k〉 where ϑ(z) = f and LUMϑ = (E)(n)
Jlet x:T=M;NKϑ

k
M= new j:T-1;adv{ ĵ,x:T � JNKϑ

k };JMKϑ
j

where j /∈ fn(M)
JD;MKϑ

k
M= JDKϑ;JMKϑ

k

4.3 Examples
Example 10. Consider the λ -calculus term (λx.x2) 5. It evaluates
as: (λx.x2) 5 ⇒ 25. The translation of the λ -calculus term into
µABC with continuation k is shown below; we show how it evalu-
ates to call〈k̂,25〉.

J(λx.x2) 5Kk =new f;
adv{f̂ ,x, j � call〈 ĵ,x2〉};
call〈f̂ ,5,k〉

The name f represents the function λx.x2. The function is imple-
mented using by the advice declaration adv{f̂ ,x, j � call〈 ĵ,x2〉}.
The function is applied to the argument 5 by calling function f on
argument 5 with continuation k.

First, call〈f̂ ,5,k〉 looks up the advice, which gets enqueued on
the current event:

→ {f̂ ,x, j � call〈 ĵ,x2〉}〈f ,5,k〉

The body of the advice executes with 5 bound to x, and k bound to
j:

→ call〈k̂,52〉 2

Example 11. Consider the λ -calculus term let x = 5;(λy.y2)x. It
evaluates as: let x=5;(λy.y2)x ⇒ (λy.y2)5 ⇒ 25. The translation
of the λ -calculus term into µABC with continuation k is shown
below; we show how it evaluates to call〈k̂,25〉.

Jlet x=5;(λy.y2)xKk =new j;
adv{ ĵ,x � new f;

adv{f̂ ,y, i � call〈î,y2〉};
call〈f̂ ,x,k〉};

call〈 ĵ,5〉

First, call〈 ĵ,5〉 looks up the advice, which gets enqueued on the
current event:

→ { ĵ,x � new f;adv{f̂ ,y, i � call〈î,y2〉};call〈f̂ ,x,k〉}〈 ĵ,5〉

The advice body then gets executed with 5 bound to x:

→ new f;adv{f̂ ,y, i � call〈î,y2〉};call〈f̂ ,5,k〉

call〈f̂ ,5,k〉 looks up the advice, which gets enqueued on the current
event:

→ {f̂ ,y, i � call〈î,y2〉}〈f̂ ,5,k〉
The advice body then gets executed with 5 bound to y and k bound
to i:

→ call〈k̂,52〉 2

Example 12. Consider the λ -calculus term fun f = λy.y2; let x =
5; f x. It evaluates as: fun f = λy.y2; let x = 5; f x ⇒ let x = 5;
(λy.y2)x⇒ (λy.y2)5⇒ 25. The translation of the λ -calculus term
into µABC with continuation k is shown below; we show how it

evaluates to call〈k̂,25〉.

Jfun f =λy.y2; let x=5; f xKk =new f
adv{f̂ ,y, j � call〈 ĵ,y2〉}
new i;
adv{î,x � call〈f̂ ,x,k〉};
call〈î,5〉

First, call〈î,5〉 looks up the advice, which gets enqueued on the
current event:

→ {î,x � call〈f̂ ,x,k〉}〈î,5〉
The advice body is executed with 5 bound to x:

→ call〈f̂ ,5,k〉

call〈f̂ ,5,k〉 looks up advice, which gets enqueued on the current
event:

→ {f̂ ,y, j � call〈 ĵ,y2〉}〈f̂ ,5,k〉
The advice body is executed with 5 bound to y and k bound to j:

→ call〈k̂,52〉 2

Example 13. Consider the λ -calculus term

M =fun f =λy.y2;

adv{z.f̂ � λx.z(x+1)};
f 5

It evaluates as: M⇒ (λx.(λy.y2)(x+1))5⇒ (λy.y2)(5+1)⇒
(5 + 1)2. The translation of the λ -calculus term into µABC with
continuation k is shown below; we show how it evaluates to
call〈k̂,(5+1)2〉.

JMKk = new f;
adv{f̂ ,y,k � call〈k̂,y2〉};
adv{z.f̂ ,x,k � z〈f̂ ,x+1,k〉};
call〈f̂ ,5,k〉

First, call〈f̂ ,5,k〉 looks up the two pieces of advice and enqueues
them on the current event:

→ {f̂ ,y,k � call〈k̂,y2〉},{z.f̂ ,x,k � z〈f̂ ,x+1,k〉}〈f̂ ,5,k〉
The body of the newest advice executes, with 5 bound to x, k bound
to k, and the remaining advice bound to z:

→ {f̂ ,y,k � call〈k̂,y2〉}〈f̂ ,5+1,k〉
The body of the advice now executes, with 5 + 1 bound to y and k
bound to k:

→ call〈k̂,36〉 2

Example 14. Consider the λ -calculus term

M =fun f =λy.y2;

adv{z.f̂ � λy1.z(y1 +1)};
adv{z.f̂ � λy2.let x= z(y2);z(x)};
f 5

Let A = (λy1.(λy.y2)(y1 +1)). It evaluates as:

M⇒ (λy2.let x=A y2;A x) 5
⇒ let x=A 5;A x
⇒∗ let x= (5+1)2;A x
⇒ A(5+1)2

⇒∗ ((5+1)2 +1)2

The translation of the λ -calculus term into µABC with continua-
tion k is shown below; we show how it evaluates to call〈k̂,((5 +
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1)2 +1)2〉.
JMKk = D;call〈f̂ ,5,k〉

D = new f;adv A;adv B;adv C;
A = {f̂ ,y,k � call〈k̂,y2〉}
B = {z.f̂ ,y1,k � z〈f̂ ,y1 +1,k〉}
C = {z.f̂ ,y2,k � new j;adv{ ĵ,x � z〈f̂ ,x,k〉};z〈f̂ ,y2, j〉}

The call〈f̂ ,5,k〉 triggers advice lookup, and enqueues the three
matching pieces of advice onto the current event:

JMKk → D;(A,B,C)〈f̂ ,5,k〉
The newest advice body is executed with 5 bound to y2, k bound to
j, and the remaining advice bound to z:

→ E;(A,B)〈f̂ ,5, j〉
where

E = D;new j;adv{ ĵ,x � (A,B)〈f̂ ,x,k〉}
The newest advice body is executed with 5 bound to y1, j bound to
k, and the remaining advice bound to z:

→ E;A〈f̂ ,5+1, j〉
The remaining advice body is executed with 5+1 bound to y and j
bound to k:

→ E;call〈 ĵ,(5+1)2〉
The call〈 ĵ,(5 + 1)2〉 triggers another advice lookup, and enqueues
the matching advice onto the current event:

→ E;{ ĵ,x � (A,B)〈f ,x,k〉}〈 ĵ,(5+1)2〉
The advice body is executed with (5+1)2 bound to x:

→ E;(A,B)〈f̂ ,(5+1)2,k〉
The newest advice body is executed with (5+1)2 bound to y1 and
k bound to k:

→ E;(A)〈f̂ ,(5+1)2 +1,k〉
The remaining advice body is executed with (5+1)2 +1 bound to
y and k bound to k:

→ E;call〈k̂,((5+1)2 +1)2〉 2

4.4 Correctness
Our correctness proof is stated modulo a “structural congruence”
on µABC terms. Most of the axioms defining this congruence
are innocuous, but the last, unrolling, is stated in terms of the
translation defined above. As stated in the introduction, there is a
further problem in this approach: the congruence is not justified
by any semantic reasoning. Nonetheless, our intention is to define
this relation such that two structurally equivalent terms in effect
“behave the same way”.

We provide short examples demonstrating each of the structural
equivalence rules, followed by a formal statement of the rules.

Example 15 (Hoisting). Hoisting enables us to move declarations
out of the body of an advice declaration, provided that none of
the variables in the declarations are bound in the advice body. For
instance, the µABC term

new f;
adv{f̂ ,y,k � new g;adv{ĝ ,x, j � call〈ĝ ,y+1,k〉};call〈ĝ ,y,k〉}
call〈f̂ ,10,k〉
is structurally equivalent to

new g;adv{ĝ ,x, j � call〈ĝ ,y+1,k〉};
new f;adv{f̂ ,y,k � call〈ĝ ,y,k〉}
call〈f̂ ,10,k〉

“Hoisting” g ’s name and advice declaration out of f ’s advice dec-
laration should have no effect on how the term evaluates. 2

Example 16 (Reordering). Reordering says that two declarations
D and E can be swapped, so long as fn(E) 6∈ bn(D), and vice versa.
For instance:

new f;
adv{f̂ ,x,k � call〈k̂,x〉};
new g;
adv{ĝ ,x,k � call〈k̂,x〉};
call〈f̂ ,10,k〉

≡

new g;
adv{ĝ ,x,k � call〈k̂,x〉};
new f;
adv{f̂ ,x,k � call〈k̂,x〉};
call〈f̂ ,10,k〉

Whether f ’s name and advice is declared before or after g ’s is
irrelevant to how the term evaluates. The following, however, is
not allowed, however, since new f must be declared before f can
appear in an advice declaration:

new f;
adv{f̂ ,x,k � call〈k̂,x〉};
call〈f̂ ,10,k〉

6≡
adv{f̂ ,x,k � call〈k̂,x〉};
new f;
call〈f̂ ,10,k〉 2

Example 17 (Garbage Collection). Garbage collection allows us
to eliminate “dead” declarations. For instance, in the following
term:

new f;adv{f̂ ,x,k � call〈k̂,x2〉};
new g;adv{ĝ ,x,k � call〈k̂,x+1〉};
call〈f̂ ,10,k〉

The two declarations new g and adv{ĝ ,x,k � call〈k̂,x + 1〉} are
never used, and as such, can be eliminated without affecting how
the term evaluates. Thus the above term is structurally equivalent
to

new f;adv{f̂ ,x,k � call〈k̂,x2〉};call〈f̂ ,10,k〉 2

Example 18 (Unrolling). Translating function applications from
λ -calculus into µABC is extremely intricate. For instance, consider
the λ -calculus term

fun f =λx.x;
adv{z1.f̂ � λy.z1〈y2〉};
adv{z2.f̂ � λw.z2〈w+1〉};
f 5

The translation of this term, with continuation k, is

D;call〈f̂ ,5,k〉
where

D = new f;adv A;adv B;adv C
A = {f̂ ,x,k � call〈k̂,x〉}
B = {z1.f̂ ,y,k � z1〈f ,y2,k〉}
C = {z2.f̂ ,w,k � z2〈f ,w+1,k〉}

The λ -calculus term evaluates to

(λw.(λy.(λx.x) y2) (w+1)) 5

the translation of which is

new h;
adv{ĥ ,w, i � new f;

adv{f̂ ,y,k � new g;
adv{ĝ ,x, j � call〈 ĵ,x〉};
call〈ĝ ,y2,k〉};

call〈f̂ ,w+1, i〉};
call〈ĥ ,5,k〉

The fundamental difficulty arises from the fact that the translation
of the original λ -calculus term yields a string of corresponding
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advice declarations, while the translation of the λ -calculus term
after one step yields a single nested advice declaration. In this vein,
unrolling allows us to expand the rolled form into the following
structurally equivalent term:

D;(A,B,C)〈f̂ ,5,k〉 2

STRUCTURAL EQUIVALENCE (M ≡ N)
Hoisting:
D;adv{z.P � E;M}≡ D;E;adv{z.P � M} if z,bn(P) 6∈ fn(E)

Reordering:
D;E;M ≡ E;D;M if fn(E) 6∈ bn(D) and fn(D) 6∈ bn(E)

Garbage Collection:
D;new f;adv{z.P, f̂ ,Q � M};N ≡ D;N if f 6∈ fn(N)

Unrolling:
D;call〈f̂ ,v,k〉 ≡ D;({z0.f̂ ,x0,k0 � JL0Kk0

},
...

{zm.f̂ ,xm,km � JLmKkm
})〈f̂ ,v,k)〉

where D = new f;
adv{zm.f̂ ,xm,k � JLmσmKk};

and σ0 = [] and σn = [zn := λyn−1.Ln−1σn−1]

The following theorem states that our translation from λ -
calculus into µABC is correct up to structural congruence.

Lemma 19 (Substitution).

JM[x := V]Kϑ
k ≡ D;JMKϑ

k [x := v]

LU[x := V]Mϑ ≡ (D;E[x := v])(u)

where LVMϑ = (D)(v) and LUMϑ = (E)(u) 2

Proposition 20. If M ⇒ N, then JMKc →∗≡ JNKc.

5. A Small Object Language
We give a translation into µABC of a small, object-oriented lan-
guage with advice.

The source language is based roughly on that of [3, 7], but
there are a few differences. First, the evaluation strategy is based
on the evaluation strategy for lambda calculus presented in the last
section; in particular the definition of lookup. Secondly, we ignore
fields for simplicity.

As before, z ranges over proceed names. In addition, we use the
following conventions for names.

• k, j, i range over continuations,
• `, m, n range over method names,
• a, b, e range over class names,
• p, q, x, y, v, u range over object names,

p, q range over proper object names,
x, y range over variable names,
v, u range over variables or proper object names,

OBJECT CALCULUS

A,B ::= λ~x.MT Abstractions
C ::= cls a:b{ ¯̀= Ā} Class Declarations
D,E ::= obj p:a | advc{z.a. ˆ̀� A}

M,N ::= v | v.`(~u) | z(~u) | A(~u) | D;M | let x:a=M;N
T,S ::= Method Types~a�b
Γ,∆ ::= Environments· | Γ,x:a

As usual [6], we fix a class table C̄; we assume that Object
is not declared and that the induced subclass relation is antisym-
metric, with greatest element Object. (The subclass relation is the
smallest preorder on class names induced by the rule: a ≤ b if
C̄ 3 cls a:b{ · · ·}.) We also assume that every declaration in the
class table is well typed (ie, ∀C ∈ C̄.  C ok).

The function body is used in both evaluation and typing. We
leave out irrelevant bits.

(body(a.`) = A:T)

body(a.`i) = Ai:Ti if C̄(a) = cls a:b{ ¯̀= Ā} and Ai = λ~x.MTi

body(a.`) = A:T if C̄(a) = cls a:b{m̄= B̄} and ` /∈ m̄
and body(b.`) = A:T

TYPING (Γ  A : T) ( C ok) (Γ  D . Γ′) (Γ  M : a)

Γ  λ~x.M~a�b :~a�b if Γ,~x:~a  M : b′ and b′ ≤ b

 cls a:b{ ¯̀= Ā} ok if ∀i. self:a  Ai : Ti
and ∀i. body(b.`i) = S implies Ti = S

Γ  obj p:a . p:a if C̄(a) defined
Γ  advc{z.a. ˆ̀� A} . · if body(a.`) = T = _

c�_

and Γ,self:a,z:T  A : T
Γ  v : a if Γ 3 v:a
Γ  v.`(~u) : b if Γ  v : e and body(e.`) =~a′�b

and ∀i. Γ  ui : ai and ai ≤ a′i
Γ  z(~u) : b if Γ  z :~a′�b

and ∀i. Γ  ui : ai and ai ≤ a′i
Γ  A(~u) : b if Γ  A :~a′�b

and ∀i. Γ  ui : ai and ai ≤ a′i
Γ  D;M : a if Γ  D . ∆ and Γ,∆  M : a
Γ  let x:a=M;N : S if Γ  M : a′ and a′ ≤ a

and Γ,x:T  N : S

The functions for advising and lookup now have have the form
advise(~D)(p:a.`)(A) = B and ~D(p.`) = A.

EVALUATION (~D;M ⇒~E;N)
advise( · )(p:a.`)(A) = A

advise(D;~E)(p:a.`)(A)

=

{
advise(~E)(p:a.`)(B[z := A]) if D = advc{z.a′. ˆ̀� B} and a ≤ a′

advise(~E)(p:a.`)(A) otherwise

~D(p.`) = advise(~D)(p:a.`)(body(a.`)) if ~D 3 p:a

~D; p.`(~q)⇒ ~D;(A[self := p])(~q) if ~D(p.`) = A
~D;(λx.N)(~q)⇒ ~D;N[x :=~q]
~D; let x= p;N ⇒ ~D;N[x := p]

~D; let x=M;N ⇒ ~D; let x=M′;N if ~D;M ⇒ ~D;M′

As before, the translation of terms is parameterized with respect
to continuations and bound proceed names. In this case proceed
names are bound to pointcuts of a different shape than in the
functional case.

ϑ ::= · | ϑ ,z : 〈p, `〉

TRANSLATION (JCK = D) (J`=AKa = D)

Jcls a:b{ ¯̀= Ā}K M= new a:b;new ~m;J ¯̀= ĀKa

where ~m = (`i | body(b.`i) undefined)

J`=λ~x.M~a�bKe M= adv{self:e, ˆ̀,~x:~a,k:b-1 � JMKϑ
k }
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TRANSLATION (LAMϑ = (D)(f)) (JDKϑ = D) (JMKϑ
k = M)

Lλ~x.M~a�bMϑ M= (new f:~a�b;adv{f̂ ,~x:~a,k:b-1 � JMKϑ
k })(f)

where f /∈ fn(M)

Jobj p:aKϑ M= new p:a

Jadvc{z.e. ˆ̀� λ~x.M~a�b}Kϑ M= adv{z.self:e, ˆ̀,~x:~a,k:b-1 � JMKϑ ,z:〈self,`〉
k }

JvKϑ
k

M= call〈k̂,v〉
Jv.`(~u)Kϑ

k
M= call〈v, ˆ̀,~u,k〉

Jz(~u)Kϑ
k

M= z〈p, ˆ̀,~u,k〉 where ϑ(z) = 〈p, `〉
JA(~u)Kϑ

k
M= D;call〈ĝ ,~u,k〉 where LAMϑ = (D)(g)

JD;MKϑ
k

M= JD;MKϑ
k

M= JDKϑ;JMKϑ
k

Jlet x:a=M;NKϑ
k

M= new j:a-1;adv{ ĵ,x:a � JNKϑ
k };JMKϑ

j

We begin with a simple example.

Example 21 (Methods). Consider the following program frag-
ment in the class-based language.

cls a{`=λx.x2};obj p:a; p.`(5)

The class-based term evaluates as follows:

⇒cls a{`=λx.x2};obj p:a;(λx.x2) 5
⇒cls a{`=λx.x2};obj p:a;25

The translation of the original term into µABC yields:

new a;adv{self:a, ˆ̀,x,k � call〈k̂,x2〉};
new p:a;call〈p, ˆ̀,5,k〉;

Observe that the µABC term evaluates to call〈k̂,25〉:

→new a;adv{self:a, ˆ̀,x,k � call〈k̂,x2〉};
new p:a;{self:a, ˆ̀,x,k � call〈k̂,x2〉}〈p, ˆ̀,5,k〉

→new a;adv{self:a, ˆ̀,x,k � call〈k̂,x2〉};
new p:a;call〈k̂,52〉 2

Example 22 (Methods). Consider the following program frag-
ment in the class-based language.

cls a{`=λ.M;m=λ.N};

cls b:a{m=λ.P;n=λ.Q};

obj p:b;
let x= p.`(); let y= p.m(); let z= p.n();U

Its µABC translation is as follows:

new a;adv{self:a, ˆ̀,k � JMK};adv{self:a, m̂,k � JNK};
new b:a;adv{self:b, m̂,k � JPK};adv{self:b, n̂,k � JQK};
new p:b;
new k1;

adv{k̂1,x � new k2;adv{k̂2,y � new k3;adv{k̂3,z � JUK};
call〈p, n̂,k3〉};

call〈p, m̂,k2〉};
call〈p, ˆ̀,k1〉 2

Conjecture 23. If M ⇒ N, then JMKk →
∗≡ JNKk. 2

6. Conclusions
We have reported some preliminary steps toward attaining a useful
type system for µABC. Several challenges remain, all discussed
in the introduction. First, we face the niggling difference in sub-
stitution times for our source and target calculi. Second, and more
interestingly, we require a useful notion of semantic equivalence.
Third, and most importantly, we must parameterize the sorting sys-
tem given here with the type of protocols on names described in the

introduction. All these problems have solutions, and the solution to
the third promises to be very interesting.
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ABSTRACT
Pointcuts in the current AspectJ family of languages are
loosely checked because the languages allow compositions
of pointcuts that never match any join points, which devel-
opers are unlikely to intend, for example, set(* *)&&get(*

*). We formalize the problem by defining well-formedness
of pointcuts and design a novel type system for assuring
well-formedness. The type of pointcuts is encoded by using
record, union and the bottom types.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions—Languages; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of program constructs—Type structure

General Terms
Design, languages, theory

Keywords
AOP, pointcut compositions, records

1. INTRODUCTION
Join point selection mechanisms, i.e., pointcuts, play an

important role in AspectJ family of languages such as As-
pectJ [13] and JBoss AOP. While there have been studies
targeting many facets of those languages, such as expressive-
ness and robustness [1,5,9,12,17], safe pointcut compositions
have been less investigated [4, 16]. The property becomes
more important the more aspects use composed pointcuts.

This position paper focuses on safe pointcut composability
so that composed pointcuts can match at least one join point
in some program. We call such a pointcut well-formed. By
checking well-formedness of every pointcuts in aspect defi-
nitions, developers can notice unintended pointcut compo-
sitions before applying aspects to programs. This property
helps programmers to avoid pointcuts that never have any

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Foundations of Aspect-Oriented Lan-
guages (FOAL 2007), March 13, 2007, Vancouver, BC, Canada.
Copyright 2007 ACM ISBN 1-59593-671-4/07/03 ...$5.00.

match by merely examining aspect definitions. It is particu-
larly important for separate compilation of aspects. In other
words, we are interested in detecting never-matching point-
cuts compositions whose resulting pointcuts match no join
point in any program. Note that current AspectJ compiler
implementations (abc [2]) can report, only after weaving as-
pects into classes, that an advice declaration is not woven
into any join point shadows. When we separately compile as-
pects (which is also required by the load-time weaving tech-
niques), the current compilers silently pass never-matching
pointcut compositions.

To detect such never-matching pointcut compositions, we
are going to develop a type system that guarantees the well-
formedness of pointcuts, defined as follows:

Definition 1 (well-formed pointcut). Let U be the
set of all well-typed base programs and JP(b) be the set of
join points in any execution of a well-typed base program b.
Pointcut p is well-formed when it satisfies:

∃b ∈ U.∃j ∈ JP(b).match(p, j)

In other words, a pointcut p is well-formed when there ex-
ists a well-typed program that generates a join point match-
ing p.

The rest of the paper is organized as follows. Section 2
explains the problems we address. Section 3 shows a sketch
of our type system. Section 4 discusses related work. Section
5 concludes the paper.

2. NEVER-MATCHING POINTCUT COM-
POSITIONS

In order to clarify the problems that we address, we present
an example in which a pointcut never matches any join
point.

AspectJ compilers allow meaningless pointcut composi-
tions that never match join points in any program.

In AspectJ, one can compose any two pointcuts with &&

(and) and || (or) pointcut designators. For example, one
can capture both get and set join points by composing a get
and set pointcuts with an or operator; i.e., get(* *)||set(*

*).
On the other hand, the composition of these two pointcuts

with an and operator, i.e., get(* *)&&set(* *) is meaning-
less because no join point is get and set at the same time.

3. A SKETCH OF OUR TYPE SYSTEM FOR
POINTCUTS
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Table 1: Elaborated pointcut primitives.
get set

instance variables mget mset

class variables sget sset

This section gives a sketch of our type system that types
pointcuts with respect to the well-formedness. We formalize
the system by adding a pointcut and advice mechanism to
Featherweight Java [10].

The key idea is to represent the type of join points as a
record type. The type of pointcuts is also a record type
because a pointcut can be seen as a set of matching join
points.

Because the paper focuses on pointcut compositions, we
explain only the pointcut types below.

3.1 Overview of Pointcut Types
The pointcut type P is defined as follows.

P ::= {li : Y i∈1···n
i } | P + P | ⊥

Y ::= k | T g | [T i∈1···n
i ] | •

k ::= mset | mget | sset | sget | · · ·
g ::= • | ε

T ∈ idpats

Basically, a pointcut type is encoded into a record type {li :
Y i∈1···n
i } that contains most attributes of the JoinPoint

object in AspectJ such as the kind of the matching join
point. The label l corresponds to the attribute of a join
point including this, args and kind, and is associated with
an attribute type Y . The attribute type Y is either the kind
of matching join points k, an element of idpats with runtime
value availability tag g, or a sequence of the elements of
idpats. P + P denotes the union of two pointcut types and
⊥ denotes pointcuts never matching any join point. We
assume that ⊥ + P and P + ⊥ are equivalent to P . The
set idpats is the union of the three sets: the singleton set of
an ∗, the set of names of primitive types such as int and
boolean, and the set of valid identifiers with respect to the
Java Language Specification [8] such as Object, List and
width. [T i∈1···n

i ] represents a comma-separated sequence of
the elements of idpats. The single • denotes absence. For
example, {args : •} denotes that matched join points never
have args values. Meta-variable k ranges over the kinds of
join points such as get and set. Meta-variable g ranges over
runtime value availability tags. When a label l is associated
with T •, it denotes that there is no runtime value for the
attribute l. For example, {target : T •} represents that the
target attribute of matching join points is constrained to
have the type T but has no runtime value. For readability,
we omit the availability tag when it is ε, so we simply write
T rather than T ε.

