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Preface

Aspect-oriented programming is a paradigm in software engineering and

FOAL logos courtesy of Luca Cardelli

programming languages that promises better support for separation of concerns.
The fifth Foundations of Aspect-Oriented Languages (FOAL) workshop was
held at the Fifth International Conference on Aspect-Oriented Software Devel-
opment in Bonn, Germany, on March 21, 2006. This workshop was designed to
be a forum for research in formal foundations of aspect-oriented programming
languages. The call for papers announced the areas of interest for FOAL as in-
cluding: semantics of aspect-oriented languages, specification and verification
for such languages, type systems, static analysis, theory of testing, theory of
aspect composition, and theory of aspect translation (compilation) and rewrit-
ing. The call for papers welcomed all theoretical and foundational studies of
foundations of aspect-oriented languages.

The goals of this FOAL workshop were to:

• Make progress on the foundations of aspect-oriented programming lan-
guages.

• Exchange ideas about semantics and formal methods for aspect-oriented
programming languages.

• Foster interest within the programming language theory and types com-
munities in aspect-oriented programming languages.

• Foster interest within the formal methods community in aspect-oriented
programming and the problems of reasoning about aspect-oriented pro-
grams.

The workshop was organized by Curtis Clifton (Rose-Hulman Institute of Technology), Gary T. Leavens (Iowa State
University), and Ralf L̈ammel (Microsoft). The program committee was chaired by Mira Mezini (Darmstadt Uni-
versity of Technology) and included Mezini, Clifton, Jonathan Aldrich (Carnegie Mellon University), Don Batory
(University of Texas, Austin), Paulo Borba (Universidade Federal de Pernambuco), Marc Eaddy (Columbia Univer-
sity), Robby Findler (University of Chicago), Matthew Flatt (University of Utah), Pascal Fradet (INRIA), Alan Jeffrey
(Bell Labs), Shmuel Katz (Technion–Israel Institute of Technology), John Lefor (Microsoft Research), Karl Lieberherr
(Northeastern University), Todd Millstein (University of California, Los Angeles), Oege de Moor (Oxford University),
Hridesh Rajan (Iowa State University), David Walker (Princeton University), and Mitchell Wand (Northeastern Uni-
versity). We thank the organizers of AOSD 2006 for hosting the workshop.
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Message from the Program Committee Chair

This volume contains the papers presented at FOAL ’06, the 5th Workshop on Foundations of Aspect-Oriented
Languages. The FOAL series of workshops organized in conjunction with the International Conference on Aspect-
Oriented Software Development (AOSD) focusses on the theory and principles behind aspect-oriented programming
language design and implementation. This year’s FOAL workshop was held in conjunction with AOSD ’06 in Bonn,
Germany, on Tuesday, the 21st of March, 2006.

This year we received a total of 15 submissions. Each paper was reviewed by a minimum of four reviewers and
some papers received five reviews. After the initial reviews were submitted, the program committee discussed each
paper during a 3-day online program committee meeting held between February 7th and 9th. The final program
includes 5 long and 2 short papers. Also, the authors of three submissions were invited for a short presentation.

I am very grateful to the program committee for their hard work in reading, reviewing and discussing all the
submissions and for providing thorough feedback to authors. I am also very grateful to Shriram Krishnamurthi and
Jay McCarthy from Brown University for giving us access to the Brown Continue Server which we used to administer
the reviewing process. Last but not least, I am very grateful to the program organizers, Curtis Clifton, Ralf Lämmel
and Gary T. Leavens, for their extraordinary and indispensable support during the whole process. I thank them for all
their hard work organizing the details that made this workshop possible.

Sincerely,

Mira Mezini
FOAL 06 Program Chair
Darmstadt University of Technol-
ogy
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ABSTRACT
In AspectJ-like languages, there are several different kinds
of advice declarations, which are specified by using advice
modifiers such as before and after returning. This makes
semantics of advice complicated and also makes advice dec-
larations less reusable since advice modifiers are not param-
eterized unlike pointcuts. We propose a simpler join point
model and an experimental AOP language called PitJ. The
proposed join point model has only one kind of advice, but
has finer grained join points. Even though we unified differ-
ent kinds of advice into one, the resulted language is suffi-
ciently expressive to cover typical advice usages in AspectJ,
and has improved advice reusability by allowing pointcuts,
rather than advice modifiers, to specify when advice body
runs. Along with the language design, this paper gives a for-
malization of the join point model in a continuation-passing
style (CPS).

1. INTRODUCTION
One of the fundamental language mechanisms in aspect-
oriented programming (AOP) is the pointcut and advice
mechanism, which can be found in many AOP languages
including AspectJ[12]. As previous studies have shown, de-
sign of pointcut language and selection of join points are
key design factors of the pointcut and advice mechanisms in
terms of expressiveness, reusability and robustness of advice
declarations[3, 11, 18, 13, 10, 14].

A pointcut serves as an abstraction of join points in the
following senses:

� It can give a name to a set of join points (e.g., by
means of named pointcuts in AspectJ).

� Differences among join points, such as join point kinds
and parameter positions, can be subsumed. For exam-
ple, when we define a logging aspect that records the
first argument to runCommand method and the second

argument to debug, different parameter positions are
subsumed by the next pointcut:

pointcut userInput(String s):
(call(* Toplevel.runCommand(String)) && args(s))

|| (call(* Debugger.debug(int,String)) && args(*,s));

� It can separate concrete specifications of interested join
points from advice declarations (e.g., by means of ab-
stract pointcuts and aspect inheritance in AspectJ). In
other words, we can parameterize interested join points
in an advice declaration.

There have been several studies on advanced pointcut prim-
itives for accurately and concisely abstracting join points[3,
11, 18, 13].

In order to allow pointcuts to accurately abstract join points,
the pointcut and advice mechanisms should also have a rich
set of join points. If an interested event is not a join point,
there is not way to advise it at all. Several studies have
investigated to introduce new kinds of join points, such as
loops[10], conditional branches[14], and local variable ac-
cesses[15] into AspectJ-like languages. In other words, the
more kinds of join points the pointcut and advice mecha-
nism has, the more opportunities advice declarations can be
applied to.

This paper focuses on a language with finer grained join
points for improving reusability of advice declarations. The
join point model can be compared with traditional join point
model in AspectJ-like languages as follows:

� In the join point model in AspectJ-like languages, a
join point represents duration of an event, such as a
call to a method until its termination. We call this
model the region-in-time model because a join point
corresponds to a region on a time line.

� In our proposing join point model, a join point repre-
sents an instant of an event, such as the beginning of
a method call and the termination of a method call.
We call this model the point-in-time model because a
join point corresponds to a point on a time line.

The contributions of the paper are:
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� We demonstrate that the point-in-time join point
model can improve reusability of advice.

� We present an experimental AOP language called PitJ
based on the point-in-time model. PitJ’s advice is as
expressive as AspectJ’s in most typical use cases even
though the advice mechanism in PitJ is simpler than
the one in AspectJ-like languages.

� We give a formal semantics of the point-in-time model
by using a small functional AOP language called Pitλ.
Thanks to affinity with continuation passing style, the
semantics gives a concise model with advanced features
such as exception handling.

2. REUSABILITY PROBLEM OF REGION-
IN-TIME JOIN POINT MODEL

Although languages that are based on the region-in-time
join point model are designed to be reusable, there are situ-
ations where aspects are not as reusable as they seem to be.
This section explains such situations, and argues that this
is common problem to the region-in-time join point model.

In order to clarify the problem, this section uses a cross-
cutting concern that is to log user’s input received by the
following two versions of base program:

a console version that receives user input from the con-
sole.

a hybrid version, evolved from the console version, that
receives user input from both the console and GUI
components.

2.1 Logging Aspect for the Console Version
Figure 1 shows a logging aspect for the console version in
AspectJ[12]. We assume that the base program receives user
input as return values of readLinemethod in several classes.

¶ ³
1 aspect ConsoleLogging {
2 pointcut userInput(): call(String *.readLine());
3 after() returning(String s): userInput() {
4 Log.add(s);
5 }
6 }

µ ´

Figure 1: Logging aspect for the console version

Line 2 declares a pointcut userInput that matches any join
point that represents a call to readLine method. Lines 3–5
declare advice to log the input. after() returning(String

s) is an advice modifier of the advice declaration that spec-
ifies to run the advice body after the action of the matched
join points with binding the return value from the join point
to variable s. The body of the advice, which is at line 4,
records the value.

It is possible to declare a generic aspect in order to subsume
changes of join points to be logged in different versions. For
example, Figure 2 shows a generic logging aspect that uses

abstract pointcut userInput in an advice declaration, and
a concrete logging aspect for the console version that con-
cretizes userInput into call(String *.readLine()).

¶ ³
1 abstract aspect UserInputLogging {
2 abstract pointcut userInput();
3 after() returning(String s): userInput() {
4 Log.add(s);
5 }
6 }

7 aspect ConsoleLogging extends UserInputLogging {
8 pointcut userInput():
9 call(String *.readLine());

10 }

µ ´

Figure 2: Generic logging aspect and its application

to the console version

The generic logging aspect is reusable to log user’s input
from environment variables as shown in Figure 3. Note that
we can achieve this without modifying the generic logging
aspect.

¶ ³
1 aspect ConsoleAndEnvVarLogging
2 extends UserInputLogging {
3 pointcut userInput():
4 call(String *.readLine()) ||
5 call(String System.getenv(String));
6 }

µ ´

Figure 3: Logging aspect for console and environ-

ment variable

2.2 Modifying the Aspect to the Hybrid Ver-
sion

The generic logging aspect is not reusable when the base
program changes its programming style. In other words,
pointcuts no longer can subsume changes in certain kinds of
programming style.

Consider a hybrid version of the base program that receives
user input from GUI components as well as from the console.
The version uses the GUI framework which calls onSubmit

(String) method on a listener object in the base program
with the string as an argument when a user inputs a string
via GUI interface.

Since UserInputLogging in Figure 2 can only log return
values, we have to define a different pointcut and advice
declaration as shown in Figure 4.

Making the logging aspect for hybrid version reusable is
tricky and awkward. Since single pointcut and advice can
not subsume differences between return values and argu-
ments, we have to define a pair of pointcuts and advice dec-
larations. In order to avoid duplication in advice bodies, we
need to define an auxiliary method and let advice bodies
call the method. The resulted aspect is shown in Figure 5.

2



¶ ³
1 aspect HybridLogging extends UserInputLogging {
2 pointcut userInput(): call(String *.readLine());
3 pointcut userInput2(String s):
4 call(String *.onSubmit(String)) && args(s);
5 before(String s): userInput2(s) {
6 Log.add(s);
7 }
8 }

µ ´

Figure 4: Logging aspect for the hybrid version

¶ ³
1 abstract aspect UserInputLogging2 {
2 abstract pointcut userInputAsReturnValue();
3 abstract pointcut userInputAsArgument(String s);
4 after() returning(String s):
5 userInputAsReturnValue() {
6 log(s);
7 }
8 before(String s): userInputAsArgument(s) {
9 log(s);
10 }
11 void log(String s) {
12 Log.add(s);
13 }
14 }

µ ´

Figure 5: Generic logging aspect that can log for

both return values and arguments

2.3 Analysis of the Problem
By generalizing the above problem, we argue that pointcuts
in the region-in-time join point model can not subsume dif-
ferences between the beginnings of actions and the ends of
actions.

Such a difference is not unique to the logging concern, but
can also be seen in many cases. For example, following dif-
ferences can not be subsumed by pointcuts in the region-in-
time join point model:

� a polling style program that waits for events by call-
ing a method and an event driven style program that
receives events by being called by a system,

� a method that reports an error by returning a special
value and a method that does by an exception, and

� a direct style program in which caller performs rest
of the computation and continuation-passing style in
which the rest of computation is specified by function
parameters.

Our claim is that the problem roots from the design of join
point model in which a join point represents a region-in-
time, or a time interval during program execution. For
example, in AspectJ, a call join point represents a region-
in-time while invoking the method, executing the body of
the method and returning from the method. This design
in turn requires advice modifiers which indicate either the

beginnings or the ends of the join points that are selected
by pointcut.

3. POINT-IN-TIME JOIN POINT MODEL
3.1 Overview
We propose a new join point model, called point-in-time
join point model, and design an experimental AOP language,
called PitJ. PitJ differs from AspectJ-like languages in the
following ways:

� A join point represents a point-in-time (or an instant
of program execution) rather than a region-in-time (or
an interval). Consequently, there are no such notions
like “beginning of a join point” or “end of a join point”.

� There are new kinds of join points that represent ter-
minations of actions. For example, a return from meth-
ods is an independent join point, which we call a re-
ception1 join point, from a call join point. Similarly,
an exceptional return is a failure join point. Table 1
lists the join points in PitJ along with respective ones
in AspectJ.

� There are new pointcut constructs that match those
new kinds of join points. For example, reception(m)
is a pointcut that selects any reception join point that
returns from the method m.

� Advice declarations no longer take modifiers like before
and after to specify timing of execution.

PitJ AspectJ

call / reception / failure method call
execution / return / throw method execution

get / success get / failure get field reference
set / success set / failure set field assignment

Table 1: Join points in PitJ and AspectJ

Figures 6 and 7 illustrate the difference between the point-
in-time join point model and region-in-time one.

Figure 8 shows example aspect definitions in PitJ. The
generic aspect (lines 1–6) is not different from the one in As-
pectJ expect that the advice does not take a modifier (line
3). HybridLogging aspect concretizes the pointcut by using
reception and call pointcut primitives (lines 9–10). When
readLine returns to the base program, a reception join point
is created and matches the userInput. The return value is
bound to s by args pointcut. When onSubmit method is
called, a call join point matches the pointcut with binding
the argument to s.

As we see in Figure 8, differences in the timing of advice ex-
ecution as well as the way of passing parameters can be sub-
sumed by pointcuts with the point-in-time join point model.
This ability allows us to define more reusable aspect libraries
by using abstract pointcuts because users of the library can
fully control the join points to apply aspect.

1Older versions of AspectJ[12] have reception join points for
representing different actions.
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readLine();

main

readLine(){

}

console

call join point

Figure 6: Call join point in AspectJ-like languages

readLine();

main

readLine(){

}

console

call join point

reception join point

Figure 7: Call and reception join points in PitJ

¶ ³
1 abstract aspect UserInputLogging {
2 abstract pointcut userInput(String s);
3 advice(String s) : userInput(s) {
4 Log.add(s);
5 }
6 }

7 aspect HybridLogging extends UserInputLogging {
8 pointcut userInput(String s):
9 (reception(String *.readLine()) ||
10 call(* *.onSubmit(String))) && args(s);
11 }

µ ´

Figure 8: A logging abstract aspect and its applica-

tion to the hybrid version in PitJ

We verified the reusability problem which is effectively solved
by the point-in-time join point model by case study with
some realistic applications, aTrack[1] and AJHotDraw[16].
The details of the case study are presented in the other lit-
erature[9].

3.2 Exception Handling
In AspectJ, advice declarations have to distinguish excep-
tions by using a special advice modifier after() throwing.
It specifies to run the advice body when interested join
points terminate by throwing exception. For example, a
sample aspect in Figure 9 prints a message when an un-
caught exception is thrown from readLine. Similar to the
discussion on the before and after advice, termination by
throwing an exception and normal termination can not be
captured by single advice declaration2.

In PitJ, ‘termination by throwing an exception’ is regarded

2It is possible to capture them by using after advice, which
however can not access to return values or exception objects.

¶ ³
1 aspect ErrorReporting {
2 after() throwing: call(* *.readLine()) {
3 System.out.println("exception");
4 }
5 }

µ ´

Figure 9: An aspect to capture exceptions in As-

pectJ

¶ ³
1 aspect ErrorReporting {
2 advice(): failure(* *.readLine()) {
3 System.out.println("exception");
4 }
5 }

µ ´

Figure 10: An aspect to capture exceptions in PitJ

as an independent failure join point. Figure 10 is an equiv-
alent to the one in Figure 9. A pointcut failure matches
a failure join point which represents a point-in-time at the
termination of a specified method by throwing an exception.

3.3 Around-like Advice
One of the fundamental questions to PitJ is, by simplifying
advice modifiers, whether it is expressive enough to imple-
ment around advice in AspectJ. The usages of around advice
in AspectJ can be classified into the following four:

1. replacing the parameters to a join point with new ones,

2. replacing the return values to the caller of a join point,

3. going back to the caller without executing a join point,
and

4. executing a join point more then once.

In PitJ, 1 and 2 are realized by using a return construct in
an advice body. For example, the next advice declaration:

advice(String s):

(reception(* *.readLine()) ||

call(* *.onSubmit(String)) && args(s) {

return s.replaceAll("<", "&lt;").

replaceAll(">", "&gt;");

}

sanitizes user input by replacing meta-characters with es-
caped ones. When an advice body ends without return,
the values in join points remain unchanged.

As for 3, we introduce a construct skip. When an advice
declaration applied to a call join point evaluates skip, it
jumps to the reception join point that corresponds to the
current call join point without executing subsequent advice
declarations matching the call join point, and the call join

4



point itself. When skip is evaluated at a reception or failure
join point, it merely skips subsequent advice declarations
matching the join points. For example, consider the next
two advice declarations:

advice(): call(* *.readLine()) { skip "dummy"; }

advice(): call(* *.readLine()) {

Log.add("reading");

}

When readLine() is called, the first advice body imme-
diately returns "dummy" to the caller without running the
second advice and the body of readLine.

