
Aspect-Oriented Programming with Type Classes

Martin Sulzmann
School of Computing,

National University of Singapore
S16 Level 5, 3 Science Drive 2,

Singapore 117543
sulzmann@comp.nus.edu.sg

Meng Wang
Oxford University Computing Laboratory,

Wolfson Building, Parks Road,
Oxford OX1 3QD, UK

meng.wang@comlab.ox.ac.uk

ABSTRACT
We consider the problem of adding aspects to a strongly
typed language which supports type classes. We show that
type classes as supported by the Glasgow Haskell Com-
piler can model an AOP style of programming via a sim-
ple syntax-directed transformation scheme where AOP pro-
gramming idioms are mapped to type classes. The draw-
back of this approach is that we cannot easily advise func-
tions in programs which carry type annotations. We sketch
a more principled approach which is free of such problems
by combining ideas from intentional type analysis with ad-
vanced overloading resolution strategies. Our results show
that type-directed static weaving is closely related to type
class resolution – the process of typing and translating type
class programs.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; F.3.2 [Logics and Meanings of Pro-

grams]: Semantics of Programming Languages—Operational
semantics

General Terms
Languages, theory

Keywords
Type class resolution, type-directed weaving

1. INTRODUCTION
Aspect-oriented programming (AOP) is an emerging para-

digm which supports the interception of events at run-time.
The essential functionality provided by an aspect-oriented
programming language is the ability to specify what com-
putation to perform as well as when to perform the compu-
tation. A typical example is profiling where we may want
to record the size of the function arguments (what) each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Foundations of Aspect-Oriented Lan-
guages (FOAL 2007), March 13, 2007, Vancouver, BC, Canada.
Copyright 2007 ACM ISBN 1-59593-671-4/07/03 ...$5.00.

time a certain function is called (when). In AOP termi-
nology, what computation to perform is referred to as the
advice and when to perform the advice is referred to as the
pointcut. An aspect is a collection of advice and pointcuts
belonging to a certain task such as profiling.

There are numerous works which study the semantics of
aspect-oriented programming languages, for example con-
sider [1, 13, 22, 24, 25, 27]. Some researchers have been look-
ing into the connection between AOP and other paradigms
such as generic programming [28]. To the best of our knowl-
edge, we are the first to study the connection and combina-
tion between AOP and the concept of type classes, a type
extension to support overloading (a.k.a. ad-hoc polymor-
phism) [23, 11], which is one of the most prominent features
of Haskell [17].

In this paper, we make the following contributions:

• We introduce an AOP extension of Haskell, referred
to as AOP Haskell, with type-directed pointcuts (Sec-
tion 3.1).

• We define AOP Haskell by means of a syntax-directed
translation scheme where AOP programming idioms
are directly expressed in terms of type class constructs.
Thus, typing and translation of AOP Haskell can be
explained in terms of typing and translation of the
resulting type class program (Section 5).

Our type class encoding of AOP critically relies on multi-
parameter type classes and overlapping instances. Both fea-
tures are not part of the Haskell 98 standard [17], but they
are supported by the Glasgow Haskell Compiler (GHC) [4].
There are two problems.

Firstly, GHC’s overlapping instances have never been for-
malized. Hence, it is difficult to make any precise claims re-
garding soundness of our GHC type class encoding of AOP.
Secondly, the AOP to GHC type class translation scheme
only works in case we do not advise programs which contain
type annotations. Section 4.2 provides further details.

Despite these problems, we consider the encoding of AOP
via GHC type classes a useful exercise. To encode AOP
in the setting of a strongly typed language we need some
form of type-safe cast. Type classes are known to have this
capability and in our approach we achieve this by exploiting
GHC’s overlapping instances. Thus, we can establish that
the concepts of type classes and aspects are closely related.

There are a number of works, for example consider [14,
12], which also use sophisticated type class tricks to model
type safe casts in the setting of generic programming and
strongly typed heterogeneous collections. These works may

even have a solution how to advise functions without having
to change type annotations by using some more advanced
type class ”hackery”. However, we do not plan to consider
this avenue further. Ultimately, we seek for a more prin-
cipled approach which allows us to study the combination
of type classes and aspects without having to rely on the
features of specific implementations such as GHC.

We are currently working on a foundational framework
to integrate type classes and aspects. We briefly sketch
this more principled approach in Section 6. The idea is to
use Harper and Morrisett’s intentional type analysis frame-
work [6] for the translation of aspects and Stuckey and the
first author’s overloading framework [19] for the resolution
of type classes programs with aspects.

We continue in Section 2 where we give an introduction
to type classes. Section 3 gives an overview of the key ideas
behind our approach of mapping AOP Haskell to GHC type
classes. Section 4 discusses the shortcomings of this ap-
proach. We conclude in Section 7 where we also discuss
related work.

2. BACKGROUND: TYPE CLASSES
Type classes [11, 23] provide for a powerful abstraction

mechanism to deal with user-definable overloading also known
as ad-hoc polymorphism. The basic idea behind type classes
is simple. Class declarations allow one to group together re-
lated methods (overloaded functions). Instance declarations
prove that a type is in the class, by providing appropriate
definitions for the methods.

Here are some standard Haskell declarations.

class Eq a where (==)::a->a->Bool
instance Eq Int where (==) = primIntEq -- (I1)

instance Eq a => Eq [a] where -- (I2)
(==) [] [] = True
(==) (x:xs) (y:ys) = (x==y) && (xs==ys) -- (L)

(==) _ _ = False

The class declaration in the first line states that every type
a in type class Eq has an equality function ==. Instance (I1)
shows that Int is in Eq. We assume that primIntEq is the
(primitive) equality function among Ints. The common ter-
minology is to express membership of a type in a type class
via constraints. Hence, we say that the type class constraint
Eq Int holds. Instance (I2) shows that Eq [a] from the in-
stance head holds if Eq a in the instance context holds. Thus,
we can describe an infinite family of (overloaded) equality
functions.