3.2 Pointcut Sublanguage and Typing Rules
Since we are still working on details of the type system,

the paper demonstrates how pointcuts are typed by merely
using set, get, args, || and && pointcuts. The pointcut
sublanguage is defined as Figure 2. The args pointcut does
not bind any variable because we are only interested in the
pointcut compositions. Instead, an args pointcut limits the
types and numbers of arguments of matching join points.

We divide set and get pointcuts into the four pointcuts
as is shown in Table 1 so that they explicitly distinguish

pc ::= prm(T C.f) | args(T i∈1···n
i ) | pc&&pc | pc||pc

prm ::= mset | sset | mget | sget

Figure 2: Pointcut sublanguage (T,C, f ∈ idpats).

pc1 : P 1 pc2 : P 2 P 1 ⊗ P 2 Ã P

pc1&&pc2 : P

pc1 : P 1 pc2 : P 2

pc1||pc2 : P 1 + P 2

Figure 3: Typing rules pc : P for pointcut composi-
tions.

whether matching join points access the static fields or
not. This is because the join points related to class fields
have no target value.1

The types of mset, sset, mget, mset and args point-
cuts are shown in Figure 1. For example, the type of the
pointcut mset(int Point.x), which matches p.x = 3 as-
suming p is an instance object of a Point class, becomes
{target : Point, args : int, kind : mset, name : x, ret : •}.

The typing rules for pointcut compositions (i.e., pc1&&pc2
and pc1||pc2) are shown in Figure 3. Composing two point-
cuts with an or pointcut, the resulting type becomes simply
the union of the two pointcut types. Composing with an and

pointcut, the resulting type becomes a common subtype of
the two pointcut types, intuitively. The common subtype is
calculated using the rules in Figure 4.

As we can see, we need to define the type subsumption
(<:) on pointcut types only for the cases that the right hand
side is a record type. It is simply defined as follows.

⊥ <: {li : T i∈1···n
i }

P1 <: {li : T i∈1···n
i } P2 <: {li : T i∈1···n

i }
P1 + P2 <: {li : T i∈1···n

i }
We employ the standard record type subsumptions (i.e. sub-
sumptions on record widths, depths and permutations [18]).

n ≤ m ∀i ∈ 1 · · ·n.∃j ∈ 1 · · ·m.Yi <: Y ′j

{li : Y i∈1···n
i } <: {l′i : Y ′ i∈1···m

i }
For the elements of idpats, say T1 and T2, the subsumption

is defined as follows. T1 <: T2 if

• T2 is ∗, or

• T1 and T2 is the same identifier.

And the subsumptions on sequences of elements and tagged
elements of idpats are defined as follows.

n = m ∀i ∈ 1 · · ·n.Ti <: T ′i
[Ti i∈1···n] <: [T ′ i∈1···m

i ]

g1 = g2 T1 <: T2

T g11 <: T g22

1Similar elaboration can be applied to pointcuts related to
methods, i.e., call and execution pointcuts.
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mget(T C.f) : {target : C, args : •, kind : mget, name : f, ret : T}
sget(T C.f) : {target : C•, args : •, kind : sget, name : f, ret : T}
mset(T C.f) : {target : C, args : [T ], kind : mset, name : f, ret : •}
sset(T C.f) : {target : C•, args : [T ], kind : sset, name : f, ret : •}

args(T i∈1···n
i ) : {args : [T i∈1···n

i ]}

Figure 1: Typing rules pc : P for mset, sset, mget, mset and args pointcuts (T,C, f ∈ idpats).

⊥⊗ P Ã ⊥ P ⊗⊥Ã ⊥

P <: {li : T i∈1···n
i } P <: {l′i : T ′ i∈1···n

i }
{li : T i∈1···n

i } ⊗ {l′i : T ′ i∈1···n
i }Ã P

P1 ⊗ P3 Ã P ′1 P2 ⊗ P3 Ã P ′2
(P1 + P2)⊗ P3 Ã P ′1 + P ′2

P1 ⊗ P2 Ã P ′2 P1 ⊗ P3 Ã P ′3
P1 ⊗ (P2 + P3) Ã P ′2 + P ′3

Figure 4: Type calculation rules P ⊗ P Ã P

Note that ArrayList <: Object is not available in our def-
inition. This is mainly because we want to check pointcut
compositions without any base programs.

The subsumption on kinds k1 <: k2 holds only when k1

and k2 are the same.

3.3 Typing Examples
This section demonstrates that our type system can suc-

cessfully accept the well-formed pointcuts and detects never-
matching pointcuts.

Never-matching pointcut compositions is typed as ⊥.
Our type system can successfully type get(* *)&&set(*

*) as ⊥ without any base programs. For simplicity, we show
this by using elaborated pointcuts, i.e., mget(* *.*)&&mset(*

*.*)2. As shown in Table 1, each pointcuts are typed as fol-
lows.
mset(* *.*):
{target : ∗, args : [∗], kind : mset, name : ∗, ret : •}

mget(* *.*):
{target : ∗, args : •, kind : mget, name : ∗, ret : ∗}

The type of the composed pointcut mget(* *.*)&&mset(*

*.*) becomes a common subtype of the two pointcut types
as mentioned in Section 3.2, and we find ⊥, which is the
only possible type because there is no common subtype of •
and ∗, nor of mget and mset. Thus our type system types
mget(* *.*)&&mset(* *.*) as ⊥, and can conclude that it
is a never-matching pointcut.

The union of never-matching pointcuts and well-formed
pointcuts is not typed as ⊥.

Composing a never-matching pointcut and a well-formed
pointcut with an or pointcut (||), we get a well-formed
pointcut. In our type system, the fact is rephrased that
composing an pointcut typed as ⊥ and another pointcut not

2The get and set pointcuts shall be encoded by disjunctions
of the mget and sget, and the mset and sset pointcuts,
respectively.

typed as ⊥ with an or pointcut, the type of the resulting
pointcut is not ⊥. This property is satisfied in our system
clearly following to the typing rule for the or pointcut com-
positions.

For example, the pointcut

(mset(* *.*)||mget(* *.*))&&args(int)

is well-formed and matches all assignments to any object
fields. Because get join points have no argument, none of
them is selected.

Reducing the bottom types by using the assumptions P +
⊥ = P and ⊥+ P = P , the type of the pointcut becomes

{target : ∗, args : [∗], kind : mset, name : ∗, ret : •}
in our type system and it successfully reflects the fact that
we mentioned just before.

4. RELATED WORK
Our work is not the first attempt to detect never match-

ing pointcuts. Douence et al. defined the alphabet analysis
for their pointcut language for control-flow. An alphabet is
a set of join point shadows [15] that can generate matching
join points. They also suggested that when the alphabet
becomes empty, the pointcut never matches any join points
and such pointcut definitions are erroneous. Program De-
scription Language (PDL) [16] is a domain specific language
for checking design rules such as the Law of Demeter [14].
Its pointcut language is similar to the one of AspectJ, and
has a type system that assures that typed pointcuts have
at least one matching join point. The typing rule and se-
mantics of not pointcuts are very interesting, although the
semantics differs from the one of AspectJ.

Aspect FGJ (or shortly AFGJ) [11] is an aspect-oriented
calculus which extends Featherweight GJ [10] with forms
for advice declaration and for proceeding to the next de-
clared advice. Though the language have a execution point-
cut primitive exe and two operators for pointcut composi-
tions && and ||, the pointcut logic can successfully reject
pointcut compositions of two different execution pointcuts
such as3

exe(int Point.getX())&&exe(int Point.getColor()).

We think this work may be a good starting point of our
formalization task.

MiniMAO1 [3] is another core aspect-oriented calculus of
AspectJ-like aspect-oriented programming languages based
on Classic Java [6] to investigate the semantics of proceed
and the soundness over advice weavings. Types of pointcuts
are similar to ours but the approach does not detect never-
matching pointcuts.

3Though AFGJ has a different syntactic format like exe int
Point.X(), we use AspectJ-like format for readability.
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AspectML [19] is a polymorphic aspect-oriented functional
programming language. Pointcuts are first-class values and
typed, but the language merely has execution join points
as far as we know.

5. CONCLUSIONS AND FUTURE WORK
We pointed out that the AspectJ family of languages allow

compositions of pointcuts that never match join points in
any program, and that such compositions should be detected
from aspect definitions alone. We showed a sketch of our
type system to detect such never-matching compositions of
pointcuts. Our key idea is to encode types of pointcuts and
join points with record types. In the type system, the type
of mutually exclusive pointcut compositions, such as set(*

*)&&get(* *), becomes ⊥, which denotes never matching
pointcuts.

We are currently working on the details of the type sys-
tem based on Featherweight Java [10]. One of the major
difficulties we are facing now is the ! (not) operator. One
possible solution would be to use negation (or complement)
types, whose semantics is based on sets [7].

Our future work includes proof of type soundness; i.e.,
for any non ⊥-typed pointcuts there exits a join point that
matches the pointcut. An interesting direction of our future
work is to extend the languages with generics so that we
can verify correctness of the design and implementation of
pointcuts in AspectJ5.
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ABSTRACT
The relation between aspects and monads is a recurring
topic in discussions in the programming language commu-
nity, although it has never been elaborated whether their
resemblences are only superficial, and if not, where they are
rooted. The aim of this paper is to contrast both mech-
anisms w.r.t. their capabilities and their effects on modu-
larity, first by looking at monads as a way to express tan-
gling concerns in functional programming and by discussing
whether they can be regarded as a form of AOP, then by
taking the view that monads express concerns of computa-
tions and by analyzing the extent to which aspects are able
to handle those concerns.

Our results are mostly negative: monads are not capa-
ble of quantifying over points in the program execution in
a declarative way, whereas aspects are not very useful in
abstracting over computational capabilities.
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1. INTRODUCTION
Since De Meuter [9] has first discovered resemblences be-

tween aspects and monads on the descriptive level – layering
of code, system wide repercussions, easy integration – those
are a recurring topic in discussions in the programming lan-
guage community, although it has never been elaborated
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whether they are only superficial, and if not, where they are
rooted. This paper tries to shed some light on this topic by
contrasting the two mechanisms w.r.t. to their capabilities
and their effects on modularity.

We first specify what we regard as the essence of each
of the concepts. Then, in the next section, we will look at
monads as a way to express tangling concerns in functional
programming, and discuss the extent to which monadic pro-
gramming can be regarded as a form of AOP. We therefore
analyze a monads-based implementation of the display up-
date example as used by Kiczales and Mezini [5] (and many
others).

Finally, we take the view that monads express concerns
of computations and we analyze the extent to which aspects
are able to handle those concerns. This discussion is mainly
theoretical, however a monadic interpreter (see Liang et al.
[6]) for a small functional language with dynamic variable
binding will be simulated in AspectJ to demonstrate the use
of dynamic quantification.

Although this work started as a project to identify the
commonalities of aspects and monads, it turned out that
the differences prevail. Based on ones point of view, this
may or may not be very surprising, but since the topic is
repeatedly brought up in blogs or discussions, we believe
there is some value in substantiating the debate.

In the following, we assume basic familiarity with monads
and monad transformers as available in Haskell [11], and
familiarity with AspectJ [3].

1.1 Aspect-oriented programming
The aim of AOP is generally uncontested: the separation

of cross-cutting concerns, i.e. a better source code organi-
zation that prevents that concerns are scattered around the
source code, and complementarily, that several concerns are
tangled at single places.

It is less clear, how to characterize the actual mecha-
nisms for achieving this aim. Filman/Friedman [1] have
given the famous characterization of AOP as “quantifica-
tion and obliviousness”, meaning that it allows the trig-
gering of actions whenever a specified condition arises in
a program (quantification), without the knowledge of the
programmer (obliviousness). But as obliviousness is in con-
flict with the principle of explicit interfaces, and there is a
case for non-oblivious quantification as well, this definition
has been seen as too restrictive. On the other hand, the def-
inition of Masuhara/Kiczales, requiring “a common frame
of reference that two (or more) programs can use to connect
with each other and each provide their semantic contribu-
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tion” [8] seems too general to delimit AOP from other kinds
of module systems.

Another characteristic of current AOP mechanisms, the
“introduction of declarative policy languages” [12], is left
implicit in both definitions, but will turn out to be helpful
in drawing a line to “classical” module systems.

For the further analysis, we will pragmatically define a
mechanism as aspect-oriented, if it aims at the separation
of concerns in the organization of source code, by making
use of declarative quantification and by finding a balance
between the contradictory principles of obliviousness and of
explicit interfaces.

1.2 Monads
Monads, besides being a notion of category theory and a

means of defining a categorical semantics of computations
[10], are a mechanism in functional programming that (1)
allows the introduction of imperative statements, like state-
ful computations or exceptions, into purely functional lan-
guages, and (2) provides a way to abstract over different
kinds of computations. We want to recapitulate briefly, how
this abstraction works.

A computation can be regarded as a kind of function that
will typically produce a value. Each kind of computation
is characterized by a specific structure of parameters and
return values. It can be defined by a type constructor that –
together with the value typically produced by a computation
– defines the type of this computation.

For example, the type constructor Maybe defines computa-
tions that typically produce values, but may fail. The types
of this kind of computation can be defined polymorphically
as:

data Maybe a = Just a | Nothing

There are two important operations that go with every kind
of computation: (1) several computations of the same kind
can be put together into a sequence; (2) a value can be
injected into a computation with the effect that this value
will be returned by the computation when it is run. Haskell
provides a specific monadic (do) notation that is useful for
putting together computations. Let us consider a simple
example of a comparison of two values associated with two
keys in a database:

eqVal key1 key2 db =

do val1 <- lookup key1 db

val2 <- lookup key2 db

return (val1 == val2)

This is a sequence of three computation steps, the first will
lookup key1 and will typically produce a value val1, but
may fail. The second step works analagously. The third
computation compares both values: the boolean value that
results from the comparison is injected into the kind of com-
putation. For the Maybe monad, the return operator is the
Just constructor, so if the computation arrives at the third
computation step, the result is either Just True or Just

False. The sequencing of computations is left implicit in
the do notation. A bind operator binds the value returned
by the first computation to a variable that can be accessed
by the latter computations. If a computation step fails in
the Maybe monad, the complete sequence is aborted, and
Nothing is returned.

The monad abstracts over the possible failure of the com-
putation. The programmer is oblivious to what happens
behind the scenes in two regards: (1) she does not have to
worry about the specific structure of parameters and return
values, but can simply inject values into the computation
where needed; (2) she does not have to worry about how
the effects of one step are passed to the next computation
steps (in this case, this concerns only the abortion of the
complete computation; but e.g. in the State monad, the
passing of the state through all computations is hidden be-
hind the scenes.)

Different monads can be combined via monad transform-
ers in order to express more complex kinds of computations.
The different concerns of these computations are separated
into the individual monads.

Modularity effects.
The addition of computational capabilities to some oper-

ations is the cause of a severe modularity problem in func-
tional programming: often the parameter structure of a
whole set of functions within a program has to be adapted
to reflect this additional capability. Using monads, the pa-
rameter structure can be encapsulated together with the op-
erations that make use of it (in the case of the Maybe monad,
the only such operation is the fail operation that is associ-
ated with the Nothing constructor). In that way, monadic
programming allows the careful inclusion of specific compu-
tational powers into a program, while keeping the different
kinds of computations modularized.

The price to pay for this is referential transparency, if one
takes the do notation of Haskell literally. For example, the
result of the get operation in the state monad is dependent
on the context, although it appears not to take any input
parameters. Of course, if one takes the hidden bind operator
into accout, it is still valid to reason with value substitution.

2. TANGLING CONCERNS IN FP
The tangling of concerns is not restricted to imperative

programming, but prevalent in functional programming as
well. Its simplest form is the side effect. But tangling con-
cerns can go together in different ways. A transaction con-
cern e.g. could rewind a computation. Monads are a natural
starting point, if one implements those tangled concerns in
a purely functional programming language. They allow for
the production of side effects as well as for some control of
execution, hiding all those computational details from the
base functionality.

In the following section, we want to present an imple-
mentation of the display update example in Haskell using
monadic programming. We want to discuss the capabilities
of monads regarding the modularization of the cross-cutting
concerns inherent in this example. The core of the display
update example – as it is discussed e.g. in [4] – is a module
that defines two simple shapes, points and lines, on a two-
dimensional cartesian coordinate system. All shapes are up-
dateable structures. In particular, they all have a move op-
erator, that moves the shape along both coordinates. This
module is complemented by an aspect that is responsible
for performing a display refresh, whenever a shape on the
display is updated.

The whole example rests on an imperative programming
foundation, regarding the shapes as stateful objects. It shall
not be discussed here, whether this implementation is the
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most natural for a functional programming language. As
the programming style is monadic, anyway, the imperative-
ness of the task is no hindrance to the implementation and
can still show the intricacies involved in handling tangling
concerns.

Display module.
We do not want to discuss the display module in detail,

but we cannot omit it completely: in contrast to the Java
solution we have to be much more specific on which com-
putational powers it shall have. The display functions are
implemented via an IOable monad (i.e. a monad that imple-
ments a liftIO function – belonging to the MonadIO type
class – that lifts an IO operation to the monad). Using the
style of [2], we define the interface of the display functions
via a type class, while giving an implementation using a
state monad transformer.1

class MonadIO m => MonadDisplay m where

setDisplay :: DisplayObject -> m ()

refreshDisplay :: m ()

type DisplayT = StateT DisplayObject

instance MonadIO m => MonadDisplay (DisplayT m)

...

The setDisplay function can be used for specifying an ob-
ject to be displayed, the refreshDisplay function has to be
called, whenever some information on the display changed
so that the information has to be refreshed.

An object that shall be displayed must be made an in-
stance of the Displayable class and implement the display

function.

class Displayable a where

display :: MonadIO m => a -> m ()

data DisplayObject =

forall a. Displayable a => DisplayObject a

The use of the forall quantifier in the data type DisplayOb-
ject can be regarded as a trick to ensure polymorphism over
all Displayable objects in the setDisplay function.

Shapes module.
The basic shapes functionality is implemented impera-

tively, in the example. IORefs are used as references to mem-
ory cells: a point is a reference to a pair of integers, a line
is a reference to a pair of points. Due to the use of IORefs,
all computations have to take place in an IOable monad.
The constructor newPoint and the accessor getPointX are
examples of functions that do not perform a state change
and solely depend on the MonadIO class.

newtype Point = P (IORef (Int, Int))

newPoint :: MonadIO m => Int -> Int -> m Point

newPoint x y =

do p <- liftIO $ newIORef (x, y)

return (P p)

1The full code is available at http://www.st.informatik.
tu-darmstadt.de:8080/∼ostermann/foal07/

getPointX :: MonadIO m => Point -> m Int

getPointX (P p) =

do (x,_) <- liftIO $ readIORef p

return x

In contrast, the movePointBy function has to trigger a dis-
play refresh. The straightforward way to integrate the shapes
functionality with the display functionality is to import the
Display module and add a call to refreshDisplay at the
end of all operations that perform a state change. The
movePointBy function then looks like this:

movePointBy (P p) dx dy =

do liftIO $ modifyIORef p

(\(x, y) -> (x+dx, y+dy))

refreshDisplay

The type signature for this function is inferred as:

movePointBy :: (MonadDisplay m) =>

Point -> Int -> Int -> m ()

Analogously, all the other state modifying functions have to
run in a monad encompassing the display state. For mak-
ing points and lines displayable, they have to be declared
instances of the class Displayable.

2.1 Obliviousness
This solution is very similar to a typical object-oriented

implementation (see e.g. the “GOFP” solution in [5]). The
base functionality is tangled with calls to the display mod-
ule. The monadic style allows us to abstract from the cur-
rent display state that would otherwise have to be passed
around through the base code. But it does not allow us to
separate out the call triggering the display refresh.

In AspectJ we can externally define a pointcut that trig-
gers the display refresh and that the programmer of the base
functionality is oblivious of. We cannot achieve oblivious-
ness with monads. The module boundaries are clearly re-
spected, and there is no way to reflect over the names of the
computations. The situation would be different, if monads
were used to implement an interpreter for an AO language,
because inside an interpreter reflective access is possible. In-
deed, Wand et al. [13] have defined a monadic semantics of a
pointcut mechanism: each procedure call takes place within
a join-point environment that is extended by the name of
the currently called procedure. This access to the procedure
name is not available in a direct implementation. Adding
reflection to a language with monads, on the other hand,
runs the risk of breaking not only modularity, but as well
the monad laws.

2.2 Non-oblivious AOP?
As it has been argued that obliviousness is not essential for

AOP, we can try to achieve some form of non-oblivious sep-
aration of concerns. We first have to specify, which concerns
are involved in the example. We will follow Kiczales/Mezini
who have analyzed three further concerns besides the refresh
implementation and the base functionality:

“Context-to-Refresh – What context from the actual dis-
play state change points should be available to the re-
fresh implementation?

“When-to-Refresh – When should the display be refre-
shed?
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“What-Constitutes-Change – What operations change
the state that affects how shapes look on the display,
i.e. their position?” [5]

The separation of the “context to refresh” concern makes
use of obliviousness in the implementations discussed in [5].
A static pointcut like this, target or args has to be used
within the aspect module in order to query the relevant in-
formation from a single place. The alternative would be to
pass along the information with the refreshDisplay call.
That would leave the concern scattered within the base func-
tionality. While a reader monad could avoid the explicit pa-
rameter passing, the environment to be supplied to the dis-
play module has still to be defined somewhere in the state
change operations of the base code. Thus, the scattering
cannot be avoided in that way.

The distinction between the concerns “when to refresh”
and “what constitutes change” can be made in the monadic
program, and the former concern can thereby be modular-
ized. For this purpose, the call of refreshDisplay is omit-
ted and the state changing code is embedded into the call
of a function withStateChangeSignal, instead.

movePointBy (P p) dx dy = withStateChangeSignal $

liftIO $ modifyIORef p (\(x, y) -> (x+dx, y+dy))

The withStateChangeSignal takes a computation as pa-
rameter, and embeds the computation into the sending of
a signal.2 This allows the receiver of the signal to attach
other computations before, after or around (including: in-
stead of) the original computation. This is in contrast to
firing an event, which would be the classical OO solution.3

The signal is declared via a type class MonadStateChange,
which in effect globalizes the declaration and permits to de-
fine an implementation in some module that is not imported
by the shapes module.

class MonadIO m => MonadStateChange m where

withStateChangeSignal :: m a -> m a

The type of the movePointBy function is inferred as:

movePointBy :: (MonadStateChange m) =>

Point -> Int -> Int -> m ()

We leave the concern of “what constitutes change” tangled
with the base functionality. We could separate the latter
by factoring out the former into a module working as a
proxy, that simply passes on the operations while accom-
panying those operations that perform a state change with
the corresponding signal. The viability of this approach de-
pends on the power to redirect to the proxy the calls to the
shapes module by its clients, that – if it is to be done in a
non-oblivious way – requires a powerful module system. To
which extent the Haskell type class system is apt for this
task, cannot be discussed here.

But even then, the tangling of concerns would only be
shifted to the proxy. Tangling is inevitable, because in
monadic programming there is no mechanism for what Fil-
man/Friedman [1] call “static quantification”: we cannot
make quantified statements over the program text, in the
sense of making statements that have an effect on more than
one place in the elaborated program (see [1]).

2The with prefix is adapted from a Lisp macro convention.
3However a similar effect could be achieved in Java by encap-
sulating the state modifying code into an anonymous class.

2.3 Declarativeness
A separate module is responsible for the integration of the

shapes and the display modules. It defines the Displayable

instances for the shapes, and it implements the “when to re-
fresh?” concern by defining an instance of the MonadState-

Change class:

instance MonadDisplay m =>

MonadStateChange m where

withStateChangeSignal c =

do result <- c

refreshDisplay

return result

The implementation evaluates the computation that has been
provided and refreshs the display thereafter. However, in
contrast to an AspectJ implementation (that depends on a
displayStateChange() pointcut; adapted from [5]):

after() returning: displayStateChange() {

Display.refresh();

}

it is obvious that the definition of when the display shall be
refreshed is not done in a declarative manner.

2.4 Dynamic quantification
However, it is possible to implement what Filman/Friedman

call “dynamic quantification”, the tying of “aspect behavior
to something that happens at run-time” [1]. In the current
implementation, the moveLineBy code looks like this:

moveLineBy :: MonadStateChange m =>

Line -> Int -> Int -> m ()

moveLineBy (L l) dx dy = withStateChangeSignal $

do (p1, p2) <- liftIO $ readIORef l

movePointBy p1 dx dy

movePointBy p2 dx dy

As movePointBy signals a state change as well, the signal
is sent three times. We can, however, adapt our implemen-
tation of the withStateChangeSignal function, in order to
prevent a repeated display refresh:

type StateChangeT = ReaderT Bool

instance MonadDisplay m =>

MonadStateChange (StateChangeT m) where

withStateChangeSignal c =

do result <- local (\_ -> True) c

p <- ask

unless p (lift refreshDisplay)

return result

The monad is adapted by transforming the display monad
through a reader monad over a boolean flag. The flag signals
whether a need to refresh the display has already been regis-
tered by a surrounding computation. The withStateChange
computation first executes the computation that has been
provided as its parameter and keeps the result. This exe-
cution is embedded into an environment where the flag set,
because the function itself takes responsibility for the dis-
play refresh. Afterwards, the computation will check its own
environment, whether the flag is set, and trigger a display
refresh otherwise. In any case, the kept result is returned.