As for 4, we introduced a special function proceed. On
a call join point, it executes the action until just before
the subsequent reception join point that corresponds to the
current call join point, and then returns the result of the
call. On a reception or failure join point, proceed always
returns the null. We show three examples of proceed below.

advice(): call(* *.readLine()) {

String str = proceed();

}

The above advice performs the body of readLine by evalu-
ating proceed, and performs readLine again after finishing
the advice body. As a result, the method readLine skips
every other line.

advice(): call(* *.readLine()) {

skip(proceed() + proceed());

}

The second advice lets a call to readLine return a concate-
nation of two lines.

advice(): call(* *.readLine()) {

skip(proceed());

}

The above advice has no effect because the proceed exe-
cutes the action until just before the reception join point
that corresponds to the current call join point, and the skip
jumps to the same reception join point.

Note that we introduced skip and proceed as a set of mini-
mal constructs in order to realize the same functionalities to
AspectJ’s around advice. Further investigations would be
needed in terms of conciseness and expressiveness in real-
world applications.

3.4 More Advanced Features
Some existing AOP languages including AspectJ provide
context sensitive pointcuts. They judge whether a join point
is in a specific context. PitJ has cflow pointcut, which is a
kind of context sensitive pointcuts. It identifies join points

based on whether they occur in the dynamic context dur-
ing a region-in-time between a specified call join point and
the subsequent reception one. For example, cflow(call(*
*.onSubmit(String))) specifies any join point that occurs
between when a onSubmit method is called and when it re-
turns.

In addition, we are considering the integration of execution
trace sensitive aspects[8, 7, 18], which use execution trace,
or a history of generated join points, to judge whether to
perform additional computation. We expect that our finer
grained join points enhance its effectiveness and robustness.

4. FORMAL SEMANTICS
We present a formal semantics of Pitλ, which is a simpli-
fied version of PitJ. Pitλ simplifies PitJ by using a lambda-
calculus as a base language, and by supporting only call,
reception and failure join points. The semantics contributes
to clarify the detailed behavior of the program especially
when integrated with other advanced features such as ex-
ception handling and context sensitive pointcuts. It also
helps to compare expressiveness of the point-in-time join
point model against the region-in-time one.

4.1 Base Language
Figure 11 shows the syntax of the base language and its de-
notational semantics in a continuation passing style (CPS).
We use untyped lambda-calculus as the base language. The
semantics follows the style of Danvy and Filinski[6].

¶ ³
Syntax:�
Expression � e :: � x (Identifier)�

fun x � e (Function)�
e e (Application)

Semantic algebras:
numbers Int , booleans Bool , identifiers Ide

v � Val � Int � Bool � Fun (Values)
ρ � Env � Ide � Val (Environments)
κ � Ctn � Val � Ans (Continuations)
f � Fun � Ctn � Ctn (Functions)

Ans � Val � (Answers)

Valuation function for the expressions:

E : Expression � Env � Ctn � Ans
E � x 	 ρ κ � κ

�
ρ x �

E � fun x � e 	 ρ κ � κ
�
inFun

�
λκ 
 v. E � e 	 ���

v 
 x � ρ � κ 
����
E � e0 e1 	 ρ κ � E � e0 	 ρ �

λFun
�
f � . E � e1 	 ρ �

λv.

f κ v ���
µ ´
Figure 11: Syntax and semantics of the base lan-

guage

4.2 Syntax of Pitλ0

We begin with Pitλ0, which is a core part of Pitλ that has
only call and reception join points. Figure 12 displays the
syntax.

4.3 Semantics of Pitλ0

5



¶ ³
�
Expression � e :: � x (Identifier)�

fun x � e (Function)�
e e (Application)�

Pointcut � p :: � call(x)
�
reception(x)�

args(x)
�
p && p

�
p || p�

Advice � a :: ��� � advice : p � e; a

µ ´
Figure 12: Pitλ0 syntax

¶ ³
P : Pointcut � Env � Jp � �

Env ��� False � �
P � call(x) 	 ρ �

call
�
x 
�� , v � ��

ρ if x � x 
 or x ���
False otherwise

P � reception(x) 	 ρ �
reception

�
x 
�� , v � ��

ρ if x � x 
 or x ���
False otherwise

P � args(x) 	 ρ �
ε, v � � �

v 
 x � ρ
P � p0 && p1 	 ρ θ �

�
P � p1 	 ρ 
 θ if P � p0 	 ρ θ � ρ 

False otherwise

P � p0 || p1 	 ρ θ �
�
ρ 
 if P � p0 	 ρ θ � ρ 

P � p1 	 ρ θ otherwise

µ ´
Figure 13: Semantics of pointcuts

We give a semantics of Pitλ0 by modifying the semantics of
the base language in Section 4.1.

First, we define additional semantic algebras. An event ε
is either call or reception with a function name and a join
point θ is a pair of an event and an argument:

ε :: � call
�
x � �

reception
�
x � �

Evt �
θ :: � �

ε, v � �
Jp �

Additionally, we define an auxiliary function σ that extracts
a signature (or a name) from an expression.

σ : Expression � Identifier

σ
�
e � �

�
e if e is Identifier

$ otherwise

If it receives an Identifier, the argument itself is returned.
Otherwise, it returns the dummy signature $. For example,
σ
�
x � is x , and σ

�
fun x � x � is $.

The semantics of the pointcuts is a function P shown in Fig-
ure 13. P � p 	 ρempty θ tests whether the pointcut p and the
current join point θ match. If they do, it returns an envi-
ronment that binds a variable to a value by args pointcut.
Otherwise, it returns False.

We then define the semantic function A for lists of advice
declarations (Figure 14), which receives an advice list, an
event and a continuation. When the pointcut of the first
advice matches a join point, it returns a continuation that
evaluates the advice body and then evaluates the rest of

¶ ³
A : Advices � Evt � Ctn � Ctn
A � advice : p � e; a 
 	 ε κ v ��

E � e 	 ρ 
 �
A � a 
 	 ε κ � if P � p 	 ρempty

�
ε, v � � ρ 


A � a 
 	 ε κ v otherwise

A �	� 	 ε κ v � κ v

µ ´
Figure 14: Semantics of advice

¶ ³
E : Expression � Env � Ctn � Ans

E � x 	 ρ κ � κ
�
ρ x �

E � fun x � e 	 ρ κ � κ
�
inFun

�
λκ 
 v. E � e 	 ���

v 
 x � ρ � κ 
����
E � e0 e1 	 ρ κ � E � e0 	 ρ �

λFun
�
f � . E � e1 	 ρ �

λv.

A � a0 	 call
�
σ
�
e0 ����

f
�
A � a0 	 reception

�
σ
�
e0 ��� κ ��� v ���

µ ´
Figure 15: Semantics of expressions

the advice list. Otherwise, it returns a continuation that
evaluates the rest of the advice list. At the end of the list,
it continues to the original computation.

We finally define the semantic function of the expression.
In the section, the semantics of Identifier and Function
remain unchanged. The semantics of Application in Pitλ0

is defined by inserting application to A at appropriate posi-
tions. The original semantics of Application is as follows:

E � e0 e1 	 ρ κ � E � e0 	 ρ �
λFun

�
f � . E � e1 	 ρ �

λv. f κ v ���

The shadowed part f κ is a continuation that executes the

function body and passes the result to the subsequent con-

tinuation κ. The application to the continuation f κ v,

therefore, corresponds to a call join point. By replacing the
continuation with A � a 	 call

�
x � �

f κ � , we can run applicable
advice at function calls:

E � e0 e1 	 ρ κ � E � e0 	 ρ �
λFun

�
f � . E � e1 	 ρ �

λv.

A � a0 	 call
�
σ
�
e0 ��� �

f κ � v ���
where a0 is the globally defined list of all advice declarations.

Similarly a reception of a return value from a function ap-
plication can be found by η-expanding3 κ as follows:

E � e0 e1 	 ρ κ � E � e0 	 ρ �
λFun

�
f � .E � e1 	 �

λv.f
�
λv 
 .κ v 
 � v ���

Therefore, advice application at reception join point can be
achieved by replacing κ with A � a 	 reception

�
x � κ.

Figure 15 shows the final semantics for the expression with
call and reception join points. As we have seen, advice ap-
plication is taken into the semantic function in a systematic
way: given a continuation κ that represents a join point,

3This η-expansion prevents tail-call elimination. It fits the
facts that defining an advice whose pointcut specifies a re-
ception join point makes tail-call elimination impossible.
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substitute with A � a 	 ε κ. In the next section, we will see ad-
vanced features can also be incorporated in the same ways.

5. SEMANTICS OF ADVANCED FEATURES
In the section, with the aid of the clarified semantics, we
investigated integration of advanced language features with
the point-in-time join point model. Thus far, the follow-
ing features are integrated into Pitλ: exception handling,
context sensitive pointcuts and around advice. We call the
integrated version Pitλ1. For the sake of simplicity, we ex-
plain about each integration step orthogonally.

5.1 Exception Handling
In AspectJ, advice declarations have to distinguish excep-
tions by using a special advice modifier (as described in Sub-
section 3.2). It not only complicates the problem in reusabil-
ity, but also makes the semantics awkward. This is because
we have to pay attention to all combinations of advice modi-
fiers and pointcuts. In fact, some existing formalizations[19,
17] gave a slightly different semantic equation to each kind of
advice declarations. Meanwhile, the point-in-time join point
model has no advice modifiers, which makes the semantics
simpler.

Figure 16 shows additional constructs for exception han-
dling: Try and Raise as the expression, and failure as
the pointcut. For the sake of simplicity, we don’t introduce

¶ ³
�
Expression � e :: � . . .�

try e with x � e (Try)�
raise e (Raise)�

Pointcut � p :: � . . .
�
failure(x)

µ ´
Figure 16: Additional constructs for exception han-

dling

the special values which represent an exception; an arbi-
trary value can be raised. For example, (fun x � raise x) 1

raises the value 1 as an exception. try ((fun x � raise x) 1)

� 2 with x � x � 3 is evaluated normally to the value 4. But,
with advice : failure( � ) && args(x) � x � 2, it is evalu-
ated to the value 5.

We first give a standard denotational semantics to these con-
structs. In preparation for it, we introduce a continuation
which represents current exception handler to the semantics
algebra Fun and the semantic functions A and E :

f � Fun � Ctn � Ctn � Ctn

E : Expression � Env � Ctn � Ctn � Ans

E � x 	 ρ κh κ � κ
�
ρ x �

E � fun x � e 	 ρ κh κ � κ
�
inFun

�
λκh 
 κ 
 v.

E � e 	 ���
v 
 x � ρ � κh 
 κ 
 ���

E � e0 e1 	 ρ κh κ � E � e0 	 ρ κh

�
λFun

�
f � . E � e1 	 ρ κh

�
λv.

A � a 	 call
�
σ
�
e0 ��� κh�

f κh

�
A � a 	 reception

�
σ
�
e0 ��� κh κ ��� v ���

The new definition of A is in Figure 17-(b). This modifi-
cation, adding the shadowed parts, is mechanical since ad-
ditional continuations are dealt with only by the additional

¶ ³
(a) Pointcuts (failure only):

P � failure(x) 	 ρ �
failure

�
x 
�� , v � ��
ρ if x � x 
 or x � �
False otherwise

(b) Advices:

A : Advices � Evt � Ctn � Ctn � Ctn
A � advice : p � e; a 
 	 ε κh κ v ��

E � e 	 ρ 
 �
A � a 
 	 ε κh κ � if P � p 	 ρempty

�
ε, v � � ρ 


A � a 
 	 ε κh κ v otherwise

A �	� 	 ε κh κ v � κ v

(c) Expressions (Application, Try and Raise only):

E � e0 e1 	 ρκhκ � E � e0 	 ρ κh

�
λFun

�
f � . E � e1 	 ρ κh

�
λv.

A � a 	 call
�
σ
�
e0 ��� κh�

f
�
A � a 	 failure

�
σ
�
e0 ��� κh κh ��

A � a 	 reception
�
σ
�
e0 ��� κh κ ��� v ���

E � try e0 with x � e1 	 ρ κh κ �
E � e0 	 ρ �

λv. E � e1 	 ���
v 
 x � ρ � κh κ � κ

E � raise e 	 ρ κh κ � E � e 	 ρ κh κh

µ ´
Figure 17: Semantics of Pitλ1 with exception han-

dling

constructs. After that, we can define a semantics of the Try
and the Raise as Figure 17-(c).

Now, we define the semantics of a failure join point by mod-
ifying the original semantics. The failure is added to the
events Evt :

ε :: � . . .
�
failure

�
x �

and the semantics of the failure pointcuts is defined as
Figure 17-(a).

Then, look the semantics of Application. From the first
argument κh in f κh . . ., show up the application form by
η-expansion.

E � e0 e1 	 ρ κh κ � E � e0 	 ρ κh

�
λFun

�
f � . E � e1 	 ρ κh

�
λv.

A � a 	 call
�
σ
�
e0 ��� κh�

f
�
λv. κh v ��
A � a 	 reception

�
σ
�
e0 ��� κh κ ��� v ���

This continuation κh corresponds to a failure join point. We
therefore define the semantics of Application as Figure 17-
(c), in a similar way to call and reception.

The above semantics clarifies the detailed behavior of the
case where aspect mechanism gets tangled up with excep-
tion handling. For example, consider the case where an
exception is thrown in an advice declaration which corre-
sponds to a call join point. Then, a question: “After that,
will any advice declaration be executed?” See the semantic
function A which represents advice execution in a call join
point: A � a 	 call

�
name � κh . . .. It receives κh as an excep-

tion handler directly. So, we can easily answer, “No advice
declaration will be executed.”
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¶ ³
�
Pointcut � p :: � . . .

�
cflow(p)

µ ´
Figure 18: cflow pointcut syntax

5.2 Context Sensitive Pointcuts
The subsection describes how we integrate cflow pointcut,
which is a kind of context sensitive pointcuts. The pointcut
identifies join points based on whether they occur in the
dynamic context during a region-in-time of other join points.
For example, cflow(call(* func(..))) specifies each join
point that occurs in the dynamic context during a region-
in-time of the join points specified by call(* func(..)).
In other words, this specifies each join point that occurs
between when a func method is called and when it returns.

The context required by cflow is call stack. When a method
is called, the call join point is pushed onto the stack. And
the stack is popped at a reception join point.

First, we add cflow(p) to the pointcut (Figure 18). Its
informal semantics is explained by example as follows. Con-
sider an advice declaration:

advice : cflow(call(saveFile) && args(x)) && call(write)
� log (”real save : ”

�
x)

When the write method is called in the dynamic context
during saveFile, or when saveFile (”save.dat”) is exe-
cuting, a string ”real save : save.dat” is logged. Out of
the dynamic context during saveFile (”save.dat”), a call
to write makes no logging. Note that the pointcut args(x)
binds the actual parameters of saveFile, not write. A args

pointcut in a cflow binds the value of join point that is
matched by the cflow.

We now define a formal semantics of a cflow pointcut. First,
we modify the semantic algebras of join point and function:

θ � Jp � �
Evt � Val � Jp � �

Nil

f � Fun � Jp � Ctn � Ctn

The semantic algebra Jp comes to take the form of stack
(or list) of join points; it represents the context required by
cflow. And the semantic algebra Fun receives a join point
as well as a continuation. This additional argument is a call
join point at which this function is called.

Along with the change, the semantic function of the point-
cuts needs to be slightly modified:

P � call(x) 	 ρ �
call

�
x 
 � , v, θ � �

�
ρ if x � x 
 or x � �
False otherwise

Other pointcuts are similar. In addition, we add the seman-
tic equation for the cflow pointcut (Figure 19-(a)). If the
pointcut p of cflow(p) matches the current join point (or
the top of stack), P � cflow(p) 	 returns the result environ-
ment. Otherwise, it tries to match the outer join point (or
the next element of stack). This is repeated until Nil (or
stack is empty).

¶ ³
(a) Pointcuts (cflow and Nil only):

P � cflow(p) 	 ρ ���
ε, v, θ 
 � as θ � ��
ρ 
 if P � p 	 ρ θ � ρ 

P � cflow(p) 	 ρ θ 
 otherwise

P � p 	 ρ Nil � False

(b) Advices:

A : Advices � Evt � Jp � Ctn � Ctn

A � advice : p � e 	 ε θ κ v ��
E � e 	 ρ 
 θ �

A � a 
 	 ε θ κ � if P � p 	 ρempty

�
ε, v, θ � � ρ 


A � a 
 	 ε θ κ v otherwise

A �	� 	 ε θ κ v � κ v

(c) Expressions:

E : Expression � Env � Jp � Ctn � Ans

E � x 	 ρ θ κ � κ
�
ρ x �

E � fun x � e; a 
 	 ρ θ κ � κ
�
inFun

�
λθ 
 κ 
 v.

E � e 	 ���
v 
 x � ρ � θ 
 κ 
 ���

E � e0 e1 	 ρ θ κ � E � e0 	 ρ θ �
λFun

�
f � . E � e1 	 ρ θ �

λv.

A � a 	 call
�
σ
�
e0 ��� θ�

f
�
call

�
σ
�
e0 ��� , v, θ ��

A � a 	 reception
�
σ
�
e0 ��� θ κ ��� v ���

µ ´
Figure 19: Semantics of Pitλ1 with cflow pointcut

¶ ³
�
Expression � e :: � . . .

�
skip e (Skip)

µ ´
Figure 20: skip syntax

The semantics of the advice has to be similarly modified too
(Figure 19-(b)).