We can extend the type class hierarchy by introducing
new subclasses.

class Eq a => Ord a where (<)::a->a->Bool -- (S1)
instance Ord Int where ... -- (I3)

instance Ord a => Ord [a] where ... -- (I4)

The above class declaration introduces a new subclass Ord
which inherits all methods of its superclass Eq. For brevity,
we ignore the straightforward instance bodies.

In the standard type class translation approach we repre-
sent each type class via a dictionary [23, 5]. These dictionar-
ies hold the actual method definitions. Each superclass is
part of its (direct) subclass dictionary. Instance declarations
imply dictionary constructing functions and (super) class
declarations imply dictionary extracting functions. The dic-
tionary translation of the above declarations is given in Fig-
ure 1.

type DictEq a = (a->a->Bool)

instI1 :: DictEq Int
instI1 = primIntEq
instI2 :: DictEq a -> DictEq [a]

instI2 dEqa =
let eq [] [] = True

eq (x:xs) (y:ys) = (dEqa x y) &&
(instI2 dEqa xs ys)

eq = False
in eq
type DictOrd a = (DictEq a, a->a->Bool)

superS1 :: DictOrd a -> DictEq a
superS1 = fst
instI3 :: DictOrd Int

instI3 = ...
instI4 :: DictOrd a -> DictOrd [a]
instI4 = ...

Figure 1: Dictionary-Passing Translation

Notice how the occurrences of == on line (L) have been re-
placed by some appropriate dictionary values. For example,
in the source program the expression xs == ys gives rise to
the type class constraint Eq [a]. In the target program, the
dictionary instI2 dEqa provides evidence for Eq [a] where
dEqa is the (turned into a function argument) dictionary
for Eq a and instI2 is the dictionary construction function
belonging to instance (I2).

The actual translation of programs is tightly tied to type
inference. When performing type inference, we reduce type
class constraints with respect to the set of superclass and
instance declarations. This process is known as type class
resolution (also known as context reduction). For example,
assume some program text gives rise to the constraint Eq
[[[a]]]. We reduce Eq [[a]] to Eq a via (reverse) appli-
cation of instance (I2). Effectively, this tells us that given
a dictionary d for Eq a, we can build the dictionary for Eq
[[a]] by applying instI2 twice. That is, instI2 (instI2

d) is the demanded dictionary for Eq [[a]]. Notice that
given the dictionary d’ for Ord a, we can build the al-
ternative dictionary instI2 (instI2 (superS1 d’)) for Eq
[[a]].

In the above, we only use single-parameter type classes.
Other additional type class features include functional de-
pendency [9], constructor [8] and multi–parameter [10] type
classes. For the translation of AOP Haskell to Haskell we
will use multi-parameter type classes and overlapping in-
stances, yet another type class feature, as supported by
GHC [4].

3. THE KEY IDEAS
To explain our idea of how to mimic AOP via GHC type

classes, we first introduce an AOP extension of Haskell, re-
ferred to as AOP Haskell, and consider some example pro-
grams in AOP Haskell.

3.1 AOP Haskell
AOP Haskell extends the Haskell syntax [17] by support-

ing top-level aspect definitions of the form

N@advice #f1,...,fn# :: (C => t) = e

import List(sort)

insert x [] = [x]
insert x (y:ys)

| x <= y = x:y:ys
| otherwise = y : insert x ys

insertionSort [] = []

insertionSort xs =
insert (head xs) (insertionSort (tail xs))

-- sortedness aspect
N1@advice #insert# :: Ord a => a -> [a] -> [a] =

\x -> \ys ->

let zs = proceed x ys
in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"
where

isSorted xs = (sort xs) == xs
-- efficiency aspect
N2@advice #insert# :: Int -> [Int] -> [Int] =

\x -> \ys ->
if x == 0 then x:ys
else proceed x ys

Figure 2: AOP Haskell Example

where N is a distinct label attached to each advice and the
pointcut f1,...,fn refers to a set of (possibly overloaded)
functions. Commonly, we refer to fi’s as joinpoints. No-
tice that our pointcuts are type-directed. Each pointcut has
a type annotation C => t which follows the Haskell syntax.
We refer to C => t as the pointcut type. We will apply the
advice if the type of a joinpoint fi is an instance of t such
that constraints C are satisfied. The advice body e follows
the Haskell syntax for expressions with the addition of a
new keyword proceed to indicate continuation of the nor-
mal evaluation process. We only support “around” advice
which is sufficient to represent “before” and “after” advice.

In Figure 2, we give an example program. In the top part,
we provide the implementation of an insertion sort algorithm
where elements are sorted in non-decreasing order. At some
stage during the implementation, we decide to add some
security and optimization aspects to our implementation.
We want to ensure that each call to insert takes a sorted
list as an input argument and returns a sorted list as the
result.

In our AOP Haskell extension, we can guarantee this prop-
erty via the first aspect definition in Figure 2. We make use
of the (trusted) library function sort which sorts a list of
values. The sort functions assumes the overloaded com-
parison operator <= which is part of the Ord class. Hence,
we find the pointcut type Ord a=>[a]->[a]->[a]. The key-
word proceed indicates to continue with the normal eval-
uation. That is, we continue with the call insert x ys.
The second aspect definition provides for a more efficient
implementation in case we call insert on list of Ints. We
assume that only non-negative numbers are sorted which
implies that 0 is the smallest element appearing in a list
of Ints. Hence, if 0 is the first element it suffices to cons
0 to the input list. Notice there is an overlap among the

AOP Haskell

⇓
•turn advice into instances
•instrument joinpoints

Haskell+Type Classes

⇓
•type class resolution
•further compilation steps

Executable

Figure 3: AOP Haskell Typing and Translation

Scheme

pointcut types for insert. In case we call insert on list of
Ints we apply both advice bodies in no specific order unless
otherwise stated. For all other cases, we only apply the first
advice.

