
Towards a Type System for Detecting Never-Matching
Pointcut Compositions

Tomoyuki Aotani
Graduate School of Arts and Sciences

University of Tokyo
aotani@graco.c.u-tokyo.ac.jp

Hidehiko Masuhara
Graduate School of Arts and Sciences

University of Tokyo
masuhara@acm.org

ABSTRACT
Pointcuts in the current AspectJ family of languages are
loosely checked because the languages allow compositions
of pointcuts that never match any join points, which devel-
opers are unlikely to intend, for example, set(* *)&&get(*

*). We formalize the problem by defining well-formedness
of pointcuts and design a novel type system for assuring
well-formedness. The type of pointcuts is encoded by using
record, union and the bottom types.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions—Languages; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of program constructs—Type structure

General Terms
Design, languages, theory

Keywords
AOP, pointcut compositions, records

1. INTRODUCTION
Join point selection mechanisms, i.e., pointcuts, play an

important role in AspectJ family of languages such as As-
pectJ [13] and JBoss AOP. While there have been studies
targeting many facets of those languages, such as expressive-
ness and robustness [1,5,9,12,17], safe pointcut compositions
have been less investigated [4, 16]. The property becomes
more important the more aspects use composed pointcuts.

This position paper focuses on safe pointcut composability
so that composed pointcuts can match at least one join point
in some program. We call such a pointcut well-formed. By
checking well-formedness of every pointcuts in aspect defi-
nitions, developers can notice unintended pointcut compo-
sitions before applying aspects to programs. This property
helps programmers to avoid pointcuts that never have any

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Foundations of Aspect-Oriented Lan-
guages (FOAL 2007), March 13, 2007, Vancouver, BC, Canada.
Copyright 2007 ACM ISBN 1-59593-671-4/07/03 ...$5.00.

match by merely examining aspect definitions. It is particu-
larly important for separate compilation of aspects. In other
words, we are interested in detecting never-matching point-
cuts compositions whose resulting pointcuts match no join
point in any program. Note that current AspectJ compiler
implementations (abc [2]) can report, only after weaving as-
pects into classes, that an advice declaration is not woven
into any join point shadows. When we separately compile as-
pects (which is also required by the load-time weaving tech-
niques), the current compilers silently pass never-matching
pointcut compositions.

To detect such never-matching pointcut compositions, we
are going to develop a type system that guarantees the well-
formedness of pointcuts, defined as follows:

Definition 1 (well-formed pointcut). Let U be the
set of all well-typed base programs and JP(b) be the set of
join points in any execution of a well-typed base program b.
Pointcut p is well-formed when it satisfies:

∃b ∈ U.∃j ∈ JP(b).match(p, j)

In other words, a pointcut p is well-formed when there ex-
ists a well-typed program that generates a join point match-
ing p.

The rest of the paper is organized as follows. Section 2
explains the problems we address. Section 3 shows a sketch
of our type system. Section 4 discusses related work. Section
5 concludes the paper.

2. NEVER-MATCHING POINTCUT COM-
POSITIONS

In order to clarify the problems that we address, we present
an example in which a pointcut never matches any join
point.

AspectJ compilers allow meaningless pointcut composi-
tions that never match join points in any program.

In AspectJ, one can compose any two pointcuts with &&

(and) and || (or) pointcut designators. For example, one
can capture both get and set join points by composing a get
and set pointcuts with an or operator; i.e., get(* *)||set(*

*).
On the other hand, the composition of these two pointcuts

with an and operator, i.e., get(* *)&&set(* *) is meaning-
less because no join point is get and set at the same time.

3. A SKETCH OF OUR TYPE SYSTEM FOR
POINTCUTS

Table 1: Elaborated pointcut primitives.
get set

instance variables mget mset

class variables sget sset

This section gives a sketch of our type system that types
pointcuts with respect to the well-formedness. We formalize
the system by adding a pointcut and advice mechanism to
Featherweight Java [10].

The key idea is to represent the type of join points as a
record type. The type of pointcuts is also a record type
because a pointcut can be seen as a set of matching join
points.

Because the paper focuses on pointcut compositions, we
explain only the pointcut types below.