Finally, we modify the semantic function of the expression
(Figure 19-(c)). In the semantics of Application, the func-

tion’s argument
�
call

�
σ
�
e0 ��� , v, θ � is a dynamic context.

And, in the semantics of Function, the semantic lambda
function receives a dynamic context.

5.3 Around Advice Modifier
As described in Subsection 3.3, we introduce a construct
skip (Figure 20). A special function proceed is also added.

We here have two options: when integrating only skip, and
when integrating both skip and proceed. If only skip is
required, we integrate it by only adding a continuation which
represents current skip handler. This way is very similar to
exception handling (Subsection 5.1), so we omit explanation.
Although we feel that it may be convenient enough without
proceed, it’s not to say that we can not integrate both.
But we need a technique like partial continuation[6]. It is
a part of the rest of computation, rather than the whole

8



¶ ³
(a) Advices:

A : Advices � Evt � Ctn � Ctn
A � advice : p � e; a 
 	 ε κp κ v ����� ���
κ

�
E � e 	 ���

proc 
 proceed � ρ 
 � �
A � a 
 	 ε κp

�
λv 
 . v 
������

if P � p 	 ρempty

�
ε, v � � ρ 


κ
�
A � a 
 	 ε κp

�
λv 
 . v 
 � v � otherwise

where proc � inFun
�
λκ 
 v. κ 
 �

κp v ���
A �	� 	 ε κp κ v � κ

�
κp v �

(b) Expressions (Application and Skip only):

E � e0 e1 	 ρ κ � E � e0 	 ρ �
λFun

�
f � . E � e1 	 ρ �

λv.

A � a 	 call
�
σ
�
e0 ��� �

f
�
λv. v ����

A � a 	 reception
�
σ
�
e0 ��� �

λv. v � κ � v ���
E � skip e 	 ρ κ � E � e 	 ρ �

λv. v �
µ ´
Figure 21: Semantics of Pitλ1 with around advice

rest of computation as in the full continuation. We use a
partial continuation to represent a region-in-time which may
be skipped or be run more than once.

In what follows, we give a denotational semantics of Pitλ1 in
a continuation composing style (CCS). It allows some kinds
of nested function application unlike CPS. Although it loses
the CPS’s important property, enforcing strict call-by-value
evaluation, we know that it can be restored by converting
the definition once more into CPS.

Now, we give the semantics of skip and proceed by using
a partial continuation. We first add a partial continuation
which represents the current proceed function.

f � Fun � Ctn � Ctn � Ctn

And next we modify the semantics of advice (Figure 21-
(a)). Additional continuation κp is a partial continuation
that represents the action until an appropriate join point,
not until program termination. So, κ

�
κp v � executes first

a partial continuation κp and then the rest of continuation
κ. Such applications are not permitted in CPS, but CCS
allows.

Finally, we define the semantics of the expressions (Fig-
ure 21-(b)). In the Application,

�
f

�
λv. v ��� corresponds

to proceed of a call join point, and
�
λv. v � corresponds to

the one of a reception join point. The Skip evaluates the
argument, and does not apply the result to the continuation.
This allows jumping from a call join point to the counter-
part, or the following reception join point, without execution
between the two join points.

6. RELATED WORK
As far as we know, practical AOP languages with point-
cut and advice, including AspectJ[12], AspectWerkz[2] and
JBoss AOP[4], are all based on the region-in-time model.
Therefore, the reusability problem in Section 2 is common

to those languages even though they have mechanisms for
aspect reuse.

A few formal studies, such as MinAML[17], treat beginning
and end of an event as different join points. However, moti-
vations behind those studies are different from ours. Mi-
nAML is a low-level language that serves as a target of
translation from a high-level AOP language. Douence and
Teboul’s work[8] focuses on identifying calling contexts from
execution history.

Including the region-in-time and point-in-time models, pre-
vious formal studies focus on different properties of aspect-
oriented languages. Aspect SandBox (ASB)[19] focuses on
formalizing behavior of pointcut matching and advice execu-
tion by using denotational semantics. Since ASB is based on
the region-in-time model, the semantics of advice execution
has to have a rule for each advice modifier. Tucker and Kr-
ishnamurthi[?] presented a pointcut and advice mechanism
for higher-order languages and implemented a prototype on
top of PLT Scheme. The pointcuts in their mechanism are
first-class entities, and can be parameterized. Although the
design could improve reusability of advice declarations, their
mechanism is based on the region-in-time model; hence
it can not uniformly treat beginnings and ends of actions.
MiniMAO1[5] focuses on type soundness of around advice,
based on ClassicJava style semantics. It is also based on the
region-in-time model.

7. CONCLUSION
We proposed an experimental new join point model. The
model treats ends of actions, such as returns from methods,
as different join points from beginnings of actions. In PitJ,
ends of actions can be captured solely by pointcuts, rather
than advice modifiers. This makes advice declaration more
reusable. Even with simplified advice mechanism, PitJ is as
expressive as AspectJ in typical use cases.

We also gave a formal semantics of Pitλ, which simplified
from PitJ. It is a denotational semantics in a continuation
passing style, and symmetrically represents beginnings and
ends of actions as join points. With the aid of the semantics,
we investigated integration of advanced language features
with the point-in-time join point model.

Our future work includes the following topics. We will in-
tegrate more advanced features, such as dflow pointcut[13],
first-class continuation and tail-call elimination. We will also
plan to implement compiler for PitJ languages.
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ABSTRACT
Aspects are separate code modules that can be bound (“wo-
ven”) to a base program at joinpoints to provide an aug-
mented program. A novel approach is defined to verify
that an aspect state machine will provide desired proper-
ties whenever it is woven over a base state machine that
satisfies the assumptions of the aspect. A single state ma-
chine is constructed using the tableau of the linear temporal
logic (LTL) description of the assumptions, a description of
the joinpoints, and the state machine of the aspect code. A
theorem is shown that if the constructed machine satisfies
the desired properties, so will an augmented state machine
using any base machine that satisfies the assumptions. The
theorem is stated and shown for assumptions and properties
given in LTL, for a somewhat restricted form of joinpoint
description, and for aspect code that ends in states already
reachable in the base state machine. A language-based de-
scription of aspects, as in AspectJ, can be converted to a
state machine version using existing tools, thus providing
generic modular verification of code-level aspects.

1. INTRODUCTION
1.1 Aspect-Oriented Programming
The aspect-oriented approach to software development is
one in which concerns that cut across many parts of the
system are encapsulated in separate modules called aspects.
For example, when security or logging are encapsulated in an
aspect, this aspect contains both the code associated with
the concern, called advice, and a description of when this
advice should run, called a pointcut descriptor. The point-
cut descriptor identifies those points in the execution of a
program at which the advice should be invoked. The combi-
nation of some base program with an aspect (or in general,
a collection of aspects), is termed an augmented program.

1.2 Formal Verification
In this work we are concerned with generic formal verifica-
tion of aspects relative to a specification. The specification

of an aspect consists of assumptions about any base pro-
gram to which the aspect can reasonably be woven, and de-
sired properties intended to hold for the augmented program.
We view both base programs and aspect code as nondeter-
ministic finite state machines, in which particular computa-
tions are realized as infinite sequences of states within the
machine. For both assumptions and desired properties to
be verified we consider formulas written in linear temporal
logic (LTL). An LTL formula consists of a path formula us-
ing temporal quantifiers and logical combinations of atomic
propositions, prefixed by a single (usually implicit) universal
path quantifier. The atomic propositions in a formula refer
to the labels of states in a finite state machine; temporal
quantifiers specify when these assertions about states must
be true. The universal path quantifier requires that, in order
for some initial state to satisfy an LTL assertion, all infinite
paths from that state must satisfy the path formula. In gen-
eral, a state machine also includes a fairness constraint, and
only fair paths are considered.

1.3 Modular Aspectual Verification
It is clear that given a base program, a collection of aspects
with their pointcut descriptors and advice, and a system for
weaving together these components to produce a stand-alone
augmented program, we can verify properties of this aug-
mented system using the usual model checking techniques.
Such weaving involves adding edges from joinpoint states
of the base program to the initial states of the advice, and
from the states after an advice segment to states where base
program statements are executed.

It would be preferable, however, if we could employ a mod-
ular technique in which the aspect can be considered sepa-
rately from the base program. This would allow us to:

• obtain verification results that hold for a particular
aspect with any base program from some class of pro-
grams, rather than for only one base program in par-
ticular;

• use the results to reason about the application of as-
pects to base programs with multiple evolving state
machines describing changing configurations during ex-
ecution, or to other base systems not amenable to
model checking; and

• avoid model checking augmented systems, which may
be significantly larger than their base systems, and
whose unknown behavior may resist abstraction.
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The second point above relates to general object-oriented
programs that create new instances of classes (objects) with
associated state machine components. Often, the assump-
tion of an aspect about the key properties of those base state
machines to which it may be woven can indeed be shown to
hold for every possible machine that corresponds to an ob-
ject configuration of a program. For example, it may involve
a so-called class invariant, provable by reasoning directly on
class declarations, as in [1]. This point and more details on
the connections between code-based aspects (as in AspectJ)
and the state machine versions seen here are discussed in
Section 5.

This problem of creating a single generic model that can rep-
resent any possible augmented program for an aspect woven
over some class of base programs is especially difficult be-
cause of the aspect-oriented notion of obliviousness: base
programs are generally unaware of aspects advising them,
and have no control over when or how they are advised.
There are no explicit markers for the transfer of control
from base to advice code, nor are there guarantees about
if or where advice will return control to the base program.

1.4 Results
In this paper we show how to verify once-and-for-all that
for any base state machine satisfying the assumptions of
the aspect, and for a weaving that adds the aspect advice
as indicated in the joinpoint description, the resulting aug-
mented state machine is guaranteed to satisfy the desired
properties given in the specification. A single generic state
machine is constructed from the tableau of the assumption,
the pointcut descriptor, and the advice state machine, and
verified for the desired property. Then, when a particular
base program is to be woven with the aspect, it is suffi-
cient to establish that the base state machine satisfies the
assumption. Thus the entire augmented program never has
to be model checked, achieving true modularity and gener-
icity in the proof. This approach is especially appropriate
for aspects intended to be reused over many base programs,
e.g., those in libraries or middleware components.

LTL model checking is based on creating a tableau state
machine automaton that accepts exactly those computations
that satisfy the property to be verified. Usually, the negation
of this machine is then composed as a cross-product with the
model to be checked. A counter-example is produced when
the composed system contains some infinite path, and the
property is satisfied for the model when the cross-product
has no such paths. Here we use the tableau of the assump-
tion in a unique way, as the basis of the generic model to be
checked for the desired property. It represents any base ma-
chine satisfying the assumption, because the execution se-
quences of the base program can be abstracted by sequences
in the tableau.

For the soundness theorem presented in Section 4, the as-
pects treated are assumed to be weakly invasive, as defined
in [7]. This means that when advice has completed exe-
cuting, the system continues from a state that was already
reachable in the original base program (perhaps for different
inputs or actions of the environment). Many aspects fall into
this category, including spectative aspects that never modify
the state of the base system (logging is a good example), and

regulative aspects that only restrict the reachable state space
(for example, aspects implementing security checks). Also
weakly invasive would be an aspect to enforce transactional
requirements, which might roll back a series of changes so
that the system returns to the state it was in before they
were made. Even a ‘discount policy’ aspect that reduces the
price on certain items in a retail system is weakly invasive,
since the original price given as input could have been the
discounted one.

Additionally, we assume that any executions of an aug-
mented program that infinitely often include states resulting
from aspect advice will be fair (and thus must be considered
for correctness purposes). The version here does not treat
multiple aspects or joinpoints influenced by the introduction
of advice, although the approach can be expanded to treat
such cases as well.

In the following section, needed terms and constructs are
defined. Section 3 presents the algorithm, and Section 4
gives a proof of soundness in the weakly invasive aspect case.
This section also gives an example. Section 5 details works
related to the result here, and is followed by the conclusion.

2. DEFINITIONS

2.1 LTL Tableaux
Intuitively, the tableau of an LTL forumla f is a state ma-
chine whose fair infinite paths are exactly all those paths
which satisfy the formula f . This intuition will be realized
formally in Theorem 1 below.

In the context of performing model checking to verify sat-
isfaction of an LTL property, a tableau is constructed for
the negation of that property, in order to capture all possi-
ble computations that would cause a machine not to satisfy
the formula in question. It is important to stress that here
we use the tableau for the original non-negated formula.
Nevertheless, because of the use of tableaux by LTL model
checking tools, modules to perform the construction of a
formula’s tableau are available. For exploratory purposes,
the authors have used the translator module of NuSMV [10],
which produces a (tableau) finite state machine from a given
LTL formula.

We define Tf , the tableau for LTL path formula f , as given in
Model Checking [3] in the section on “Symbolic LTL Model
Checking” (6.7). In this construction, the original formula is
decomposed into the set of elementary formulas it contains,
where all other temporal operators, such as from now on
(G) and eventually (F), are expressed in terms of next (X)
and strong until (U). Each state in the tableau is a subset
of these elementary formulas, and the path relation between
these states is defined by means of a function sat(g), which
captures the set of states in which subformula g of f is sat-
isfied.

We denote Tf = (ST , S
T
0 , RT , LT , FT ), where ST is the set

of states; ST0 is the set of initial states, RT is the transition
relation, LT is the labeling function, and FT is the set of fair
state sets. For ease of discussion, we clarify the definition
as follows:
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Define ST0 , where for χ = Af , we have Tf |= χ:

ST0 = sat(f)

Define FT , where any fair path in Tf must visit each set in
FT infinitely many times:

FT = {sat((¬(gUh)) ∨ h) | gUh is a subformula of f}

This fairness constraint guarantees that obligations of the
form gUh are fulfilled, either by visiting a state in sat(h)
infinitely often, or by infinitely often visiting a state outside
of sat(gUh), which can only be reached by going via sat(h)
according to the construction of the path relation (not de-
tailed here).

Two notable properties of Tf will be used below. First, if
APf is the set of atomic propositions in f , then LT : S →
P(APf ) — that is, the labels of the states in the tableau
will include sets of the atomic propositions appearing in f .
A state in any machine is given a particular label if and only
if that atomic proposition is true in that state.

The second interesting feature is a main theorem from the
discussion in [3]:

Definition 1. For path π, let label(π) be the sequence of
labels (subsets of AP ) of the states of π. For such a sequence
l = l0, l1, . . . and set Q, let l|Q = m0,m1, . . . where for each
i ≥ 0, mi = li ∩Q.

Theorem 1. Given Tf , for any Kripke structure M , for
all fair paths π′ in M , if M,π′ |= f then there exists fair
path π in Tf such that π starts in ST0 and label(π′)|APf =
label(π).

That is, for any possible computation of M satisfying for-
mula f , there is a path in the tableau of f which matches
the labels within APf along the states of that computation.

In the algorithm of Section 3, we restrict the tableau to
its reachable component. Such restriction does not affect
the result of this theorem, since all reachable paths are pre-
served, but is necessary in order to achieve useful results.
This follows from the observation that the tableau for the
negation of a formula has precisely the same states and tran-
sition relation, but the complementary set of initial states.
Thus, any unreachable portion of the tableau is liable to
contain exactly those behaviors which violate the formula of
interest.

Finally, for χ = Af , define Tχ = Tf as a convenient notation
(a tableau can only be constructed for a path formula).

2.2 Aspects
An aspect machine A = (SA, S

A
0 , S

A
ret , RA, LA) over atomic

propositions AP is defined as usual for a machine with no
fairness constraint, with the following addition:

Definition 2. SAret is the set of return states of A, where
SAret ⊆ SA and for any state s ∈ SAret , s has no outgoing
edges.

2.3 Pointcuts
We do not give a prescriptive definition for pointcut de-
scriptors here; in practice pointcut descriptions might take
a number of forms. However, we require that descriptors
operate in the following manner:

Definition 3. Given a pointcut descriptor ρ over atomic
propositions AP and a finite sequence l of labels (subsets of
AP ), we can ask whether or not the end of l is matched by
ρ, written l |≡ ρ.

A reasonable choice for describing pointcuts might be LTL
path formulas containing only past temporal operators. For
example, the descriptor ρ1 = a ∧ Y b ∧ Y Y b would match
sequences ending with a state where a is true, preceded by
b, preceded by another b (operator Y is the past analogue of
X). Other languages could be imagined, for example regular
expressions, where ρ2 = true∗ · b · b ·a might be equivalent to
ρ1. The use of regular expressions over automata is popular
in industrial specification languages and has been examined
in formal combination with LTL for example in [2].

2.4 Specifications
In addition to its advice, in the form of state machine A, and
pointcut, described by ρ, an aspect is considered to have two
pieces of formal specification:

• Formula ψ expresses the assumptions made by the as-
pect about any base machine to which it will be woven.
This ψ is thus a requirement to be met by any such
machine.

• Formula φ expresses the desired result to be satisfied
by any augmented machine built by weaving this as-
pect with a conforming base machine. In other words,
φ is the guarantee of the aspect.

2.5 Weaving
Weaving is the process of combining a base machine with
some aspect according to a particular pointcut descriptor;
the result is an augmented machine that includes the advice
of the aspect.

The weaving algorithm has the following inputs:

• aspect machine A = (SA, S
A
0 , S

A
ret , RA, LA) over AP ,

• pointcut ρ over AP , and

• base machine B = (SB , S
B
0 , RB , LB , FB) over APB ⊇

AP .