Because AOP Haskell extends Haskell, we can naturally
refer to overloaded functions in advice bodies. See the first
advice body where our use of sort gives rise to the Ord a
constraint. Also note the use of the (overloaded) equality op-
erator == whose type is Eq a => a -> a -> a. In Haskell,
the Eq class is a superclass of Ord. Hence, there is no need
to mention the Eq class in the pointcut type of the advice
definition.

3.2 Typing and Translating AOP Haskell with
GHC Type Classes

Our goal is to embed AOP Haskell into Haskell by making
use of Haskell’s rich type system. Specifically, we use GHC
with two extensions (multi-parameter type classes and over-
lapping instances). We give a transformation scheme where
typing and translation of the source AOP Haskell program
is described by the resulting target Haskell program.

The challenge we face is how to intercept calls to join-
points and re-direct the control flow to the advice bodies.
In AOP terminology, this process is known as aspect weav-
ing. Weaving can either be performed dynamically or stat-
ically. Dynamic weaving is the more flexible approach. For
example, aspects can be added and removed at run-time.
For AOP Haskell, we employ static weaving which is more
restrictive but allows us to give stronger static guarantees
about programs such as type inference and type soundness.

Our key insight is that type-directed static weaving can
be phrased in terms of type classes based on the following
principles:

• We employ type class instances to represent advice.

• We use a syntactic pre-processor to instrument join-
points with calls to overloaded “weaving” function.

• We explain type-directed static weaving as type class
resolution. Type class resolution refers to the process
of reducing type class constraints with respect to the
set of instance declarations.

Figure 3 summarizes our approach of typing and translating
AOP Haskell. In Figure 4, we apply the transformation
scheme to the AOP Haskell program from Figure 2. We use
here type classes as supported by GHC.

Let us take a closer look at how this transformation scheme
works. First, we introduce a two-parameter type class Advice
which comes with a method joinpoint. Each call to insert

is replaced by

insert x [] = [x]
insert x (y:ys)
| x <= y = x:y:ys

| otherwise=
y : (joinpoint N1 (joinpoint N2 insert)) x ys --(1)

insertionSort [] = []

insertionSort xs =
(joinpoint N1 (joinpoint N2 insert)) --(2)
(head xs) (insertionSort (tail xs))

-- translation of advice
class Advice n t where

joinpoint :: n -> t -> t
joinpoint = id -- default

data N1 = N1
instance Ord a => Advice N1 (a->[a]->[a]) where -- (I1)

joinpoint N1 insert =
\x -> \ys -> let zs = insert x ys

in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"
where

isSorted xs = (sort xs) == xs

instance Advice N1 a -- (I1’) default case

data N2 = N2

instance Advice N2 (Int->[Int]->[Int]) where -- (I2)
joinpoint N2 insert = \x -> \ys ->

if x == 0 then x:ys
else insert x ys

instance Advice N2 a -- (I2’) default case

Figure 4: GHC Haskell Translation of Figure 2

joinpoint N1 (joinpoint N2 insert)

We assume here the following order among advice: N2 ≤ N1.
That is, we first apply the advice N1 before applying advice
N2. This transformation step requires to traverse the ab-
stract syntax tree and can be automated by pre-processing
tools such as Template Haskell [18].

Next, each piece of advice is turned into an instance dec-
laration where the type parameter n of the Advice class is
set to the singleton type of the advice and type parameter
t is set to the pointcut type. In case the pointcut type is
of the form C => ..., we set the instance context to C. See
the translation of advice N1. In the instance body, we simply
copy the advice body where we replace proceed by the name
of the advised function. Additionally, for each advice N we
introduce instance Advice N a where the body of this in-
stance is set to the default case as specified in the class decla-
ration. The reader will notice that for each advice we create
two “overlapping” instances. For example, the head Advice
N1 (a->[a]->[a]) of instance (I1) and the head Advice N1

a of the default instance (I1’) overlap because the type com-
ponents are unifiable (after renaming the a in Advice N1 a
with a fresh variable b). Therefore, we can potentially use
either of the two instances to resolve a type class constraint
which may yield to two different results. However, GHC will
postpone resolution of type classes until we can unambigu-
ously choose an instance. We say that GHC implements a

“lazy” and “best-fit” type class resolution strategy.
The actual (static) weaving of the program is performed

by the type class resolution mechanism. GHC will infer the
following types for the transformed program.

insert :: forall a.
(Advice N1 (a -> [a] -> [a]),

Advice N2 (a -> [a] -> [a]),
Ord a) => a -> [a] -> [a]

insertionSort :: forall a.
(Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a]),
Ord a) => a -> [a] -> [a]

Each Advice type class constraint results from a call to
joinpoint. GHC’s “lazy” type class resolution strategy
does not resolve Advice N1 (a -> [a] -> [a]) because we
could either apply instance (I1) or the default instance (I1’)
which may yield to an ambiguous result. However, if we use
insert or insertionSort in a specific monomorphic context
we can resolve “unambiguously” the above constraints.