3.1 Overview of Pointcut Types
The pointcut type P is defined as follows.

P ::= {li : Y i∈1···n
i } | P + P | ⊥

Y ::= k | T g | [T i∈1···n
i] | •

k ::= mset | mget | sset | sget | · · ·
g ::= • | ε

T ∈ idpats

Basically, a pointcut type is encoded into a record type {li :
Y i∈1···n

i } that contains most attributes of the JoinPoint

object in AspectJ such as the kind of the matching join
point. The label l corresponds to the attribute of a join
point including this, args and kind, and is associated with
an attribute type Y . The attribute type Y is either the kind
of matching join points k, an element of idpats with runtime
value availability tag g, or a sequence of the elements of
idpats. P + P denotes the union of two pointcut types and
⊥ denotes pointcuts never matching any join point. We
assume that ⊥ + P and P + ⊥ are equivalent to P . The
set idpats is the union of the three sets: the singleton set of
an ∗, the set of names of primitive types such as int and
boolean, and the set of valid identifiers with respect to the
Java Language Specification [8] such as Object, List and
width. [T i∈1···n

i] represents a comma-separated sequence of
the elements of idpats. The single • denotes absence. For
example, {args : •} denotes that matched join points never
have args values. Meta-variable k ranges over the kinds of
join points such as get and set. Meta-variable g ranges over
runtime value availability tags. When a label l is associated
with T •, it denotes that there is no runtime value for the
attribute l. For example, {target : T •} represents that the
target attribute of matching join points is constrained to
have the type T but has no runtime value. For readability,
we omit the availability tag when it is ε, so we simply write
T rather than T ε.

3.2 Pointcut Sublanguage and Typing Rules
Since we are still working on details of the type system,

the paper demonstrates how pointcuts are typed by merely
using set, get, args, || and && pointcuts. The pointcut
sublanguage is defined as Figure 2. The args pointcut does
not bind any variable because we are only interested in the
pointcut compositions. Instead, an args pointcut limits the
types and numbers of arguments of matching join points.

We divide set and get pointcuts into the four pointcuts
as is shown in Table 1 so that they explicitly distinguish

pc ::= prm(T C.f) | args(T i∈1···n
i) | pc&&pc | pc||pc

prm ::= mset | sset | mget | sget

Figure 2: Pointcut sublanguage (T, C, f ∈ idpats).

pc1 : P 1 pc2 : P 2 P 1 ⊗ P 2 Ã P

pc1&&pc2 : P

pc1 : P 1 pc2 : P 2

pc1||pc2 : P 1 + P 2

Figure 3: Typing rules pc : P for pointcut composi-
tions.

whether matching join points access the static fields or
not. This is because the join points related to class fields
have no target value.1

The types of mset, sset, mget, mset and args point-
cuts are shown in Figure 1. For example, the type of the
pointcut mset(int Point.x), which matches p.x = 3 as-
suming p is an instance object of a Point class, becomes
{target : Point, args : int, kind : mset, name : x, ret : •}.

The typing rules for pointcut compositions (i.e., pc1&&pc2

and pc1||pc2) are shown in Figure 3. Composing two point-
cuts with an or pointcut, the resulting type becomes simply
the union of the two pointcut types. Composing with an and

pointcut, the resulting type becomes a common subtype of
the two pointcut types, intuitively. The common subtype is
calculated using the rules in Figure 4.

As we can see, we need to define the type subsumption
(<:) on pointcut types only for the cases that the right hand
side is a record type. It is simply defined as follows.

⊥ <: {li : T i∈1···n
i }

P1 <: {li : T i∈1···n
i } P2 <: {li : T i∈1···n

i }
P1 + P2 <: {li : T i∈1···n

i }
We employ the standard record type subsumptions (i.e. sub-
sumptions on record widths, depths and permutations [18]).

n ≤ m ∀i ∈ 1 · · ·n.∃j ∈ 1 · · ·m.Yi <: Y ′
j

{li : Y i∈1···n
i } <: {l′i : Y ′ i∈1···m

i }
For the elements of idpats, say T1 and T2, the subsumption

is defined as follows. T1 <: T2 if

• T2 is ∗, or

• T1 and T2 is the same identifier.

And the subsumptions on sequences of elements and tagged
elements of idpats are defined as follows.

n = m ∀i ∈ 1 · · ·n.Ti <: T ′i
[Ti i∈1···n] <: [T ′ i∈1···m

i]

g1 = g2 T1 <: T2

T g1
1 <: T g2

2

1Similar elaboration can be applied to pointcuts related to
methods, i.e., call and execution pointcuts.

mget(T C.f) : {target : C, args : •, kind : mget, name : f, ret : T}
sget(T C.f) : {target : C•, args : •, kind : sget, name : f, ret : T}
mset(T C.f) : {target : C, args : [T], kind : mset, name : f, ret : •}
sset(T C.f) : {target : C•, args : [T], kind : sset, name : f, ret : •}

args(T i∈1···n
i) : {args : [T i∈1···n

i]}

Figure 1: Typing rules pc : P for mset, sset, mget, mset and args pointcuts (T, C, f ∈ idpats).