And it produces as output:

• augmented machine eB = (S eB , S eB
0 , R eB , L eB , F eB).
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The weaving is performed in two steps. First we construct
from the base machine B a new state machine Bρ which is
pointcut-ready for ρ, wherein each state either definitely is
or is not matched by ρ. Then we use Bρ and A to build the

final augmented machine eB.

This two-step division of the weaving process means that
the algorithm cannot handle a number of problematic cases:
when the pointcut descriptor matches advice states, and
thus advice should be inserted on other advice; when the
addition of advice states creates a new matching pointcut in
the computation, and advice should be inserted; and when
the addition of advice states causes a location that once
matched a pointcut selector not to match it any longer.
Proper handling of these scenarios is the subject of ongo-
ing work.

2.5.1 Constructing a Pointcut-Ready Machine
Pointcut-ready machine Bρ = (SBρ , SB

ρ

0 , RBρ , LBρ , FBρ) is
a machine in which unwinding of certain paths has been per-
formed, so that we can separate paths which match point-
cut descriptor ρ from those that do not. The pointcut-ready
machine contains states with a new label, pointcut, that in-
dicates exactly those states where the descriptor has been
matched.

This machine must meet the following requirements:

• SBρ ⊇ SB

• SB
ρ

0 = SB0

• LBρ is a function from SBρ to P (APB ∪ {pointcut})

• For all finite-length paths π = s0, . . . , sk in Bρ such
that s0 ∈ SB

ρ

0 , label(π) |≡ ρ⇔ sk |= pointcut .

• For all infinite sequences of labels l = (P(APB))ω,
there is a fair path πBρ in Bρ where label(πBρ)|APB =
l if and only if there is a fair path πB in B where
label(πB) = l.

Note that since B and Bρ have the same paths (over AP ,
ignoring the added pointcut label), they must satisfy exactly
the same LTL formulas over AP .

Figure 1 shows a simple example of this construction. Note
that in state diagrams, the absence of an atomic proposition
indicates that the proposition does not hold, not that the
value is unknown or irrelevant. This is in contrast to a
formula, where unmentioned propositions are not restricted.

2.5.2 Constructing an Augmented Machine
We construct the components of augmented machine eB =

(S eB , S eB
0 , R eB , L eB , F eB) as follows:

• S eB = SBρ ∪ SA

• S
eB
0 = SB

ρ

0

a b

M Mρ

a b

ba
 pointcut

Figure 1: Constructing a pointcut-ready machine
Mρ for the given M and LTL past formula pointcut
descriptor ρ = a ∧ Y b ∧ Y Y b.

• (s, t) ∈ R eB ⇔8>>>><>>>>:
(s, t) ∈ RBρ ∧ s 6|= pointcut if s, t ∈ SBρ

(s, t) ∈ RA if s, t ∈ SA
s |= pointcut ∧ t ∈ SA0

∧ LBρ(s)|AP = LA(t) if s ∈ SBρ , t ∈ SA
s ∈ SAret ∧ LA(s) = LBρ(t)|AP if s ∈ SA, t ∈ SBρ

Note that this relationship is ‘if and only if.’ In words,
the path relation contains precisely all the edges from the
pointcut-ready base machine Bρ and from aspect machine
A, except that pointcut states in Bρ have edges only to
matching start states in A, and aspect return states have
edges to all matching base states.

• L eB(s) =


LBρ(s) if s ∈ SBρ

LA(s) if s ∈ SA

• F eB = FBρ × SA

That is, F eB = {Fi ∪ SA | Fi ∈ FBρ}. A path is fair if it
either satisfies the fairness constraint of the pointcut-ready
machine, or if it visits some aspect state infinitely many
times — a conservatively inclusive definition.

A weaving is considered successful if every reachable node
in S eB has a successor according to R eB .

2.6 Weakly Invasive Aspects
As mentioned above, we show our result for the broad class
of aspects which, when they return from advice, do so to
a reachable state in the base machine. Without this re-
striction, the aspect may return to unreachable parts of the
base machine whose behavior is not bound by assumption
formula ψ. In this case, the augmented system contains
portions with unknown behavior, and is difficult to reason
about in a modular way.

Definition 4. An aspect A and pointcut ρ are said to be
weakly invasive for a base machine B if, for all states in SBρ

that are reachable by a fair path in eB, those states were
reachable by a fair path in Bρ.
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Aspect Machine

Base Machine

s0 s1 sk−1
...  pc 

sk

... ...
πsk

π′
M

sk+1
...

...

...

...

...

...

...
t1 t!

... ...
πt1

πt!

Figure 2: Using fair paths in M (small states along the top) to guarantee a matching path in fTψ.

In particular, this means that all states to which the aspect
returns are states reachable in the pointcut-ready base ma-
chine. This could of course be checked directly, but would
require construction of the augmented machine — precisely
the operation we would like to avoid. In many cases, the
aspect can be shown weakly invasive for any base machine
satisfying its assumption ψ, by using static analysis, local
model checking, or additional information (our reasoning in
the discount price example from Section 1.4 uses such infor-
mation). For further discussion, see [7].

3. ALGORITHM
The algorithm builds a tableau from ψ and weaves A with
this tableau according to ρ, then performs model checking to
verify the result with respect to φ. In the following section
we prove that when this model check of the constructed aug-
mented tableau succeeds, then for any base system satisfying
requirement ψ, applying aspect A according to pointcut de-
scriptor ρ will yield an augmented system satisfying result
φ.

Given:

• set of atomic propositions AP ;

• assumption ψ for base systems, an LTL formula over
AP ;

• desired result φ for augmented systems, an LTL for-
mula over AP ; and

• aspect machine A and pointcut descriptor ρ over AP .

Perform the following:

0. If it does not already, augment ψ with clauses of the
form · · · ∧ (a∨¬a), such that ψ contains every atomic
proposition a ∈ AP , without altering its meaning.

1. Construct Tψ, the tableau for ψ. Since ψ contains
every AP , the result of Theorem 1 will hold when all
labels in AP are considered.

2. Restrict Tψ to only those states reachable via a fair
path.

3. Weave A into Tψ according to ρ, obtaining fTψ.

4. Perform model checking in the usual way to determine

if fTψ |= φ.

4. CORRECTNESS
Given the components defined above, suppose that:fTψ |= φ .

What we have shown, then, is that the tableau for assump-
tion ψ woven with aspect A according to ρ gives a resulting
machine that satisfies desired augmented result φ. Our goal

is to use the properties of fTψ to show that A and ρ, when
woven with any possible base machine M for which M |= ψ,

will always yield an augmented fM such that fM |= φ. The
proof below gives this result for a particular class of aspects.

Theorem 2. Given AP , ψ, φ, A, and ρ as defined, iffTψ |= φ, then for any base program program M over a su-
perset of AP such that A and ρ are weakly invasive for M ,

if M |= ψ then fM |= φ.

Proof. Since M and Tψ contain exactly the same fair
paths asMρ and T ρψ, andM |= ψ, by Theorem 1, for any fair

path πM in Mρ |= ψ starting from SM
ρ

0 , there is a fair path
πT in T ρψ with the same labels (restricted to AP ). It suffices
to show that after augmenting both of these pointcut-ready
machines, this correspondence still holds.

Consider any fair path π′
M in fM starting from an initial

state.

Unmodified path Suppose no state on π′
M is labeled with

pointcut. Then π′
M must be the same as some fair path

πM in Mρ, which has matching fair path πT in T ρψ.
This path πT contains no states labeled with point-
cut, since for every finite subpath of πM , ρ was not
matched, and the labels on πT are the same (restricted
to AP ).

Since πT has no states labeled with pointcut, by the

construction of fTψ, none of the edges along this path
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have been removed during weaving. Therefore πT is

identical to a fair path π′
T in fTψ, and we have a match-

ing path for π′
M .

Modified path Path π′
M must begin with a sequence of

k+1 states s0, s1, . . . , sk in Mρ, where k ≥ 0. Since sk
must be reachable from a fair path πsk in Mρ, we can
consider the path which begins s0, . . . , sk and contin-
ues along the remainder of πsk after sk (see Figure 2).
This path must also be fair, since it has the same in-
finite tail as πsk itself, and so must have a matching
path in T ρψ; we begin π′

T by following this path.

Suppose that sk |= pointcut , so sk+1 is in A. This
state sk can be labeled pointcut if and only if we have
label(s0, . . . , sk) |≡ ρ. In this case, the matching sub-
path in T ρψ must also match ρ, and will have pointcut on
the state matching sk. From both states, all edges go
to machine A, so we can continue π′

T along an identi-
cal advice path; this includes the case when the advice
never returns to the base machine.

If and when π′
M follows an edge from an aspect return

state to a state t1 in Mρ, it does so to a state which
is on a fair path πt1 in that machine. There must be
a matching path to πt1 in the tableau. Furthermore,
if we continue along a sequence of base machine states
t1, . . . , t`, since t` is also reachable from a fair path πt` ,
the path which reaches t1 via πt1 , goes to t`, and then
continues along πt` from t` is also fair in Mρ.

In fTψ, we have an edge from the aspect return state
to every state whose labels match t1; in particular,
we must have an edge to the state corresponding to
t1 on the fair path matching our continuation from t1
constructed above. We can continue the match π′

T for
π′
M along this path.

If this continuation of base machine states is infinite,
then the matching path in the tableau must be fair,
since we are following the match of a fair path in Mρ.
If we never reach an infinite sequence of base states,
but always reach another advice, then there must be
some advice states which are visited infinitely many
times, and again the path in the tableau is fair.

Therefore, for every fair path π′
M in fM we have a corre-

sponding fair path π′
T in fTψ. This correspondence completes

the proof that fM |= φ.

4.1 Example
By way of example, suppose we have an aspect with base
system assumption ψ = A G ((¬a ∧ b) → F a) — that is,
any state satisfying ¬a ∧ b is eventually followed by a state
satisfying a. We would like to prove that the application of
our aspect to any base system satisfying ψ will give an aug-
mented system satisfying result φ = A G ((a ∧ b) → X F a)
— that is, any state satisfying a ∧ b will eventually be fol-
lowed by a later state satisfying a. While this example may
not have clear correlation to a code-level problem, it serves
to illuminate the capabilities of our technique.

Figure 3 shows the reachable portion of the tableau for the
assumption ψ. In the diagram, shaded states are those con-
tained in the only fairness set. The notation Xg, not actually

a a b

a Xg
a b 
Xg

b XgXg

s0 s1

s2 s3

s4 s5

s6

Figure 3: The reachable portion of tableau Tψ for
ψ = A G ((¬a ∧ b) → F a).

a b b

Figure 4: A simple aspect machine A.

a a b

a Xg
a b 
Xg

b XgXg

s0 s1

s2 s3

s4 s5

s6

a b

b

Figure 5: Augmented tableau fTψ, satisfying φ =
A G ((a ∧ b) → X F a).
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part of the state label, designates states in the tableau which
satisfy Xg for subformula g = F a. For the example pointcut
descriptor ρ = (a∧ b), this tableau machine is also pointcut-
ready for ρ (since ρ references only the current state), simply
by adding pointcut to the labels of s3 and s5.

Figure 4 shows the state machine A for the advice of our
aspect. This advice will be applied at the states matched by
ρ, and Figure 5 gives the weaving of A with Tψ according
to ρ. Model checking this augmented tableau will indeed
establish that it satisfies the desired property φ. This result
follows neither from the aspect nor base machine behavior
directly, but from their combined behavior mediated by ρ.

And since fTψ |= φ, any M |= ψ will yield fM |= φ.

Reasoning intuitively about A and ρ without examining the
tableau supports this conclusion: the advice is invoked at
all states of such an M that match (a∧b), the advice always
leads to a state satisfying (¬a ∧ b), and ψ guarantees that
from such a state we will always reach a state satisfying a,
which is exactly the assertion of φ.

Figure 6 depicts a particular base machine M satisfying ψ,
as could be easily verified by model checking. Again, the
shaded states are those in the only fairness set. Although
this M is small, it does contain atomic proposition c not
‘visible’ to the aspect, and it has a disconnected structure
very much unlike the tableau. From Figure 7, one sees it

is indeed the case that the augmented machine fM satisfies
φ — but there is no need to prove this directly by model
checking. This holds true even though the addition of the
aspect has made a number of invasive changes to M : state
s1 is no longer reachable, because its only incoming edge
has been replaced by an advice edge; a new loop through s0
has been added, when in M there was no path visiting s0
more than once; there is a new path connecting the previ-
ously separated left-hand component to the right-hand; and
so forth. In more realistic examples, the difference in size
between the augmented tableau (involving only ψ, ρ, and
A) and a concrete augmented system with advice over a full
base machine would be substantial.

5. RELATED WORK
The first work to separately model check the aspect state
machine segments that correspond to advice is [9], where
the verification is modular in the sense that base and aspect
machines are considered separately. The verification method
also allows for joinpoints within advice to be matched by a
pointcut and themselves advised. However, the treatment
there is for a particular aspect woven directly to a particular
base program. Additionally, it shows only how to extend
properties which hold for that base program, proving that
the augmented program satisfies them as well (properties are
specified in branching-time logic CTL). A key assumption of
their method is that after the aspect machine completes, the
continuation is always to the state following the joinpoint
in the original base program. This requirement is much
stronger than the assumption used here of a weakly invasive
aspect.

In [8], model checking tasks are automatically generated for
the augmented system that results from each weaving of an
aspect. That approach has the disadvantage of having to

b

a b c

a c

c

s0

s1

b

Figure 6: One particular base machine M |= ψ.

a b b

b

a b c

a c

c

b

s0

s1

Figure 7: Augmenting M with A according to ρ

gives result fM |= φ.

treat the augmented system, but at least the needed anno-
tations and set-up need only be prepared once. That work
takes advantage of the Bandera [5] system that generates in-
put to model checking tools directly from Java code, and can
be extended to, for example, the aspect-oriented AspectJ
language. Bandera and other systems like Java Pathfinder
[6] that generate state machine representations from code
can be used to connect common high-level aspect languages
to the state machines used in the results here.

In [7] a semantic model based on state machines is given,
and the treatment of code-level aspects and joinpoints de-
fined in terms of transitions, as in AspectJ, is described. In
particular, the variations needed to express in a state ma-
chine weaving the meaning of before, after, and around with
proceed are outlined, although work remains to fully capture
the intended semantics.

In [4] and [11], among others, an assume-guarantee structure
for aspect specification is suggested, similar to the specifi-
cations here, but model checking is not used.

6. CONCLUSION
By reusing the notion of a tableau which contains all possible
behaviors that satisfy a particular formula, we can achieve a
modular verification for aspects by augmenting the tableau
with the advice according to a pointcut descriptor and ex-
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amining the result. In order to do so we must restrict our
view to aspects which are weakly invasive and always return
to states which were reachable in the original base system,
and we take a liberal view of fairness in which any computa-
tion that infinitely often visits an aspect state is considered
fair.

A number of directions for future work present themselves
quite clearly. While the current technique only addresses a
single aspect and pointcut descriptor, in principle it can be
extended to work for multiple aspects, given proper def-
initions of the weaving mechanics. Further development
of how weaving is formulated will also allow treatment of
cases where advice introduction changes the set of join-
points. Furthermore, the entire discussion here is given in
terms of states and state machines, while, as noted earlier,
the usual basic vocabulary of aspect-oriented programming
talks about events. The language-level aspect terminology
and problems of real object systems still must be fully ex-
pressed in the state-based model checking used here. Nev-
ertheless, the generic method in this paper allows us for
the first time to model check aspects independently of a
concrete base program, and is a significant step toward the
truly modular verification of aspects.

7. REFERENCES
[1] E. Abraham, F. de Boer, W.-P. de Roever, and

M. Steffen. An assertion-based proof system for
multithreaded java. Theoretical Computer Science,
331(2-3):251–290, 2005.

[2] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman,
and M. Y. Vardi. Regular vacuity. In D. Borrione and
W. Paul, editors, Proc. of Correct Hardware Design
and Verification Methods, CHARME’05, volume 3725
of LNCS, pages 191–206. Springer, 2005.

[3] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled.
Model Checking. MIT Press, Cambridge, MA, 1999.

[4] B. Devereux. Compositional reasoning about aspects
using alternating-time logic. In Proc. of Foundations
of Aspect Languages Workshop (FOAL03), 2003.

[5] J. Hatcliff and M. Dwyer. Using the Bandera Tool Set
to model-check properties of concurrent Java software.
In K. G. Larsen and M. Nielsen, editors, Proc. 12th
Int. Conf. on Concurrency Theory, CONCUR’01,
volume 2154 of LNCS, pages 39–58. Springer-Verlag,
2001.

[6] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. International
Journal on Software Tools for Technology Transfer
(STTT), 2(4), Apr 2000.

[7] S. Katz. Aspect categories and classes of temporal
properties. In Transactions on Aspect Oriented
Software Development, Volume 1, LNCS 3880, pages
106–134, 2006.

[8] S. Katz and M. Sihman. Aspect validation using
model checking. In Proc. of International Symposium
on Verification, LNCS 2772, pages 389–411, 2003.

[9] S. Krishnamurthi, K. Fisler, and M. Greenberg.
Verifying aspect advice modularly. In Proc. SIGSOFT
Conference on Foundations of Software Engineering,
FSE’04, pages 137–146. ACM, 2004.

[10] NuSMV. http://nusmv.irst.itc.it/.

[11] H. Sipma. A formal model for cross-cutting modular
transition systems. In Proc. of Foundations of Aspect
Languages Workshop (FOAL03), 2003.