Let us assume we apply insertionSort to a list of Ints.
Then, we need to resolve the constraints

(Advice N1 (Int -> [Int] -> [Int]),

Advice N2 (Int -> [Int] -> [Int]), Ord Int)

GHC’s “best-fit” strategy resolves Advice N1 (Int -> [Int]

-> [Int]) via instance (I1), Advice N2 (Int -> [Int] ->
[Int]) via instance (I2) and Ord Int is resolved using a pre-
defined instance from the Haskell Prelude [17]. Effectively,
this means that at locations (1) and (2) in the above pro-
gram text, we intercept the calls to insert by first applying
the body of instance (I1) followed by applying the body of
instance (I2)

In case, we apply insertionSort to a list of Bools, we
need to resolve the constraints

(Advice N1 (Bool -> [Bool] -> [Bool]),
Advice N2 (Bool -> [Bool] -> [Bool]), Ord Bool)

The instance (I1) is still the best-fit for Advice N1 (Bool
-> [Bool] -> [Bool]). However, instead of instance (I2)
we apply the default case to resolve Advice N2 (Bool ->
[Bool] -> [Bool]). Hence, at locations (1) and (2) we ap-
ply the body of instance (I1) followed by the body of the
default instance for advice (I2). Ord Bool is resolved using
a pre-defined instance from the Haskell Prelude.

4. DISCUSSION
The transformation from AOP Haskell to Haskell using

GHC type classes is simple and only requires a syntactic
transformation of programs. In Section 5, we give the de-
tails plus further examples. We also show how to statically
detect useless advice. Unfortunately, our AOP to type class
transformation scheme suffers from the following problems:

1. Aspects must be pure, i.e. free of side-effects.

2. (a) Advising type annotated requires to rewrite anno-
tations. (b) Rewriting of type annotations of polymor-
phic recursive functions is impossible.

3. The transformation scheme relies on multi-parameter
type classes and overlapping instances extensions which
are not part the Haskell 98 standard. But they are
supported by GHC.

We will discuss each of the above three issues in turn.

4.1 Aspects Must be Pure
In Haskell the effect of a program is manifested in its

(monadic) type. For example, a program which reads and
writes to standard I/O will have type IO () where IO be-
longs to the monad class. Hence, based on the syntax-
directed transformation scheme described so far, aspects
cannot make pure functions do I/O (for example, to do log-
ging) or modify state (for example, to add memorization).
We would need to “semantically rewrite” the program dur-
ing the transformation, by for example changing an advised
function of type t to a function of type IO t in case of an
aspect with effect IO.

A possible systematic solution is to monadify programs [2]
and use (state) monad transformers [15]. Another alterna-
tive is to use unsafePerformIO which obviously breaks type
safety. We consider the issue of impure aspects as orthog-
onal to our work is which about establishing a connection
between AOP and the concept of type classes. We plan to
take a look at impure aspects in future work.

4.2 Advising Type Annotated Programs
Let us assume we provide explicit type annotations to the

functions in Figure 2.

insert :: Ord a => a -> [a] -> [a]

insertionSort :: Ord a => [a] -> [a]

The trouble is that if we keep insert’s annotation in the
resulting target program, we find some unexpected behav-
ior. GHC’s type class resolution mechanism will “eagerly”
resolve the constraints

Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a])

arising from

joinpoint N1 (joinpoint N2 insert)

by applying instance (I1) on Advice N1 (a -> [a] -> [a])

and applying the default instance (I2’) on Advice N2 (a ->
[a] -> [a]). Hence, will never apply the advise N2, even if
we call insert on list of Ints.

The conclusion is that we must either remove type an-
notations in the target program, or appropriately rewrite
them during the translation process. For example, in the
translation we must rewrite insert’s annotation to

insert :: (Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a]), Ord a) =>
a -> [a] -> [a]

The need for rewriting type annotations complicates our
simple AOP Haskell to Haskell transformations. In fact, in
case of polymorphic recursive functions, which demand type
annotations to guarantee decidable type inference [7], we are
unable to appropriately the type annotation.

Let us consider a (contrived) program to explain this point
in more detail. In Figure 5, function f makes use of poly-
morphic recursion in the second clause. We call f on list
of lists whereas the argument is only a list. Function f will
not terminate on any argument other than the empty list.
Notice that the lists in the recursive call are getting “deeper’
and “deeper”. The advice definition allows us to intercept
all calls to f on list of list of Bools to ensure termination for
at least some values.

f :: [a] -> Bool

f [] = True
f (x:xs) = f [xs]

N@advice ♯f♯ :: [[Bool]] -> Bool = \x -> False

Figure 5: Advising Polymorphic Recursive Func-

tions

To translate the above AOP Haskell program to Haskell
with GHC type classes we cannot omit f’s type annotation
because f is a polymorphic recursive function. Our only
hope is to rewrite f’s type annotation. For example, consider
the attempt.

f :: Advice N a => [a] -> Bool
f [] = True

f (x:xs) = (joinpoint N f) [xs]

The call to f in the function body gives rise to Advice N [a]
whereas the annotation only supplies Advice N a. There-
fore, the GHC type checker will fail. Any similar “rewrite”
attempt will lead to the same result (failure).

A closer analysis shows that the problem we face is due
to the way type classes are implemented in GHC via the
dictionary-passing scheme [5]. In fact, almost all Haskell
implementations use the dictionary-passing scheme. Hence,
the following observation applies to pretty much all Haskell
implementations. In the dictionary-passing scheme, each
each type class is represented by a dictionary containing the
method definitions. In our case, dictionaries represent the
advice which will be applied to a joinpoint. Let us assume
we initially call f with a list of Bools. Then, the default
advice applies and we proceed with f’s evaluation. Subse-
quently, we will call f on a list of list of Bools. Recall that
f is a polymorphic recursive function. Now, we wish that
the advice N applies to terminate the evaluation with result
False. The problem becomes now clear. The initial advice
(i.e. dictionary) supplied will need to be changed during the
evaluation of function f We cannot naturally program this
behavior via GHC type classes.

4.3 Transformation Requires Type Class Ex-
tensions

To encode AOP in the setting of a strongly typed language
we need some form of type-safe cast. Multi-parameter type
classes are not essential but GHC style overlapping instances
are essential. However, GHC style overlapping instances are
heavily debated and still lack a formal description.