30



The instance declaration ensures that the display monad
transformer and the reader monad transformer of the inte-
grating module are combined. The order of combination is
irrelevant when combining a state and a reader monad trans-
former, but the implementation could potentially break if we
were using another implementation of the display monad
that would not just encapsulate a state monad.

When looking at the examples that Filman/Friedman [1]
give for dynamic quantification, it is apparent, that some of
them correspond directly to monads: raising of exceptions
(error monad), calling a subprogram in temporal scope of
another operation (reader monad), the history of the pro-
gram execution (state monad). Furthermore, the authors
note that AOP variants of other programming languages
may include other ways of dynamic quantification, due to
their native language features, and name the capturing of
the current continuation in Scheme as an example (contin-
uation monad).

On the other hand, monadic programming only allows
non-oblivious dynamic quantification, i.e. quantification over
properties that are captured explicitly by a monadic opera-
tion (that works in that regard as a semantic marker), while
the typical use of e.g. the cflowbelow pointcut descriptor
is quantification over the control flow based on syntactic
names.

In addition, the monadic solution to the redundant display
refresh problem is not declarative. It uses a sequential style
for implementing the concern.

2.5 Advice confinement
Monads allow for a controlled extension of computational

capabilities. Therefore we expect the handling of tangling
concerns to be more controlled than in the AspectJ solution.
Indeed, the Haskell type system gives us some guarantees
on what part of the program the advice may affect. We
know e.g. that the display refresh code cannot trigger a state
change signal by some operation that it calls, because it does
not run in an instance of the MonadStateChange monad.
While this confinement of the powers of advice can simplify
reasoning about the program, it may on the other hand be
regarded as an unwanted restriction on the programmer’s
flexibility.

2.6 Conclusion
Monads are a common way to handle tangling concerns

in purely functional programming. They are a traditional
way to modularize computations in that they respect the
module interfaces. They can therefore not achieve oblivious
quantification. Furthermore, they differ from AOP by not
allowing for declarative quantification. However they are
similar to (a certain type of) AOP and more powerful than
traditional module systems in one regard: they provide the
abstractions that characterize dynamic quantification.

They appear to be similar to annotation-based AOP in
that they are more powerful than a traditional modular so-
lution, while remaining non-oblivious. Two differences to
the annotation-based AspectJ solution are apparent, how-
ever: (1) the monadic solution does not allow for declarative
quantification; (2) the AspectJ solution still encompasses a
reflection mechanism via the target, this, and args point-
cuts that break into the module implementation and allow
for separation of the “context to refresh” concern.

3. ASPECTS OF COMPUTATIONS
While above monads were used to encapsulate specific

tangling concerns, it can be argued that every monad can
be regarded as expressing a concern: the kind of a com-
putation can be regarded as an aspect of the computation.
Based on this assumption, we want to analyze, to what ex-
tent aspects might be able to fulfill the role of monads in
abstracting over kinds of computations. But we also want
to shortly discuss, if the power of AOP to separate concerns
were useful in monadic programming.

3.1 Abstracting over kinds of computations
At the heart of monads lie the two fundamental operators:

the return operator that injects values into computations
and allows the programmer to abstract over the parameter
structure of the actual monad, and the bind operator that
organizes the sequencing of computations. There are no
equivalents for those operators in AOP. AOP is not about
redefining the way that the sequencing of operations is in-
terpreted. Instead it is about introducing additional action
at specific points in the course of execution. This imposes
severe limitations in the way that AOP mechanisms can ma-
nipulate the flow of control and enrich the parameter struc-
ture.

3.1.1 Manipulating the control flow
In AspectJ, after advice has been executed at some join-

point, the execution is resumed after the join-point. There is
no way to jump forward to some join-point matching another
pointcut, or up to some position in the call stack. The only
way to achieve the latter is by throwing an exception within
the advice code, and by adding exception catching advice at
the position where execution shall continue. But throwing
of exceptions is not a mechanism introduced by AspectJ,
but belongs to the mechanisms of the base language.

Generally, aspect languages seem not to provide mecha-
nisms that allow the programmer to explicitly manipulate
the control flow. Thus, we cannot hope to express compu-
tations that are able to fail, like those represented by the
Maybe, the Error, or the List monad, via AO mechanisms.
We will have to use exception mechanisms to jump out of the
current point in program execution. The exception mecha-
nism makes equal the very different kinds of computations
expressed via the different monads, and therefore can hardly
count as a good abstraction mechanism over them. W.r.t.
the Continuation monad, if one does not restrict oneself
to escape continuations, the situation is even worse, as the
exception mechanism will probably not be powerful enough.

3.1.2 Enriching the parameter structure
An important part of abstracting over kinds of compu-

tation is associated with the ability to abstract over the
parameter structure of a computation. As we do not have
the power to inject values into computations, or to pass
the hidden parameters along in AOP, we cannot expect to
have a general mechanism for this kind of abstraction. The
sequencing of computations can only be translated into a
sequence of programming statements in our base language.

On the other hand, some of the powers offered by monads
might already be included as part of our base language. For
example, in Java there is no need to separate out the passing
around of a state through the execution sequence, in the
way it is done by the State monad. It might be argued
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that AOP mechanisms allow the programmer to pass along
state by introducing it within a separate module, e.g. by the
inter-type declarations of AspectJ. But this is a redundant
mechanism for abstracting over state, and is only useful for
separating out a concern that is related to the state.

However there is a way to implement some hidden form
of parameter passing in some AOP mechanisms, by using a
combination of dynamic quantification and reflection.

3.1.3 Using dynamic quantification
The most prominent mechanism for dynamic quantifica-

tion is the cflow pointcut in AspectJ. It allows for quantifi-
cation over the control context and may be able to simulate
powers of the Reader monad. We want to focus the discus-
sion on this mechanism.

The reader monad is typically associated with a function
to transform the environment of a control context (local)
and a function to read the environment within a control con-
text (ask). In order to simulate this in AspectJ, we have to
define a pointcut that matches the point where the environ-
ment is transformed, and a pointcut that matches the point
where the environment is demanded. Calling them local()

and ask(), the pointcut for reading the environment can be
defined as:

pointcut readEnvironment(Environment env):

ask() && cflow(local(env));

The remaining problem is how to define the local() point-
cut such that it contains the environment as a variable. First
of all, it must be noted that due to the workings of the cflow
pointcut, we can only access the innermost join-point that
matches the local() pointcut in the context. Therefore, the
complete environment must be made available there. We are
able to collect the environment information by using one of
the state-based pointcuts this(), target(), and args().

A typical application of the reader monad is its use for
keeping a variable environment in a programming language
interpreter. Although it can be used for statically scoped
variables, it is more naturally used for implementing (the
less wide-spread) dynamic variable binding.

Let us look at a simple interpreter implementing dynamic
binding for illustration purposes. A monadic interpreter
written in Haskell could look like this:

data Term = Const Int

| Var String

| Lambda String Term

| App Term Term

data Value = Num Int

| Fun (Value -> Reader Environment Value)

interpret :: Term -> Reader Environment Value

interpret (Const c) = return (Num c)

interpret (Var varId) =

do env <- ask

return (lookupVar varId env)

interpret (Lambda varId body) = return $

Fun $ \val -> local (\env -> (varId, val) : env)

(interpret body)

interpret (App e1 e2) =

do Fun f <- interpret e1

v <- interpret e2

f v

In a non-monadic program, the environment would have to
be passed through as a second parameter to the interpret

function. The reader monad allows for increasing the mod-
ularity of interpreters by hiding this parameter (see: Liang
et al. [6]).

In AspectJ, we can define a default implementation for a
static method Environment.read() that returns an empty
environment. This implementation is shadowed by an ad-
vice that is triggered, if the method is called within the con-
text of an environment extension. The advice then returns
the extended environment. The default implementation to-
gether with the advice plays the role of the ask function in
the reader monad.

The interpreter for a Var term is implemented as follows
(Environment.lookup() is a method that returns the value
of a variable this is stored in the environment):4

public Value interpret() {

return Environment.read().lookup(id);

}

The interpretation of a Lambda term is trivial: it creates a
value of class Function, simply passing along its parameter
name and its body:

public Value interpret() {

return new Function(variable, body);

}

The Function class implements an apply(Value) method
that will be called during the interpretation of an App term:

public Value apply(Value val) {

return new InEnv(body,

Environment.read()

.extend(variable, val))

.interpret();

}

The call of local in the Haskell code is replaced by the
creation of a new term of a class InEnv, that is only meant
to be used internally. The environment to be used for the
function application is created by extending the surrounding
environment via an extend() method on the Environment

class. In order to get the environment that is to be extended,
an Environment.read() message is sent here as well.

The InEnv class stores the function body as well as the
environment in which the body shall be executed. Its inter-
pret() method just calls the interpret() method of its
body. Its sole aim is to store the environment such that
it can be accessed by a pointcut. Whenever Environment.

read() is called, the aspect code can access the environment
in the following advice:

Environment around(InEnv inEnv):

execution(* Environment.read())

&& cflow(execution(* InEnv.interpret())

&& target(inEnv)) {

return inEnv.getEnvironment();

}

In this way, the cflow and target pointcuts can achieve
the same effect as the Reader monad. The local func-
tion cannot be perfectly imitated for two reasons: firstly,
4The full code is available at http://www.st.informatik.
tu-darmstadt.de:8080/∼ostermann/foal07/
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its first argument is an environment transformer, while due
to the nature of the cflow pointcut, the complete environ-
ment must be available in the innermost join-point matching
the cflow pointcut. And secondly, its second argument can
be any function, while the cflow pointcut has to define the
join-point, at which the environment is extended, by name.
In the solution given above, these issues could be solved by
making use of a new class InEnv that stores the environ-
ment, and by its method InEnv.interpret() that serves as
a marker for the cflow pointcut.

3.2 Separating kinds of computations
In the following, it shall shortly be discussed whether the

lack of separation of concerns when using monads has to be
regarded as a shortcoming in relation to AOP. The question
is, whether it is useful to separate the operations that access
and manipulate the extended parameter structure from the
normal execution of the sequence of operations.

In the example of the interpreter given above, the separa-
tion of the environment retrieval from the interpreter con-
cern would be artificial: it is relevant for the understanding
of how the interpretation of e.g. the Var term takes place to
know that the environment is accessed at that point.

In contrast, there are situations in which the separation of
concerns might seem appropriate: one could think of some
logging function that is enabled or disabled by setting a
dynamic boolean variable. It could be useful to put the
logging code into a separate module.5

Something similar holds for the error monad. While Lip-
pert/Lopez [7] give examples of the usefulness of separating
out exception detection and handling into separate mod-
ules, this is not generally so. The basic reason for throwing
an exception is that a computation cannot continue with a
reasonable result. This breakdown in the execution of the
current concern is normally a relevant part of this concern
and it therefore is not appropriate for singling it out into a
separate module. Looking at these two examples, it has to
be expected, that there is no general answer to this question.

3.3 Conclusion
There is no general way to introduce computational pow-

ers in a controlled fashion in AOP. State and exceptions are
part of the native mechansims of most languages. Their use
cannot be restricted. Nevertheless, a certain extension of
computational powers can be achieved by the mechanisms
of dynamic quantification.

The limitation of referential transparency that has been
discussed as a problem of the use of monads is omnipresent
in those languages, anyway. On the other hand, the absent
power of monads to separate out concerns, in the way that
AOP does it, can in some cases be regarded as a limitation
of their expressiveness.

4. CONCLUSION
To sum it up, monads and aspects have to be regarded as

quite different mechanisms, not able to express each other.
On the one hand, monads are not capable of oblivious quan-
tification. The only kind of quantification they allow is
dynamic quantification in a non-declarative way. It would
therefore stretch the meaning of AOP to still consider mon-

5Of course, logging in Haskell requires the combination with
some writer or similar monad.

ads as an aspect-oriented mechanism. On the other hand,
aspects are not very useful in abstracting over computational
capabilities.
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ABSTRACT
AspectJ aims at managing tangled concerns in Java sys-
tems. Crosscutting aspect definitions are woven into the
Java bytecode at compile-time. Whether the better mod-
ularization introduced by aspects is real or just apparent
remains unclear. While aspect separation may be useful to
focus the programmer’s attention on a specific concern, the
oblivious nature of the weaving makes it difficult to figure
out the behavior of the whole system. In particular, it is
not easy to figure out if two aspects interfere one with the
other. We built a bytecode slicer called XCutter in order
to study which part of the woven code is affected by the ap-
plication of an aspect. However, our experiments show that
a static analysis of AspectJ woven bytecode does not give
the expected results, unless the code is properly annotated.

Categories and Subject Descriptors
D.1.m [Programming Techniques]: Miscellaneous; D.2.4
[Software Engineering]: Software/Program Verification;
D.3.3 [Language Constructs and Features]:

General Terms
Languages, Verification

Keywords
Program analysis, Slicing, aspect-oriented programming, As-
pectJ, interference analysis

1. INTRODUCTION
AspectJ [1] is the most successful language embodying the
idea of aspect-oriented programming, introduced by Kicza-
les et al. in [2]. In AspectJ, crosscutting entities called as-
pects are woven into traditional object-oriented (Java) byte-
code at compile-time. Nevertheless, events that can trigger
the execution of aspect-oriented code are run-time events:
method calls, exception handling, and other specific points
in the control flow of a program. The basic idea is that as-
pects describe crosscutting computations (pieces of advice)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Foundations of Aspect-Oriented Lan-
guages (FOAL 2007), March 13, 2007, Vancouver, BC, Canada.
Copyright 2007 ACM ISBN 1-59593-671-4/07/03 ...$5.00.

by referring to an abstract view of the system and composi-
tion is performed by the automatic weaving process, which
produces a standard Java bytecode application.

In principle, the various aspects should not interfere with
one another, and they should not interfere with the evolu-
tion of classes. Currently, non interference in presence of
class evolution is really hard, and programmers should be
very careful in writing aspects that make use of the imple-
mentation details of classes as little as possible if they want
to be able to reuse their aspects. Moreover, it is still not
clear how to cope with the difficult problem of aspect inter-
action. In fact, the code affected by an aspect is oblivious
about that, i.e., its text does not contain any clue about
which aspects might or will be advised on it. Thus, by look-
ing at a given statement, programmers may have a hard time
figuring out if one of the aspects of the system will influence
it. We believe that this represents a limit in the current
AspectJ approach, since it means that the actual separation
of aspects is in a sense only apparent. In other words, while
aspect code units are physically separated, one has always
to keep all of them in mind while coding the other parts
of the system, since every aspect could potentially influence
any other component.

In order to assess the complexity of the weaving in an As-
pectJ program, we proposed[3, 4] to use program analysis
techniques to measure how large is the portion of a program
potentially (i.e., statically known) affected by an aspect. We
suggested this could be used to study aspect interactions.
In fact, roughly speaking, if the portions affected by two as-
pects do not overlap, this is a sufficient condition to state
that they do not interfere. More precisely, let a code unit
be an aspect or a class of a system. We say that an aspect
A does not interfere with a code unit C if and only if every
interesting predicate on the state manipulated by C is not
changed by the application of A. For example, if an object x
manipulated by C exists such that the predicate x ≤ 0 must
hold for the correctness of the system, A does not interfere
with C only if C woven with A preserves x ≤ 0. This defi-
nition captures only interferences caused by inconsistencies
in the state manipulated by the code units: other types of
clashing are not considered.

This can be used to derive an operational test to find out as-
pect potential collisions [3]. If A1 and A2 are two aspects and
S1 and S2 the corresponding backward slices [5] obtained by
using all the statements defined in A1 and A2 as the slicing
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criterion, A1 does not interfere with A2 if A1 ∩ S2 = ∅. In
fact, the set S2 contains all the statements that affect the
slicing criterion (a set containing all the statements of A2).

To this end, we built XCutter 1 (to be pronounced cross-
cutter) a tool to do backward static slicing on Java bytecode
and to map bytecode entities back to the AspectJ code. In
this paper we report about the challenges we encountered in
building such a tool and some preliminary results about its
use. The paper is organized as follows: Section 2 briefly sur-
veys slicing techniques and talks about our work to build a
working slicer, Section 3 talks about the preliminary results
we obtained using our tool on AspectJ programs for inter-
ference detection, and Section 4 finally discuss the lessons
we learnt.

2. SLICING OBJECT AND ASPECT ORI-
ENTED PROGRAMS

Program slicing is a program analysis technique introduced
by Weiser in the ’80s [5]. A backward slice is a set of program
instructions that, fixed one or more instructions as a slicing
criterion, influence the criterion, i.e., change the right-values
of the statements included in the criterion. Ottenstein and
Ottenstein proposed a slicing technique based on a graph
representation of the program in [6], in which directed edges
represent data and control dependencies between instruc-
tions. The original proposal was about a technique to ana-
lyze a single procedure of a procedural program. In [7] the
graph-based approach was extended to handle programs in-
cluding interacting procedures calls, and an algorithm that
could correctly take the calling context into account was
proposed. This algorithm performs two phases of reacha-
bility analysis, which consider different kinds of edges, to
preserve the calling context. The resulting slice is a set of
graph nodes that is mapped back onto the program source.
Slicing techniques were further studied and applied to object
oriented programs by Liang and Harrolds in [8].

Object oriented slicing techniques, unfortunately, cannot be
used as is to analyze aspect oriented programs, since the
weaving introduces data dependencies that have to be taken
into account. A graph representation for the AspectJ lan-
guage was proposed by Zhao in [9]. His work relies on the
graph representation presented for object oriented programs
and adds representation for some of the constructs of As-
pectJ. Pieces of advice are represented as methods, point-
cuts are represented adding a pointcut edge from the entry
of a piece of advice representation to the point in the base
system code captured by the pointcut. Intertype declara-
tions are represented adding the representation for the field
or method introduced and binding it with an introduction
edge to the interested point of the base system. However, the
dynamic nature of pointcut definitions (that can even apply
to pieces of advice to which are attached) is neglected.

Slicing AspectJ programs by considering aspects as first
class entities, is appealing, since it allows for not consid-
ering the actual implementation of the weaver. However, in
order to build working tools one has to deal with the details

1The source code of the tool is available at http://www.
elet.polimi.it/upload/cavallaro/thesis/Xcutter.jar
under the terms of a GPL license.

of the expressive power of all AspectJ constructs. This ef-
fort actually replicates the weaving task. Therefore, in [4]
we proposed to exploit the fact that AspectJ programs are
eventually translated into Java bytecode, and the latter is
an object oriented language, to which the mainstream state
of the art of program analysis can be applied.

Our strategy is divided in four steps:

1. Compile Java classes and aspects using an AspectJ
compiler and weave aspects into an executable pro-
gram.

2. Apply existing slicing algorithms to the resulting byte-
code.

3. Obtain a slice as a set of bytecode statements.

4. Map these statements back onto the original source
code of the program.

Working at bytecode level may seem inappropriate, since
in bytecode there is no distinction between the aspect ori-
ented and the object oriented parts of an AspectJ program.
In fact, the weaving process translates aspects into classes,
pieces of advice in methods and pointcuts into method invo-
cations. Thanks to this, the mapping of bytecode instruc-
tions onto source code can be done rather efficiently and
precisely. Some problems about intertype declarations re-
main (see Section 2.3.5): these could be in future resolved
by a suitable use of bytecode annotations by the AspectJ
compiler. XCutter, our backward static slicer, can an-
alyze both AspectJ and Java programs, since it works at
bytecode level.
A tool similar to ours is Indus [10], a slicer for Java that
works at the bytecode level: unfortunately it was made
available when our effort was already begun and initially
released with a license [11] incompatible with our commit-
ment to produce an open source product. Indus can slice
multithreaded programs, while our current prototype can
not. It is based on a context-sensitive points-to analysis,
but context-sensitivity is not fully exploited by its slicing al-
gorithm. For example, the context-sensitive points-to anal-
ysis can distinguish between different instances of internal
data structures of different Vectors, but the slicing algo-
rithm does not distinguish between modifications to two
different Vectors, thus obtaining the same precision level
resulting from the use of a context-insensitive points-to anal-
ysis. Moreover, Indus is focused on slicing Java programs.
AspectJ-specific slicing strategies could not be implemented
on top of it, so it could not be used for interference analysis.

2.1 Slicer Architecture
XCutter is built on top of Soot, a program analysis frame-
work for Java [12]. Soot provides an intermediate represen-
tation of Java bytecode called Jimple– a three-address typed
representation suitable for analysis– and supports intrapro-
cedural analyses. Moreover it is accompanied by Spark, a
framework for points-to analysis.

XCutter is structured as a series of analyses which run in-
side the Soot framework. As depicted in Figure 1, the anal-
ysis starts by compiling the AspectJ program sources and
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weaving the resulting bytecode. The latter is then imported
in Soot and translated into Jimple. This intermediate rep-
resentation undergoes a series of preliminary analyses, used
to discover some information necessary to build a slice, and
is used as input for the slicing algorithm, described in Sec-
tion 2.3. The resulting slice is finally mapped back onto the
source code of the AspectJ program.

Figure 1: Architecture of XCutter

2.2 Preliminary analyses
Preliminary analyses compute data and control dependen-
cies between instructions of the program. Instructions are
annotated with information on the discovered dependencies,
which are used by the slicing algorithm to compute the back-
ward static slice.

Figure 2: Overview of analysis order

The preliminary analysis starts computing the points-to in-
formation by using the Spark framework [13]. This analysis
computes the set of Java objects that a given variable in the
program may point to. These results are then used by both
data flow and control dependence and exception analysis
(see Figure 2).

The data flow analysis computes the reaching definitions in
the program. For efficiency reasons we divided this analysis
in local data flow analysis and reference data flow analysis.
Local data flow analysis computes reaching definitions be-
tween Jimple local variables contained in a single method.

For this analysis we adapted the algorithm described in [14].
Reference data flow analysis computes data dependencies
caused by definitions and uses of static fields, object fields,
and arrays. This analysis needs a side effects analysis as a
preliminary step. The side effect analysis computes which
object fields, arrays and static fields may be used or modified
by each method in the program. Each method is, initially,
analyzed by itself, then the information found for a method
is propagated through the call graph. Reference analysis
uses the results of the side effect analysis to model the effect
of method call statements. Using this strategy the reference
analysis can be performed intraprocedurally, improving effi-
ciency.

The control dependence analysis aims at finding intraproce-
dural control dependencies. The algorithm used was adapted
from [14]. The exception analysis was adapted from the one
proposed in [15]. Exceptions may introduce intraprocedu-
ral and interprocedural control dependencies in a program.
Methods in the program are searched, from call graph leaves
to the main method, to find if they might throw exceptions.
If an exception is thrown there is a control dependence from
the throwing instruction to all the following instructions,
in the method body. Moreover the method is searched for
an appropriate catch clause. If it is found, it means there
is a control dependence from the throwing instruction to
the instructions contained in the catch block. If no catch
block is found the information about the thrown exception
is propagated to the callers. If the callers contain an ap-
propriate catch block there is an interprocedural control de-
pendence from the thrower instruction to the instructions of
the catch block, else the information is further propagated
to the callers.

The results of data flow and control dependence and excep-
tions analyses are annotated in tags associated with Jimple
instructions and methods, and are used as input for the slic-
ing algorithm.

2.3 The slicing algorithm
Existing slicing algorithms for procedural and object ori-
ented programs ([7], [8], [16]) require the construction of a
graph representing the analyzed program. Most features of
the Java language have been separately taken into account,
and algorithms to create corresponding graphs have been
proposed. However, creating a graph that correctly takes
into account the whole Java language requires theoretical
work to merge different approaches. Our slicing algorithm
is not graph-based. Instead of building a graph represent-
ing the entire program, slicing is performed using results of
preliminary analyses, which compute dependencies between
statements. This makes the slicing algorithm more com-
plex than a graph-based algorithm, because dependencies
between instructions are not represented explicitly by edges.
However, several features such as exception handling and
polymorphism are easier to manage without an unnecessary
pollution of ad-hoc edges. In the following, we describe the
engineering challenges we encountered in building a work-
ing tool: most of problems we faced are extensively studied
in the program analysis literature. Notwithstanding that,
putting together independent results in an effective proto-
type was a hard work, mostly absent in the publicly available
code.
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2.3.1 Library and application methods
Any non trivial Java program uses some library method.
This means that a lot of library methods are part of the
program, because they are transitively called by applica-
tion code. Traditional algorithms require a detailed anal-
ysis of the entire program and the creation of a graph for
every library and application method. While experimenting
on small AspectJ examples, we noticed that usually a large
part of the program is composed by library methods. Our
interference analysis deals with slices containing instructions
belonging to aspects, which are not contained in the Java li-
brary. So we decided to keep the distinction between library
and application methods, and analyze them with different
precision levels. In particular, detailed data and control de-
pendence analysis is performed on application methods only.
The slicer analyzes library methods to detect which values
are used or defined by these methods, but it does not com-
pute dependencies between instructions of a library method.
This also affects how method calls are handled. Information
on side effects and thrown exceptions is necessary to take
into account data and control dependencies. However, calls
to library methods are treated atomically. In fact, when an
instruction calling a library method is put into the slice, the
whole library method, and the method it transitively calls,
are considered to be part of the slice. The difference between
library methods and application methods is decided by the
user, by choosing which packages contain application meth-
ods. Moreover, the analysis can be configured to treat some
library methods with the same level of detail used for ap-
plication methods, using a depth parameter. The increased
precision is used for library methods whose distance from
application methods in the call graph is smaller than depth.