18



Temporal Aspects as Security Automata

Peter Hui
CTI, DePaul University
Chicago, IL, USA

James Riely∗
CTI, DePaul University
Chicago, IL, USA

Abstract

Aspect-oriented programming (AOP) has been touted
as a promising paradigm for managing complex software-
security concerns. Roughly, AOP allows the secu-
rity-sensitive events in a system to be specified separately
from core functionality. The events of interest are spec-
ified in a pointcut. When a pointcut triggers, control is
redirected to advice, which intercepts the event, poten-
tially redirecting it to an error handler.
Many interesting security properties are history-

dependent; however, currently deployed pointcut lan-
guages cannot express history-sensitivity (mechanisms like
cflow in AspectJ capture only the current call stack.) We
present a language of pointcuts with past-time temporal op-
erators and discuss their implementation using a variant of
security automata. The main result is a proof that the im-
plementation is correct.
Refining our earlier work ([6]), we define a minimal lan-

guage of events and aspects in which “everything is an as-
pect”. The minimalist approach serves to clarify the issues
and may be of independent interest.

1. Introduction

Aspect-oriented programming (AOP) ([12]) is a rela-
tively new programming paradigm designed to address con-
cerns that cut across encapsulation boundaries of traditional
approaches. In this model, the programmer defines aspects,
each consisting of an advice body – a block of code – and
a pointcut, which states when the code is to be executed.
Current implementations allow for the user to define point-
cuts which trigger off of a specified atomic event, but facili-
ties for triggering of a program’s history is typically limited
to the current call stack (as in AspectJ’s cflow).
AOP has some potential for specifying and enforcing

security policies. However, many such policies are both
history-sensitive and dynamic (likely to change at runtime).

∗ Research supported in part by NSF CAREER 0347542

In this paper, we define a syntax and operational semantics
for temporal aspects, which allow for pointcuts to be de-
fined temporally— that is, in terms of events which have
happened in the past. For instance, we would like to be able
to declare advice which triggers when some function f is
called, but only if a function g has been called at some point
in the program’s history. AspectJ’s cflow can only capture
the case where g lies in the call stack at the time when f is
invoked. An obvious solution is to record every single event
during the course of the program’s execution. Such an im-
plementation is clearly impractical for long-lived programs.
In this vein, we present an equivalent, automaton-based se-
mantics, to be used as a model for implementation, which
records only relevant events. The automaton state provides
an abstraction of the history, and our main result demon-
strates that this abstract view faithfully implements the orig-
inal semantics.
We use a variant of Schneider’s security automata [16].

A security automaton enforces a security policy by moni-
toring the execution of a target system, and intercepting in-
structions which would otherwise violate the specified pol-
icy. For instance, a user may specify that subsequent to a
FileRead operation, the user is forbidden from executing a
Send operation. The corresponding automaton would moni-
tor the target system, watching for instances of FileRead. If
one was seen, the automaton would then monitor the system
for an attempted Send, and if such an attempt were made, it
would intercept the call and presumably execute some er-
ror handling code instead.
Security automata have been widely investigated as a

means of implementing security policies. In [21], Walker
uses security automata to encode security policies to be en-
forced in automatically generated code. In [20], Erlingsson
and Schneider use security automata to implement software
fault isolation security policies, which prevent memory ac-
cesses outside of the allowable address space. In that work,
they discuss techniques used to merge security automata di-
rectly into binary code at the x86 assembler and Java Vir-
tual Machine Language (JVML) level. In [4], Barker and
Stuckey investigate role based and temporal role based ac-
cess control policies, implemented using constraint logic
specifications. In [18], Thiemann incorporates security au-
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tomata into an interpreter for a simply typed call-by-value
lambda calculus, which he then translates to an equiva-
lent two-level lambda calculus, upon which type special-
ization removes all run-time operations involving security
state. The limitations of stack-based security policies are ex-
plored in [11]; history-based solutions are presented in [1].
Our work can be used as an alternative implementation tech-
nique for the ideas in the later paper.
Several recent projects have studied history sensitivity

in aspect languages. Douence, et. al. [10, 9] describe event-
based AOP, in which advice is defined in-line with the event
sequences that trigger it; the semantics is given in terms of
weaving. Walker and Viggers [23] use a context-free gram-
mar of tracecuts. Allan et. al. [2] extend this approach to
tracematches, providing a novel technique to accommo-
date variable bindings, while restricting attention to regular
properties. Stolz and Bodden [17] describe a technique for
instrumenting Java bytecodes with LTL formula, using as-
pects to implement transitions in the underlying alternating
automata. Bockish, et. al. [5] present a method for record-
ing program history using a prolog database and using this
to fire advice. De Fraine, et. al. [8] study dynamic weav-
ing as a method for implementing stateful advice.
We contribute to this body of work by providing a foun-

dational language for expressing dynamically loaded advice
in a temporal framework, allowing us to define a full source-
language semantics and to prove the correctness of its im-
plementation. The situation is complicated by two facts:
First, a pointcut may cause an event to be intercepted be-
fore it occurs; this is typical of security policies that specify
sequences which must be aborted, rather than those which
are allowed. Second, new advice may arrive at runtime, dy-
namically modifying existing policies. In both cases a key
difficulty is getting the semantics of the source language
“right”. Refining our previous work [6], we adopt a mini-
malist approach which lays bare the essence of the problem
without having to deal with the overhead of object-oriented
details. Other work on the semantic foundations of AOP in-
cludes [22, 3, 14, 24, 19, 15, 7, 13].
We proceed as follows: in Section 2, we provide a mo-

tivating example. In Section 3, we define Polyadic µABC,
a minimal aspect-based calculus defining roles, advice, and
non-temporal advised messages. In Section 4, we augment
Polyadic µABC to include temporal pointcuts, specified us-
ing a subset of the regular expressions, namely those of the
form φα, where φ is a regular expression abstracting the pro-
gram’s history, and α is the atomic event (i.e., call) which
triggers the advice. In Section 5, we define an equivalent,
automaton-based implementation semantics. In Section 6,
we prove equivalence of the two semantics by providing a
translation of a configuration in the history-based semantics
to an equivalent configuration in the automaton-based se-
mantics, and showing that the translation is preserved across

evaluation. Future work is discussed in Section 7.

2. Motivation

The following automaton implements a security policy
which prohibits Send operations after a FileRead has been
executed [16].

qnfr qfr,〈Eq〉
call〈FileRead〉

¬call〈FileRead〉

1

Our presentation differs slightly from that of [16] in that we
attach an error handling aspect Eq to state qfr. Its task is
to watch for and intercept an attempted call〈Send〉. We at-
tach an aspect to the state instead of transitioning into a new
“error” state because transitions represent committed func-
tion calls— our intent is to block the call〈Send〉, whereas
transitioning into a new state would indicate that we have
indeed committed it.
Now, say that at some point during the program’s exe-

cution, the user executes a call〈FileRead〉, and as a result,
the automaton is in state qfr. Furthermore, suppose that at
this point, a new quarantine policy is added to the system,
which prohibits a user from logging into some system A af-
ter a FileRead is called. One possible automaton for this
policy is shown below:

rnfr rfr,〈Er〉
call〈FileRead〉

¬call〈FileRead〉

1

Here, Er is the error handling advice which monitors for
a call〈Login,A〉 after seeing a call〈FileRead〉. It may
seem that the automaton resulting from adding the quaran-
tine policy to the “read-send” policy is simply the product of
the above two automata. However, in general this is unim-
plementable without storing the entire history. New poli-
cies may reference arbitrary events in the system history,
whereas a given security automaton is committed to a par-
ticular abstract view of that history. Our solution is simple:
we interpret policies as holding only from the point at which
they are implemented.
Consider, in our example, what happens if the next op-

eration is a call〈Login, A〉. If we “play back” the program
history (call〈FileRead〉,call〈Login, A〉) on the product
automaton, advice 〈Er〉 will fire, which is incorrect accord-
ing to our interpretation— the quarantine policy was imple-
mented after the call〈FileRead〉. Thus, when constructing
the combined automaton, we must be careful to take into ac-
count the history of the execution.
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As this example shows, while the implementation of
such security policies using finite automata is straightfor-
ward, a subtlety arises when new policies may be added
at runtime; one must be careful in defining which program
traces are in fact captured by a new policy added to a run-
ning system. To clarify the issues, we define the semantics
of dynamic temporal aspects over complete execution his-
tories. We subsequently provide an equivalent, automaton-
based implementation semantics which records only an ab-
straction of the execution history. Finally, we define a trans-
lation between states in the two semantics and prove that
this translation commutes with evaluation.

3. Polyadic µABC

NOTATION. For any metavariable X, we write X̄ for an or-
dered sequence of X’s.

We define a polyadic variant of µABC, introduced in [6].
The earlier paper followed the style of object-oriented lan-
guages; each message “p! q : !” had a source p, a destina-
tion q, and a name !. Such a message is triadic in that its
meaning depends on a triple of names, or roles. Here we
generalize triadic messages to polyadic events, 〈p1, . . . ,pn〉
(equivalently 〈p̄〉), with triadic messages as a special case
“〈p,q,!〉”.
For simplicity, in this paper, we look at a single-threaded

variant. At each moment in runtime, there is a single event
〈p̄〉 under consideration. Execution is determined by advice
that triggers on the event. At any given moment, the current
event is decorated with a vector of advice ā, which is wait-
ing to process the event. Thus a1, . . . ,an〈p̄〉 indicates that
advices named ai are waiting to process event p̄. We say that
ai advises p̄, and that ā〈p̄〉 is an advised event. For consis-
tency with the precedence of declarations, we read the ad-
vice list from right to left; thus an is the first advice to pro-
cess the event.
The special advice call initiates advice lookup. When

call〈p̄〉 executes, all the advice triggering on 〈p̄〉 is listed, re-
sulting in a new execution state: ā〈p̄〉. To determine whether
an advice is triggered, we use the pointcut α. Pointcuts may
be defined to trigger on an exact role, or a set of roles.We fa-
cilitate the specification of such sets using a role preorder,
with maximal element top.
An advice body adv a[α]=u(x̄)N is parameterized both

on the event x̄ and the remaining advice u. Following the ter-
minology of around advice in AspectJ, we refer to u as the
proceed variable.

3.1. Syntax and Evaluation

We give the syntax and evaluation semantics of the lan-
guage parametrically with respect to pointcuts α and point-
cut satisfaction D̄ # 〈p̄〉 sat α, described in the next subsec-

tion. Note that terms have the form D̄; ā〈p̄〉; ie, a term is a
list of declarations followed by a single advised event. We
refer to p̄ as the current event, ā as the current advice list,
and an as the current advice (ā= a1, . . . ,an).

TERM SYNTAX

a–e,u–w Advice Names; call, commit reserved
f–t,x–z Role Names; top reserved
D,E ::= Declarations

role p<q Role; dn(role p) = p
adv a[α]=u(x̄)N Advice; dn(adv a) = a;

u and x̄ bound in N
L,M,N ::= Terms

D;M Declaration; dn(D) bound in M
ā〈p̄〉 Message

NOTATION. We write dn(D) for the declared name of D.
Reserved names may not be declared. We identify syntax
up to renaming of bound names. For any syntactic cate-
gory with typical element E , we write fn(E) for the set of
free names occurring in E . We write E{a/x} for the cap-
ture avoiding substitution of a for x in E . We write E{ ¯a/¯x}
for E{a1/x1, . . . ,an/xn}; note that E{¯a/¯x} is defined only if x̄
and ā have the same length.

CONVENTION. To improve readability, we use the follow-
ing discipline for names:
• a–e are advice names (including the reserved names

call and commit);
• u–w are advice names that are bound in the body of an
advice declaration;

• f–t are role names (including the reserved name top);
• x–z are role names that are bound in the body of an ad-
vice declaration;

• is a reserved name used to bind a name that is not of
interest — that is, does not occur free in any subterm.

We drop syntactic elements that are not of interest. Con-
sider the declaration “adv a[α]=u(x̄)N”; we may elide the
name “adv[α]=u(x̄)N”, or the pointcut “adv a=u(x̄)N”,
or the body “adv a[α]”, or both the pointcut and the body
“adv a”.
Evaluation is defined using configurations which consist

of a vector of declarations and a term. By EVAL-DEC, decla-
rations are recorded in the configuration whenever they are
encountered in a term. By EVAL-CALL, if an event 〈p̄〉 is be-
ing processed with first advice call, then the advice list ā is
calculated, consisting of the advice names ai such that the
pointcut declared with ai is satisfied by 〈p̄〉. By EVAL-ADV,
if an event 〈p̄〉 is being processed with first advice a, then
the body of a is executed; the advice body is parameterized
by both the event 〈p̄〉 and remaining advice b̄. (Note that the

21



syntax requires that “b̄,a〈p̄〉” be parsed as “(b̄,a)〈p̄〉”. Fur-
ther note that the substitution b̄/u results in a well-formed
term because free advice names can only appear in the con-
text of a sequence.)

EVALUATION (D̄!M→ Ē ! N)

(EVAL-DEC)

D̄! E;M→ D̄,E !M(EVAL-CALL)

[ā] =
[
a

∣∣∣∣
D̄ % adv a[α]
D̄ # 〈p̄〉 sat α

]

D̄! b̄,call〈p̄〉 → D̄! b̄, ā〈p̄〉

(EVAL-ADV)
D̄ % adv a=u(x̄)N
D̄! b̄,a〈p̄〉 → D̄! N{b̄/u, ¯p/¯x}

3.2. Atomic Event Pointcuts

We now consider a simple boolean logic over events. We
allow event sets to be specified using role patterns which in-
clude subroles and “varargs”, ie, optional roles.1

POINTCUT SYNTAX

P,Q ::= Role Pattern
p Exact Role
+p Sub Role

α,β ::= Atomic Event Pointcut
〈P̄〉 Call Event
〈P̄,*〉 Call Event, varargs
α∨β Disjunction
¬α Negation

σ,ρ ::= 〈p̄〉 Atomic Event

Define 1 as 〈*〉; define 0 as ¬1; and define α ∧ β as
¬(¬α∨¬β). We write D̄ # r " p for the obvious pre-
order generated from the role declaration order. From this,
we derive the following definition of pointcut satisfac-
tion; the obvious rules for conjunction and disjunction are
elided.

ATOMIC POINTCUT SATISFACTION (D̄ # σ sat α)

(SAT-CALL-ANY)

D̄ # 〈p̄〉 sat 〈*〉
(SAT-CALL-EMPTY)

D̄ # 〈〉 sat 〈〉
(SAT-CALL-EXACT)
D̄ # 〈q̄〉 sat 〈Q̄〉
D̄ # 〈r, q̄〉 sat 〈r, Q̄〉

(SAT-CALL-SUB)
D̄ # 〈q̄〉 sat 〈Q̄〉 D̄ # r " p
D̄ # 〈r, q̄〉 sat 〈+p, Q̄〉

4. Temporal Pointcuts

We extend µABC with temporal pointcuts. To do this,
we modify the language of advice to include a temporal for-
mula φ in addition to the atomic formula α. Intuitively, the

1 In the full version we also allow vararg parameters in advice declara-
tions, ie adv a[α]=u(¯x,*)N.

pointcut fires when φ matches the past and α matches the
current event.
In an aspect language, the ontology of events is com-

plicated by the fact that events can be diverted; that is, an
event can trigger advice that intercepts the event before it
occurs, potentially causing the event to abort. This is partic-
ularly common in applications to security, where pointcuts
often specify dangerous event sequences that interrupt nor-
mal processing. To indicate that an event is to be recorded
in the history, we include the special advice commit.
Thus when the past is considered in firing a pointcut, we

require that advice specify both the past φ and the potential
future α. The past is specified as a regular expression over
atomic event pointcuts; the potential future is specified as
an atomic event pointcut.

SYNTAX

D,E ::= · · · Declarations
adv a[φα]=u(x̄)N Declare Advice

φ,ψ,χ ::= Temporal Pointcuts
α Atomic Event Pointcut
ε Empty Sequence
φψ Sequence
φ* Kleene Star
φ+ψ Disjunction

σ,ρ ::= 〈p̄〉 Atomic Events

The semantics of temporal formulas D̄ # σ̄ sat φ is defined
in the standard way (recalled in Appendix A) over strings
of events, building on the semantics of atomic events (D̄ #
σ sat α). Note that the regular expression /0 is represented
here as the atomic event pointcut 0. We define the language
of the formula as follows: LH(D̄,φ) = {σ̄ | D̄ # σ̄ sat φ}.
We now give the evaluation semantics for the lan-

guage with temporal advice. We augment the semantics to
record an execution history. We write |σ̄| for the length of
string σ̄. We define αn != ααn−1, where α0 != ε. We write
“adv a[α]=u(x̄)N” as shorthand for “adv a[1*α]=u(x̄)N”.