⊥⊗ P Ã ⊥ P ⊗⊥ Ã ⊥

P <: {li : T i∈1···n
i } P <: {l′i : T ′ i∈1···n

i }
{li : T i∈1···n

i } ⊗ {l′i : T ′ i∈1···n
i } Ã P

P1 ⊗ P3 Ã P ′1 P2 ⊗ P3 Ã P ′2
(P1 + P2)⊗ P3 Ã P ′1 + P ′2

P1 ⊗ P2 Ã P ′2 P1 ⊗ P3 Ã P ′3
P1 ⊗ (P2 + P3) Ã P ′2 + P ′3

Figure 4: Type calculation rules P ⊗ P Ã P

Note that ArrayList <: Object is not available in our def-
inition. This is mainly because we want to check pointcut
compositions without any base programs.

The subsumption on kinds k1 <: k2 holds only when k1

and k2 are the same.

3.3 Typing Examples
This section demonstrates that our type system can suc-

cessfully accept the well-formed pointcuts and detects never-
matching pointcuts.

Never-matching pointcut compositions is typed as ⊥.
Our type system can successfully type get(* *)&&set(*

*) as ⊥ without any base programs. For simplicity, we show
this by using elaborated pointcuts, i.e., mget(* *.*)&&mset(*

.)2. As shown in Table 1, each pointcuts are typed as fol-
lows.
mset(* *.*):
{target : ∗, args : [∗], kind : mset, name : ∗, ret : •}

mget(* *.*):
{target : ∗, args : •, kind : mget, name : ∗, ret : ∗}

The type of the composed pointcut mget(* *.*)&&mset(*

.) becomes a common subtype of the two pointcut types
as mentioned in Section 3.2, and we find ⊥, which is the
only possible type because there is no common subtype of •
and ∗, nor of mget and mset. Thus our type system types
mget(* *.*)&&mset(* *.*) as ⊥, and can conclude that it
is a never-matching pointcut.

The union of never-matching pointcuts and well-formed
pointcuts is not typed as ⊥.

Composing a never-matching pointcut and a well-formed
pointcut with an or pointcut (||), we get a well-formed
pointcut. In our type system, the fact is rephrased that
composing an pointcut typed as ⊥ and another pointcut not

2The get and set pointcuts shall be encoded by disjunctions
of the mget and sget, and the mset and sset pointcuts,
respectively.

typed as ⊥ with an or pointcut, the type of the resulting
pointcut is not ⊥. This property is satisfied in our system
clearly following to the typing rule for the or pointcut com-
positions.

For example, the pointcut

(mset(* *.*)||mget(* *.*))&&args(int)

is well-formed and matches all assignments to any object
fields. Because get join points have no argument, none of
them is selected.

Reducing the bottom types by using the assumptions P +
⊥ = P and ⊥+ P = P , the type of the pointcut becomes

{target : ∗, args : [∗], kind : mset, name : ∗, ret : •}
in our type system and it successfully reflects the fact that
we mentioned just before.

4. RELATED WORK
Our work is not the first attempt to detect never match-

ing pointcuts. Douence et al. defined the alphabet analysis
for their pointcut language for control-flow. An alphabet is
a set of join point shadows [15] that can generate matching
join points. They also suggested that when the alphabet
becomes empty, the pointcut never matches any join points
and such pointcut definitions are erroneous. Program De-
scription Language (PDL) [16] is a domain specific language
for checking design rules such as the Law of Demeter [14].
Its pointcut language is similar to the one of AspectJ, and
has a type system that assures that typed pointcuts have
at least one matching join point. The typing rule and se-
mantics of not pointcuts are very interesting, although the
semantics differs from the one of AspectJ.

Aspect FGJ (or shortly AFGJ) [11] is an aspect-oriented
calculus which extends Featherweight GJ [10] with forms
for advice declaration and for proceeding to the next de-
clared advice. Though the language have a execution point-
cut primitive exe and two operators for pointcut composi-
tions && and ||, the pointcut logic can successfully reject
pointcut compositions of two different execution pointcuts
such as3

exe(int Point.getX())&&exe(int Point.getColor()).

We think this work may be a good starting point of our
formalization task.

MiniMAO1 [3] is another core aspect-oriented calculus of
AspectJ-like aspect-oriented programming languages based
on Classic Java [6] to investigate the semantics of proceed
and the soundness over advice weavings. Types of pointcuts
are similar to ours but the approach does not detect never-
matching pointcuts.

3Though AFGJ has a different syntactic format like exe int
Point.X(), we use AspectJ-like format for readability.

AspectML [19] is a polymorphic aspect-oriented functional
programming language. Pointcuts are first-class values and
typed, but the language merely has execution join points
as far as we know.