2.3.2 Using dependencies
The slicing algorithm uses dependencies computed by pre-
liminary analyses to add instructions to the slice. Although
the slicing algorithm is not graph based, we called node the
entity used to represent instructions. However, new nodes
are created only when new instructions are added to the
slice. The algorithm uses several kinds of nodes. When a
new instruction is added to the slice, a new node is created,
whose kind depends on the included instruction. Table 1
summarizes node types and the corresponding actions, and
Figure 3 shows how the algorithm decides the type of a node
when a new instruction is added to the slice.

Simple nodes are used to represent instructions not contain-
ing method calls, while call site nodes are used for instruc-
tions containing explicit or implicit2 method calls.
Actual in and actual out nodes are used to represent val-
ues used or defined by a method at call sites. An actual in
node represents a single value used by a method, such as a
method parameter, an array, an object field or a static field.
An actual out node represents a single value defined by a
method.
Values used and defined by library methods are not repre-
sented using actual in and actual out nodes. A single pseudo
actual node is used to represent all the values used and de-
fined by a library method. In fact, since library methods
are not analyzed in detail, there is no way to determine de-
pendencies between output and input values. Using a single

2implicit method calls are calls to class static initializers

node to represent all of them provides a safe approximation,
representing the fact that any output value could depend
on any input value. Actual in nodes are only created when
actual out nodes are examined.

Figure 3: The flowchart for identifying pseudo-
actual nodes

Nodes included in the slice are put in an open list. The
algorithm extracts nodes from the open list one at a time,
and executes different actions according to the node type
(as shown in Table 1). For example, when a simple node is
extracted from the open list, the algorithm examines data
and control dependencies of the instruction represented by
the node. Instructions on which the node depends are added
to the slice, and corresponding nodes are added to the open
list. However, when a call site node is extracted from the
open list, control dependencies are examined as they are for
simple nodes, but data dependencies are treated differently.
In particular, the algorithm only examines data dependen-
cies regarding the local variable on which the method is
called. In fact, data dependencies regarding values used by
the method are examined when the corresponding actual in
nodes are examined. Once a node is examined, it is put in
a closed list, which is used to avoid re-analyzing the same
node.

2.3.3 Dependence relation
The most expensive part of the construction of the graph
is the computation of summary edges (a detailed analysis
of its cost is provided in [17]), that express the dependence
of values defined by a method on values used by the same
method. Graph-based slicing algorithms such as [7] require
computing summary edges before the slicing phase begins.
This can be very expensive in terms of required memory and
computation time. For a typical Java program, the cost is
O(CallSites × Params3), where Params is the maximum
number of method parameters and CallSites is the number
of method call instructions in the code. Method parameters
include object and static fields which are transitively used
or modified by the method. Even for example programs
using library methods, Params is greater than 10,000 and
CallSites is greater than 100,000. This is why our algo-
rithm computes and stores these dependencies during the
slicing phase, using a dependence relation that is enriched
as new dependencies are computed. When a method call
instruction is put into the slice because of a data or control
dependence, the computation of the dependence relation for
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Node kind Represents Action
Simple An instruction not containing a method

call
Follow data and control dependencies

Call site An instruction containing a method call Follow control dependencies (and data dependen-
cies for the local variable representing the receiv-
ing object)

Actual in A value used by a method at a call site Follow data dependencies for the value repre-
sented by the node

Actual out A value defined by a method at a call site Compute dependence relation, generate actual in
nodes

Pseudo actual All values used and defined by a library
method at a call site

Follow data dependencies for every value used by
the library method

Table 1: Actions corresponding to different kinds of slicing nodes

the related value is started. The value can be any value de-
fined by the method, including thrown exceptions. To com-
pute the dependence relation for a given value, the algorithm
looks for the instructions that define the value. Then the al-
gorithm starts examining dependencies according to table 1.
During computation of the dependence relation, dependen-
cies are used to reach other instructions. Values used by
reached instructions are used to enrich the dependence re-
lation. In fact, since the algorithm follows data and control
dependencies, the values used by reached instructions influ-
ence the defined value. When the dependence relation is
enriched, actual out nodes related to the examined method
are analyzed again to create appropriate actual in nodes.

2.3.4 Current limitations
XCutter has currently some limitations. Some of them
have effects on the correctness of the slice.

The Java language allows the programmer to call methods
written in native languages, such as C and C++, using the
Java Native Interface [18]. The slicing engine cannot analyze
these methods, because there is no bytecode corresponding
to them and thus Soot cannot create Jimple representations
for them. Unfortunately, native methods might have side
effects and not taking into account these side effects leads
to incorrect slices. In the future we plan to add support for
side effect specification of native methods.

Our slicer works under a closed world assumption. Some
Java features do not respect this assumption, so our tool
can not handle dynamic class loading and reflection, since
they introduce in the program some elements unknown at
compile time.

The slicing engine uses data and control dependencies to
compute the slice. These two kinds of dependencies correctly
describe sequential programs. To correctly take into ac-
count concurrent programs, however, other kinds of depen-
dencies are needed. Divergence dependencies, Interference
dependencies, Synchronization dependencies, and Ready de-
pendencies, are used to model dependencies caused by syn-
chronization and concurrency mechanisms [19]. The slicing
engine does not consider these other kinds of dependencies,
potentially and incorrectly excluding some instructions from
the slice. However, data and control dependencies between
instructions executed in the same thread are correctly taken

into account.

2.3.5 Source code mapping
The computed slice is made of bytecode instructions, but it
can be mapped back onto the source code, using source line
information introduced by the weaver. Some instructions,
however, are not correctly mapped. For example, most
pointcut definitions are not mapped, because they generate
no executable bytecode. In fact they are used by the weaver
to identify join points where advice code has to be inserted.
Another mapping problem is caused by declare parents or
introduce instructions. These instructions are used by the
weaver to modify the class hierarchy or the interface of the
object oriented part of the program, but the weaver does not
leave any trace of the modification in the bytecode, so these
instructions are never included in the bytecode-level slice.
To ease the work of bytecode analysis, we suggest that the
weaver should put more information in the woven bytecode,
exploiting, for example, the opportunity of annotating byte
code introduced in Java5.

3. INTERFERENCE ANALYSIS
We exploit our slicer to study aspect interference. Consider
the example shown in Listing 1.

The aspect SpeedController is interested in the calls to the
“setters” of the Factory class: it regulates the speed, keep-
ing it under a fixed value. The aspect RotationMonitor is
in charge to log any speed change. While SpeedController

modifies a property of the underlying system, the Rotation-
Monitor is simply an observer. Thus, the RotationMonitor

aspect does not interfere with the SpeedController one.
(Conversely, the SpeedController does interfere with Rota-

tionMonitor).

We expected to be able to check this property with our slicer:
a backward slice associated to SpeedController should not
contain any of the statements of RotationMonitor. Unfor-
tunately, things are more complicated. In fact, the dynamic
nature of join-points selection means that the weaver has to
put some machinery in the code. Modern weaver implemen-
tations use to translate each piece of advice as a method and
to insert the translated code into the right point in the pro-
gram, selecting a Join point shadow (i.e. the representation
of a join point in the source code)[20]. They try, anyway,
not to inline code to let the translated bytecode have the
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Listing 1: The source code of two aspects to show interference definition
1 package examples.lollypop;
2
3 public aspect SpeedController {
4
5 pointcut speedset(Factory f,int x):
6 call (public ∗ Factory.set∗ (int) ) && args(x)
7 && target(f);
8
9 after(Factory fact, int speed): speedset(fact,speed) {

10 if (speed>4) {
11 fact.setRotationSpeed(speed/2);
12 System.out.println(”check done”);
13 }
14 }
15 }
16
17
18 public aspect RotationMonitor {
19
20 pointcut speedmonitoring(Factory f,int speed):
21 call (public void Factory.set∗ (int)) &&
22 target(f) && args(speed);
23
24 after(Factory fact,int rpm): speedmonitoring(fact,rpm) {
25 System.out.println(”Lollypop stick rotation speed set to ” + rpm + ” rpms”);
26 }
27 }

same accessibility rules than regular Java bytecode.
Following this approach it is sometimes necessary duplicat-
ing pieces of advice to translate properly a pointcut. An
example of this behavior can be the After Finally Advice.
This represents advice that should run after exiting from
the selected join point, both in case of normal execution or
in case of exception throwing. The translation strategy of
the AspectJ compiler, in this case, is duplicating the call
to the method that translates the given piece of advice.
This implies the existence of a control dependence from the
join point shadow to the advice methods call present in the
normal execution branch and in the exceptional execution
branch.
Moreover aspects are usually implemented following the sin-
gleton pattern (i.e. there is only one instance of each aspect
in the system). The access to the aspect instance happens
using the aspectOf static method of the aspect, that returns
the required instance. This introduces a data dependence
that is not present in the source code of the system.
An example of after finally advice translation is shown in
listing 2. This listing shows the Jimple translation of the
piece of advice of SpeedController. The statements at lines
26 and 42 are introduced by the translation of the after fi-
nally advice. To force the system to execute the piece of
advice both in case of normal execution or in case of ex-
ception, at the end of the join-point shadow, is thrown an
exception that is caught by instructions. in lines 57 and 58
introducing control dependencies that are not present in the
source code of the system.
Lines 28 and 34 invokes the aspectOf method of RotationMo-
nitor. This method returns an instance of the aspect itself.
This is necessary since the piece of advice of RotationMonitor
needs to execute after a speed change. The method aspectOf

might throw a NoAspectBoundException. This exception

can be caught at line 42, generating a control dependence
from line 38 in listing 3 to the catch instruction at line 42
of listing 2.

These control dependencies, caused by the exception han-
dling code introduced by the weaver, cause the interference
analysis to assume that the two aspects interfere, even if,
theoretically, we would expect no interference. Finding these
dependencies is an important improvement in the accuracy
of our prototype: our first version (described in [4]) could
be successfully used to exclude interference between aspects
like RotationMonitor and SpeedController, since it per-
formed simpler, though potentially incorrect, analyses.
The spurious dependencies disappear if the pieces of ad-
vice shown in listing 1, which are of type after finally,
are transformed into after return pieces of advice. In this
case, the bytecode of the SpeedController aspect is simpli-
fied and does not use exceptions to manage control flow, as
shown in listing 4.

There is no definitive solution to this problem since the de-
pendencies are due to the semantics of the after finally ad-
vice. It should be, anyway, possible to ignore the depen-
dency introduced by the translation of this kind of advice
annotating, during the translation phase, the exceptions in-
troduced. During the slicing phase the dependencies due to
annotated exceptions can be ignored. This solution leaves
unaltered the translated bytecode and does not alter the
analysis semantics, since those exceptions, whose dependen-
cies are ignored, are used only to transfer control.

4. LESSON LEARNED
Aspect oriented programming as popularized by AspectJ
claims that cross-cutting concerns should be coded in iso-
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Listing 2: The Jimple translation of the after advice of the aspect SpeedController in Listings 1
1 public class examples.lollypop.SpeedController extends java.lang.Object
2 {
3 public void ajc$after$examples lollypop SpeedController$1$fda05aef(examples.lollypop.Factory, int)
4 {
5 examples.lollypop.SpeedController r0, $r9, $r10;
6 examples.lollypop.Factory r1, r2;
7 int i0, i1;
8 java.lang.Throwable r3, r4, $r5, $r8;
9 examples.lollypop.RotationMonitor $r6, $r7;

10
11 r0 := @this: examples.lollypop.SpeedController;
12 r1 := @parameter0: examples.lollypop.Factory;
13 i0 := @parameter1: int;
14 if i0 <= 4 goto label7;
15
16 i1 = i0 / 2;
17 r2 = r1;
18
19 label0:
20 virtualinvoke r2.<examples.lollypop.Factory: void setRotationSpeed(int)>(i1);
21
22 label1:
23 goto label3;
24
25 label2:
26 $r5 := @caughtexception;
27 r3 = $r5;
28 $r6 = staticinvoke <examples.lollypop.RotationMonitor: examples.lollypop.RotationMonitor aspectOf()>();
29 virtualinvoke $r6.<examples.lollypop.RotationMonitor: void
30 ajc$after$examples lollypop RotationMonitor$1$839313f3(examples.lollypop.Factory,int)>(r2, i1);
31 throw r3;
32
33 label3:
34 $r7 = staticinvoke <examples.lollypop.RotationMonitor: examples.lollypop.RotationMonitor aspectOf()>();
35 virtualinvoke $r7.<examples.lollypop.RotationMonitor: void
36 ajc$after$examples lollypop RotationMonitor$1$839313f3(examples.lollypop.Factory,int)>(r2, i1);
37
38 label4:
39 goto label6;
40
41 label5:
42 $r8 := @caughtexception;
43 r4 = $r8;
44 $r9 = staticinvoke <examples.lollypop.SpeedController: examples.lollypop.SpeedController aspectOf()>();
45 virtualinvoke $r9.<examples.lollypop.SpeedController: void
46 ajc$after$examples lollypop SpeedController$1$fda05aef(examples.lollypop.Factory,int)>(r2, i1);
47 throw r4;
48
49 label6:
50 $r10 = staticinvoke <examples.lollypop.SpeedController: examples.lollypop.SpeedController aspectOf()>();
51 virtualinvoke $r10.<examples.lollypop.SpeedController: void
52 ajc$after$examples lollypop SpeedController$1$fda05aef(examples.lollypop.Factory,int)>(r2, i1);
53
54 label7:
55 return;
56
57 catch java.lang.Throwable from label0 to label1 with label2;
58 catch java.lang.Throwable from label0 to label4 with label5;}}

Listing 3: The Jimple partial translation of the RotationMonitor aspect
25 public static examples.lollypop.RotationMonitor aspectOf()
26 {
27 examples.lollypop.RotationMonitor $r0, $r3;
28 java.lang.Throwable $r1;
29 org.aspectj.lang.NoAspectBoundException $r2;
30
31 $r0 = <examples.lollypop.RotationMonitor: examples.lollypop.RotationMonitor ajc$perSingletonInstance>;
32 if $r0 != null goto label0;
33
34 $r2 = new org.aspectj.lang.NoAspectBoundException;
35 $r1 = <examples.lollypop.RotationMonitor: java.lang.Throwable ajc$initFailureCause>;
36 specialinvoke $r2.<org.aspectj.lang.NoAspectBoundException: void
37 <init>(java.lang.String,java.lang.Throwable)>(”examples lollypop RotationMonitor”, $r1);
38 throw $r2;
39
40 label0:
41 $r3 = <examples.lollypop.RotationMonitor: examples.lollypop.RotationMonitor ajc$perSingletonInstance>;
42 return $r3;}}
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Listing 4: The Jimple translation of the after return advice of the aspect SpeedController
1 public class examples.lollypop.SpeedController extends java.lang.Object
2 {
3 public void ajc$afterReturning$examples lollypop SpeedController$1$fda05aef(examples.lollypop.Factory, int)
4 {
5 examples.lollypop.SpeedController r0, $r4;
6 examples.lollypop.Factory r1, r2;
7 int i0, i1;
8 examples.lollypop.RotationMonitor $r3;
9

10 r0 := @this: examples.lollypop.SpeedController;
11 r1 := @parameter0: examples.lollypop.Factory;
12 i0 := @parameter1: int;
13 if i0 <= 4 goto label0;
14
15 i1 = i0 / 2;
16 r2 = r1;
17 virtualinvoke r2.<examples.lollypop.Factory: void setRotationSpeed(int)>(i1);
18 $r3 = staticinvoke <examples.lollypop.RotationMonitor: examples.lollypop.RotationMonitor aspectOf()>();
19 virtualinvoke $r3.<examples.lollypop.RotationMonitor:
20 void ajc$afterReturning$examples lollypop RotationMonitor$1$839313f3(examples.lollypop.Factory,int)>(r2, i1);
21 $r4 = staticinvoke <examples.lollypop.SpeedController: examples.lollypop.SpeedController aspectOf()>();
22 virtualinvoke $r4.<examples.lollypop.SpeedController:
23 void ajc$afterReturning$examples lollypop SpeedController$1$fda05aef(examples.lollypop.Factory,int)>(r2, i1);
24
25 label0:
26 return;
27 }
28
29 }

lation and woven automatically together. However, under-
standing interaction among different aspects is hard and tool
support is still very poor.

Our experimental work shows that static analysis of woven
code has some potential for making explicit the problems
that arise due the complexity of intertwined code. However,
simplistic slicing is not sufficient to determine whether two
aspects may interfere. In fact, the machinery introduced for
the sake of the weaving itself, makes slices always overlap-
ping. Thus, our sufficient condition to exclude interference
came out to be naive, since it is likely to be always false.
Some of the dependencies, caused by the way advice weav-
ing is performed, could be avoided with a parallel source
level analysis or a suitable use of dynamic techniques. Smart
heuristics are needed, though, and they are likely to depend
heavily even on the lowest level of weaver implementation
details. A better approach would be the use of annotations
by the weaver itself, in order to keep track of the aspect
oriented abstraction layer at the bytecode level.

Moreover, slicing Java bytecode also showed us that severe
precision problems exist when real world programs are con-
cerned. A common issue is due for example to library meth-
ods: consider two calls to the add method of two different
Vectors. Unless the slicer creates multiple copies of the
same method to distinguish among different receiving ob-
jects, the static analysis will detect spurious dependencies,
resulting in large slices. Native code is almost ubiquitous in
library frameworks and this means that some dependencies
may also be neglected: big slices can even be incomplete!
Static analysis of bytecode should be used as a support to

further analyses at different levels. Furthermore, the closed
world assumption behind any static analysis is challenged
by current coding practice. Dynamic linking and reflection
are common place in most applications. However the ex-
pressive power of intertype declarations common in AspectJ
programs forces any analysis to take into account every as-
pect unit just to compute the static structure of the type
system.

The path towards having crosscutting components that can
be safely plugged into a system is still long. AspectJ as-
pects make easy to program quick pools of sparse code and
their use spread among developers. However, the next step
in dealing with complex cross-cutting concerns and their in-
teraction and evolution needs at least a better tool support.
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ABSTRACT
By modeling dynamic join points, pointcuts, and advice in
a defunctionalized continuation-passing style interpreter, we
provide a fundamental account of these AOP mechanisms.
Dynamic join points develop in a principled and natural way
as activations of continuation frames. Pointcuts arise di-
rectly in the semantic specification as predicates identifying
continuation frames. Advice models procedures operating
on continuations, specializing the behaviour of continuation
frames. In this way, an essential form of AOP is seen, nei-
ther as meta-programming nor as an ad hoc extension, but
as an intrinsic feature of programming languages.

1. INTRODUCTION
Current programming languages offer many ways of orga-

nizing code into conceptual blocks, through functions, ob-
jects, modules, or some other mechanism. However, pro-
grammers often encounter features that do not correspond
well to these units of organization. Such features are said to
scatter and tangle with the design of a system, because the
code that implements the feature appears across many pro-
gram units. This scattering and tangling may derive from
poor modularization of the implementation; for example,
as a result of maintaining pre-existing code. But, recent
work[Coady et al., 2004, De Win et al., 2004, Spinczyk and
Lohmann, 2004] shows that, in some cases, traditional mod-
ularity constructs cannot localize a feature’s implementa-
tion. In these cases, the implementation contains features
which inherently crosscut each other.1 In a procedural lan-
guage, such a feature might be implemented as parts of dis-

1Strictly speaking, crosscutting is a three-place relation: we
say that two concerns crosscut each other with respect to
a mutual representation. The less rigorous ‘two concerns
crosscut each other’ means that they crosscut each other
with respect to an implementation that closely parallels
typical executable code. Traditional modularity constructs,
such as procedures and classes, have a close parallel between
source and executable code.
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joint procedures; in an object-oriented language, the feature
might span several methods or classes.

These crosscutting features inhibit software development
in several ways. For one, it is difficult for the programmer
to reason about how the disparate pieces of the feature in-
teract. In addition, they compound development workload
because features cannot be tested in isolation. Also, they
prevent modular assembly: the programmer cannot simply
add or delete these features from a program, since they are
not separable units. Aspect-oriented programming (aop)
is intended to provide alternative forms of modularity, to
extract these crosscutting features into their own modules.
As a result, the code more closely resembles the design.
Aop subsumes a number of different modularity technolo-
gies, some pre-existing, such as open classes and rewriting
systems, and some more unconventional, including dynamic
join points and advice. This work provides a novel seman-
tic description of this latter system of dynamic join points,
pointcuts, and advice. From this semantics, we provide a
new viewpoint to what this form of aop can modularize
well, and eliminate the ad hoc foundation for dynamic join
points, pointcuts, and advice.

By modeling dynamic join points, pointcuts, and advice in
a defunctionalized continuation-passing style interpreter, we
provide a fundamental account of these AOP mechanisms.
Dynamic join points no longer rely on intuition to provide
“well-defined points in the execution of a program”[Kiczales
et al., 2001], but arise in the language semantics in a princi-
pled and natural way as activations of continuation frames.
Pointcuts arise directly in the semantic specification as pred-
icates identifying continuation frames. Advice models pro-
cedures operating on continuations, the dual of its usual
behaviour as value transformers. Advice is shown as spe-
cializing the behaviour of continuation frames, leading us
to understand dynamic join points, pointcuts, and advice
as enabling the modularization of control in programs. In
this way, an essential form of AOP is seen, neither as meta-
programming nor as ad hoc extension, but as an intrinsic
feature of programming languages.

We begin our presentation by giving direct semantics for
an idealized procedural language, in Section 2. We trans-
form to the continuation passing semantics in Section 3, and
identify the three model elements within that semantics in
Section 4. Following a comparison of our derivation with
other accounts in Section 5, we close with observations on
how this work informs our understanding of modularity and
provides future avenues of research in Section 6.
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;;program
(define-struct pgm [decls body]) ;PGM (id × decl)∗ × exp

;; declarations
(define-struct procD [ids body]) ;PROC id∗ × exp

(define-struct globD []) ;GLOBAL

;; expressions
(define-struct litX [val]) ;LIT val

(define-struct varX [id]) ;VAR id

(define-struct ifX [test then else]) ;IF exp exp exp

(define-struct seqX [exps]) ;SEQ exp∗

(define-struct letX [ids rands body]) ;LET (id × exp)∗ exp

(define-struct getX [id]) ;GET id

(define-struct setX [id rand]) ;SET id exp

(define-struct appX [id rands]) ;CALL id exp∗

(define-struct pcdX [rands]) ;PROCEED exp∗

Figure 1: Proc Abstract Syntax

2. A PROCEDURAL LANGUAGE – DIRECT
SEMANTICS

As with other semantic presentations (e.g. [Wand et al.,
2004]), we choose to work with a first-order, mutually re-
cursive procedural language, Proc. Throughout this paper,
our systems are given as definitional interpreters, as intro-
duced by Reynolds [1972], in the style of Friedman et al.
[2001]. This interpreter-based approach to modeling vari-
ous aop mechanisms originated with our work in the Aspect
Sandbox[Dutchyn et al., 2002] and related papers[Masuhara
et al., 2003, Wand et al., 2004], and was later adopted by
others, including Filman [2001]. For this specific paper, this
style of presentation emphasizes the reification of continu-
ations as data structures, thus clarifying our specialization
claim.

We begin with the usual syntax and direct-style, big-step
semantics, given in Figure 1 and Figure 2 respectively. Pro-
grams comprise a set of named mutually-recursive, first-
order procedures, and a closed, top-level expression. We
assume programs and terms are well-typed. Environments
are standard.

One important feature of this definition is that we do not
specify the order of evaluation for procedure operands. In
particular, we use the Scheme map procedure to explicitly
provide this non-deterministic behaviour.

We should point out that several usual constructs are
present in our syntax, but lacking from our evaluator. This
does not impair its expressiveness. In particular, the usual
constructs are

• (SEQ x1. . .) which evaluates each sub-expression in left-
to-right order, yielding the value of the last expression,
and

• (LET ([i1 x1]. . .) x) which evaluates the body x in an
environment enriched with variables in bound to the
values of the corresponding expressions xn.

As usual in the literature, these can be denoted in our lan-
guage the addition of helper procedures as seen in Figure 3.
For the sequel, we will employ these notational shorthands.