EVALUATION (σ̄; D̄!M→ ρ̄; Ē ! N)

(EVAL-DEC-ROLE)

σ̄; D̄! role p<q;M
→ σ̄; D̄, role p<q!M

(EVAL-DEC-ADV)

σ̄; D̄! adv a[φα]=u(x̄)N;M
→ σ̄; D̄,adv a[1|σ̄|φα]=u(x̄)N !M

(EVAL-COMMIT)

σ̄; D̄! b̄,commit〈p̄〉 → σ̄,〈p̄〉; D̄! b̄
(EVAL-CALL)
[ā] =

[
a

∣∣ D̄ % adv a[φα] and D̄ # σ̄,〈p̄〉 sat φα
]

σ̄; D̄! b̄,call〈p̄〉 → σ̄; D̄! b̄, ā〈p̄〉
(EVAL-ADV)
D̄ % adv a=u(x̄)N
σ̄; D̄! b̄,a〈p̄〉 → σ̄; D̄! N{b̄/u, ¯p/¯x}
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EVAL-COMMIT causes an event to be recorded in the his-
tory. The original EVAL-DEC is split into different cases
for roles and advice. EVAL-DEC-ROLE, EVAL-CALL, and
EVAL-ADV are largely unchanged from the non-temporal
semantics. Note only that in EVAL-CALL the history is used,
along with the current event, to determine whether an ad-
vice fires.
Of particular note is the rule EVAL-DEC-ADV, which

takes a newly declared advice, and prepends a string of 1s
to the temporal pointcut prior to adding it to the list of dec-
larations. The purpose of doing so is to ensure that the ad-
vice only triggers on the event α from the point of declara-
tion onwards, as opposed to some event that has already oc-
curred in the past.

5. Automaton

In this section, we define an equivalent automaton-based
semantics.
Our automata are constructed from regular expressions

of the form φα, corresponding to an advice declaration
adv a[φα], where φ is a regular expression abstracting the
relevant events in the program history, and α is the trigger-
ing atomic event. For each advice adv a[φα], we construct
the automaton for φ. From the point of declaration onwards,
the automaton monitors program execution. If the automa-
ton ever enters its final state, this indicates that an attempt to
execute α should be intercepted, and the advice body exe-
cuted instead. To implement this, we attach the advice name
to each final state for the automaton. For this reason, we re-
fer to final states as advice states:

ADVICE STATES (φ$)

ε$
φ$ ψ$
φψ$

φ$
φ+ψ$

ψ$
φ+ψ$ φ*$

The states are sets of temporal pointcut formulas φ, the
transition alphabet ranges over the atomic event pointcuts
α, and the transitions of the automaton are defined by the
standard transition relation:

TRANSITION RELATION (φ α−→ ψ)

α α−→ ε
φ α−→ φ′

φψ α−→ φ′ψ
φ$ ψ α−→ ψ′

φψ α−→ ψ′
φ α−→ φ′

φ* α−→ φ′ φ*

φ α−→ φ′

φ+ψ α−→ φ′
ψ α−→ ψ′

φ+ψ α−→ ψ′

Transitions between states are taken on commits.
We write φ=⇒ for the reflexive transitive closure of α−→.

Next, we formally state how to derive an automaton from
an advice adv a[φα]:

NOTATION. For any advice adv a[φα], let the automaton
ι(φ,a) induced by a be the security automaton with states
and transitions as defined by the transition relation given
above, with start state φ, and advice a associated with each
advice state.

We represent our automata as (state, advice set) pairs:

AUTOMATON SYNTAX

Φ,Ψ ::= φ | φ,Φ State
A ::= 〈Φ, ā〉 | 〈Φ, ā〉,A Automaton

For instance, AR and AQ from Section 2 are represented
as 〈φ0, /0〉,〈φ1,{E1}〉 and 〈ψ0, /0〉,〈ψ1,{E2}〉, respectively,
with φ0 = ψ0

!= [¬call〈FileRead〉]∗call〈FileRead〉1∗,
and φ1 = ψ1

!= 1∗. The product automaton AR×AQ would
be represented as

(〈(φ0,ψ0), /0〉,(〈φ0,ψ1〉,{E2}),
(〈φ1,ψ0〉,{E1}),(〈φ1,ψ1〉,{E1,E2})

There is no need to explicitly encode the transition rela-
tion. For instance, in the product automaton just presented,
we know from the definition of the transition relation that
〈φ1,ψ0〉 call〈FileRead〉−−−−−−−−−→ 〈φ1,ψ1〉. To make the presentation
more readable, we elide advice when a state has none as-
sociated with it. That is, we write the state “〈φ〉, /0” simply
as φ.
We can modulate the transition relation from atomic

event pointcuts to atomic events: define D̄ # φ σ−→ φ′ if
φ α−→ φ’ and D̄ # σ sat α. Further we can lift the defini-
tion to automaton states: D̄ # φ1, . . . ,φn

σ=⇒ ψ1, . . . ,ψn if
D̄ # φi

σ−→ ψi for all i between 1 and n. Finally we lift
the resulting relation (D̄ # Φ σ=⇒ Ψ) to event sequences:
D # Φ0

σ1,...,σn====⇒ Φn if D̄ # Φi−1
σi=⇒ Φi for all i between

1 and n.
We define the product of two automata using the stan-

dard product construction, taking the set union of each com-
ponent state’s associated advice names:

DEFINITION 1. For any two automata A,B,

A×B= {〈ΦA,ΦB; ā, b̄〉|〈ΦA, ā〉 ∈ A,〈ΦB, b̄〉 ∈ B}

Next, we show how to merge an advice adv a[φα] with
an existing automatonA . Namely, we construct the automa-
ton for the advice, and create the product automaton:

ν(A ,φ,a) != A × ι(φ,a)

We now give the equivalent, automaton-based evaluation
semantics to our language.Whereas previously we recorded
the entire program history, we now instead maintain an au-
tomaton and state, which records only events of interest.
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EVALUATION (A ;Φ; D̄!M→ A ′;Ψ; D̄′ !M′)

(EVAL-DEC-ROLE and EVAL-ADV as before)
(EVAL-COMMIT)
D̄ #Φ ¯p=⇒Ψ

A ;Φ; D̄! b̄,commit〈p̄〉 → A ;Ψ; D̄! b̄

(EVAL-DEC-ADV)

A ;Φ; D̄! (adv a[φα]=u(x̄)N;M)
→ ν(A ,φ,a); 〈Φ,φ〉; D̄,(adv a[α ]=u(x̄)N) !M

(EVAL-CALL)

[ā] =

[
a

∣∣∣∣∣

〈Φ,(b̄,a, b̄′)〉 ∈ A
D̄ % adv a[α]
D̄ # 〈p̄〉 sat α

]

A ;Φ; D̄! b̄,call〈p̄〉 → A ;Φ; D̄ ! b̄, ā〈p̄〉

Operationally, EVAL-DEC-ROLE and EVAL-ADV act
the same as in the history-based semantics. EVAL-DEC-
ADV takes a new advice, merges it into the automaton, up-
dates the current state, and adds the advice to the list of dec-
larations. EVAL-CALL looks through the list of advices at-
tached to the current state for one whose atomic pointcut
matches the role vector p̄ being called. If a matching ad-
vice is found, then the call〈p̄〉 is replaced with the advice
body. EVAL-COMMIT simply updates the state of the au-
tomaton.

6. Equivalence

In this section, we demonstrate equivalence of the
history-based semantics provided in Section 4 with the
automaton-based semantics provided in Section 5 by pro-
viding a translation from a configuration in the former
to an equivalent one in the latter. We conclude by show-
ing that evaluation preserves the translation.
Intuitively, we translate a history-based configuration

〈σ̄,D̄〉 to an automaton-based configuration 〈A ,Φ, Ē〉 as
follows: given a history σ̄ and a set of declarations D̄, we
first construct an intermediate automaton A ′ using the as-
pect declarations in D̄. We compute the state Φ by simulat-
ing the history σ̄ on A ′. Finally, we convert the intermediate
automaton A ′ to the final automaton A by removing inter-
mediate states.
Recall the manner in which EVAL-DEC-ADV is defined

in the history-based semantics: whenever an advice is de-
clared, the current “timestamp” is explicitly noted in the
form of a string of ‘1’s prepended to the temporal point-
cut. Thus if an advice adv a[φα] is declared at time n,
then in the history-based semantics, the pointcut is noted
as adv a[1nφα], and the corresponding automaton in the
automaton-based semantics will have a string of n “place-
holder” states π1, ...,πn, where πi 1−→ πi+1 for i between 1

and n−1, and πn 1−→ φ, as shown below:

π0 π1 ... πn φ
1 1 1 1

CONVENTION. In constructing an automaton for an advice
adv a[φα] declared at time n, we label the states used as
placeholders for time 1 through n as π0, ...,πn, and we re-
fer to these as π-states.

Strictly speaking, we must account for the fact that for an
advice adv a[φα], φ may in fact begin with a string of lead-
ing 1s. We can easily get around this by syntactically dif-
ferentiating between those 1s implicitly inserted by EVAL-
DEC-ADV as a timestamp, and those explicitly specified by
the user. In the interest of simplifying the presentation, we
choose not to do so here.
If a stateΦ= 〈φi,ψi, ...χi〉 is such that none of φi,ψi, ...χi

are π-states, we say thatΦ is π-free. We will need to project
the π-free states of an automaton, so we formally define this
operation:

P&π(A) = {〈Φ, ā〉 ∈ A |Φ contains no π states}

LEMMA 2. For two automata A and B , P &π(A × B) =
P&π(A)×P&π(B)
Proof. Immediate. %

To construct A ′, we take the product of the automata in-
duced by each advice in D̄. To constructΦ, we simulate the
program history σ̄ on A ′. For instance, in the example in
Section 2, A ′ is the product of the following automata, with
φ0,φ1,ψ0, and ψ1 defined as in Section 5:

φ0 φ1,〈E1〉
call〈FileRead〉

¬call〈FileRead〉

1

π0 ψ0 ψ1,〈E2〉
1 call〈FileRead〉

¬call〈FileRead〉

1

Simulating the programhistory (call〈FileRead〉,call〈Login,A〉)
on the product automaton places us in state 〈φ1,ψ0〉, as ex-
pected.
We compute A by removing from A ′ any states contain-

ing a π state. In our example, this amounts to removing from
the product automaton states 〈(φ0,π0)〉 and 〈(φ1,π0),{E1}〉.
The result is equivalent to the product automaton AQ×AR,
where AQ and AR are as in Section 2.
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We now formalize the translation just discussed. That is,
given a history, declaration pair 〈σ̄,D̄〉, we formally show
how to construct the corresponding automaton, state, decla-
ration triple 〈A ,Φ, Ē〉.
Our translation makes use of the following functions:

Tdec(D̄) = {adv a[α ]|adv a[φα] ∈ D̄}
Tstate(σ̄,D̄) =Ψ, where

D̄= 〈adv [1i1φ1α1], . . . ,adv [1inφnαn]〉 and
〈1i1φ1, ...,1inφn〉 σ̄=⇒Ψ

We are now in a position to define the function T
which translates a history-based configuration 〈σ̄;D̄〉 to an
automaton-based configuration 〈A ;Φ; Ē〉:

DEFINITION 3. T (σ̄;D̄) = A ;Φ; Ē, where

A = P&π

[

∏
adv a[φα]∈D̄

ι(φ,a)

]
Φ= Tstate(σ̄,D̄)

Ē = Tdec(D̄)

We define the language of the formula as follows:

LA(D̄,φ) = {σ̄|D̄ # φ σ̄=⇒ φ′, φ′$, and φ′ ∈ Tstate(σ̄,D̄)}

LEMMA 4. For all D̄ and φ, LH(D̄,φ) = LA(D̄,φ).
Proof. By induction on the structure of σ̄. %

We conclude by showing that the translation is preserved by
evaluation. That is, if

• σ̄; D̄!M→ σ̄′; D̄′ !M′

• T (σ̄,D̄) = A ;Φ; Ē,
• A ;Φ; Ē !M→ A ′;Φ′; Ē′ !M′, and
• T (σ̄′,D̄′) = A ′′;Φ′′; Ē′′

then A ′ = A ′′,Φ′ =Φ′′, and Ē′ = Ē′′, as shown below:

σ̄;D̄ σ̄′;D̄′

A ;Φ; Ē A ′;Φ′; Ē′
T T

PROPOSITION 5. If σ̄; D̄ ! M → σ̄′; D̄′ ! M′ and
T (σ̄,D̄) = A ,Φ, Ē, then A ;Φ; Ē ! M → A ′;Φ′; Ē′ ! M′,
where T (σ̄′,D̄′) = A ′,Φ′, Ē′.
Proof. In each case, we first translate the left hand side into
the automaton-based semantics. We then apply the evalua-
tion rule (e.g., EVAL-DEC-ADV) to the automaton to ob-
tain the next configuration 〈A ′,Φ′, Ē′〉. We then translate

the right hand side into the automaton based semantics and
show that the result equals 〈A ′,Φ′, Ē′〉.
In the cases of EVAL-DEC-ROLE and EVAL-ADV, this

is trivial. In the case of EVAL-DEC-ADV, recall its evalua-
tion rule in the history-based semantics:

σ̄; D̄! adv b[ψβ],M→ σ̄; D̄,adv b[1|σ̄|ψβ] !M

The declarations D̄ (equivalently Ē) are trivially preserved
by EVAL-DEC-ADV, which leaves us to show that the au-
tomaton A and the state Φ are preserved. Translating the
left hand side yields T (σ̄;D̄) = A ;Φ; Ē, where

A != P&π

[
∏

adv a[φα]∈D̄
ι(φ,a)

]
Φ

!= Tstate(D̄) Ē != Tdec(D̄)

By EVAL-DEC-ADV in the automaton semantics,
A ;Φ; Ē ! adv b[ψβ],M→ A ′;Φ′; Ē′ !M, where

A ′ != P&π

[
∏

adv a[φα]∈D̄
ι(φ,a)

]
× ι(ψ,b) Φ′ != 〈Φ,ψ〉

Ē′ != Tdec(D̄),b

Finally, we must show that T (σ̄′;D̄,adv b[1|σ̄|ψβ]) =
A ′;Φ′; Ē′. By definition, T (σ̄′;D̄,adv b[1|σ̄|ψβ]) =
A ′′;Φ′′; Ē′′, where

A ′′ = P&π

[
( ∏
adv a[φα]∈D̄

ι(φ,a))× ι(1|σ̄|ψ,b)
]

= P&π

[
( ∏
adv a[φα]∈D̄

ι(φ,a))× ι(ψ,b)
]

Finally, Lemma 2 gives us that A ′ = A ′′:

P&π

[
( ∏
adv a[φα]∈D̄

ι(φ,a))× ι(ψ,b)
]

= P&π

[
∏

adv a[φα]∈D̄
ι(φ,a)

]
× ι(ψ,b)

and hence that the automaton is preserved by EVAL-DEC-
ADV.
To show that the state Φ is preserved by EVAL-DEC-

ADV, we simulate σ̄ on the intermediate automaton[
∏adv a[φα]∈D̄ ι(φ,a)

]
× ι(1|σ̄|ψ,b). It immediately fol-

lows that the resulting state Φ′′ = 〈Φ,ψ〉 = Φ′. The decla-
rations Ē are trivially preserved by EVAL-DEC-ADV.
We now consider the case of EVAL-CALL. We must

show that in a history-based configuration 〈σ̄;D̄〉, for any
declared advice adv a[φα], if D̄ # σ̄ sat φ and D̄ # p̄ sat α
where p̄ is the role vector being called, then adv a[α ] is as-
sociated with the state Φ in T (σ̄,D̄). This follows directly
from Lemma 4: if D̄ # σ̄ sat φ in the history-based seman-
tics, then in the automaton based semantics, φ σ̄=⇒ φ′, where
φ′$, so 〈φ′,a〉 ∈Φ.
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Finally, the case of EVAL-COMMIT is trivial. Recall
the evaluation rule in the history based semantics: σ̄; D̄ !
M,commit〈p̄〉 → σ̄, p̄; D̄ ! M, and in the automaton-based
semantics:

(EVAL-COMMIT)
D̄ # Φ ¯p=⇒Ψ

A ;Φ; Ē ! b̄,commit〈p̄〉
→ A ;Ψ; Ē ! b̄

In this case, T (σ̄;D̄) = A ;Φ; Ē, and T (σ̄, p̄; D̄) = A ;Φ′; Ē
where

A = P&π

[
∏

adv a[φα]∈D̄
ι(φ,a)

]
Ē = Tdec(D̄)

What remains is to show that Ψ= Φ′. In doing so, we will
have succeeded in showing that A ,Φ, and Ē are all pre-
served by EVAL-COMMIT. By definition of T , simulating
σ̄ on the intermediate automaton ∏adv a[φα]∈D̄ ι(φ,a) places
A in state Φ. To deriveΦ′ from σ̄, p̄; D̄, we simply carry the
simulation one step further, taking transition p̄. By EVAL-
COMMIT in the automaton-based semantics, we know that
Φ ¯p=⇒Φ′, and hence that Ψ=Φ′, which is what we needed
to show. %

PROPOSITION 6. If A ;Φ; Ē ! M → A ′;Φ′; Ē′ ! M′, and
T (σ̄,D̄) = A ,Φ, Ē, then σ̄; D̄ ! M → σ̄′; D̄′ ! M′, where
T (σ̄′,D̄′) = A ′,Φ′, Ē′.
Proof. The proof closely parallels that of Proposition 5, and
as such, we omit the details here. Details can be found in
Appendix B.
This brings us to the main result: that the two semantics

are equivalent:

THEOREM 7. σ̄; D̄ ! M →∗ ρ̄; Ē ! N if and only if
T (σ̄; D̄!M) →∗ T (ρ̄; Ē ! N).
Proof. By Propositions 5 and 6, and induction on the length
of→∗. %

7. Conclusions

We have described a novel minimal language for aspect-
oriented programming with temporal pointcuts. We de-
scribed an implementation of the language using security
automata and proved the correctness of the implementation.
We have presented examples of applications to software se-
curity.
Future work will address type-preserving translations of

class-based languages into µABC. We have already devel-
oped untyped translations; finding type-preserving transla-
tions presupposes a suitable typing systems for µABC.
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[13] R. Lämmel. A Semantical Approach to Method-Call In-
terception. In Proc. of the 1st International Conference on
Aspect-Oriented Software Development (AOSD 2002), pages
41–55, Twente, The Netherlands, April 2002. ACM Press.