4.4 Short Summary
The AOP Haskell to Haskell transformation scheme based

on GHC type classes is simple. The problem is that we can-
not advise programs which contain type annotations, unless
we manually rewrite type annotations. This is impossible in
case we advice polymorphic recursive functions. The source
of the problem is the dictionary-passing scheme which un-
derlies the translation of type classes in GHC.

A less well known fact is that there exist alternative type
class translation proposals based on a type-passing trans-
lation scheme [21, 6]. The key insight is that if we em-
ploy a type-passing scheme for the translation of aspects we

can easily solve the problems of the GHC based translation
scheme. We sketch such an approach in Section 6. First,
we provide the details of mapping AOP Haskell to Haskell
using GHC type classes.

5. AOP GHC HASKELL
We consider an extension of GHC with top-level aspect

definitions of the form

N@advice #f1,...,fn# :: (C => t) = e

We omit to give the syntactic description of Haskell pro-
grams which can be found elsewhere [17]. We assume that
type annotation C => t and expression e follow the Haskell
syntax (with the addition of a new keyword proceed which
may appear in e). We assume that symbols f1,...,fn refer
to the names of (top-level) functions and methods (i.e. over-
loaded functions). See also Section 3.1.

As motivated in Section 4.2, we impose the following con-
dition on the AOP extension of GHC.

Definition 1 (AOP GHC Haskell Restriction). We
demand that inside the lexical scope of a type annotation,
advice or instance declaration there are no joinpoints.

Notice that instance declarations “act” like type annota-
tions. In the upcoming translation scheme we will translate
advice declarations to instance declarations. Hence, join-
points cannot be enclosed by advice and instance declara-
tions either.

Next, we formalize the AOP to type class transformation
scheme. We will conclude this section by providing a number
of programs written in AOP GHC Haskell.

5.1 Type Class-Based Transformation Scheme
Based on the discussion in Section 3.2, our transformation

scheme proceeds as follows.

Definition 2 (AOP to GHC Transformation). Let
p be an AOP Haskell program. We perform the following
transformation steps on p to obtain the program p′.

Advice class: We add the class declaration

class Advice n t where

joinpoint :: n -> t -> t
joinpoint _ = id -- default case

Advice bodies: Each AOP Haskell statement

N@advice #f1,...,fn# :: C => t = e

is replaced by

data N = N
instance C => Advice N t where

joinpoint _ proceed = e
instance Advice N a -- resolves to default case

Joinpoints: For each function f and for all advice N1, ...,
Nm where f appears in their pointcut we replace f by

joinpoint N1 (... (joinpoint Nm f)...)

being careful to avoid name conflicts in case of lambda-
bound function names. We assume that the order among
advice is as follows: Nm ≤ ... ≤ N1.

To compile the resulting program we rely on the following
GHC extensions (compiler flags):

• -fglasgow-exts

• -fallow-overlapping-instances

The first flag is necessary because we use multi-parameter
type classes. The second flag enables support for overlap-
ping instances.

Claim 1. Type soundness and type inference for AOP
GHC Haskell are established via translation to GHC-style
type classes.

We take it for granted that GHC is type sound and type
inference is correct. However, it is difficult to state any
precise results given the complexity of Haskell and the GHC
implementation.

In our current type class encoding of AOP we do not check
whether advice definitions have any effect on programs. For
example, consider

f :: Int

f = 1

N@advice #f# :: Bool = True

where the advice definition N is clearly useless. We may
want to reject such useless definitions by adding the follow-
ing transformation step to Definition 2. The advice is useful
if the program text resulting from the transformation step
below is well-typed.

Useful Advice: Each AOP Haskell statement

N@advice #f1,...,fn# :: C => t = e

generates

eq :: a -> a -> a
eq = undefined

f1’ :: C => t
f1’ = undefined
f1’’ = eq f1 f1’

...
fn’ :: C => t
fn’ = undefined

fn’’ = eq fn fn’’

in p’ where eq, f1’,f1’’ ..., fn’, fn’’ are fresh iden-
tifiers.

We may be tempted to generate the following simpler pro-
gram text.

fi’ :: C => t
fi’ = fi

This will work for the above program. But such a trans-
formation scheme is too restrictive as the following example
shows.

accF xs acc = accF (tail xs) (head xs : acc)
reverse :: [a] -> [a] -> [a]
reverse xs = accF xs []

append :: [a] -> [a] -> [a]
append xs ys = accF xs ys

N@advice ♯accF♯ :: [a] -> [a] -> [a] =

\xs -> \acc -> case xs of
[] -> acc
-> proceed xs acc

Figure 6: Advising Accumulator Recursive Func-

tions

module CollectsLib where

class Collects c e | c -> e where
insert :: e -> c -> c
test :: e -> c -> Bool

empty :: c

instance Ord a => Collects [a] a where

insert x [] = [x]
insert x (y:ys)
| x <= y = x:y:ys
| otherwise = y : (insert x ys)

test x xs = elem x xs
empty = []

Figure 7: Collection Library

g :: [a] -> Int

N@advice #g# :: [a] -> a = ...

The advice is clearly useful (in case a is Int. However, the
program text

g’ :: [a] -> a
g’ = g

is ill-typed because the annotation is too polymorphic.
The idea behind the useful advice transformation step is

to test whether the combination of type constraints from f1
and C => t is consistent (i.e. well-typed). Then, the advice
must be useful.

5.2 AOP GHC Haskell Examples
We take a look at a few AOP GHC Haskell example pro-

grams. We will omit the translation to (GHC) Haskell which
can be found here [20]. We also discuss issues regarding the
scope of pointcuts and how to deal with cases where the
joinpoint is enclosed by an annotation.