;;; evaluator – expression side
(define (eval x r) ;:(exp × env) → val

(cond [(litX? x) (litX-val x)]
[(varX? x) (lookup-env r (varX-id x))]
[(ifX? x) (eval ((if (eval (ifX-test x) r)

ifX-then

ifX-else) x) r)]
[(getX? x) (get-glob (lookup-glob (getX-id x)))]
[(setX? x) (set-glob (lookup-glob (setX-id x))

(eval (setX-rand x) r))]
[(appX? x) (let ([args (map (lambda (x) (eval x r))

(appX-rands x))]
[proc (lookup-proc (appX-id x))])

(eval (procV-body v)
(extend-env (procV-ids v)

(execF-args f)
empty-env)))]

[else (error ’eval "not an exp: ~a" x)]))

(define (evlis x∗ r) ;:(exp∗ × env) → val∗

(if (null? x∗)
()
(cons (eval (car x∗) r)

(evlis (cdr x∗) r))))

(define ∗procs∗ ‘([+ . ,(lambda (vs) (+ (car vs) (cadr vs)))]
[display . ,(lambda (vs) (display (car vs)) 0)]
[newline . ,(lambda (vs) (newline) 0)]))

Figure 2: Proc Big-step (Direct) Semantics

(SEQ x1) ≡ x1

(SEQ x1 x2 . . .) ≡ (APP foo i . . . x1)

with helper procedure

(foo . (procV (i . . . ) (SEQ x2 . . .)))

where foo is fresh, and each i . . . are the free variables of
the subsequent expressions x2 . . .

(LET () x) ≡ x

(LET ([i1 x1] . . . [in xn]) x) ≡ (APP foo i . . . x1 . . . xn)

with helper procedure

(foo . (procV (i . . . i1 . . . in) x))

where foo is fresh, and each i . . . are the free variables of
the body x

excluding i1 . . . in.

Figure 3: Proc Auxiliary Expressions
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;;; frames

;; auxiliary
(define-struct testF [then else env]) ;TEST exp exp env :: !bool

(define-struct bindF [ids body env]) ;BIND id∗ exp env :: !val∗

(define-struct randF [exp env]) ;RAND exp env :: !val∗

(define-struct konsF [vals]) ;KONS val∗ :: !val

(define-struct rhsF [id]) ;RHS id :: !val

;; effective
(define-struct getF []) ;GET :: !loc

(define-struct setF [val]) ;SET val :: !loc

(define-struct callF [id]) ;CALL id :: !val

(define-struct execF [args]) ;EXEC val∗ :: !proc

Figure 4: Proc Small-step (cps) Semantics — Con-
tinuations

3. A PROCEDURAL LANGUAGE – CONTIN-
UATION SEMANTICS

In order to identify dynamic join points in a principled
way, we need to move to a continuation-passing style (cps)
implementation. Continuations, also known as goto’s with
arguments, were first identified by Strachey [2000] and Landin
[1998] to model control flow in programs. Later, Reynolds
[1993] applied them to ensure that semantics given by def-
initional interpreters yields a formal model independent of
the defining language control constructs.

The cps transformation[Danvy and Hatcliff, 1993] of our
interpreter is systematic, following closely that of Hatcliff
and Danvy [1994]. In essence, we treat each of the let ex-
pressions in the direct eval semantics as a monadic let [Moggi,
1989, 1991]. These lets express a bind operation between
the computation of an operand and the computation await-
ing that value. Continuations explicitly sequence these bind
operations, and reify the computation awaiting the value.

Usually continuations are presented as closures[Danvy,
2000], but Ager et al. [2005] provide an systematic defunc-
tionalization of these closures into tagged structures and
an apply procedure that gathers the operations of each clo-
sure. The only values that pass into the apply operation are
object-language values (integers, booleans), lists of object-
language values (as argument lists), and references (addresses
into the store or to procedures). Each tagged structure must
contain the values for each variable that the closures refer-
ence. The continuation structures required for our small-
step interpreter are given in Figure 4.

As usual in operational semantics, we introduce two aux-
iliary continuations, randF and konsF, to support multiple
arguments to procedures. These two continuations provide
a strict right-to-left evaluation order for procedure operands.
This choice is arbitrary, as explicitly declared in the direct
semantics.2 We could have supplied a non-deterministic or-
dering in the cps semantics, introducing other auxiliary con-
tinuations; but, that would distract us from our focus. The
essential notion is that these supporting continuations have
no basis in the direct semantics: they serve only to bridge
the gap between the big-step and small-step systems. A
third auxiliary continuation, rhsF serves the same purpose
with regard to the argument to setX.

2Recall that map in Scheme processes the elements in the
list in an explicitly undefined order.

Some formalisms avoid this work by silently introducing
products or tuple values. Then a polyadic procedure actu-
ally accepts a single tuple argument, and explodes the tuple
before evaluation of the body. Similarly, procedure applica-
tions would contain a hidden tupling action; paralleling our
konsF continuation behaviour.

Formal, lambda-calculus approaches eliminate the auxil-
iary continuations by currying procedures and replace polyadic
applications with multiple applications. This simplifies the
underlying formalism, allowing development of the sound-
ness proofs of the cps transformation; Thielecke [1997] pro-
vides the details.

For our restricted procedural language, the full power of
the λ-calculus is not required. Indeed, in the λ-calculus,
the testF continuation is unnecessary as well. A simple
syntactic transformation makes the consequent clauses into
thunks (parameterless closures[Danvy and Hatcliff, 1992]).
True and False become binary procedures that simply apply
one or the other thunk. In summary, we characterize randF,
konsF, and testF as auxiliary continuations.3

The defunctionalized cps definition of our interpreter is
given in Figures 5 and 6.

Our construction is standard, except in three respects.
First, we extend Ager’s construction to explicitly linearize
the continuation. In Ager’s construction, each continuation
structure, representing a suspended operation awaiting the
value of some expression, would contain the rest of the con-
tinuation as a field. Only a halt continuation would not
have this, as it has nowhere to continue to. In our con-
struction, we represent the entire continuation as a list of
frames. A frame is a single element in the list representa-
tion of the continuation; it indicates the immediate action
when this continuation is activated. The remainder of the
continuation is in the tail of the list.

• push :: (frm × cont) → cont — extends an existing
continuation with another frame.

• pop :: (!val × ((frm × cont) → !val)) → cont → !val
— takes a continuation, and either

– applies the first procedure (halt) because the con-
tinuation is empty, or

– applies the second procedure (step) to the top
continuation frame and the rest of the continua-
tion.

We provide a base definition for step, called base-step for the
language absent aspects. Later we will replace step with an
aspect-aware version which dispatches appropriately. Also,
the halt continuation is represented by the empty list.

The second nonstandard construction is that our imple-
mentation lifts primitives from the direct interpreter to take
the existing continuation as an additional argument. This
allows us to provide flow control operations, such as Felleisen’s
abort[Felleisen, 1988], as primitives. This is seen in Figure 7.

Third, our implementation distinguishes the lookup of
procedures into a separate continuation, execF. Ordinarily,
we would require only one continuation, callF, to await the
evaluation of the operands into argument values. That sin-
gle continuation would be responsible for locating the de-

3These should not be confused with serious and trivial con-
tinuations[Reynolds, 1972], nor with administrative contin-
uations[Flanagan et al., 1993].
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;;; evaluator – expression side
(define (eval x r k) ;: (exp × env × cont) → unit

(cond [(litX? x) (apply k (litX-val x))]
[(varX? x) (apply k (lookup-env r (varX-id x)))]
[(ifX? x) (eval (ifX-test x)

r

(push (make-testF (ifX-then x)
(ifX-else x)
r)

k))]
[(getX? x) (apply (push (make-getF)

k)
(lookup-glob (getX-id x)))]

[(setX? x) (eval (setX-rand x)
r

(push (make-rhsF (setX-id x))
k))]

[(appX? x) (evlis (appX-rands x)
r

(push (make-callF (appX-id x))
k))]

[else (error ’eval "not an exp: ~a" x)]))

(define (evlis x∗ r k) ;: (exp∗ × env × cont) → unit
(if (null? x∗)

(apply k

’())
(evlis (cdr x∗)

r

(push (make-randF (car x∗) r)
k))))

(define (halt v) ;: !val (== val → unit)
(display v)
(newline))

(define (apply k v) ;: !(cont × val)
(((pop halt

step)
k)

v))

Figure 5: Proc Small-step (cps) Semantics — Eval-
uator

;;; evaluator – continuation side
(define ((base-step f k) v) ;:(frm × cont) → !val

(cond ;; auxiliary frames
[(testF? f) (eval ((if v testF-then testF-else) f)

(testF-env f)
k)]

[(randF? f) (eval (randF-exp f)
(randF-env f)
(push (make-konsF v)

k))]
[(konsF? f) (apply k

(cons v (konsF-vals f)))]
[(rhsF? f) (apply (push (make-setF v)

k)
(lookup-glob (rhsF-id f)))]

;; non-auxiliary frames
[(getF? f) (apply k

(get-glob v))]
[(setF? f) (apply k

(set-glob v (setF-val f)))]
[(callF? f) (apply (push (make-execF v)

k)
(lookup-proc (callF-id f)))]

[(execF? f) (cond [(procV? v)
(eval (procV-body v)

(extend-env (procV-ids v)
(execF-args f)
empty-env)

k)]
[(procedure? v) (v (execF-args f) k)]
[else
(error ’exec "not a procedure: ~a" v)])]

[else (error ’step "not a frame: ~a" f)]))

(define step base-step)

Figure 6: Proc Small-step (cps) Semantics — Eval-
uator
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;;; cont ::= frm∗

(define (push f k) ;:(frm × cont) → cont

(cons f k))

(define ((pop e s) k) ;:(!val × ((frm × cont) → !val)) → cont → !val

(if (null? k)
e

(s (car k) (cdr k))))

;;; primitives
(define ((lift p) vs k)

(apply (p vs) k))

;;; lifted primitives
(define ∗procs∗

‘([+ . ,(lift (lambda (vs) (+ (car vs) (cadr vs))))]
[cons . , (lift (lambda vs vs))]
[null? . , (lift (lambda (vs) (null? (car vs))))]
[display . ,(lift (lambda (vs) (display (car vs)) 0))]
[newline . ,(lift (lambda (vs) (newline) 0))]
[abort . ,(lambda (vs k) (apply (car vs) ’()))]))

(define (run s)
(let ([g (parse-prog s)])

(set! ∗procs∗ (cons (PGM-decls g) ∗procs∗))
(eval (PGM-body g) empty-env ’())))

Figure 7: Proc Small-step (cps) Semantics — Prim-
itives

sired procedure and initiating the evaluation of it’s body-
expression with the desired bindings.

Examining the direct semantics closely, we can see that
there are two let bindings present in the case of an APP

expression. Other one-step[Danvy and Nielson, 2003] and
A-normal[Flanagan et al., 1993] transformations optimize
portions of this transformation, usually the second binding.
Our more näıve approach allows us to expose the two sep-
arate operations, which will be valuable as we extend the
system to incorporate dynamic join points, pointcuts, and
advice.

4. EXPOSING AOP CONSTRUCTS
With these preliminaries, we are prepared to expose the

latent dynamic join points in Proc, and provide syntax to
denote pointcuts and advice. We need to describe three
items (quoted from [Kiczales et al., 1997]):

1. dynamic join points — “principled points in the
execution”. These will be states in the interpreter
where values are applied to non-auxiliary continuation
frames.

2. pointcuts — “a means of identifying join points”.
These will be syntax for predicates over the value and
continuation frame content.

3. advice — “a means of affecting the semantics at those
join points”. This is implemented as the advice body
as a procedure applied to the continuation frame.

We will examine each of these in turn.

4.1 Dynamic Join Points

Dynamic join points are the first abstraction in our model.
Other semantic models simply list dynamic join points with-
out supporting the intuition for their selection. The underly-
ing principles are not enunciated. Identifying this principle
is a key result of this work.

For us, join points are activations of certain continuation
frames. Recall that we introduced auxiliary frames to sup-
port our eager, right-to-left evaluation order in the cps se-
mantics. Therefore, we adopt the following principle:

A dynamic join point is modeled as a state in
the interpreter where a non-auxiliary continua-
tion frame is applied to a value.

Auxiliary continuation frames do not correspond to prin-
cipled points in the execution of a program. For example,
our konsF and randF frames were arbitrarily chosen to supply
an eager, right-to-left evaluation order. With a lazy big-step
semantics, or with a different evaluation order, different aux-
iliary continuation frames would be required. Similarly, the
testF frame exists to postpone the choice of alternatives to
an ifX until the test has been evaluated first. The rhsF and
bindF auxiliary frames exist to support the single reduction
ordering that cps interpreters must support – again they are
not mandated by the big-step semantics.

Therefore, in Proc, we have four frames corresponding to
dynamic join points:

• callF (id ` !val∗)) — takes an procedure name and
constructs a frame that will consume a list of argument
values and apply the named procedure to them,

• execF (val∗ ` !proc) — stores a list of argument values
and constructs a frame that will consume a procedure
and apply it to the list of values,

• getF (id ` !loc) — takes an identifier and constructs a
frame that will consume a store location and continue
with its content,

• setF (val ` !loc) — takes a value and constructs a
frame that will consume a store location and continue
after updating its content.

The type signatures indicate the type of the information
stored in the continuation frame, followed by type of the
continuation once the frame is pushed. We use negative
types for continuations, in keeping with previous workJou-
velot and Gifford [1989], Murthy [1992]. Thielecke [1997]
explores this in detail.

In each case, a dynamic join point has various items of
information available, some from the value applied to the
continuation, some from the frame itself. These include

1. a procedure, either by name (in the case of callF) or
as an actual structure (in the case of execF),

2. a list of values corresponding to the arguments to the
procedure (in the case of callF or execF,

3. a value and a store reference (in the case of setF),

4. a store reference (in the case of getF).

Our join points are summarized in Table 1.
In our model, dynamic join points make accessible the la-

tent control structure of the language semantics. Dynamic
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Dynamic Join Point

Value Consumed Frame Information

(loc iglobal) I (getF)
(loc iglobal) I (setF val)

(val∗) I (callF iproc)
(proc iproc) I (execF val

∗)

Table 1: Dynamic Join Points

;;; pointcuts

;; effective continuation frame matching
(define-struct getC [gid]) ; GETPC id

(define-struct setC [gid id]) ; SETPC id id

(define-struct callC [pid ids]) ; CALLPC id id∗

(define-struct execC [pid ids]) ; EXECPC id id∗

;; combinational
(define-struct orC [pcs]) ; ORPC pcut∗

(define-struct notC [pc]) ; NOTPC pcut

Figure 8: Proc Pointcuts — Abstract Syntax

join points correspond to continuation frames, and are mod-
eled by states within the interpreter. Our set of dynamic join
points is stable with regard to semantic changes such as al-
tering the order of evaluation, or moving from eager to lazy
evaluation.4 Other semantic changes involved in extend-
ing the big-step semantics, notably introducing new terms
(e.g. for-loops[Harbulot and Gurd, 2006]), would introduce
or modify the set of dynamic join points.

Our dynamic join points systematically align with points
in the model that are well-accepted as being semantically
meaningful. Our principle defines this systematic alignment.
In other models, some have framed dynamic join points as
program rewrite points[Aßmann and Ludwig, 1999, Roy-
choudhury and Gray, 2005]. Other accounts have dynamic
join points appear as an ad hoc list, including in our earlier
work[Wand et al., 2004]. Our principled approach provides
a more robust and elegant description.

4.2 Pointcuts
The second abstraction we must add to our model is point-

cuts. Pointcuts are syntax that provide a means to identify
our dynamic join points. We have a pointcut for identify-
ing each kind of continuation frame (join point): call, exec,
get, and set. We adopt the following syntax for pointcuts.
It contains four structures, one for each kind of dynamic join
point.

We have chosen a direct pointcut syntax, where the pro-
cedure name and the argument names are given directly in
the pointcut. In the next section, we will use the argument
names to offer access to the arguments in the advice. The
semantics of a pointcut is to examine whether the current
interpreter state matches the identified continuation frame
– both in kind and content – and the current value. This is
seen in Figure 9.

In the case of a callC pointcut, we ensure that the frame
is a callF frame, and that it holds a procedure name equal

4Changing to lazy evaluation would alter the order that join
points are encountered during the evaluation.

;;; matching
:MATCH id∗ val∗ (val∗ → (val × frm))

(define-struct match [ids vals prcd])

(define (match-pc c v f) ;:(pcut × val × frm) → match
(cond ;; combinational pointcuts

[(orC? c) (let loop ([pcs (orC-pcs c)])
(if (null? pcs)

#f
(or (match-pc (car pcs) v f)

(loop (cdr pcs)))))]
[(notC? c) (if (match-pc (notC-pc c) v f)

#f
(make-match ’()

’()
(lambda (nv)

(values v f))))]
;; fundamental pointcuts
[(getC? c) (and (getF? f)

(eq? (lookup-glob (getC-gid c)) v)
(make-match ’()

’()
(lambda (nv)

(values v f))))]
[(setC? c) (and (setF? f)

(eq? (lookup-glob (setC-gid c)) v)
(make-match ‘(,(setC-id c))

‘(,(setF-val f))
(lambda (nv)

(values v
(make-setF
(car nv))))))]

[(callC? c) (and (callF? f)
(eq? (callC-pid c) (callF-id f))
(make-match (callC-ids c)

v
(lambda (nv)

(values nv f))))]
[(execC? c) (and (execF? f)

(eq? (lookup-proc (execC-pid c)) v)
(make-match (execC-ids c)

(execF-args f)
(lambda (nv)

(values v
(make-execF
nv)))))]

[(advC? c)]
[else (error ’match-pc "not a pointcut: ~a" c)]))

Figure 9: Proc Pointcuts — Implementation
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to the one given in the pointcut. For a execC pointcut, we
ensure that the frame is an execF frame and that the supplied
value is a procedure whose name is equal to the one given in
the pointcut. GetC, and setC pointcuts are similar, matching
the getF and setF frames respectively.

We also include two combinational pointcuts. The first is
orC, which matches any dynamic join point which matches
the first subpointcut; or, failing that, matches the second
subpointcut. This allows us to abstract a concern that cuts
across multiple procedures. For example, one might con-
sider two displayX procedures, each with a different output
format, to be a single display concern.

This combinational pointcut provides a simple specializa-
tion ordering to pointcuts; and, by extension, advice. Any
given pointcut, A, is more specialized than orC(A B) for any
distinct B pointcut. Pointcuts do not have a unique total
ordering, only a partial order. They can be totally ordered
using the standard topological sort. By extension, advice
can be ordered by this total pointcut order.

The other combinational pointcut is notC which simply
matches every join point which differs from its subpointcut.
It returns no matched values, it simple succeeds or fails.

A pointcut matches the top continuation frame, the list of
identifiers from the pointcut is returned. If a match is not
found, #f (Scheme false) is returned. In our implementa-
tion, matching against a orC pointcut yields the identifiers
for the matching sub-pointcut. This means that each sub-
pointcut must provide the same identifiers.

In our model, we adopt the principle that

pointcuts do not alter the semantic behaviour of
the program or language.

In our system, advice is solely responsible for altering be-
haviour at join points. This leads to concerns with contex-
tual pointcuts.

4.2.1 Contextual Pointcuts
It is tantalizing to consider the entire continuation for the

purposes of matching join points. If we did this, then we can
quickly and easily provide the various contextual pointcuts,
including a novel one:

• (cflowbelow pcut): climb down (towards older) the list
of frames, skipping the current frame,

• (cflow pcut): equivalent to (or pcut (cflowbelow pcut)).

• (cflowabove pcut): climb back up (towards newer) the
list of frames, skipping the current frame.5,6

These contextual pointcuts provide a mechanism for char-
acterizing join points based on their temporal context in
the control flow. The usual cflow and cflowbelow provide
the usual “within another control context” recognizer by

5With cactus stacks[Clinger et al., 1999] for threaded lan-
guages, this requires the correct path back up to be main-
tained.
6Pointcuts containing cflowabove can be rewritten us-
ing cflowbelow alone. This is clear by recognizing that
pointcuts form a regular language describing stack struc-
tures[Sereni and de Moor, 2003], and that cflowbelow and
cflowabove are the left- and right-regular descriptions. Of
course, cflowabove is expressive in the sense of Felleisen
[1991] because the tranformation requires a global rewrite
of the entire pointcut.

searching downward toward the program start. Our novel
cflowabove construct provides a way to search in the other
direction, “encloses another control context”. This is use-
ful, along with the not pointcut, to provide the equivalent
to Prolog cuts in the context search.

Unfortunately, in a language with tail call optimization,
this simplistic implementation does not work. The context
of interest may be removed from the continuation frame list
by the tail call optimization, and the desired advice will not
be triggered. In fact, deeper consideration of the contextual
pointcuts convinces us that these pointcuts actually have a
computational effect: they require the evaluator to remem-
ber where the exit from the interesting context occurs. This
is conveniently simple in non-tail call languages: popping
the identified continuation frame can serve as the marker.

If we know the pointcuts in advance, we can avoid having
the pointcut alter all matching frame behaviour by retain-
ing only the interesting frames, the ones identified in cflow

pointcuts, on the stack. This requires advance knowledge;
but can then be implemented quite efficiently[Clements and
Felleisen, 2004].

But, tail call languages require some additional mech-
anism — context may disappear before related advice is
triggered. One solution might be to include some special
context-marking continuation frame – these are called con-
tinuation marks[Clements and Felleisen, 2004], and essen-
tially provide a safe-for-space implementation of dynamic
binding. This is the mechanism applied in the AspectScheme
language[Dutchyn et al., 2006].

We choose not to add new mechanisms, and wish to cleave
to the principle that pointcuts do not change the language
semantics nor the program behaviour. Therefore, we must
supply separate implementations of these pointcuts. Fortu-
nately, Masuhara et al. [2003] provides a state-based cflow

design. It can be modelled in our language as two co-
ordinated pieces of advice. The first specialises join points
matching the control flow of interest to push the arguments
onto a stack data structure, proceed to determine the result,
pop the stack, and return that result. The second specialises
the join points of interest within the control flow to check
for available context on the stack data structure, and modify
the continuation behaviour appropriately.

In our model, pointcuts are first-order predicates for dy-
namic join points. In this general view, we are no different
from other accounts of dynamic join points, pointcuts, and
advice aop. But, pointcuts identify continuation frames at
which advice bodies are to operate. Hence, we can view ad-
vice as extending and specializing the behaviour of control
points in programs.

4.3 Advice
Now we come to the third feature of our model — advice.

A piece of advice needs to specify a means of affecting the
semantics at join points. Syntactically, it contains two parts:

1. a pointcut — which indicates which dynamic join points
are to be affected

2. an advice body — an expression

The new syntax element for advice declarations is given in
Figure 10. Advice are declarations in our model, just like
procedures. Therefore, they will be have identifiers bound
to them, just like procedures do.
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;;; declarations
(define-struct advD [pc body]) ;DECL +:= ADVICE pcut exp

Figure 10: Proc Advice Declaration – Abstract Syn-
tax

(BEFORE pcx) ≡ (AROUND pc (SEQ x proceed))

(AFTER pc x) ≡ (AROUND pc (APP foo (proceed)))

with fresh helper procedure

(foo . (procV (v) (SEQ x v)))

Figure 11: Proc Before and After Advice

In our system, all advice is around advice. That is, it
has control over, and alters the behaviour of, the underlying
dynamic join point. Our advice may proceed that dynamic
join point zero, one, or many times. This does not restrict
the generality of our model, as common before and after

advice are the two possible orderings of the advice body
and proceed, shown in Figure 11.

Semantically, an advice resembles a procedure. The point-
cut part identifies the affected dynamic join points, and pro-
vides binding names for the arguments of the dynamic join
point. In our model the advice body acts like a procedure
body, but its locus of application differs.

A procedure is usually applied to some values to yield
another value. For example, the procedure pick in the fol-
lowing code:

(define (pick b) (if x 1 2))

(+ (pick #t) 3)

is applied to #t to yield a new value 1. Filinski [1989] first
recognized that pick transforms the continuation of the pro-
cedure application from

(lambda (n) ; await number, add three, halt
(+ n 3))

to
(lambda (b) ; await boolean

(let ([n (if b 1 2)]) ; select number
((lambda (n) (+ n 3)) ; original continuation
n))) ; given the selected number

One way to discern this different mode of application
is to consider the types of the elements involved. Jou-
velot and Gifford [1989] recognized that the type of the
original continuation is !number (read as consumes num-
ber), and that applying pick has extended the continua-
tion to consume a boolean (typed !boolean). Pick has type
boolean→ number when considered as a value transformer,
and has type !number →!boolean as a continuation trans-
former[Strachey, 2000].

In Filinski’s symmetric lambda calculus[Filinski, 1989], pro-
cedures could be applied in either way: to values, yielding
new values; or to continuations, yielding new continuations.
In our model, advice provides this similar procedure appli-
cation to continuations. We present our semantics in five
parts – advice elaboration and matching, altered step/prim

to support advice execution, a new step/weave to weave ad-
vice into the execution of the program, advice invocation,
and last, the proceed expression.

First, we recognize that advice is a declaration; hence we

need to elaborate the advice declarations, in the same trivial
way we did for procedure declarations. This is displayed in
Appendix A.

Matching is also shown in Figure 12. We simply walk
the elaborated list of advice, comparing the pointcuts and
returning a match containing the pointcut-match identifiers
and the advice itself. It also contains details on how to
proceed, but we will examine those later.

Pointcuts not only provide parameters at the applica-
tion site, but also automate the application of advice to all
matching dynamic join points. This universal application
of advice extends the semantics of matching dynamic join
points to contain additional behaviour.