5. CONCLUSIONS AND FUTURE WORK
We pointed out that the AspectJ family of languages allow

compositions of pointcuts that never match join points in
any program, and that such compositions should be detected
from aspect definitions alone. We showed a sketch of our
type system to detect such never-matching compositions of
pointcuts. Our key idea is to encode types of pointcuts and
join points with record types. In the type system, the type
of mutually exclusive pointcut compositions, such as set(*

)&&get(*), becomes ⊥, which denotes never matching
pointcuts.

We are currently working on the details of the type sys-
tem based on Featherweight Java [10]. One of the major
difficulties we are facing now is the ! (not) operator. One
possible solution would be to use negation (or complement)
types, whose semantics is based on sets [7].

Our future work includes proof of type soundness; i.e.,
for any non ⊥-typed pointcuts there exits a join point that
matches the pointcut. An interesting direction of our future
work is to extend the languages with generics so that we
can verify correctness of the design and implementation of
pointcuts in AspectJ5.

Acknowledgments
We would like to thank the anonymous reviewers for their
encouraging and thoughtful suggestions. We also thank Jan
Hanneman, Kohei Sakurai, Kazunori Kawauchi, Tsutomu
Kumazawa and other members of the TM seminar at the
University of Tokyo, and Atsushi Igrashi and other mem-
bers of the Kumiki project for their valuable advice and
discussions on this study.

6. REFERENCES
[1] T. Aotani and H. Masuhara. Scope: an AspectJ

compiler for supporting user-defined analysis-based
pointcuts. In Proceedings of the 6th International
Conference on Aspect-oriented software development,
pages 161–172. ACM Press, 2007.

[2] P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc: An
extensible AspectJ compiler. In Proceedings of the 4th
International Conference on Aspect-Oriented Software
Development, pages 87–98. ACM Press, 2005.

[3] C. Clifton and G. T. Leavens. MiniMAO1: An
imperative core language for studying aspect-oriented
reasoning. Science of Computer Programming,
63(3):321–374, 2006.

[4] R. Douence and L. Teboul. A pointcut language for
control-flow. In Proceedings of 3rd ACM
SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering, pages
95–114. Springer, 2004.

[5] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts
as functional queries. In Proceedings of the 2nd
ASIAN Symposium on Programming Languages and
Systems, pages 366–381. Springer, 2004.

[6] M. Flatt, S. Krishnamurthi, and M. Felleisen. A
programmer’s reduction semantics for classes and
mixins. In Formal Syntax and Semantics of Java,
pages 241–269. Springer, 1999.

[7] A. Frisch, G. Castagna, and V. Benzaken. Semantic
subtyping. In Proceedings of the 17th Annual IEEE
Symposium on Logic in Computer Science, pages
137–146. IEEE Computer Society, 2002.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification Second Edition.
Addison-Wesley, 2000.

[9] K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based crosscuts. In
Proceedings of the 2nd international conference on
Aspect-Oriented Software Development, pages 60–69.
ACM Press, 2003.

[10] A. Igarashi, B. C. Pierce, and P. Wadler.
Featherweight Java: a minimal core calculus for Java
and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, 2001.

[11] R. Jagadeesan, A. Jeffrey, and J. Riely. Typed
parametric polymorphism for aspects. Science of
Computer Programming, 2006. to apper.

[12] A. Kellens, K. Mens, J. Brichau, and K. Gybels.
Managing the evolution of aspect-oriented software
with model-based pointcuts. In Proceedings of the 20th
European Conference on Object-Oriented
Programming, pages 501–525, 2006.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, et al. An
overview of AspectJ. Lecture Notes in Computer
Science, 2072:327–355, 2001.

[14] K. Lieberherr, D. H. Lorenz, and P. Wu. A case for
statically executable advice: checking the law of
demeter with AspectJ. In Proceedings of the 2nd
International Conference on Aspect-Oriented Software
Development, pages 40–49. ACM Press, 2003.

[15] H. Masuhara, G. Kiczales, and C. Dutchyn. A
compilation and optimization model for
aspect-oriented programs. In Proceedings of the 12th
International Conference on Compiler Construction,
pages 46–60, 2003.

[16] C. Morgan, K. D. Volder, and E. Wohlstadter. A
static aspect language for checking design rules. In
Proceedings of the 6th International Conference on
Aspect-Oriented Software Development, pages 63–72.
ACM Press, 2007.

[17] K. Ostermann, M. Mezini, and C. Bockisch.
Expressive pointcuts for increased modularity. In
Proceedings of the 19th European Conference on
Object-Oriented Programming, pages 214–240.
Springer, 2005.

[18] B. C. Pierce. Types and programming languages. MIT
Press, 2002.

[19] G. Washburn and S. Weirich. Good advice for
type-directed programming aspect-oriented
programming and extensible generic functions. In
Proceedings of the 2006 ACM SIGPLAN workshop on
Generic programming, pages 33–44. ACM Press, 2006.