Advising recursive functions. Our first example is
given in Figure 6. We provide definitions of append and
reverse in terms of the accumulator function accF. We de-
liberately left out the base case of function accF. In AOP
GHC Haskell, we can catch the base case via the advice N. It

module Main where

import List(sort)
import CollectsLib

insertionSort [] = []
insertionSort xs =

insert (head xs) (insertionSort (tail xs))

N1@advice ♯insert♯ :: Ord a => a -> [a] -> [a] =
\x -> \ys ->

let zs = proceed x ys
in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"

where
isSorted xs = (sort xs) == xs

N2@advice ♯insert♯ :: Int -> [Int] -> [Int] =
\x -> \ys -> if x == 0 then x:ys

else proceed x ys

Figure 8: Advising Overloaded Functions

is safe here to give append and reverse type annotations, al-
though, the joinpoint is then enclosed by a type annotation.
The reason is that only one advice N applies here.

Advising overloaded functions. In our next example, we
will show that we can even advise overloaded functions. We
recast the example from Section 3.1 in terms of a library for
collections. See Figures 7 and 8. We use the functional de-
pendency declaration Collects c e | c->e to enforce that
the collection type c uniquely determines the element type e.
We use the same aspect definitions from earlier on to advise
function insertionSort and the now overloaded function
insert. As said, we only advise function names which are
in the same scope as the pointcut. Hence, our transforma-
tion scheme in Definition 2 effectively translates the code in
Figure 8 to the code shown in Figure 4. The code in Figure 7
remains unchanged.

Advising functions in instance declarations. If we
wish to advise all calls to insert throughout the entire pro-
gram, we will need to place the entire code into one single
module. Let us assume we replace the statement import

CollectsLib in Figure 8 by the code in Figure 7 (drop-
ping the statement module CollectsLib where of course).
Then, we face the problem of advising a function enclosed by
a “type annotation”. Recall that instance declarations act
like type annotations and there is now a joinpoint insert
within the body of the instance declaration in scope. Our
automatic transformation scheme in Definition 2 will not
work here. The resulting program may type check but we
risk that the program will show some ”unaspect”-like be-
havior. The (programmer-guided) solution is to manually
rewrite the instance declaration during the transformation
process which roughly yields the following result

...
instance (Advice N1 (a->[a]->[a]),

Advice N2 (a->[a]->[a]),

Ord a) => Collects [a] a where

N1@advice ♯f♯ :: [Int] -> Int =

\xs -> (head xs) + (proceed (tail xs))

N2@advice ♯head♯ :: [Int] -> Int =
\xs -> case xs of

[] -> -1
-> proceed xs

Figure 9: Advising functions in advice bodies

type T = [Int] -> Int
data N1 = N1

instance Advice N2 T => Advice N1 T where
joinpoint N1 f =

\ xs -> ((joinpoint N2 head) xs) + (f (tail xs))

data N2 = N2
instance Advice N2 T where

joinpoint N2 head =
\xs -> case xs of

[] -> -1

-> head xs

Figure 10: GHC Haskell Translation of Figure 9

insert x [] = [x]

insert x (y:ys)
| x <= y = x:y:ys
| otherwise =

y : ((joinpoint N2 (joinpoint N1 insert)) x ys)
...

To compile the transformed AOP GHC Haskell program
with GHC, we will need to switch on the following addi-
tional compiler flag:

• -fallow-undecidable-instances

We would like to stress that type inference for the trans-
formed program is decidable. The “decidable instance check”
in GHC is simply conservative, hence, we need to force GHC
to accept the program.

Advising functions in advice bodies. Given that we
translate advice into instances, it should be clear that we
can also advise functions in advice bodies if we are willing to
“guide” the translation scheme. In Figure 9, we give such an
example and its (manual) translation is given in Figure 10.
We rely again on the “undecidable” instance extension in
GHC.

The last example makes us clearly wish for a system where
we do not have to perform any manual rewriting. Of course,
we could automate the rewriting of annotations by integrat-
ing the translation scheme in Definition 2 with the GHC
type inferencer. However, the problem remains that we are
unable to advise polymorphic recursive functions. Recall the
discussion in Section 4.2.

6. TOWARDS A FRAMEWORK FOR TYPE
CLASSES AND ASPECTS

We are currently working on a core calculus to study type
classes and aspects. The two key ingredients are (1) a type-
directed translation scheme from a calculus with type classes
and aspects to a variant of Harper and Morrisett’s λML

i cal-
culus, and (2) a type inference scheme for type class and
aspect resolution based on Stuckey and the first author’s
overloading framework.

We illustrate the key ideas behind this approach via a
simple example. We consider parts of the earlier program in
Figure 2.

import List(sort)
insert :: Ord a => a -> [a] -> [a]

insert x [] = []
insert x (y:ys) =

if x <=y then x:y:ys else y : insert x ys
N1@advice #insert# :: Ord a => a -> [a] -> [a] = ...

N2@advice #insert# :: Int -> [Int] -> [Int] = ...

We leave out the insertionSort function and also omit
the advice bodies for brevity. Notice that insert carries a
type annotation. Earlier we saw that in AOP GHC Haskell
we cannot easily advise type annotated functions unless we
rewrite type annotations.

We can entirely avoid rewriting of type annotations by
switching to a type-passing translation scheme for the trans-
lation of advise. Type classes can be translated using the
standard dictionary-passing scheme. Here is the translation
of the above program.

insert = Λ a. λ d:DictOrd a. λ x:a. λ xs:[a].

case xs of
[] → [x]
(y:ys) →

if (d (<=)) x y then x:y:ys -- (1)
else y : (

(joinpoint N1 (a->[a]->[a]) d -- (2)

((joinpoint N2 (a->[a]->[a])) (insert a d)))
x ys)

joinpoint = Λ n. Λ a.

typecase (n,a) of
(N1,a->[a]->[a]) → λ d:DictOrd a. ... -- (3)
(N1,) → ...