A subtle difference is that advice can extend the behaviour
of a join point, by calling proceed, a new expression in our
Proc language. It takes a set of arguments and passes them
on to the next advice, or the underlying dynamic join point
if all advice has been invoked. The syntax for proceed, as
well as the extension of eval is given in Figure 13.

In order for proceed to work, we need to provide the re-
maining matched advice, and a representation of the orig-
inal join point. This is done by binding a special variable,
’%proceed into the environment for the advice. It contains
the remaining advice, if any, and the original procedure
name (in the case of a callF dynamic join point), the origi-
nal procV or procedure (in the case of an execF dynamic join
point).

Recalling our principle that dynamic join points corre-
spond to frame activations, we recognize that our new frame,
advF defines a new set of dynamic join points that may be
matched against. By construction, all of our declarations
are bound to identifiers, advice declarations will also have
names. Hence, we naturally provide an advice execution
dynamic join point, and its associated matching operation.
By construction, all activations of advF frames are processed
by adv-step, so the weaving of additional behaviour is auto-
matic. The call structure that makes this so is:

• apply calls adv-step

• adv-step looks for matching advice

– if there is none, base-step provides the fundamen-
tal behaviour of the dynamic join point

– if there are matches, we evaluate arguments and
push an advice execution dynamic join point

;;advice matching against frames/join points
(define (((adv-step advs) f k) v) ;:adv∗ → (frm × cont) → !val

(let loop ([advs advs])
(cond [(null? advs) ((base-step f k) v)]

[(match-pc (caar advs) v f) =>

(lambda (m)
(eval (cdar advs)

(extend-env ‘(%proceed %advs . ,(match-ids m))
‘(,(match-prcd m)

,(cdr advs) . ,(match-vals m))
empty-env)

k))]
[else (loop (cdr advs))])))

(define step adv-step) ;;redefinition

Figure 12: Proc Advice – Matching
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;;; proceed needs a new advice-execution frame
;; – hence, a new join point
ADV (val∗ rightarrow val+frm) adv∗ :: !val

(define-struct advF [v->v+f advs])

;;; evaluator – expression side
(define (eval x r k) ;:(exp × env × cont) → unit

(cond . . .
[(pcdX? x) (evlis (pcdX-rands x)

r
(push
(make-advF (lookup-env r ’%proceed)

(lookup-env r ’%advs))
k))]

[else (error ’eval "not an exp: ~a" x)]))

;;; evaluator – continuation side
(define ((base-step f k) v) ;:(frm × cont) → !val

(cond . . .
;; non-auxiliary frames
. . .
[(advF? f)
(let-values ([(v1 f1) ((advF-v->v+f f) v)])

(((adv-step (advF-advs f)) f1 k) v1))]
[else (error ’step "not a frame: ~a" f)]))

Figure 13: Proc Advice – Proceed

• proceed expressions do the same to extract the next
advice or the final dynamic join point and initiate it’s
execution.

In our model, an advice body provides new behaviour for
each dynamic join point (control point) identified by the
advice’ pointcut. This new behaviour extends the original
because advice may contain additional program operations.
This new behaviour specializes the original because the orig-
inal behaviour is available through the proceed expression.

5. COMPARISON TO OTHER SEMANTICS
We compare our dynamic join point schema to those of

other semantic models. The first two are semantic models
are joint work between this author and others.

5.1 Aspect Sandbox
In joint work, Dutchyn et al. [2002] and Wand et al.

[2004], this author developed a number of semantic models
of aspect-oriented programs, both for object-oriented and
procedural languages. That work provides a model of a
first-order, mutually-recursive procedural programming lan-
guage. In that semantic model, three kinds of dynamic join
points were constructed ex nihilo: pcall, pexecution, and
aexecution. This work develops the principle behind the
intuition of those three dynamic join point kinds.

Our model also eliminates some of the irregularities in
these other implementations. For instance, because Wand
et al. [2004] implements a direct semantics, it maintains a
separate stack of dynamic join points rather than relying
on structured continuations to do this. Further, it relies on
thunks to delay execution of proceed; in our semantics, this
arises within from the continuation structure.

We focus on the core semantic model for our system,
therefore we have avoided the more extensive pointcut lan-
guages found in mainstream languages. We adopt conven-
tions from early versions of AspectJ[Kiczales et al., 2001].
Current version of AspectJ provides a pointcut calculus with
separate binding combinators (e.g. args, and target), as well

as pattern matching and other features. In our model, &&

provides no additional expressive power, so we do not in-
clude it.

Some Aspect Sandbox pointcuts are lexical, such as within
which restricts join point matches to those which occur dur-
ing the evaluation of the expressions within a specific pro-
cedure. It can be characterized as join points which appear
with no intervening frames; as this is the situation where
lexical and dynamic scoping coincide. But, this pointcut is
strongly dependent on the textual representation of the pro-
gram. As a result, programmers can easily re-modularize or
abstract their code to retain what appears to be the same
join point sequencing; but unwittingly introduce or elimi-
nate join points from those identified by this pointcut.

Within is dramatically at odds with the dynamic join point
and advice model. Indeed, it can mislead programmers into
believing that dynamic join points are expressions and that
aspect-oriented programming is simply a program genera-
tion/rewriting technique. Our model shows how join points
and advice aspects arise from the semantics of a language,
not from the syntax of a language. Within is possible wiht
our framework, based on the observation that lexical scope
coincides with dynamic scope, until another lexical scope
intervenes. So, within can be implemented similar to our
cflow example, with a third piece of advice that masks the
stack data structure once another lexical scope is entered.
The join points identifying a new scope are the execution
join points; available through the exec pointcut.

In summary, our pointcut language provides is a reason-
able fit for our model approach.

5.2 AspectScheme
The author contributed the semantic description of Aspect-

Scheme[Dutchyn et al., 2006] and the online implementa-
tion[Dutchyn, 2006]. AspectScheme models join points as
procedure applications in context of other in-progress pro-
cedure applications. It depends on novel continuation marks
to express the structure of the continuation stack, and relies
on macros to provide weaving whenever a procedure is ap-
plied. This is practical solution for extending Scheme, where
continuations are available only as opaque procedures—their
structure cannot be examined. This work simplifies the As-
pectScheme semantic presentation to recognize that contin-
uation marks are not required, provided Ager et al. [2005]’s
defunctionalized continuation model is available.

AspectScheme offers only a single kind of dynamic join
point, a procedure application in the context of pending
procedures. This corresponds to our execF dynamic join
point, but with additional context. But, because dynamic
join points are first-class objects, temporally ordered lists of
procedures and arguments in AspectScheme, the program-
mer can extend the set of pointcuts by writing their own.
This expressiveness is put to good use in showing practical
applications of advice.

5.3 PolyAML and µABC
Dantas et al. [2005] provide a PolyAML, a polymorphic

aspect-oriented programming language. It is implemented in
two levels, a polymorphic surface syntax, which is translated
into a monomorphic dynamic semantics, FA. Their focus
is on type-checking, and around aspects are incompatible
with that goal. They can only support oblivious[Filman and
Friedman, 2004] aspects, which must be before and after
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only. A later paper,[Dantas et al., to appear] solves the
typing difficulties with around advice, using novel local type
inference techniques.

Their monomorphic machine is described in terms of con-
text semantics[Ager et al., 2003]. Briefly, a context is an
expression with a hole, which the current redex will plug,
once it reduces to a value. The machine shifts into deeper
and deeper contexts until values can be directly computed,
either as literals or variable references. Once all the holes are
plugged in a redex, it is reduced to a value and plugged into
its pending context. Danvy et al. investigated the equiv-
alence between context semantics and continuation seman-
tics. PolyAML’s label method for providing aspects in monomor-
phic context semantics appears to be equivalent to AspectScheme’s
continuation marks in a continuation semantics.

It would be interesting to attempt to remove the labels
from their FA core calculus by reifying the actual continu-
ation structures. We expect that the principled set of dy-
namic join points would again become apparent, rather than
imposed externally.

Bruns et al. [2004] provides an untyped core calculus for
aspects. As Dantas et al. [2005] note, this core calculus
strongly resembles their FA monomorphic context seman-
tics. Again, labels are used to annotate a context and pro-
vide an understanding of dynamic join points. They support
full around advice, but make no attempt to supply static type
checking or inference.

5.4 Other Related Work
Several other semantic formulations for aspects have been

offered.
Douence et al. [2001] considers dynamic join points as

events, and provides oblivious aspects. This is done by pro-
viding a custom sequencing monad that recognizes computa-
tions, and wraps them with the additional behaviour of the
advice. Unfortunately, this is insufficient to allow around

advice to alter the parameters of the wrapped computation.
Only the option to proceed with the original arguments is
available.

Andrews [2001] provides a process-calculus description of
aspects. Oblivious aspects are provided. But, constrained
by encapsulated processes, full around aspects are not possi-
ble.

Clifton and Leavens [2006] further explored the idea of
split call and exec join points; a distinction that originated
in Wand et al. [2002].

Kojarski and Lorentz [2005] consider composition of mul-
tiple aspect extensions to a base language. Our work in-
dicates that, for pointcut-and-advice aspects, there seems
to be a natural extension, which modularizes over the dy-
namic semantic of the language. Preliminary work suggests
that the same principled approach can be applied to other
phases [Cardelli, 1988] in a programming language, lead-
ing to several other extensions such as static join points (as
in AspectJ). The compositional behaviour of these different
phases remains to be explored.

Endoh et al. [2006] also use the CPS transformation to
expose join points; their interest is to reduce the number of
advice kinds (e.g. after returning). This work aims at
a more fundamental understanding of pointcuts and advice
AOP, and attempts to expose the principles underlying it.
As a result, our work identifies an additional join point, the
advice-execution join point (which AspectJ provides with-

out explanation). Furthermore, we takes view that advice
specialize continuation behaviour, leading to a principled
understanding of the modularity that AOP can provide.

6. SUMMARY
Aspect-oriented programming (aop) is crosscutting-mod-

ularity technology. It comes in a variety of forms, including
open classes and dynamic join points. The former example
provide separation of concerns that involve data modular-
ity. This paper demonstrates that the latter provides sep-
aration of concerns invested in modularizing (identifying,
specializing and isolating) control structures. Although un-
surprising, this characterization of different kinds of aspects
based on what they modularize is powerful. It fundamen-
tally sharpens our understanding what dynamic aspects are,
and therefore enables us to construct and apply them effec-
tively.

Our construction has intriguing parallels with object-or-
iented programming. From one perspective, objects provide
a way for programmers to group related data fields, tag-
ging them so that late-bound operations can be supplied.
Our construction appears to generalize to grouping related
continuation frames, tagging them so that late-bound oper-
ations can be supplied.

One example of this sort of aspect hierarchy would be a
base aspect that provides the state-based implementation
of cflow. By extending that abstract aspect with two point-
cuts and the desired advice, we provide modular instances
of cflow and its ilk; thus eliminating them from the base
language. The language remains expressive and becomes
simpler.

The duality between values and continuations may offer
some insight into what dynamic join point-based aop is ef-
fective at modularizing. We believe that a full-fledged as-
pect, intended to capture a crosscutting feature, combines
multiple pointcuts and advice into an abstract control type
paralleling ubiquitous abstract data type. Our implemen-
tation highlights the existence of a dispatch to late-bound
advice specializing the behaviour of that continuation frame.
Can this be extended to give a unified understanding of as-
pects and objects as dual similar to value and continuation
duality?

Furthermore, our construction suggests that an appropri-
ate type theory for dynamic join points should be built on
the ones for continuations. In particular, we are investi-
gating the negative types of [Griffon, 1990, Murthy, 1992]
which characterize continuations, and the more recent work
of Shan [2003] and Biernacki et al. [2006] who look at polar-
ized types for delimited continuations[Biernacka et al., 2005,
Shan, 1999] of which our frames are a degenerate example.

In summary, our work provides a well-founded implemen-
tation of aspects with three key properties:

1. Dynamic join points, pointcuts, and advice aspects are
modeled directly in continuation semantics; without
the need for extraneous labels or continuation marks,

2. Principled dynamic join points arise naturally, as con-
tinuation frames, from describing programming lan-
guages in continuation semantics, and

3. Advice acts as a procedure on these continuation frames,
providing specialized behaviour for them.
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We give a formal model of dynamic join points, pointcuts,
and advice built on the well-understood processes of conver-
sion to continuation-passing-style, and defunctionalization.
We demonstrate that dynamic join points arise naturally
in this formulation, as continuation frames. Therefore, ad-
vice can specialize their behaviour directly in our construc-
tion. Furthermore, we demonstrate that, in our model, cflow
corresponds to a continuation context, and interacts poorly
with tail-call optimizations, but can be recognized as a state
effect.

In this way, we provide a fundamental account of these
AOP mechanisms that arises naturally from the semantic
description of the language. Our model is by construction,
not ad hoc. Our model does not entail pre-processing or
other meta-programming techniques.
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APPENDIX
A. PROC ELABORATOR

;;; Elaborator

(define ∗globs∗ #f) ;: (id × boxed-val)∗

(define ∗procs∗ #f) ;: (id × proc/prim)∗

(define ∗advs∗ #f) ;: (pc × adv)

;; values – val ::= constant — procedure
(define-struct procV [ids body]) ;; PROC id∗ exp

(define init-val 0) ;: val

;; location LOC ::= ref val (ie. box)

(define (lookup-glob i) ;: id → loc
(let ([i+b (assq i ∗globs∗)])

(if i+b

(cadr i+b)
(error ’glob "not found: ~a" i))))

(define (lookup-proc i) ;: id → proc
(let ([i+p (assq i ∗procs∗)])

(if i+p

(cadr i+p)
(error ’proc "not found: ~a" i))))

(define (get-glob l) ;: loc → val
(unbox l))

(define (set-glob l v) ;: (loc × val) → val
(let ([ov (unbox l)])

(set-box! l v)
ov))

(define ((lift o) v∗ k) ;: (val∗ → val) → (val∗ × cont) → !val
(apply k (o v∗)))

(define (elab! prims i+d∗) ;: ((id × !(val∗ × cont))∗ × (id × decl))∗ → unit
(set! ∗globs∗ ’())
(set! ∗procs∗ prims)
(set! ∗advs∗ ’())
(for-each (lambda (i+d)

(let ([d (cdr i+d)]
[i (car i+d)])

(cond [(procD? d) (set! ∗procs∗ ‘((,i ,(make-procV (procD-ids d)
(procD-body d)))

. ,∗procs∗))]
[(globD? d) (set! ∗globs∗ ‘((,i ,(box init-val ))

. ,∗globs∗))]
[(advD? d) (set! ∗advs∗ ‘((,(advD-pc d) . ,(advD-body d))

. ,∗advs∗))]
[else (error ’elab "not a decl: ~a" d)])))

i+d∗)
(set! step (adv-step ∗advs∗)))

Figure 14: Proc Elaborator
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ABSTRACT
Nonmonotonic logic is a branch of logic that has been de-
veloped to model situations with incomplete information.
We argue that there is a connection between AOP and non-
monotonic logic which deserves further study. As a con-
crete technical contribution and “appetizer”, we outline an
AO semantics defined in default logic (a form of nonmono-
tonic logic), propose a definition of modular reasoning, and
show that the default logic version of the language semantics
admits modular reasoning whereas a conventional language
semantics based on weaving does not.

1. INTRODUCTION
There has been a lot of debate in the aspect-oriented com-

munity on how aspects influence program understanding or
reasoning about programs, in particular how aspects influ-
ence “modular reasoning” (e.g., [12, 8]) (although modular
reasoning has never really been defined). Previous works
have concentrated on restricting AO languages in order to
ease modular reasoning (e.g., [9, 2]). In this paper, we in-
vestigate a different approach: Rather than restricting the
language, we propose to use a different reasoning model,
namely nonmonotonic reasoning (see [3] for an overview).

In classical (monotonic) logic, adding a piece of informa-
tion to a knowledge base never reduces the set of its conse-
quences. Intuitively, monotonicity indicates that learning a
new piece of knowledge cannot reduce what was previously
known. Nonmonotonic logics (the formal incarnations of
nonmonotonic reasoning) have been developed to deal with
incomplete and changing information. Nonmonotonic logic
allows to revise conclusions if new knowledge arrives, and
provides rigorous mechanisms for taking back conclusions
that no longer fit to newly learned knowledge, and deriving
new, alternative conclusions instead.

In this paper, we argue that there is a fruitful connec-
tion between nonmonotonic logic and aspects. Using non-
monotonic logic, it is possible to specify the semantics of
an AO language with pointcuts and advice in a very direct

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Foundations of Aspect-Oriented Lan-
guages (FOAL 2007), March 13, 2007, Vancouver, BC, Canada.
Copyright 2007 ACM ISBN 1-59593-671-4/07/03 ...$5.00.

and compositional way: no kind of weaving or other global
operation needs to be build into the semantic definitions.
The absense of any operations requiring global knowledge
means that reasoning with local knowledge is also easier.
To validate this claim, we propose a definition of modular
reasoning and show that nonmonotonic logic restores the
ability for modular reasoning, albeit at the cost of giving up
monotonicity.

The rest of the paper is structured as follows. In the next
section, we give a very short introduction to default logic.
In Sec. 3, we give a semantics of an AO language with point-
cut and advice based on default logic and compare it with a
conventional AO language semantics based on weaving. In
Sec. 4 we consider the problem of modular reasoning and dis-
cuss how nonmonotonic logic influences modular reasoning.
Sec. 5 discusses variants of default logic that employ prior-
ities, and how these variants can be used to model advice
precedence rules. Sec. 6 discusses what has been achieved.

2. DEFAULT LOGIC
A typical example in nonmonotonic logic is that we know

birds usually fly, and that Tweety is a bird, and hence con-
clude that Tweety flies - until we learn that Tweety is ac-
tually a penguin. Using default logic [22] - one particular
variant of nonmonotonic logic - we can formalize this situa-
tion as follows:

bird(X) : flies(X)

flies(X)
This rule is a so-called default, and can be read as “If X is

a bird, and if it is consistent to assume that X flies (that is,
it cannot be concluded that X does not fly), then conclude
that X flies”. In general, a default δ has the form ϕ : ψ1,...,ψn

χ
,

where ϕ,ψ1, ..., ψn, χ are predicate logic formulae, and n >
0. The formula ϕ is called prerequisite, the part to the right
of the colon, ψ1, ..., ψn justifications, and the part below
the bar, χ, is the consequent. A default is applicable to a
deductively closed set of formulae E, if ϕ ∈ E and ¬ψ1 /∈
E, ...,¬ψn /∈ E.

In general, the set of conclusions that we can draw from
a knowledge base with defaults is not unique. For example,
if we know that members of the green party typically do
not like cars, and members of an automobile club usually
like cars, and John is members of both green party and
automobile club, then we can conclude both that John likes
cars and that he does not like cars.

This seeming chaos is ordered by so-called extensions -
possible world views based on the given defaults. Techni-
cally, an extension is a superset of the knowledge base that
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~a = ApplicableAdvice(o,m)

...o.m(~v) ↪→ ...o.m[~a](~v)
(Weave)

AdviceLookup(a) = (~x, e)

...o.m[a,~a](~v) ↪→ ...e
[
o/this,

~v /~x,
o.m[~a](~v) /proceed

] (AdvExec)

MethodLookup(o,m) = (~x, e)

...o.m[∅](~v) ↪→ ...e
[
o/this,

~v /~x
] (MethExec)

Figure 1: AO language semantics in the style of Jagadeesan et al

is consistent and closed under deduction and application of
defaults [22]. In the example, we would have two distinct
extensions, in which John likes and does not like, respec-
tively, cars. A large part of the theory of default logic is
concerned with the existence and construction of extensions
and the relations between different extensions.

Reiter’s original definition of extensions is a non-constructive
fixed point equation based on the above properties, but we
give an equivalent operational definition based on [18, 3, 4].
For this purpose, we define a default theory to be a pair
T = (W,D) consisting of a set W of predicate logic formu-
lae (sometimes called background theory) and a countable
set of defaults D. The extensions of T are the deductive
closures of all sets E that can be generated by the following
non-deterministic algorithm1:
E := W ;A := ∅;
while there is a default δ /∈ A that is applicable to E {
E := E ∪ {consequent(δ)};A := A ∪ {δ};

}
if ∀δ ∈ A.E is consistent with all justifications of δ

then return E else failure
The algorithm first uses applicable defaults in an arbitrary

order to build a candidate for an extension. The consistency
check in the last two lines then checks whether E is really
an extension. In general, extensions are neither unique (due
to the non-deterministic choice of the next default) nor need
to exist at all (due to the consistency check).

It may look strange that every default is applied at most
once in the algorithm. This is sufficient, because the rule
about birds above is technically not a default but a default
schema since it contains a free variable (namely X). De-
fault schemata are implicitly interpreted to mean the set of
defaults ϕσ : ψ1σ,...,ψnσ

χσ
for all ground substitutions σ that

assign values to all free variables in the schema. For exam-
ple, if we have two birds Tweety and Trixy, then our default

schema creates two separate defaults bird(Tweety) : flies(Tweety)
flies(Tweety)

and bird(Trixy) : flies(Trixy)
flies(Trixy)

.

3. ASPECTS AND DEFAULT LOGIC
Usually, pointcuts are implemented by static or dynamic

weaving (that is, code transformation) or by interception
and dynamic lookup. This view is also reflected in most
formal accounts of AOP languages. Let us consider an
object-oriented language with “around” advice that can ad-
vise method calls. In Jagadesaan et al’s calculus of aspect-
oriented programs [11], the (small-step) operational seman-
tics rules for method lookup look roughly as sketched in

1Recall the definition of applicable on the previous page

Fig. 1. We leave out many details that are irrelevant for
the purpose of this paper. The “...” part in the transition
rules stands for dynamic entities of the operational seman-
tics, such as call stacks or heaps. We also refrain from show-
ing all the other rules of a complete operational semantics,
since the rules for method and advice execution are sufficient
to illustrate our idea.

A method call o.m(~v) is executed by first looking up all
advice that applies to a method call and sorting the advice
in some order (inside the ApplicableAdvice function, whose
definition is not shown here), and weaving the sorted list
of advice ~a into the method call (Weave). This weaved
method call is then executed by taking the first advice from
the list, looking up the formal arguments and body of the
first advice, substituting this and the formal parameters ~x
by the receiver object and the actual parameter values, re-
spectively, and substituting proceed by a method call that
removes the first advice from the list of pending advice
(AdvExec). If no advice is left, the original method body is
executed (MethExec). In both cases, the lookup functions
return a list with the names of the formal parameters and
the advice/method body.

Let us now study how we could encode a similar AO lan-
guage semantics using default logic. We propose rules as
presented in Fig. 2. The meaning of a method call is now
a bit different: Whereas in Fig. 1 an expression o.m[~a](~v)
denotes a method call where the execution of all advice in ~a
is pending, we now interpret it to mean a method call where
all advice in ~a have already been executed. Hence we do not
need a separate syntactic form o.m(~v) for method calls be-
fore weaving; rather, normal method calls are denoted as
o.m[∅](~v).

There are only two computation rules, (Meth) and (Adv).
Due to the different meaning of the advice list in method
calls, (Adv) adds rather than removes the name of the ex-
ecuted advice to the method call that replaces proceed.
There is no weaving rule anymore. Rather, the behavior of
(Meth) and (Adv) is controlled by the auxiliary predicates
NextAdvice and unadvised, which are defined using defaults.
If there is no information to the contrary, we assume that
a method call is unadvised (Unadv). If however, there is
some applicable advice a that has not yet been executed,
and if it is consistent to assume that it is the next advice
to execute, then we conclude that a will be the next advice
(NextAdv). Furthermore, a call with applicable advice is
not unadvised (SomeAdv).

To avoid that two different advice are both simultaneously
the next one, we implicitly assume the existence of the usual

inference rules of equality, in particular x6=x′

¬(x=x′) .
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MethodLookup(o,m) = (~x, e)
unadvised(o,m,~a)

...o.m[~a](~v) ↪→ ...e
[
o/this,

~v /~x
] (Meth)

NextAdvice(o,m,~a) = a
AdviceLookup(a) = (~x, e)

...o.m[~a](~v) ↪→ ...e
[
o/this,

~v /~x,
o.m[a,~a](~v) /proceed

] (Adv)

true : unadvised(o,m,~a)

unadvised(o,m,~a)
(Unadv)

a ∈ ApplicableAdvice(o,m) ∧ a /∈ ~a : NextAdvice(o,m,~a) = a

NextAdvice(o,m,~a) = a
(NextAdv)

a ∈ ApplicableAdvice(o,m) ∧ a /∈ ~a
¬unadvised(o,m,~a)

(SomeAdv)

Figure 2: AO language semantics using default logic

To appreciate the difference between default and classi-
cal logic, assume for a moment that the colons in Fig. 2
would be replaced by conjunction operators (i.e., we would
use classical rules). In this case, we could never prove a goal
of the form unadvised(o,m,~a) or NextAdvice(o,m,~a) = a
because the same goal that we want to prove also appears
in the premise of its rule. Hence the semantics would be
useless. Similarly, if we would just remove the justifica-
tions, the semantics would be useless because we could prove
unadvised(o,m,~a) for arbitrary o, m, and ~a.