[14] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn.
Compilation semantics of aspect-oriented programs.

[15] W. De Meuter. Monads as a theoretical foundation for aop.
In International Workshop on Aspect-Oriented Programming
at ECOOP, 1997.

[16] Fred Schneider. Enforceable security policies. ACM Trans-
actions on Information and System Security, 3(1):30–50,
2000.

[17] V. Stolz and E. Bodden. Temporal assertions using AspectJ.
In RV’05 - Fifth Workshop on Runtime Verifi cation, 2005. To
Appear.

[18] Peter Thiemann. Enforcing safety properties using type spe-
cialization. In Programming Languages and Systems: 10th
European Symposium on Programming, ESOP 2001, volume
2028. Springer, 2001.

[19] David Tucker and Shriram Krishnamurthi. Pointcuts and ad-
vice in higher-order languages. In Conference Record of
AOSD 03: The 2nd International Conference on Aspect Ori-
ented Software Development, 2003.
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A. Semantics of Temporal Pointcuts

TEMPORAL POINTCUT SATISFACTION (D̄ # σ̄ sat φ)
(SAT-ATOM)
D̄ # σ sat α

D̄ # σ sat α

(SAT-OR-LEFT)
D̄ # σ̄ sat φ

D̄ # σ̄ sat φ+ψ

(SAT-SEQ)
D̄ # σ̄ sat φ
D̄ # ρ̄ satψ

D̄ # σ̄, ρ̄ sat φψ

(SAT-STAR)
D̄ # σ̄ sat φ
D̄ # ρ̄ sat φ*

D̄ # σ̄, ρ̄ sat φ*

(SAT-OR-RIGHT)
D̄ # σ̄ satψ

D̄ # σ̄ sat φ+ψ

(SAT-SEQ-EMPTY)

D̄ # ε sat ε

(SAT-STAR-EMPTY)

D̄ # ε sat φ*

B. Proof of Proposition 6

Again, in the cases of EVAL-DEC-ROLE and EVAL-
ADV, this is trivial. In the case of EVAL-DEC-ADV, recall
its evaluation rule:

A ;Φ; Ē ! adv b[ψβ],M→ A ′;Φ′; Ē′ !M

where

A ′ = A × ι(ψ,b) Φ′ =Φ,ψ Ē′ = Ē,b

In the history-based semantics, we have

σ̄; D̄! adv b[ψβ],M→ σ̄; D̄,adv b[1|σ̄|ψβ] !M

where T (σ̄;D̄) = A ;Φ; Ē. What remains is to show
that T (σ̄;D̄,adv b[1|σ̄|ψβ]) = A ′;Φ′; Ē′, which we al-
ready proved in Proposition 5.
In the case of EVAL-CALL, if a call〈p̄〉 is replaced by

the body of some advice adv a[φα], this must mean that ad-
vice a is associated with the current state of the automaton,
and that D̄# p̄ sat α. We must show that in the history-based
semantics, (i) the advice adv a[φα] is declared (trivial), (ii)
that D̄ # p̄ sat α (given), and that (iii) D̄ # σ̄ sat φ. Point
(iii) follows directly from Lemma 4: since adv a[α ] is asso-
ciated with the current state, it must mean that φ σ̄=⇒ φ′, and
φ′$. By Lemma 4, it immediately follows that D̄# σ̄ sat φ.
Finally, in the case of EVAL-COMMIT, recall its evalua-

tion rule in the automaton-based semantics:

(EVAL-COMMIT)
D̄ #Φ ¯p=⇒Ψ

A ;Φ; Ē ! b̄,commit〈p̄〉
→ A ;Ψ; Ē ! b̄

If A ;Φ; Ē ! b̄,commit〈p̄〉 → A ;Ψ; Ē ! b̄, then it must be
the case that Φ ¯p=⇒ Ψ. Now, let σ̄;D̄ be the history-based
configuration such that T (σ̄;D̄) = A ;Φ; Ē. Then by defini-
tion of T ,

A = P&π

[
∏

adv a[φα]∈D̄
ι(φ,a)

]
Ē = Tdec(D̄)

Recall the rule in the history-based semantics:

σ̄; D̄!M,commit〈p̄〉 → σ̄, p̄; D̄!M
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We must show that T (σ̄, p̄; D̄) = A ;Φ′; Ē where Φ′ =Ψ. A
and Ē follow immediately from the definition of T .
Furthermore, by definition of T , simulating σ̄ on the in-

termediate automaton ∏adv a[φα]∈D̄ ι(φ,a) puts the automa-
ton in stateΦ. To deriveΦ′ from σ̄, p̄; D̄, we simply carry the
simulation one step further, taking transition p̄. By EVAL-
COMMIT in the automaton-based semantics, we know that
Φ ¯p=⇒Φ′, and hence that Φ′ =Ψ, which is what we needed
to show. %

C. Derived Forms

To give a feel for the language, we define a few derived
forms and discuss their execution.
This is an encoding of let that uses roles for continu-

ations. In this encoding we require an additional reserved
role continue.

DERIVED FORMS (LET) (c fresh)

role p != role p< top Trivial Role
let x=N;M != role c;

adv[〈c,+top〉]=( ,x)M;
N{c/continue}

Let

ret p != call〈continue,p〉 Return
M;N != let =N;M Sequencing

For example, we have the following.

let x=N; let y=L;M
= role c;

adv[〈c,+top〉]=( ,x) let y=L;M;
N{c/continue}

= role c;
adv[〈c,+top〉]=( ,x) role d;

adv[〈d,+top〉]=( ,y)M;
L{d/continue};

N{c/continue}

For example, we have the following.

let x=(let y=L;N);M
= role c;

adv[〈c,+top〉]=( ,x)M;
let y=L;N{c/continue}

= role c;
adv[〈c,+top〉]=( ,x)M;
role d;
adv[〈d,+top〉]=( ,y)L{d/continue};
N{c/continue}

DERIVED FORMS (FUNCTIONS) (f and x fresh)

λx.N != role f;
adv[〈f,+top,+top〉]=( ,x,c)N{c/continue};
ret f

Abstraction

L M != let f=L;
let x=M;
call〈f,x,continue〉

Application

For example, we have the following.

(N L)M = let f=N L;
let x=M;
call〈f,x,continue〉

= let g=N;
let y=L;
let f=callcc〈g,y〉;
let x=M;
call〈f,x,continue〉
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ABSTRACT 
In theory, join points can be arbitrary places in the structure or 
execution of a program. However, most existing aspect languages 
do not support the full expressive power of this concept, limiting 
their pointcut languages to a subset of the theoretically possible 
join points. In this paper we explore a minimal language design 
based on only three built-in fine-grained pointcuts, which enable 
expressing the entire spectrum of structures of an underlying base 
language, from types to statements and expressions. The combi-
nation of fine-grained pointcuts with uniform genericity in our 
LogicAJ 2 language yields the concept of fine-grained generic 
aspects. We demonstrate their power by showing how they allow 
programmers to express and extend the static primitive pointcuts 
of AspectJ and how they can model applications that previously 
required run-time reflection or special purpose language exten-
sions.       

 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features - abstract data types 

General Terms 
Languages 

Keywords 
Fine-Grained Genericity, Homogeneous Generic Aspect 
Language, Program Transformation, Multi Join Points, Fine-
Grained Pointcuts 

 

1. INTRODUCTION 
The notion of join points is central to aspect-oriented program-
ming languages. Join points are well-defined places in the struc-
ture or execution flow of a program [4], [5], [3], [21], [16]. In 
theory, they could be arbitrary program elements or run-time 
events. In practice, however, the classes of join points supported 
by most existing aspect languages are limited. Method call, 
method execution, field access and field modification are the 
typical join points that are widely supported.  Different 
researchers [7], [6], [17], [9] have noted independently that finer 
grained join points are necessary in various application areas. For 
instance, Kniesel and Austermann [9] show that thorough code 
coverage analysis requires access to every individual statement in 
a program. They present a professional code coverage tool for 

Java based on load-time byte code adaptation [11]. Sullivan and 
H. Rajan [17] address the same problem domain but provide a 
solution at a higher level of abstraction. They show how code 
coverage analysis can be implemented in a language that provides 
statement-level join points. Their approach uses reflection and 
generates new aspects based on reflective information at join 
points. Unfortunately, this makes static type checking impossible. 
Another impressive application area for fine-grained pointcuts is 
the automatic detection and optimization of highly parallel loops. 
Figure 1 shows a simple example. B. Harbulot and R. Gurd  [7] 
demonstrate that with AspectJ  [8] parallelization of such loops is 
only possible after refactoring the loop into a new method with a 
defined signature pattern that makes its lower and upper bounds 
explicit. Because typical code in parallel scientific applications 
almost never makes loop bounds explicit as methods the authors 
conclude that statement-level join points are needed to enable 
aspect-based optimizations of highly parallel programs. In 
LoopsAJ [6] they provide a solution tailored specifically to the 
interception of loops. However, their solution also imposes some 
constraints on the structure of the code in and before loops.  
1 public void m(){ 
2   int[] a = new int[42]; 
3   int[] b = new int[42]; 
4  
5   for(int i = 0;i< a.length;i++) { 
6     a[i] = 2*i; 
7     b[i] = i*i; 
8   }    
9 } 

Figure 1. Simple highly parallel for loop 
The work reported in this paper goes beyond previous approaches 
in that it provides a comprehensive design for fine-grained 
pointcuts in an extensible, statically checkable, high-level lan-
guage. Although our aspect language, LogicAJ 21, provides only 3 
built-in pointcuts, it is able to express all possible join points 
whose shadows are elements of the base language (in our case 
Java). We demonstrate the expressiveness of our concept by 
showing how it allows programmers to express and extend the 
static primitive pointcuts of AspectJ and how to model applica-
tions that previously required special purpose language exten-
sions. In particular, we show that LogicAJ 2‘s combination of 
fine-grained genericity and extensibility can express the 
functionality of LoopsAJ, without imposing any constraints on the 
structure of base programs.   
                                                                 
1 LogicAJ 2 is based on the generic aspect language LogicAJ [10]. 
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Section 2 introduces our language design. Section 3 demonstrates 
how the language can be easily extended by expressing ‘basic’ 
poincuts of AspectJ using fine-grained genericity. In Section 4 we 
give two examples of modelling applications that previously 
required specific language extensions: the Law Of Demeter and 
the for-loop pointcut. Section 5 discusses related work and 
Section 6 ongoing work. Finally, section 7 concludes. 
 

2. FINE-GRAINED GENERICITY 
In this section we gradually introduce the basic concepts behind 
LogicAJ 2 and illustrate them on small examples. 

2.1 Basic Pointcuts 
The aim of our design was the identification of a minimal, ortho-
gonal set of pointcuts that are able to express more complex ones 
offered in other languages. Our analysis resulted in just three 
basic pointcuts, representing the distinct classes of basic elements 
of any programming language: declarations, statements and 
expressions. Their syntax is: 

• decl(join_point, declaration_code_pattern) 
• stmt(join_point, statement_code_pattern) 
• expr(join_point, expression_code_pattern) 
 

The first argument of each basic pointcut is an explicit represen-
tation of the matched join point (see Section 2.4). The second 
argument is a pattern describing the join point (see Section 2.2).  
The expr pointcut selects any expression matching the given 
source code pattern and binds the join_point argument to an explicit 
representation of the matched join point.  The stmt pointcut does 
the same for statements. These two pointcuts can match any 
element within a method body. The decl pointcut additionally 
matches declarations of classes, interfaces, methods and fields.  
Taken together, these three pointcuts can match any structure of a 
base (Java) program, from the coarsest to the finest granularity. 
Therefore we also call them fine-grained pointcuts. 
The basic pointcuts can be used to bind any syntax element of 
their domain, by omitting the code pattern.  

2.2 Logic Meta-Variables 
Unlike most aspect languages, we do not provide a special syntax 
for the patterns used to specify join points. Instead, join point des-
criptions are simply base language code or patterns resulting from 
the ability to use placeholders for all base language elements that 
are not syntactic delimiters or keywords.  
Instead of unnamed wildcards our placeholders are named logic 
meta-variables (LMV). Meta-variables are variables that can 
range over syntactic elements of the base language (e.g. Java). 
They are denoted syntactically by names starting with a question 
mark, e.g. “?methodBody”.    
Named meta-variables give us the ability (1) to express that 
different occurrences of the same placeholder must agree on the 
matched value and (2) to use the matched values as a building 
block of advice code. Rho and Kniesel [10], [12]  show that 
uniform use of logic meta-variables in pointcuts and advice 
(uniform genericity) increases the expressiveness, reusability and 
modularity of aspects – even without the added power of fine-
grained pointcuts introduced here. The combination of uniform 
genericity and fine-grained basic pointcuts is called fine-grained 
genericity. We demonstrate the increased expressiveness of fine-
grained genericity in Section 3 and 4. 

In addition to logic meta-variables that have a one-to-one corres-
pondence to individual base language elements, logic list meta-
variables (LLMV) can match an arbitrary number of elements, 
e.g. arbitrary many call arguments or method parameters. These 
variables are indicated syntactically by two leading question 
marks, e.g. “??parameterList”. Their introduction is motivated by 
the fact that in truly generic application scenarios one often needs 
to say things like “match every constructor invocation” or “add a 
forwarding method for every method from type T” or “select all 
update expressions in a for-loop”. In such cases it is neither 
possible to know the exact number of parameters of an invocation 
or a method, nor is it practical to specify a finite set of method 
argument lists. The language provides a set of built-in operations 
on LLMVs, e.g. concatenation and member check. 
Unnamed logic meta-variables are indicated by an underscore (?_ 
and  ??_ ). If a pointcut contain several unnamed meta-variables, 
they are all treated as distinct variables. 

2.3 Named Pointcuts 
Using the basic pointcuts, programmers can define arbitrary 
custom pointcuts. Custom pointcut definitions can be named and 
can have meta-variables as arguments. Unlike in AspectJ, for 
instance, custom pointcuts can be defined recursively. This is 
useful for expressing transitive relationships, for instance the 
subtype relation. The recursive definition of a generalized version 
of AspectJ’s withincode pointcut is discussed in Section 2.5. 

2.4 Explicit Join Points 
Our language design leverages on the power of meta-variables by 
making the join point selected by a basic pointcut explicit as a 
meta-variable argument. This is an extremely powerful concept, 
since it makes join points first class entities of the aspect 
language. 
Figure 2 shows a pattern that selects if statements. Upon every 
match the ?if meta-variable is bound to the complete matched 
statement (the join point), whereas the meta-variables contained in 
the pattern are bound to the respective sub-elements of the 
statement. In this case ?cond is bound to the condition expression 
and ??someStatements is bound to the list of statements in the 
body of the if statements’ block. 
 
 stmt(?if, if(?cond){??someStatements}) 

Figure 2. Selection of an if statement, its condition and its 
body 

Figure 3 shows the use of two expr pointcuts that select all calls of 
the methods foo and bar. The matched join points are explicitly 
represented by the meta-variable ?jp, which is passed as a 
parameter to the pointcut definition. Thus, it can be used as the 
join point of an advice based on fooBarCalls(?jp).  
1  pointcut fooBarCalls(?jp):  
2      expr(?jp , foo() )  
3   || expr(?jp , bar() )  

Figure 3. Join points made explicit via meta-variables 
Alternatively, we can reuse this pointcut as shown in Figure 4. 
Note that the meta-variable ?call is used within the if statement 
pattern in the stmt pointcut and within fooBarCalls.  This way we 
express that the calls to foo and bar must be the condition of an if 
statement. Note further that the defined pointcut provides ?if and 
?call  as parameters to its users. Thus it does not predetermine 
whether the matched if statement or the matched call is the join 
point that it selects.  
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1  pointcut fooBarCallsWithinIf(?if, ?call):  
2      stmt(?if, if(?call){??someStatements} )  
3   && fooBarCalls(?call) ;   
Figure 4. Refining the pointcut from Figure 3 to select calls of 

foo or bar that occur within an if-condition 
Since different meta-variables can represent different join points 
at the same time it is possible to express relations between join 
points, as illustrated in Figure 4. This is an extremely powerful 
concept. In Section 4.1 we demonstrate how it enables a concise 
implementation of the Law of Demeter. 
In addition it gives us the option to let a generic advice choose at 
which of the multiple join points the advice code should be 
woven. Therefore the syntax of LogicAJ 2 advice2 was slightly 
extended. The target join point of the advice must be specified as 
the first argument of the advice. The advice shown in Figure 5 
counts all invocations of foo or bar that occur as the condition of 
an if statement. If we change the advice parameter to ?if the advice 
will count the number of if statements whose conditions are calls 
to foo or bar. 
1 around(?call):  fooBarCallsWithinIf(?if, ?call) { 
2   Counter.count++; 
3 } 

Figure 5. Explicit choice of the effective join point for an 
advice 

 

2.5  Meta-Variable Attributes 
For many uses, it is not sufficient to consider only a syntactic 
element itself but also the static context of the element. For 
example, the declaring type is important information about a 
method or a field declaration. Similarly, the statically resolved 
binding between a method call and its called method or between a 
variable access and the declared variable is necessary for several 
pointcuts. 
We make this information available via LMV attributes. An 
attribute a of a meta-variable ?mv is accessible via: 

?mv::a 
Figure 6 describes the attributes used in the remainder of the 
paper. They are a subset of the attributes supported by LogicAJ 2. 