(N2,Int->[Int]->[Int]) → ...
(N2,) → ...

In the translation, function insert expects an additional
type and dictionary argument. Dictionaries serve the usual
purpose. For example, at location (1) the program text d
(<=) selects the greater-or-equal method from the dictionary
of the Ord class. The novelty are the additional type argu-
ments which we use for selecting the appropriate advice. See
locations (2) and (3).

Similarly to AOP GHC Haskell, we instrument joinpoints
with calls to the weaving function joinpoint. The differ-
ence to AOP GHC Haskell is that we rely on run-time type
information and use type case, which is part of the λML

i cal-
culus, to select the advice. For example, the advice N1 is
selected using the first two (type) arguments. The (trans-
lated) advice body assumes a third (dictionary) argument,
see location (2), because we make use of the Ord class in

the advice body. Recall the full definition of advice N1 in
Figure 2. At the call site of the weaving function, we must
of course supply the necessary arguments. See location (1).

The translation of programs is driving by type inference.
To obtain a type inference algorithm, we map type class and
advice declarations to Constraint Handling Rules (CHRs) [3].
In [19], Stuckey and the first author introduced an over-
loading framework where CHRs are used to reason about
type class relations. By mapping type classes to CHRs, we
can concisely reason about their type inference properties.
CHRs have a simple operational semantics and thus we ob-
tain a type inference algorithm.

For example, the type class instance

instance Ord a => Ord [a]

is mapped to the CHR

Ord [a] <==> Ord a

Logically, the symbol <==> stands for bi-implication. Opera-
tionally, the symbol <==> indicates a rewrite relation among
constraints (from left to right). In contrast to Prolog, we
only perform matching but not unification when rewriting
constraints. Rewriting of constraints with respect to in-
stances is also known as “context reduction” in the type
class literature.

Here, we employ CHRs to reason about advice declara-
tions. The advice declarations of our running example trans-
late to the CHRs

Advice N1 (a->[a]->[a]) <==> Ord a
Advice N1 b <==> b /=(a->[a]->[a]) | True

Advice N2 (Int->[Int]->[Int]) <==> True
Advice N2 b <==> b /= (Int->[Int]->[Int]) | True

The first and third CHR result from the advice declarations
N1 and N2 whereas the second and fourth CHR cover the
“default” cases. Notice that the second and fourth CHR
contain guard constraints which impose additional condi-
tions under which a CHR can fire. For example, the second
CHR will only rewrite Advice N1 b to True (the always true
constraint), if b is not an instance of (a->[a]->[a]). The
idea is that via guard constraints we can guarantee that the
CHR representing the advice declaration and the default
case do not overlap.

We will use the CHRs resulting from type class and ad-
vice declarations to solve (i.e. rewrite) constraints arising
during type inference. In the translation, y : insert x
ys is translated to

y : ((joinpoint N1 (a->[a]->[a]) d

((joinpoint N2 (a->[a]->[a])) (insert a d)))
x ys)

and this program text gives rise to

Ord a, Advice N1 (a->[a]->[a]), Advice N2 (a->[a]->[a])

The first constraint arise from the call to insert. The sec-
ond and third constraint arise from the instrumentation.
The surrounding program text carries the type annotation
Ord a => a->[a]->[a]. To check that the type annotation
is correct we must perform a subsumption test among types
which boils down to a entailment test among constraints.
For our example, we must verify that Ord a, Advice N1
(a->[a]->[a]), Advice N2 (a->[a]->[a]) follow from Ord a.
In general, we must verify that the constraints C1 from the

annotation entail the constraints C2 arising from the pro-
gram text of that annotation, written C1 ⊃ C2.

The entailment check is fairly standard for type classes.
We exhaustively rewrite C2 with respect to the instances
(i.e. CHRs) until we reach the from C1, written C2

∗ C1.
In the presence of advice, this entailment checking strategy
will not work anymore because none of the above CHRs
applies to Advice N2 (a->[a]->[a]). But if we interpret
the above CHRs as some logical formula P we find that
Advice N2 (a->[a]->[a]) is a logical consequence of any
first-order model of P and Ord a. We can verify this fact
via a simple case analysis. If a equals to Int then Advice
N2 (a->[a]->[a]) is equivalent to True because of the third
CHR. Otherwise, via the fourth CHR we can conclude that
Advice N2 (a->[a]->[a]) is yet again equivalent to True.
Hence, Advice N2 (a->[a]->[a]) is a logical consequence
of P .

Our idea is to extend the standard rewriting-based ap-
proach to check entailment by incorporating a case analysis.
Of course, we need to guarantee that the extended entail-
ment check remains decidable for Haskell 98 type classes and
advice declarations making use of such type classes.

7. CONCLUSION AND RELATED WORK
There is a large amount of works on the semantics of

aspect-oriented programming languages, for example con-
sider [1, 13, 22, 24, 25, 27] and the references therein. There
have been only a few works [24, 1, 16] which aim to inte-
grate AOP into ML style languages. We yet have to work
out the exact connections to these works. For instance, the
work described in [1] supports first-class pointcuts and dy-
namic weaving whereas our pointcuts are second class and
we employ static weaving. None of the previous works we
are aware of considers the integration of AOP and type
classes. In some previous work, the second author [27, 26]
gives a a static weaving scheme for a strongly typed func-
tional AOP language via a type-directed translation pro-
cess. In [27] (Section 6), the authors acknowledge that their
type-directed translation scheme for advice is inspired by the
dictionary-passing translation for type classes. But they be-
lieve that aspects and type classes substantially differ when
it comes to typing and translation. In this paper, we con-
firm that there is a fairly tight connection between aspects
and type classes. The system described in [27, 26] does not
assume type annotations and therefore we can express all
examples from [27, 26] in terms AOP GHC Haskell (Sec-
tion 5).