Now, the question arises whether the default theory in
Fig. 2 has any extensions, and if any, what they look like.
Luckily, all default rules in Fig. 2 are so-called normal de-
faults, meaning that the justification is the same as the
consequent. Normal default theories are particularly well-
behaved. Besides other important properties, normal de-
fault theories always possess extensions [22], which answers
the first question.

Is there only a unique extension? No - in case more than
one advice is applicable at some point, there is more than
one extension, namely one for every possible advice execu-
tion order. This reflects the fact that there is no a-priori
order among different overlapping advice. The difference to
previous approaches is that we can now deal with this situ-
ation within our reasoning framework, and study the ambi-
guity in terms of extensions.

Let us now analyze informally to which degree the two
language semantics agree with each other. If at most one
pointcut applies at any joinpoint, the two semantics agree
because in this case, there is only one unique extension in the
default theory, which is the same theory that is generated by
the conventional operational semantics. The semantics differ
in how they treat shared joinpoints (more than one pointcut
applies). In Fig. 1, the ApplicableAdvice lookup function
orders all applicable advice in a specific order, whereas in
Fig. 2 every potential execution order is represented by a
different extension. We will later discuss how variants of
default logic such as prioritized default logic [6] can be used
to model global orders or ordering hints (such as declare
precedence in AspectJ) on advice.

4. MODULAR REASONING
We will now attempt to give a semi-formal definition of

modular reasoning. Reasoning can be performed with re-
spect to a knowledge base, whereby we define a knowledge
base as a set of logic formulae (or axioms) F in the case of
classical reasoning, and as a default theory T = (W,D) in
the case of default reasoning. What can be concluded from
the knowledge base is the deductive closure of F in the clas-
sical case, and the set of extensions of T in the default logic
case.

We view the “partial evaluation” of the operational se-
mantics rules with the current program as the knowledge
base which we use to reason about the operational behav-
ior of a program. By this we mean the set of rule in-
stances where all meta-variables that refer to parts of the
program are replaced by ground substitutions from the pro-
gram. Recall that the operational semantics inference rules
are actually rule schemata that stand for a set of rule in-
stances, hence we can talk about the set of rule instances
ruleinstances(P ) for a given program P 2. For example, if
our program contains an object anObj and a method aMeth
of this object whose body returns this, then

Unadvised(anObj , aMeth, ∅)
...anObj .aMeth[∅]() ↪→ ...anObj

is a rule instance of (Meth).
Please note in this context that the lookup functions Ad-

viceLookup etc. are very different from the Unadvised and
NextAdvice predicates, in that the lookup functions have a
fixed interpretation and can hence simply be unfolded in any
rule instances, whereas the meaning of Unadvised and Nex-
tAdvice is defined in (Unadv) and (NextAdv), similarly to
how ↪→ is defined in (Meth) and (Adv).

2We are cheating a bit because the program is usually (at
least implicitly) a part of the derivation rules, e.g., deriva-
tion rules of the format P ` e1 ↪→ e2. We have deliberately
removed the program from the rules such that we can talk
about preservation of rule instances with respect to program
expansion.
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Assuming some module structure in the underlying lan-
guage, we say that a program P ′ is an expansion of P , if P ′

contains P but may contain additional modules. The defini-
tion of modular reasoning is as follows: A language admits
modular reasoning with respect to a set of rules, if, for all
programs P and P ′ such that P ′ is an expansion of P , we
have ruleinstances(P ) ⊆ ruleinstances(P ′).

The rationale behind this definition is that the set of rule
instances of a program can be considered as the knowledge
base which we use to reason about the program. If we in-
vestigate a subpart of a program, then the knowledge base
(i.e., the set of rule instances) should only grow when we
investigate bigger parts of the program, but the knowledge
base should never be invalidated by considering a larger part
of the program.

Let us now consider how the language definitions in Fig. 1
and 2 perform with respect to this definition. The deci-
sive rule in Fig. 1, which prevents modular reasoning, is
(Weave). For example, we may have

...anObj.aMeth() ↪→ ...anObj.aMeth[∅]()

for some method aMeth with zero parameters and object
anObj in a program P , but

...anObj.aMeth() ↪→ ...anObj.aMeth[anAdv]()

in an expansion P ′ of P that adds an advice anAdv for calls
to anObj.aMeth(). Hence, modular reasoning (according to
our definition), is not supported via this language definition.

The situation is different in Fig. 2, because there is no
rule like (Weave) that needs global knowledge. To be con-
crete, assume a method call anObj .aMeth[∅](), where the
body of aMeth just returns this. Then we have a rule
instance of the rule schema (Meth) which has the form

Unadvised(anObj ,aMeth,∅)
...anObj .aMeth[∅]()↪→...anObj

. This rule instance is stable w.r.t. pro-

gram expansion. If we consider again P ′ which adds advice
anAdv, then this rule instance is still valid, but we get an
additional rule instance of (SomeAdv), namely

true ∧ true
¬unadvised(anObj , aMeth, ∅)

Hence, modular reasoning (according to our definition) is
possible in the default logic version of the language seman-
tics.

We believe that our approach also enables a form of modu-
lar verification in the sense of [14]: To determine whether an
expansion of a program violates some property of the origi-
nal program that holds in some extension, it is sufficient to
check whether the set of assumptions A in our algorithm for
computing extensions is consistent with the program expan-
sion; it is not necessary to re-examine the whole program.

5. PRIORITIES
If two advice apply at some joinpoint, the question arises

in which order the advice are to be executed. Languages
like AspectJ leave the order unspecified (or use an arbitrary
order such as lexicographic order of aspect names) by de-
fault, but enable the programmer to insert precedence rules
into the program. Such mechanisms are very naturally sup-
ported in default logic, and we believe that the various re-
sults in this domain (see [6, 10, 23] for an overview) could be
projected back to AO languages and lead to better priority
specification mechanisms.

At this point, we will only consider two simple variants of
default logic with priorities: PDL and PRDL [6] [3, Chap. 8].
In PDL, the priority information is given in the form of a
strict partial order < on the set of defaults. The set of ex-
tensions of a default theory in PDL is restricted to those
extensions that respect <, i.e., the order of default applica-
tion in the algorithm in Sec. 2 is compatible with <.

For the purpose of modelling constructs like declare prece-

dence in AspectJ, PRDL is even more appropriate, because
PRDL allows to model the priority information within the
logic, rather than as an external partial order as in PDL. In
PRDL, every default δi has a name di. It also introduces
a special symbol ≺ acting on default names. d1 ≺ d2 can
be read as “give the default with name d1 priority over the
default with name d2”. A term d1 ≺ d2 in PRDL is an
ordinary formula that can be used both in the background
theory W and in defaults D of a default theory T = (W,D).
So, an AspectJ precedence declaration declare predence

a1, a2 can be represented by adding d ≺ d′ to W for ev-
ery d, d′ that is the name of a rule instance of (NextAdv)
for a1 and a2, respectively. Of course, in PRDL the notion
of extension is refined to priority extensions, which respect
the order hints in T . Note that PRDL is already a much
more general model than AspectJ’s declare precedence,
because ordering hints can be given inside arbitrary logic
formulaes. Since they may also be given inside defaults, it is
even possible to model that different extensions use different
priorities! With regard to aspect priority this would mean
that the priority between two advice might depend on the
choosen priority order between other advice.

One step further would be to consider dynamic priorities,
which are well-known in nonmonotonic logic [7, 5]. We be-
lieve that these mechanisms could be directly used to design
new advanced priority mechanisms for AO languages.

6. DISCUSSION
Using default logic, it is possible to define the semantics

of an AO language in a compositional way, without using
weaving or other kinds of global operations. This is not only
interesting from the perspective of defining the language,
but also from the perspective of reasoning about programs
in the language, since a language semantics also influences
how we reason about programs.

Our definition of modular reasoning seems to be a bit
strange in that the whole concept of interfaces, which is
usually a central notion of modularty, does not show up
in any way. Hence, it is not clear whether our definition
really fits to what people usually associate with the term
“modular reasoning”. If it does not, the author is happy
to take any suggestion for a better name for this property.
Another potential weakness of our definition is that it is
possible to build up global (or at least non-local) informa-
tion during execution, e.g., a list of dynamically deployed
aspects that is propagated in the ... part of our reduction
rules (such as in Lämmel’s approach [15]). According to our
definition, such an approach would still allow modular rea-
soning. This brings up the question of the difference (with
respect to modular reasoning) between having to have global
knowledge about the program, or knowledge about dynamic
parameters that influence the execution and are propagated
through the execution steps (such as aspect registries, heaps,
or monads).

One may also argue that our definition of modular rea-
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soning has been carefully worded to fit to our approach, and
that what one really wants is monotonicity in the set of con-
clusions from a knowledge base and not so much monotonic-
ity in the knowledge base itself. Indeed, our default logic ver-
sion is nonmonotonic in this regard: A previously existing
extension based on the assumption unadvised(anObj , aMeth, ∅)
can be invalidated by program expansion. This is what non-
monotonic logic is about, after all.

However, we still believe there is value in our approach
because now we can deal with this nonmonotonicity in a
reasoning framework that has been specifically developed
for that very purpose. In Sec. 5 we have already hinted at
how variants of nonmonotonic logic with priorities might fer-
tilize AO language design. We believe that this is also true
for other results from nonmonotonic logic. For example, the
theory of default logic gives conditions under which exten-
sions are unique or under which conclusions are contained in
all extensions of a default theory [17, 13]. There is a system-
atic process to deal with changing belief sets [1]. There are
mechanisms to keep track of the beliefs upon which we base
our conclusions [16]. With our approach, we can now project
these results from default logic back into the AO language
domain. Connections between logic and programming have
turned out to be quite fruitful in the past (Curry-Howard
isomorphism!), and we hope that this connection between
AOP and nonmonotonic logic is no exception.

In this work, we have concentrated on default logic. It
would probably also be possible to define our language se-
mantics in autoepistemic logic [21]. Autoepistemic logic in-
troduces an operator L, where Lφ is interpreted as ’I believe
in φ’. Using this operator, our (Unadv) rule, for example,
could be encoded as

¬L¬unadvised(o,m,~a) → unadvised(o,m,~a)

Since autoepistemic logic is intuitively based on introspec-
tion (rather than default rules), autoepistemic logic might
provide another interesting reasoning framework to interpret
AOP.

Another well-known approach in nonmonotonic logic is
circumscription [19, 20]. We believe that circumscription
could be useful to devise a model-theoretic interpretation
of AOP. From the perspective of logic, most semantic ac-
counts of AOP are proof-theoretic (including this one). Cir-
cumscription gives a model-theoretic interpretation of non-
monotonic logic by selecting minimal models from the space
of models of a theory. We believe it would be possible to
define a variant of our semantics where the unadvised and
NextAdvice predicates are circumscribed (i.e., their mean-
ing is minimized), rather than defining them via defaults.
However, this is clearly a topic for future work.
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ABSTRACT
We consider the problem of adding aspects to a strongly
typed language which supports type classes. We show that
type classes as supported by the Glasgow Haskell Com-
piler can model an AOP style of programming via a sim-
ple syntax-directed transformation scheme where AOP pro-
gramming idioms are mapped to type classes. The draw-
back of this approach is that we cannot easily advise func-
tions in programs which carry type annotations. We sketch
a more principled approach which is free of such problems
by combining ideas from intentional type analysis with ad-
vanced overloading resolution strategies. Our results show
that type-directed static weaving is closely related to type
class resolution – the process of typing and translating type
class programs.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; F.3.2 [Logics and Meanings of Pro-

grams]: Semantics of Programming Languages—Operational
semantics

General Terms
Languages, theory

Keywords
Type class resolution, type-directed weaving

1. INTRODUCTION
Aspect-oriented programming (AOP) is an emerging para-

digm which supports the interception of events at run-time.
The essential functionality provided by an aspect-oriented
programming language is the ability to specify what com-
putation to perform as well as when to perform the compu-
tation. A typical example is profiling where we may want
to record the size of the function arguments (what) each
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Copyright 2007 ACM ISBN 1-59593-671-4/07/03 ...$5.00.

time a certain function is called (when). In AOP termi-
nology, what computation to perform is referred to as the
advice and when to perform the advice is referred to as the
pointcut. An aspect is a collection of advice and pointcuts
belonging to a certain task such as profiling.

There are numerous works which study the semantics of
aspect-oriented programming languages, for example con-
sider [1, 13, 22, 24, 25, 27]. Some researchers have been look-
ing into the connection between AOP and other paradigms
such as generic programming [28]. To the best of our knowl-
edge, we are the first to study the connection and combina-
tion between AOP and the concept of type classes, a type
extension to support overloading (a.k.a. ad-hoc polymor-
phism) [23, 11], which is one of the most prominent features
of Haskell [17].

In this paper, we make the following contributions:

• We introduce an AOP extension of Haskell, referred
to as AOP Haskell, with type-directed pointcuts (Sec-
tion 3.1).

• We define AOP Haskell by means of a syntax-directed
translation scheme where AOP programming idioms
are directly expressed in terms of type class constructs.
Thus, typing and translation of AOP Haskell can be
explained in terms of typing and translation of the
resulting type class program (Section 5).

Our type class encoding of AOP critically relies on multi-
parameter type classes and overlapping instances. Both fea-
tures are not part of the Haskell 98 standard [17], but they
are supported by the Glasgow Haskell Compiler (GHC) [4].
There are two problems.

Firstly, GHC’s overlapping instances have never been for-
malized. Hence, it is difficult to make any precise claims re-
garding soundness of our GHC type class encoding of AOP.
Secondly, the AOP to GHC type class translation scheme
only works in case we do not advise programs which contain
type annotations. Section 4.2 provides further details.

Despite these problems, we consider the encoding of AOP
via GHC type classes a useful exercise. To encode AOP
in the setting of a strongly typed language we need some
form of type-safe cast. Type classes are known to have this
capability and in our approach we achieve this by exploiting
GHC’s overlapping instances. Thus, we can establish that
the concepts of type classes and aspects are closely related.

There are a number of works, for example consider [14,
12], which also use sophisticated type class tricks to model
type safe casts in the setting of generic programming and
strongly typed heterogeneous collections. These works may
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even have a solution how to advise functions without having
to change type annotations by using some more advanced
type class ”hackery”. However, we do not plan to consider
this avenue further. Ultimately, we seek for a more prin-
cipled approach which allows us to study the combination
of type classes and aspects without having to rely on the
features of specific implementations such as GHC.

We are currently working on a foundational framework
to integrate type classes and aspects. We briefly sketch
this more principled approach in Section 6. The idea is to
use Harper and Morrisett’s intentional type analysis frame-
work [6] for the translation of aspects and Stuckey and the
first author’s overloading framework [19] for the resolution
of type classes programs with aspects.

We continue in Section 2 where we give an introduction
to type classes. Section 3 gives an overview of the key ideas
behind our approach of mapping AOP Haskell to GHC type
classes. Section 4 discusses the shortcomings of this ap-
proach. We conclude in Section 7 where we also discuss
related work.

2. BACKGROUND: TYPE CLASSES
Type classes [11, 23] provide for a powerful abstraction

mechanism to deal with user-definable overloading also known
as ad-hoc polymorphism. The basic idea behind type classes
is simple. Class declarations allow one to group together re-
lated methods (overloaded functions). Instance declarations
prove that a type is in the class, by providing appropriate
definitions for the methods.

Here are some standard Haskell declarations.

class Eq a where (==)::a->a->Bool
instance Eq Int where (==) = primIntEq -- (I1)

instance Eq a => Eq [a] where -- (I2)
(==) [] [] = True
(==) (x:xs) (y:ys) = (x==y) && (xs==ys) -- (L)

(==) _ _ = False

The class declaration in the first line states that every type
a in type class Eq has an equality function ==. Instance (I1)
shows that Int is in Eq. We assume that primIntEq is the
(primitive) equality function among Ints. The common ter-
minology is to express membership of a type in a type class
via constraints. Hence, we say that the type class constraint
Eq Int holds. Instance (I2) shows that Eq [a] from the in-
stance head holds if Eq a in the instance context holds. Thus,
we can describe an infinite family of (overloaded) equality
functions.

We can extend the type class hierarchy by introducing
new subclasses.

class Eq a => Ord a where (<)::a->a->Bool -- (S1)
instance Ord Int where ... -- (I3)

instance Ord a => Ord [a] where ... -- (I4)

The above class declaration introduces a new subclass Ord
which inherits all methods of its superclass Eq. For brevity,
we ignore the straightforward instance bodies.

In the standard type class translation approach we repre-
sent each type class via a dictionary [23, 5]. These dictionar-
ies hold the actual method definitions. Each superclass is
part of its (direct) subclass dictionary. Instance declarations
imply dictionary constructing functions and (super) class
declarations imply dictionary extracting functions. The dic-
tionary translation of the above declarations is given in Fig-
ure 1.

type DictEq a = (a->a->Bool)

instI1 :: DictEq Int
instI1 = primIntEq
instI2 :: DictEq a -> DictEq [a]

instI2 dEqa =
let eq [] [] = True

eq (x:xs) (y:ys) = (dEqa x y) &&
(instI2 dEqa xs ys)

eq = False
in eq
type DictOrd a = (DictEq a, a->a->Bool)

superS1 :: DictOrd a -> DictEq a
superS1 = fst
instI3 :: DictOrd Int

instI3 = ...
instI4 :: DictOrd a -> DictOrd [a]
instI4 = ...

Figure 1: Dictionary-Passing Translation

Notice how the occurrences of == on line (L) have been re-
placed by some appropriate dictionary values. For example,
in the source program the expression xs == ys gives rise to
the type class constraint Eq [a]. In the target program, the
dictionary instI2 dEqa provides evidence for Eq [a] where
dEqa is the (turned into a function argument) dictionary
for Eq a and instI2 is the dictionary construction function
belonging to instance (I2).

The actual translation of programs is tightly tied to type
inference. When performing type inference, we reduce type
class constraints with respect to the set of superclass and
instance declarations. This process is known as type class
resolution (also known as context reduction). For example,
assume some program text gives rise to the constraint Eq
[[[a]]]. We reduce Eq [[a]] to Eq a via (reverse) appli-
cation of instance (I2). Effectively, this tells us that given
a dictionary d for Eq a, we can build the dictionary for Eq
[[a]] by applying instI2 twice. That is, instI2 (instI2

d) is the demanded dictionary for Eq [[a]]. Notice that
given the dictionary d’ for Ord a, we can build the al-
ternative dictionary instI2 (instI2 (superS1 d’)) for Eq
[[a]].

In the above, we only use single-parameter type classes.
Other additional type class features include functional de-
pendency [9], constructor [8] and multi–parameter [10] type
classes. For the translation of AOP Haskell to Haskell we
will use multi-parameter type classes and overlapping in-
stances, yet another type class feature, as supported by
GHC [4].

3. THE KEY IDEAS
To explain our idea of how to mimic AOP via GHC type

classes, we first introduce an AOP extension of Haskell, re-
ferred to as AOP Haskell, and consider some example pro-
grams in AOP Haskell.

3.1 AOP Haskell
AOP Haskell extends the Haskell syntax [17] by support-

ing top-level aspect definitions of the form

N@advice #f1,...,fn# :: (C => t) = e
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import List(sort)

insert x [] = [x]
insert x (y:ys)

| x <= y = x:y:ys
| otherwise = y : insert x ys

insertionSort [] = []

insertionSort xs =
insert (head xs) (insertionSort (tail xs))

-- sortedness aspect
N1@advice #insert# :: Ord a => a -> [a] -> [a] =
\x -> \ys ->

let zs = proceed x ys
in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"
where

isSorted xs = (sort xs) == xs
-- efficiency aspect
N2@advice #insert# :: Int -> [Int] -> [Int] =

\x -> \ys ->
if x == 0 then x:ys
else proceed x ys

Figure 2: AOP Haskell Example

where N is a distinct label attached to each advice and the
pointcut f1,...,fn refers to a set of (possibly overloaded)
functions. Commonly, we refer to fi’s as joinpoints. No-
tice that our pointcuts are type-directed. Each pointcut has
a type annotation C => t which follows the Haskell syntax.
We refer to C => t as the pointcut type. We will apply the
advice if the type of a joinpoint fi is an instance of t such
that constraints C are satisfied. The advice body e follows
the Haskell syntax for expressions with the addition of a
new keyword proceed to indicate continuation of the nor-
mal evaluation process. We only support “around” advice
which is sufficient to represent “before” and “after” advice.

In Figure 2, we give an example program. In the top part,
we provide the implementation of an insertion sort algorithm
where elements are sorted in non-decreasing order. At some
stage during the implementation, we decide to add some
security and optimization aspects to our implementation.
We want to ensure that each call to insert takes a sorted
list as an input argument and returns a sorted list as the
result.

In our AOP Haskell extension, we can guarantee this prop-
erty via the first aspect definition in Figure 2. We make use
of the (trusted) library function sort which sorts a list of
values. The sort functions assumes the overloaded com-
parison operator <= which is part of the Ord class. Hence,
we find the pointcut type Ord a=>[a]->[a]->[a]. The key-
word proceed indicates to continue with the normal eval-
uation. That is, we continue with the call insert x ys.
The second aspect definition provides for a more efficient
implementation in case we call insert on list of Ints. We
assume that only non-negative numbers are sorted which
implies that 0 is the smallest element appearing in a list
of Ints. Hence, if 0 is the first element it suffices to cons
0 to the input list. Notice there is an overlap among the

AOP Haskell

⇓
•turn advice into instances
•instrument joinpoints

Haskell+Type Classes

⇓
•type class resolution
•further compilation steps

Executable

Figure 3: AOP Haskell Typing and Translation

Scheme

pointcut types for insert. In case we call insert on list of
Ints we apply both advice bodies in no specific order unless
otherwise stated. For all other cases, we only apply the first
advice.

Because AOP Haskell extends Haskell, we can naturally
refer to overloaded functions in advice bodies. See the first
advice body where our use of sort gives rise to the Ord a
constraint. Also note the use of the (overloaded) equality op-
erator == whose type is Eq a => a -> a -> a. In Haskell,
the Eq class is a superclass of Ord. Hence, there is no need
to mention the Eq class in the pointcut type of the advice
definition.

3.2 Typing and Translating AOP Haskell with
GHC Type Classes

Our goal is to embed AOP Haskell into Haskell by making
use of Haskell’s rich type system. Specifically, we use GHC
with two extensions (multi-parameter type classes and over-
lapping instances). We give a transformation scheme where
typing and translation of the source AOP Haskell program
is described by the resulting target Haskell program.

The challenge we face is how to intercept calls to join-
points and re-direct the control flow to the advice bodies.
In AOP terminology, this process is known as aspect weav-
ing. Weaving can either be performed dynamically or stat-
ically. Dynamic weaving is the more flexible approach. For
example, aspects can be added and removed at run-time.
For AOP Haskell, we employ static weaving which is more
restrictive but allows us to give stronger static guarantees
about programs such as type inference and type soundness.

Our key insight is that type-directed static weaving can
be phrased in terms of type classes based on the following
principles:

• We employ type class instances to represent advice.

• We use a syntactic pre-processor to instrument join-
points with calls to overloaded “weaving” function.

• We explain type-directed static weaving as type class
resolution. Type class resolution refers to the process
of reducing type class constraints with respect to the
set of instance declarations.

Figure 3 summarizes our approach of typing and translating
AOP Haskell. In Figure 4, we apply the transformation
scheme to the AOP Haskell program from Figure 2. We use
here type classes as supported by GHC.

Let us take a closer look at how this transformation scheme
works. First, we introduce a two-parameter type class Advice
which comes with a method joinpoint. Each call to insert

is replaced by
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insert x [] = [x]
insert x (y:ys)
| x <= y = x:y:ys

| otherwise=
y : (joinpoint N1 (joinpoint N2 insert)) x ys --(1)

insertionSort [] = []

insertionSort xs =
(joinpoint N1 (joinpoint N2 insert)) --(2)
(head xs) (insertionSort (tail xs))

-- translation of advice
class Advice n t where

joinpoint :: n -> t -> t
joinpoint = id -- default

data N1 = N1
instance Ord a => Advice N1 (a->[a]->[a]) where -- (I1)

joinpoint N1 insert =
\x -> \ys -> let zs = insert x ys

in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"
where

isSorted xs = (sort xs) == xs

instance Advice N1 a -- (I1’) default case

data N2 = N2

instance Advice N2 (Int->[Int]->[Int]) where -- (I2)
joinpoint N2 insert = \x -> \ys ->

if x == 0 then x:ys
else insert x ys

instance Advice N2 a -- (I2’) default case

Figure 4: GHC Haskell Translation of Figure 2

joinpoint N1 (joinpoint N2 insert)

We assume here the following order among advice: N2 ≤ N1.
That is, we first apply the advice N1 before applying advice
N2. This transformation step requires to traverse the ab-
stract syntax tree and can be automated by pre-processing
tools such as Template Haskell [18].

Next, each piece of advice is turned into an instance dec-
laration where the type parameter n of the Advice class is
set to the singleton type of the advice and type parameter
t is set to the pointcut type. In case the pointcut type is
of the form C => ..., we set the instance context to C. See
the translation of advice N1. In the instance body, we simply
copy the advice body where we replace proceed by the name
of the advised function. Additionally, for each advice N we
introduce instance Advice N a where the body of this in-
stance is set to the default case as specified in the class decla-
ration. The reader will notice that for each advice we create
two “overlapping” instances. For example, the head Advice
N1 (a->[a]->[a]) of instance (I1) and the head Advice N1

a of the default instance (I1’) overlap because the type com-
ponents are unifiable (after renaming the a in Advice N1 a
with a fresh variable b). Therefore, we can potentially use
either of the two instances to resolve a type class constraint
which may yield to two different results. However, GHC will
postpone resolution of type classes until we can unambigu-
ously choose an instance. We say that GHC implements a

“lazy” and “best-fit” type class resolution strategy.
The actual (static) weaving of the program is performed

by the type class resolution mechanism. GHC will infer the
following types for the transformed program.

insert :: forall a.
(Advice N1 (a -> [a] -> [a]),

Advice N2 (a -> [a] -> [a]),
Ord a) => a -> [a] -> [a]

insertionSort :: forall a.
(Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a]),
Ord a) => a -> [a] -> [a]

Each Advice type class constraint results from a call to
joinpoint. GHC’s “lazy” type class resolution strategy
does not resolve Advice N1 (a -> [a] -> [a]) because we
could either apply instance (I1) or the default instance (I1’)
which may yield to an ambiguous result. However, if we use
insert or insertionSort in a specific monomorphic context
we can resolve “unambiguously” the above constraints.

Let us assume we apply insertionSort to a list of Ints.
Then, we need to resolve the constraints

(Advice N1 (Int -> [Int] -> [Int]),

Advice N2 (Int -> [Int] -> [Int]), Ord Int)

GHC’s “best-fit” strategy resolves Advice N1 (Int -> [Int]

-> [Int]) via instance (I1), Advice N2 (Int -> [Int] ->
[Int]) via instance (I2) and Ord Int is resolved using a pre-
defined instance from the Haskell Prelude [17]. Effectively,
this means that at locations (1) and (2) in the above pro-
gram text, we intercept the calls to insert by first applying
the body of instance (I1) followed by applying the body of
instance (I2)

In case, we apply insertionSort to a list of Bools, we
need to resolve the constraints

(Advice N1 (Bool -> [Bool] -> [Bool]),
Advice N2 (Bool -> [Bool] -> [Bool]), Ord Bool)

The instance (I1) is still the best-fit for Advice N1 (Bool
-> [Bool] -> [Bool]). However, instead of instance (I2)
we apply the default case to resolve Advice N2 (Bool ->
[Bool] -> [Bool]). Hence, at locations (1) and (2) we ap-
ply the body of instance (I1) followed by the body of the
default instance for advice (I2). Ord Bool is resolved using
a pre-defined instance from the Haskell Prelude.

4. DISCUSSION
The transformation from AOP Haskell to Haskell using

GHC type classes is simple and only requires a syntactic
transformation of programs. In Section 5, we give the de-
tails plus further examples. We also show how to statically
detect useless advice. Unfortunately, our AOP to type class
transformation scheme suffers from the following problems:

1. Aspects must be pure, i.e. free of side-effects.

2. (a) Advising type annotated requires to rewrite anno-
tations. (b) Rewriting of type annotations of polymor-
phic recursive functions is impossible.

3. The transformation scheme relies on multi-parameter
type classes and overlapping instances extensions which
are not part the Haskell 98 standard. But they are
supported by GHC.

We will discuss each of the above three issues in turn.
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4.1 Aspects Must be Pure
In Haskell the effect of a program is manifested in its

(monadic) type. For example, a program which reads and
writes to standard I/O will have type IO () where IO be-
longs to the monad class. Hence, based on the syntax-
directed transformation scheme described so far, aspects
cannot make pure functions do I/O (for example, to do log-
ging) or modify state (for example, to add memorization).
We would need to “semantically rewrite” the program dur-
ing the transformation, by for example changing an advised
function of type t to a function of type IO t in case of an
aspect with effect IO.

A possible systematic solution is to monadify programs [2]
and use (state) monad transformers [15]. Another alterna-
tive is to use unsafePerformIO which obviously breaks type
safety. We consider the issue of impure aspects as orthog-
onal to our work is which about establishing a connection
between AOP and the concept of type classes. We plan to
take a look at impure aspects in future work.

4.2 Advising Type Annotated Programs
Let us assume we provide explicit type annotations to the

functions in Figure 2.

insert :: Ord a => a -> [a] -> [a]

insertionSort :: Ord a => [a] -> [a]

The trouble is that if we keep insert’s annotation in the
resulting target program, we find some unexpected behav-
ior. GHC’s type class resolution mechanism will “eagerly”
resolve the constraints

Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a])

arising from

joinpoint N1 (joinpoint N2 insert)

by applying instance (I1) on Advice N1 (a -> [a] -> [a])

and applying the default instance (I2’) on Advice N2 (a ->
[a] -> [a]). Hence, will never apply the advise N2, even if
we call insert on list of Ints.

The conclusion is that we must either remove type an-
notations in the target program, or appropriately rewrite
them during the translation process. For example, in the
translation we must rewrite insert’s annotation to

insert :: (Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a]), Ord a) =>
a -> [a] -> [a]

The need for rewriting type annotations complicates our
simple AOP Haskell to Haskell transformations. In fact, in
case of polymorphic recursive functions, which demand type
annotations to guarantee decidable type inference [7], we are
unable to appropriately the type annotation.

Let us consider a (contrived) program to explain this point
in more detail. In Figure 5, function f makes use of poly-
morphic recursion in the second clause. We call f on list
of lists whereas the argument is only a list. Function f will
not terminate on any argument other than the empty list.
Notice that the lists in the recursive call are getting “deeper’
and “deeper”. The advice definition allows us to intercept
all calls to f on list of list of Bools to ensure termination for
at least some values.

f :: [a] -> Bool

f [] = True
f (x:xs) = f [xs]

N@advice ♯f♯ :: [[Bool]] -> Bool = \x -> False

Figure 5: Advising Polymorphic Recursive Func-

tions

To translate the above AOP Haskell program to Haskell
with GHC type classes we cannot omit f’s type annotation
because f is a polymorphic recursive function. Our only
hope is to rewrite f’s type annotation. For example, consider
the attempt.

f :: Advice N a => [a] -> Bool
f [] = True

f (x:xs) = (joinpoint N f) [xs]

The call to f in the function body gives rise to Advice N [a]
whereas the annotation only supplies Advice N a. There-
fore, the GHC type checker will fail. Any similar “rewrite”
attempt will lead to the same result (failure).

A closer analysis shows that the problem we face is due
to the way type classes are implemented in GHC via the
dictionary-passing scheme [5]. In fact, almost all Haskell
implementations use the dictionary-passing scheme. Hence,
the following observation applies to pretty much all Haskell
implementations. In the dictionary-passing scheme, each
each type class is represented by a dictionary containing the
method definitions. In our case, dictionaries represent the
advice which will be applied to a joinpoint. Let us assume
we initially call f with a list of Bools. Then, the default
advice applies and we proceed with f’s evaluation. Subse-
quently, we will call f on a list of list of Bools. Recall that
f is a polymorphic recursive function. Now, we wish that
the advice N applies to terminate the evaluation with result
False. The problem becomes now clear. The initial advice
(i.e. dictionary) supplied will need to be changed during the
evaluation of function f We cannot naturally program this
behavior via GHC type classes.

4.3 Transformation Requires Type Class Ex-
tensions

To encode AOP in the setting of a strongly typed language
we need some form of type-safe cast. Multi-parameter type
classes are not essential but GHC style overlapping instances
are essential. However, GHC style overlapping instances are
heavily debated and still lack a formal description.

4.4 Short Summary
The AOP Haskell to Haskell transformation scheme based

on GHC type classes is simple. The problem is that we can-
not advise programs which contain type annotations, unless
we manually rewrite type annotations. This is impossible in
case we advice polymorphic recursive functions. The source
of the problem is the dictionary-passing scheme which un-
derlies the translation of type classes in GHC.

A less well known fact is that there exist alternative type
class translation proposals based on a type-passing trans-
lation scheme [21, 6]. The key insight is that if we em-
ploy a type-passing scheme for the translation of aspects we
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can easily solve the problems of the GHC based translation
scheme. We sketch such an approach in Section 6. First,
we provide the details of mapping AOP Haskell to Haskell
using GHC type classes.

5. AOP GHC HASKELL
We consider an extension of GHC with top-level aspect

definitions of the form

N@advice #f1,...,fn# :: (C => t) = e

We omit to give the syntactic description of Haskell pro-
grams which can be found elsewhere [17]. We assume that
type annotation C => t and expression e follow the Haskell
syntax (with the addition of a new keyword proceed which
may appear in e). We assume that symbols f1,...,fn refer
to the names of (top-level) functions and methods (i.e. over-
loaded functions). See also Section 3.1.

As motivated in Section 4.2, we impose the following con-
dition on the AOP extension of GHC.

Definition 1 (AOP GHC Haskell Restriction). We
demand that inside the lexical scope of a type annotation,
advice or instance declaration there are no joinpoints.

Notice that instance declarations “act” like type annota-
tions. In the upcoming translation scheme we will translate
advice declarations to instance declarations. Hence, join-
points cannot be enclosed by advice and instance declara-
tions either.

Next, we formalize the AOP to type class transformation
scheme. We will conclude this section by providing a number
of programs written in AOP GHC Haskell.

5.1 Type Class-Based Transformation Scheme
Based on the discussion in Section 3.2, our transformation

scheme proceeds as follows.

Definition 2 (AOP to GHC Transformation). Let
p be an AOP Haskell program. We perform the following
transformation steps on p to obtain the program p′.

Advice class: We add the class declaration

class Advice n t where

joinpoint :: n -> t -> t
joinpoint _ = id -- default case

Advice bodies: Each AOP Haskell statement

N@advice #f1,...,fn# :: C => t = e

is replaced by

data N = N
instance C => Advice N t where

joinpoint _ proceed = e
instance Advice N a -- resolves to default case

Joinpoints: For each function f and for all advice N1, ...,
Nm where f appears in their pointcut we replace f by

joinpoint N1 (... (joinpoint Nm f)...)

being careful to avoid name conflicts in case of lambda-
bound function names. We assume that the order among
advice is as follows: Nm ≤ ... ≤ N1.

To compile the resulting program we rely on the following
GHC extensions (compiler flags):

• -fglasgow-exts

• -fallow-overlapping-instances

The first flag is necessary because we use multi-parameter
type classes. The second flag enables support for overlap-
ping instances.

Claim 1. Type soundness and type inference for AOP
GHC Haskell are established via translation to GHC-style
type classes.

We take it for granted that GHC is type sound and type
inference is correct. However, it is difficult to state any
precise results given the complexity of Haskell and the GHC
implementation.

In our current type class encoding of AOP we do not check
whether advice definitions have any effect on programs. For
example, consider

f :: Int

f = 1

N@advice #f# :: Bool = True

where the advice definition N is clearly useless. We may
want to reject such useless definitions by adding the follow-
ing transformation step to Definition 2. The advice is useful
if the program text resulting from the transformation step
below is well-typed.

Useful Advice: Each AOP Haskell statement

N@advice #f1,...,fn# :: C => t = e

generates

eq :: a -> a -> a
eq = undefined

f1’ :: C => t
f1’ = undefined
f1’’ = eq f1 f1’

...
fn’ :: C => t
fn’ = undefined

fn’’ = eq fn fn’’

in p’ where eq, f1’,f1’’ ..., fn’, fn’’ are fresh iden-
tifiers.

We may be tempted to generate the following simpler pro-
gram text.

fi’ :: C => t
fi’ = fi

This will work for the above program. But such a trans-
formation scheme is too restrictive as the following example
shows.
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accF xs acc = accF (tail xs) (head xs : acc)
reverse :: [a] -> [a] -> [a]
reverse xs = accF xs []

append :: [a] -> [a] -> [a]
append xs ys = accF xs ys

N@advice ♯accF♯ :: [a] -> [a] -> [a] =

\xs -> \acc -> case xs of
[] -> acc
-> proceed xs acc

Figure 6: Advising Accumulator Recursive Func-

tions

module CollectsLib where

class Collects c e | c -> e where
insert :: e -> c -> c
test :: e -> c -> Bool

empty :: c

instance Ord a => Collects [a] a where

insert x [] = [x]
insert x (y:ys)
| x <= y = x:y:ys
| otherwise = y : (insert x ys)

test x xs = elem x xs
empty = []

Figure 7: Collection Library

g :: [a] -> Int

N@advice #g# :: [a] -> a = ...

The advice is clearly useful (in case a is Int. However, the
program text

g’ :: [a] -> a
g’ = g

is ill-typed because the annotation is too polymorphic.
The idea behind the useful advice transformation step is

to test whether the combination of type constraints from f1
and C => t is consistent (i.e. well-typed). Then, the advice
must be useful.

5.2 AOP GHC Haskell Examples
We take a look at a few AOP GHC Haskell example pro-

grams. We will omit the translation to (GHC) Haskell which
can be found here [20]. We also discuss issues regarding the
scope of pointcuts and how to deal with cases where the
joinpoint is enclosed by an annotation.

Advising recursive functions. Our first example is
given in Figure 6. We provide definitions of append and
reverse in terms of the accumulator function accF. We de-
liberately left out the base case of function accF. In AOP
GHC Haskell, we can catch the base case via the advice N. It

module Main where

import List(sort)
import CollectsLib

insertionSort [] = []
insertionSort xs =

insert (head xs) (insertionSort (tail xs))

N1@advice ♯insert♯ :: Ord a => a -> [a] -> [a] =
\x -> \ys ->

let zs = proceed x ys
in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"

where
isSorted xs = (sort xs) == xs

N2@advice ♯insert♯ :: Int -> [Int] -> [Int] =
\x -> \ys -> if x == 0 then x:ys

else proceed x ys

Figure 8: Advising Overloaded Functions

is safe here to give append and reverse type annotations, al-
though, the joinpoint is then enclosed by a type annotation.
The reason is that only one advice N applies here.

Advising overloaded functions. In our next example, we
will show that we can even advise overloaded functions. We
recast the example from Section 3.1 in terms of a library for
collections. See Figures 7 and 8. We use the functional de-
pendency declaration Collects c e | c->e to enforce that
the collection type c uniquely determines the element type e.
We use the same aspect definitions from earlier on to advise
function insertionSort and the now overloaded function
insert. As said, we only advise function names which are
in the same scope as the pointcut. Hence, our transforma-
tion scheme in Definition 2 effectively translates the code in
Figure 8 to the code shown in Figure 4. The code in Figure 7
remains unchanged.

Advising functions in instance declarations. If we
wish to advise all calls to insert throughout the entire pro-
gram, we will need to place the entire code into one single
module. Let us assume we replace the statement import

CollectsLib in Figure 8 by the code in Figure 7 (drop-
ping the statement module CollectsLib where of course).
Then, we face the problem of advising a function enclosed by
a “type annotation”. Recall that instance declarations act
like type annotations and there is now a joinpoint insert
within the body of the instance declaration in scope. Our
automatic transformation scheme in Definition 2 will not
work here. The resulting program may type check but we
risk that the program will show some ”unaspect”-like be-
havior. The (programmer-guided) solution is to manually
rewrite the instance declaration during the transformation
process which roughly yields the following result

...
instance (Advice N1 (a->[a]->[a]),

Advice N2 (a->[a]->[a]),

Ord a) => Collects [a] a where
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N1@advice ♯f♯ :: [Int] -> Int =

\xs -> (head xs) + (proceed (tail xs))

N2@advice ♯head♯ :: [Int] -> Int =
\xs -> case xs of

[] -> -1
-> proceed xs

Figure 9: Advising functions in advice bodies

type T = [Int] -> Int
data N1 = N1

instance Advice N2 T => Advice N1 T where
joinpoint N1 f =
\ xs -> ((joinpoint N2 head) xs) + (f (tail xs))

data N2 = N2
instance Advice N2 T where

joinpoint N2 head =
\xs -> case xs of

[] -> -1

-> head xs

Figure 10: GHC Haskell Translation of Figure 9

insert x [] = [x]

insert x (y:ys)
| x <= y = x:y:ys
| otherwise =

y : ((joinpoint N2 (joinpoint N1 insert)) x ys)
...

To compile the transformed AOP GHC Haskell program
with GHC, we will need to switch on the following addi-
tional compiler flag:

• -fallow-undecidable-instances

We would like to stress that type inference for the trans-
formed program is decidable. The “decidable instance check”
in GHC is simply conservative, hence, we need to force GHC
to accept the program.

Advising functions in advice bodies. Given that we
translate advice into instances, it should be clear that we
can also advise functions in advice bodies if we are willing to
“guide” the translation scheme. In Figure 9, we give such an
example and its (manual) translation is given in Figure 10.
We rely again on the “undecidable” instance extension in
GHC.

The last example makes us clearly wish for a system where
we do not have to perform any manual rewriting. Of course,
we could automate the rewriting of annotations by integrat-
ing the translation scheme in Definition 2 with the GHC
type inferencer. However, the problem remains that we are
unable to advise polymorphic recursive functions. Recall the
discussion in Section 4.2.

6. TOWARDS A FRAMEWORK FOR TYPE
CLASSES AND ASPECTS

We are currently working on a core calculus to study type
classes and aspects. The two key ingredients are (1) a type-
directed translation scheme from a calculus with type classes
and aspects to a variant of Harper and Morrisett’s λML

i cal-
culus, and (2) a type inference scheme for type class and
aspect resolution based on Stuckey and the first author’s
overloading framework.

We illustrate the key ideas behind this approach via a
simple example. We consider parts of the earlier program in
Figure 2.

import List(sort)
insert :: Ord a => a -> [a] -> [a]

insert x [] = []
insert x (y:ys) =

if x <=y then x:y:ys else y : insert x ys
N1@advice #insert# :: Ord a => a -> [a] -> [a] = ...

N2@advice #insert# :: Int -> [Int] -> [Int] = ...

We leave out the insertionSort function and also omit
the advice bodies for brevity. Notice that insert carries a
type annotation. Earlier we saw that in AOP GHC Haskell
we cannot easily advise type annotated functions unless we
rewrite type annotations.

We can entirely avoid rewriting of type annotations by
switching to a type-passing translation scheme for the trans-
lation of advise. Type classes can be translated using the
standard dictionary-passing scheme. Here is the translation
of the above program.

insert = Λ a. λ d:DictOrd a. λ x:a. λ xs:[a].

case xs of
[] → [x]
(y:ys) →

if (d (<=)) x y then x:y:ys -- (1)
else y : (

(joinpoint N1 (a->[a]->[a]) d -- (2)

((joinpoint N2 (a->[a]->[a])) (insert a d)))
x ys)

joinpoint = Λ n. Λ a.

typecase (n,a) of
(N1,a->[a]->[a]) → λ d:DictOrd a. ... -- (3)
(N1, ) → ...

(N2,Int->[Int]->[Int]) → ...
(N2, ) → ...

In the translation, function insert expects an additional
type and dictionary argument. Dictionaries serve the usual
purpose. For example, at location (1) the program text d
(<=) selects the greater-or-equal method from the dictionary
of the Ord class. The novelty are the additional type argu-
ments which we use for selecting the appropriate advice. See
locations (2) and (3).

Similarly to AOP GHC Haskell, we instrument joinpoints
with calls to the weaving function joinpoint. The differ-
ence to AOP GHC Haskell is that we rely on run-time type
information and use type case, which is part of the λML

i cal-
culus, to select the advice. For example, the advice N1 is
selected using the first two (type) arguments. The (trans-
lated) advice body assumes a third (dictionary) argument,
see location (2), because we make use of the Ord class in
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the advice body. Recall the full definition of advice N1 in
Figure 2. At the call site of the weaving function, we must
of course supply the necessary arguments. See location (1).

The translation of programs is driving by type inference.
To obtain a type inference algorithm, we map type class and
advice declarations to Constraint Handling Rules (CHRs) [3].
In [19], Stuckey and the first author introduced an over-
loading framework where CHRs are used to reason about
type class relations. By mapping type classes to CHRs, we
can concisely reason about their type inference properties.
CHRs have a simple operational semantics and thus we ob-
tain a type inference algorithm.

For example, the type class instance

instance Ord a => Ord [a]

is mapped to the CHR

Ord [a] <==> Ord a

Logically, the symbol <==> stands for bi-implication. Opera-
tionally, the symbol <==> indicates a rewrite relation among
constraints (from left to right). In contrast to Prolog, we
only perform matching but not unification when rewriting
constraints. Rewriting of constraints with respect to in-
stances is also known as “context reduction” in the type
class literature.

Here, we employ CHRs to reason about advice declara-
tions. The advice declarations of our running example trans-
late to the CHRs

Advice N1 (a->[a]->[a]) <==> Ord a
Advice N1 b <==> b /=(a->[a]->[a]) | True

Advice N2 (Int->[Int]->[Int]) <==> True
Advice N2 b <==> b /= (Int->[Int]->[Int]) | True

The first and third CHR result from the advice declarations
N1 and N2 whereas the second and fourth CHR cover the
“default” cases. Notice that the second and fourth CHR
contain guard constraints which impose additional condi-
tions under which a CHR can fire. For example, the second
CHR will only rewrite Advice N1 b to True (the always true
constraint), if b is not an instance of (a->[a]->[a]). The
idea is that via guard constraints we can guarantee that the
CHR representing the advice declaration and the default
case do not overlap.

We will use the CHRs resulting from type class and ad-
vice declarations to solve (i.e. rewrite) constraints arising
during type inference. In the translation, y : insert x
ys is translated to

y : ((joinpoint N1 (a->[a]->[a]) d

((joinpoint N2 (a->[a]->[a])) (insert a d)))
x ys)

and this program text gives rise to

Ord a, Advice N1 (a->[a]->[a]), Advice N2 (a->[a]->[a])

The first constraint arise from the call to insert. The sec-
ond and third constraint arise from the instrumentation.
The surrounding program text carries the type annotation
Ord a => a->[a]->[a]. To check that the type annotation
is correct we must perform a subsumption test among types
which boils down to a entailment test among constraints.
For our example, we must verify that Ord a, Advice N1
(a->[a]->[a]), Advice N2 (a->[a]->[a]) follow from Ord a.
In general, we must verify that the constraints C1 from the

annotation entail the constraints C2 arising from the pro-
gram text of that annotation, written C1 ⊃ C2.

The entailment check is fairly standard for type classes.
We exhaustively rewrite C2 with respect to the instances
(i.e. CHRs) until we reach the from C1, written C2 

∗ C1.
In the presence of advice, this entailment checking strategy
will not work anymore because none of the above CHRs
applies to Advice N2 (a->[a]->[a]). But if we interpret
the above CHRs as some logical formula P we find that
Advice N2 (a->[a]->[a]) is a logical consequence of any
first-order model of P and Ord a. We can verify this fact
via a simple case analysis. If a equals to Int then Advice
N2 (a->[a]->[a]) is equivalent to True because of the third
CHR. Otherwise, via the fourth CHR we can conclude that
Advice N2 (a->[a]->[a]) is yet again equivalent to True.
Hence, Advice N2 (a->[a]->[a]) is a logical consequence
of P .

Our idea is to extend the standard rewriting-based ap-
proach to check entailment by incorporating a case analysis.
Of course, we need to guarantee that the extended entail-
ment check remains decidable for Haskell 98 type classes and
advice declarations making use of such type classes.

7. CONCLUSION AND RELATED WORK
There is a large amount of works on the semantics of

aspect-oriented programming languages, for example con-
sider [1, 13, 22, 24, 25, 27] and the references therein. There
have been only a few works [24, 1, 16] which aim to inte-
grate AOP into ML style languages. We yet have to work
out the exact connections to these works. For instance, the
work described in [1] supports first-class pointcuts and dy-
namic weaving whereas our pointcuts are second class and
we employ static weaving. None of the previous works we
are aware of considers the integration of AOP and type
classes. In some previous work, the second author [27, 26]
gives a a static weaving scheme for a strongly typed func-
tional AOP language via a type-directed translation pro-
cess. In [27] (Section 6), the authors acknowledge that their
type-directed translation scheme for advice is inspired by the
dictionary-passing translation for type classes. But they be-
lieve that aspects and type classes substantially differ when
it comes to typing and translation. In this paper, we con-
firm that there is a fairly tight connection between aspects
and type classes. The system described in [27, 26] does not
assume type annotations and therefore we can express all
examples from [27, 26] in terms AOP GHC Haskell (Sec-
tion 5).

The main result of our work is that static weaving for
strongly typed languages bears a strong resembles to type
class resolution – the process of typing and translating type
class programs. We could show that GHC type classes as
of today can provide for a light-weight AOP extension of
Haskell (Section 5). We use GHC style overlapping instances
to encode a form of type-safe which is is used to advice
functions based on their types. The approach has a number
of problems. For example, we cannot easily advise functions
in programs with type annotations.

We are in the process of formalizing a more principled ap-
proach to integrate type classes and aspects (Section 6). We
expect to report results in the near future. Further future
work includes the study of effect-full advice which we can
represent via monads in Haskell. We also want to consider
more complex pointcuts.
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