The main result of our work is that static weaving for
strongly typed languages bears a strong resembles to type
class resolution – the process of typing and translating type
class programs. We could show that GHC type classes as
of today can provide for a light-weight AOP extension of
Haskell (Section 5). We use GHC style overlapping instances
to encode a form of type-safe which is is used to advice
functions based on their types. The approach has a number
of problems. For example, we cannot easily advise functions
in programs with type annotations.

We are in the process of formalizing a more principled ap-
proach to integrate type classes and aspects (Section 6). We
expect to report results in the near future. Further future
work includes the study of effect-full advice which we can
represent via monads in Haskell. We also want to consider
more complex pointcuts.

Acknowledgments
We thank Andrew Black, Ralf Lämmel, and referees for
AOSD’07 and FOAL’07 for their helpful comments on pre-
vious versions of this paper.

8. REFERENCES
[1] D. S. Dantas, D. Walker, G. Washburn, and

S. Weirich. PolyAML: a polymorphic aspect-oriented
functional programming language. In Proc. of
ICFP’05, pages 306–319. ACM Press, 2005.

[2] M. Erwig and D. Ren. Monadification of functional
programs. Sci. Comput. Program., 52(1-3):101–129,
2004.

[3] T. Frühwirth. Constraint handling rules. In Constraint
Programming: Basics and Trends, LNCS.
Springer-Verlag, 1995.

[4] Glasgow haskell compiler home page.
http://www.haskell.org/ghc/.

[5] C. V. Hall, K. Hammond, S. L. Peyton Jones, and
P. L. Wadler. Type classes in Haskell. ACM
Transactions on Programming Languages and
Systems, 18(2):109–138, 1996.

[6] R. Harper and G. Morrisett. Compiling polymorphism
using intensional type analysis. In Proc. of POPL’95,
pages 130–141. ACM Press, 1995.

[7] Fritz Henglein. Type inference with polymorphic
recursion. Transactions on Programming Languages
and Systems, 15(1):253–289, April 1993.

[8] M. P. Jones. A system of constructor classes:
Overloading and implicit higher-order polymorphism.
In Proc. of FPCA ’93, pages 52–61. ACM Press, 1993.

[9] M. P. Jones. Type classes with functional
dependencies. In Proc. of ESOP’00, volume 1782 of
LNCS. Springer-Verlag, 2000.

[10] S. Peyton Jones, M. P. Jones, and E. Meijer. Type
classes: an exploration of the design space. In Haskell
Workshop, June 1997.

[11] S. Kaes. Parametric overloading in polymorphic
programming languages. In In Proc. of ESOP’88,
volume 300 of LNCS, pages 131–141. Springer-Verlag,
1988.

[12] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly
typed heterogeneous collections. In Haskell ’04:
Proceedings of the 2004 ACM SIGPLAN workshop on
Haskell, pages 96–107. ACM Press, 2004.

[13] R. Lämmel. A semantical approach to method-call
interception. In AOSD ’02: Proceedings of the 1st
international conference on Aspect-oriented software
development, pages 41–55. ACM Press, 2002.

[14] R. Lämmel and S. Peyton Jones. Scrap your
boilerplate: a practical approach to generic
programming. In Proc. of ACM SIGPLAN Workshop
on Types in Language Design and Implementation
(TLDI 2003), pages 26–37. ACM Press, 2003.

[15] S. Liang, P. Hudak, and M. Jones. Monad
transformers and modular interpreters. In Proc. of
POPL ’95, pages 333–343. ACM Press, 1995.

[16] H. Masuhara, H. Tatsuzawa, and A. Yonezawa.
Aspectual caml: an aspect-oriented functional
language. In Proc. of ICFP’05, pages 320–330. ACM
Press, 2005.

[17] S. Peyton Jones, editor. Haskell 98 Language and
Libraries: The Revised Report. Cambridge University
Press, 2003.

[18] T. Sheard and S. Peyton Jones. Template
meta-programming for Haskell. In Proc. of the ACM
SIGPLAN workshop on Haskell, pages 1–16. ACM
Press, 2002.

[19] P. J. Stuckey and M. Sulzmann. A theory of
overloading. ACM Transactions on Programming
Languages and Systems (TOPLAS), 27(6):1–54, 2005.

[20] M. Sulzmann. AOP Haskell light: Aspect-oriented
programming with type classes.
http://www.comp.nus.edu.sg/˜ sulzmann/aophaskell.

[21] S. R. Thatte. Semantics of type classes revisited. In
LFP ’94: Proceedings of the 1994 ACM conference on
LISP and functional programming, pages 208–219.
ACM Press, 1994.

[22] D. B. Tucker and S. Krishnamurthi. Pointcuts and
advice in higher-order languages. In Proc. of
AOSD’03, pages 158–167. ACM Press, 2003.

[23] P. Wadler and S. Blott. How to make ad-hoc
polymorphism less ad-hoc. In Proc. of POPL’89, pages
60–76. ACM Press, 1989.

[24] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In Proc. of ICFP’03, pages 127–139. ACM
Press, 2003.

[25] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. ACM Trans. Program. Lang. Syst.,
26(5):890–910, 2004.

[26] M. Wang, K. Chen, and S.C. Khoo. On the pursuit of
staticness and coherence. In FOAL ’06: Foundations
of Aspect-Oriented Languages, 2006.

[27] M. Wang, K. Chen, and S.C. Khoo. Type-directed
weaving of aspects for higher-order functional
languages. In Proc. of PEPM ’06: Workshop on
Partial Evaluation and Program Manipulation, pages
78–87. ACM Press, 2006.

[28] G. Washburn and S. Weirich. Good advice for
type-directed programming: Aspect-oriented
programming and extensible generic functions. In
Proc. of the 2006 Workshop on Generic Programming
(WGP’06), pages 33–44. ACM Press, 2006.