Attrib. Represented context information of a LMV 
parent The enclosing element of the syntax element 

represented by the LMV. 

 ref    The statically resolved declaration referenced by an 
expression: a call references a method, and an 
identifier a field, variable or parameter declaration.  

 type  The statically resolved Java type of an element 
bound to a LMV. This attribute is syntactic sugar. It 
is inferable via the ref attribute.  

Figure 6. LMV attributes provide additional information 
about the syntactic elements’ context and the resolved Java 

bindings. 
Figure 7 demonstrates the use of the parent attribute for the 
withincode pointcut, known from AspectJ. It checks if a join point 
is defined in the body of a given method. We present a 

                                                                 
2 and declare error/warning constructs 

generalized version that checks the withincode relationship of 
statements and expressions to any enclosing element. 
1 pointcut withincode(?jp,?enclosing): 
2     ( expr(?jp)  ||  stmt(?jp) )         
3   && ( equals(?jp::parent, ?enclosing)  
4        || withincode(?jp::parent, ?enclosing) 
5      ); 

Figure 7. Definition of the withincode pointcut in LogicAJ 2 
First, the ?jp variable is bound to an expression or statement. The 
equals predicate has a double role. If ?enclosing was bound to a 
value before withincode was called, equals just checks if the value 
of ?enclosing is ?jp’s parent element Otherwise it binds ?enclosing 
to ?jp::parent. In order to get all the directly and indirectly 
enclosing elements, of ?jp the pointcut is evaluated recursively for 
the parent of the ?jp. 
 

3. EXTENSIBILITY OF THE POINTCUT 
LANGUAGE 
This section shows how basic pointcuts can be used to build 
pointcuts known from common aspect languages. Designing 
semantic meta-levels with basic pointcuts drastically enriches the 
usability of pointcuts and is an important criterion for the 
expressiveness of an AO language.  

3.1  Static AspectJ Pointcuts 
The pointcuts offered by AspectJ are very useful. Due to the 
expressiveness of our minimalist pointcut language we can define 
custom pointcuts that implement AspectJ pointcut semantics with 
little effort. We have already shown the implementation of the 
withincode pointcut in Figure 7. In this section we show the 
implementation of the call and get pointcut in LogicAJ 2. The 
other static pointcuts of AspectJ can be implemented following 
the same scheme.  

3.1.1 Call Pointcut 
Our implementation of the AspectJ call pointcut (Figure 8) starts 
with an expr pointcut selecting the call expression, (line 4) and a 
decl pointcut binding the called method (lines 5-6). The equals 
predicate in line 7 denotes that the call join points are statically 
bound to the method ?method. Line 8 binds the declaring type of 
?method to ?declType by using the ref and type attributes (see Line 
8). Line 9 binds the ??parTypes list to the types of the method 
parameters. We omit the definition of the parameterTypes 
pointcut. It can easily be implemented as a recursive pointcut 
using the type argument. 
1 pointcut call(?jp, ?declType, ??modifiers,   
2               ?returnType, ?name, ??parTypes): 
3  
4     expr(?jp, ?name(??args) )  
5  && decl(?method,  
6       ??modifiers ?returnType ?name(??par){??stmts} )  
7  && equals(?method, ?jp::ref) 
8  && equals(?declType, ?method::parent::type) 
9  && parameterTypes(??parTypes,??par); 

Figure 8. Implementation of the call pointcut  
 
 Figure 9 shows two usage examples of the call pointcut. For  com-
parison, the respective AspectJ syntax is shown as a comment. 
Line 1-3 illustrates the selection of calls to the method with 
signature m(int) in class Foo.  Line 5-7 
1 //AJ:  pointcut m(): call( void Foo.m(int) ) 
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2 pointcut m(?jp):  
3      call(?jp, Foo, ??_, void, m, [int]); 
4  
5 //AJ:  pointcut anycall(): call(* *.*(..)); 
6 pointcut anycall(?jp): call(?jp,?_,??_,?_,?_,??_);              

Figure 9.  Comparison between AspectJ and LogicAJ 2 call 
syntax. Square brackets (line 3) denote a list of values. 

3.1.2 Get Pointcut 
Our next example implements AspectJ’s get pointcut. It selects 
field read accesses. Field declarations can have different syntactic 
forms. For instance, they can be declared with or without a value 
assignment. Each syntactic occurrence selects a different set of 
join points. Figure 10 presents the unification of the different 
syntactic join point variants by a more general field access 
pointcut. The union is expressed by the disjunction in lines 4-5, 
which states that all declarations with or without value assignment 
are bound to ?field. 
1 pointcut get(?jp,??modifier,?declType,?name,?retType): 
2      expr(?jp,?name ) 
3   && (  
4           decl(?field,??modifier ?retType ?name; )  
5        || decl(?field,??modifier ?retType ?name = ?v;) 
6      )   
7   && equals(?field, ?jp::ref)  
8   && equals(?declType, ?field::parent::type);   

Figure 10. Implementation of AspectJ get pointcut semantics  
In this example, join points are selected on the syntactic, not on 
the semantic level. However, we do not see this as a limitation of 
our approach. The defined custom pointcut implements a semantic 
selection criterion. It can be reused, hiding the syntactic details.   
 

3.2 New Pointcuts 
In the following, we give examples illustrating how easy it is to 
define additional semantic pointcuts that are neither built-in nor 
expressible in common AO languages. 

3.2.1 Local Variable Access Pointcuts 
As a complement to the common get and set pointcuts that select 
fields, we introduce getL and setL pointcuts that select read and 
write accesses  to local variables. We describe the implementation 
of the getL pointcut in detail. The setL implementation is 
analoguous. 
1 pointcut getL(?jp,?type,?name): 
2     //Select all identifier expressions:        
3     expr(?jp, ?name) 
4     // Select all local variable declarations:  
5     &&(   stmt(?localdecl, ?type ?name;)  
6        || stmt(?localdecl, ?type ?name = ?val;)    
7        ) 
8     // Check that the local variable declaration   
9     // is referenced by the identifier:   

10  && equals(?localdecl, ?jp::ref) );   

Figure 11. Implemantation of new pointcuts: the getL pointcut 
only selects local variable accesses 

The intended semantics of getL is to select all identifiers whose 
declaration is a local variable. We start by selecting all expres-
sions that have the form of an identifier, that is, consist of a single 
name. This is done by the expr(?jp, ?name) pointcut (Figure 11, 
line 3). The set of identifiers matched this way can also contain 
fields and parameters. In order to understand how we limit it to 
local variables only, it is helpful to recall that, in Java, the 
declaration of a local variable is a statement. Accordingly, we 

enclose each of the code patterns corresponding to a variable 
declaration into a stmt pointcut (see Figure 11, lines 5-6). The 
final equals predicate checks whether the selected local declara-
tion is indeed the declaration of the identifier matched in line 3. 

3.2.2 Field  Pointcut 
Within the declarations of the get pointcut we had to consider 
syntactic differences of field declarations. We can encapsulate 
those within a field pointcut definition in order to achieve a more 
modular and readable implementation of get and other pointcuts 
that deal with field declarations. We will see another use of the 
field pointcut in Section 4.1.  
The definition illustrated in Figure 12 selects all field 
declarations, with and without initializers. Then it determines the 
declaring type by accessing the static join point context captured 
by the meta-variable attributes ?jp::parent::type. Similarly, we can 
implement a method or a class pointcut that abstracts from the 
syntactic variants of the base language.  
1 pointcut field(?jp,?declaringType,?returnType,?name):     
2   (    
3        decl(?jp, ?returnType ?name; )  
4     || decl(?jp, ?returnType ?name = ?anyVal;)  
5   )  
6   && equals(?declaringType, ?jp::parent::type); 

Figure 12. field semantics 

 

4. EXAMPLES 
We now consider two different use cases that rely on fine-grained 
pointcuts. Section 4.1 presents a simple check for the static variant 
of the Law of Demeter, expressing a contract previously claimed 
to require extension of AspectJ by statically executable advice 
[14]. Section 4.2 comes back to the high-performance computing 
example. 

4.1 Example: Law Of Demeter 
Binding several join points at the same time enables very 
expressive pointcuts. This section gives a thorough example. It 
shows how the declare warning construct can be used to check the 
Law of Demeter with the help of a fine-grained pointcuts. 
The Law of Demeter (LoD) [13] restricts the method calls used in 
a class C to methods from ‘known’ types. These include  

1. C, 
2. the types of the calling method’s parameters,  
3. the types of C’s fields,  
4. the return types of C’s methods  
5. the classes instantiated in C and 
6. all the supertypes of any of the known types from 1-5. 

 
Figure 13 shows the LawOfDemeter aspect, concisely imple-
mented in LogicAJ 2. The aspect uses the custom pointcuts 
method, constructorcall and the subtype, which can be defined easily, 
like the pointcuts in Section 3. 
The pointcut knownTo defined in line 3-11 encapsulates rules 1-5 
of the LoD. It defines the basic set of types known to a method. Its 
semantics is that ?Type is known to a method with parameter types 
?ParameterTypes contained in ?CallingType.  

• Line 4 checks the first rule: The ?CallingType is known to itself.   
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• Line 5 checks the second rule: Every member of ?ParamTypes 
is known. The member predicate successively binds ?Type to an 
element of ?ParamTypes.    

• Line 6 checks the third rule: The type of every field of 
?CallingType is known. The field predicate successively binds 
?Type to the type of a field of ?CallingType.    

• Line 7 checks the fourth rule: The return type of every method 
of ?CallingType is known. The method predicate successively 
binds ?Type to the return type of a method of ?CallingType.    

• Lines 10-11 check the fourth rule: The type instantiated by a 
constructor call contained in the ?CallingType is known. The 
constructorcall predicate in line 9 determines all constructor 
calls and the withincode predicate in line 11 ensures that only 
calls within ?CallingType are regarded.  

The knownTo pointcut is the core of the real LoD checking in line 
13-25. Lines 14-17 set the stage by binding the meta-variable 
?CalledType to the static receiver type of a method call, 
?CallingType and ?CallingMethod to the type and method containing 
the call, and ??ParamTypes to the list of parameter types of 
?CallingMethod. Line 21  uses the knownTo pointcut to determine a 
known ?Type and line 22 verifies whether ?CalledType is a 
supertype of the known ?Type3. If not, a violation is reported in 
line 24 along with the violating call.  
This example uses explicit join point LMVs (see Section 2.4). The 
call and the constructorcall pointcuts are used within a single scope: 
the one in line 14 and the nested one in the definition of knownTo 
(line 9). This example could not be expressed if the join points 
could not be explicit parameters of the pointcuts in line 9 and 10. 
If there were only implicit join points (as in AspectJ), it would not 
be clear that constructor calls should not be reported as LoD 
violations and that failure of matching constructor calls in line 9 
should not inhibit reporting a violation of other calls.    
1 aspect LawOfDemeter { 
2  
3  pointcut knownTo(?CallingType,??ParamTypes,?Type): 
4      equals(?Type, ?CallingType)               //rule 1 
5   || member(?Type, ??ParamTypes)               //rule 2 
6   || field(?jp,?CallingType, ?Type, ?Fname)    //rule 3 
7   || method(?jp,??_,?Type,?CallingType,?Mname,??_)//r.4                    
8   || 
9   (   

10        constructorcall(?ConstrCall,?Type,??_)  //rule 5 
11     && withincode(?ConstrCall, ?CallingType )  //rule 5 
12   ); 
13  
14  declare warning: 
15      call(?called,?CalledType,??_,?_,?CalledMeth,??_)  
16   && method(?call,??_,?_,?CallingType,?CallingMeth, 
17              ??ParamTypes )  
18    && withincode(?called, ?call)  
19    && 
20    !( 
21           knownTo(?CallingType,??ParTypes,?Type)//r.1-5 
22        && subtype(?Type, ?CalledType)          //rule 6 
23      )  
24     : "The call violates the Law of Demeter.";              
25 }  

Figure 13. Aspect checking the Law of Demeter (LoD) at 
weave-time. It reports a warning for every method invoked on 
a type that is not among those “known” to the calling type or 

the parameters of the calling method.  

                                                                 
3  Note that every type is a super type of itself. Subtype can be 

declared recursively, similar to withincode (see Figure 6) 

4.2 Example High-Performance Computing 
The following section shows how the execution of highly parallel 
loops can be distributed by a generic aspect onto a set of threads, 
following the approach described in [6]. Unlike the approach in 
[6] our solution does not rely on code conventions. 
The target of a high-performance aspect could be the following 
for-loop, whose body uses the local array variables a and b. 
1 public void m(){ 
1     int[] a = new int[42]; 
2     int[] b = new int[42]; 
3  
4   for(int i = 0;i< a.length;i++) { 
5     a[i] = i*i; 
6     b[i] = i*i*i; 
7   }  
8 } 

Figure 14. Simple for-loop 
The detection of the highly parallel loop can be performed with 
the simple detector presented in Figure 15. The pointcut 
highlyParallelLoop checks that no method call is present in the block 
(avoiding side-effects) and tests that values are exclusively read 
from (or written to) a variable in the block. 
This ensures that the order of the computation does not affect the 
result. Below we see the pointcut describing these checks. We 
assume to have implemented withincode, set, setL, get and getL 
pointcuts as shown in Section 3. 
 

1 pointcut highlyParallelLoop(?jp,?range,?lb, 
2                             ?ub,?body,?incr):  
3     //selects for-loops  
4  stmt(?jp, 
5     for(?type ?range=?lb; ?range<?ub; ?incr){?body})     
6     // selects all join points within the loop body 
7  && withincode(?stmts, ?body)   
8     // excludes calls within loops 
9  && !call(?stmts,?_,??_,?retType,?name,??args)            

10  && // no read AND write access to a variable allowed 
11  !(      
12       setL(?bodyJPs, ?body, ?type, ?name, ?val)  
13    && withincode(?another, ?body)    
14    && getL(?another, ?body, ?type, ?name, ?val) 
15  ) 
16  &&  // the same for fields 
17  !(    
18       set(?bodyJPs,?p,?cl,?meth,??mod,?type,?name,?val)        
19    && withincode(?another, ?body)  
20    && get(?another,?p,?cl,?meth,??mod,?type,?name,?val)        
21  );    

Figure 15. The pointcut selecting highly parallel loops. 
 
The around advice in Figure 16 wraps the for-loop into a run() 
method of a thread and modifies the bounds of the loop. The for 
loop now runs in parallel in several threads, each thread 
calculating only a uniform range of the loop. 
 
1 around(?jp) :  
2   highlyParallelLoop(?loop,?range,?lb,?ub,?body,?incr){ 
3  
4    int THREADS = 5; 
5    //resolve the value of the bounds 
6    final ?ub::type ub = ?ub; 
7    final ?lb::type lb = ?lb; 
8    final ?range::type range = (ub - lb)/THREADS; 
9    List list = new ArrayList(); 

10    
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11    for(int threads=0; threads < THREADS; threads++){ 
12    final int finalThreads = threads; 
13    Thread thread = new Thread() { 
14      public void run(){ 
15     ?range::type newLb = lb+range*finalThreads; 
16     ?range::type newUb = newLb + range; 
17     
18         if(newUb >= ub)  
19           newUb = ub;      
20         
21         for(?range::type ?range = newLb;?range < newUb;   
22            ?incr){   
23               ?body 
24     } 
25   } 
26   thread.run(); 
27   list.add(thread); 
28    } 
29    
30     for(int threads = 0;threads<list.size();threads++) 
31   try{ 
32         ((Thread)list.get(threads)).join(); 
33   }  
34        catch(InterruptedException e){ 
35    e.printStackTrace(); 
36        } 
37      } 
38    } 

Figure 16. The for-loop parallelization aspect. 
 

5. RELATED WORK 
A comparison with existing generic aspect languages is given in 
[12]. It includes a thorough comparison of LogicAJ 2 to related 
work from logic meta-programming and program transformation 
systems. Here we confine ourselves to related work specific to 
fine-grained genericity. 
The TyRuBa language [19] introduces logic meta-programming 
for Java programs by defining Prolog-like predicates on Java 
programs. All code blocks of the base program are represented as 
quoted Java code within the TyRuBa rules. The quoted code may 
contain meta-variables for types and identifiers. In TyRuBa the 
quoted code can only be used for the generation of Java code, but 
not in the query language. 
Several approaches exist that describe finer-grained extensions to 
the AspectJ join point model. 
The extensible AspectJ compiler abc [1] provides a Java API to 
extend the set of known AspectJ pointcuts. For every additional 
pointcut, the lexer, parser and weaver must be extended to support 
the new pointcut. Implementation of custom pointcuts in LogicAJ 
2 does not require any such changes. Es we have shown, the 
extensions are expressible within the language. 
EOS-T [17] extends the AspectJ primitive pointcuts with pointcuts 
for conditionals and loops. It does not provide no ability to refer 
to join points statement-arguments or -blocks. Harbulot presents 
LoopAJ [6], an AspectJ extension for loop pointcuts. His approach 
is bult on abc and uses byte code analysis to identify loops. 
Kniesel and Austermann [9] present a professional code coverage 
tool for Java, CC4J, implemented based on the JMangler load-
time adaptation framework [11]. Working at byte code level, 
however, is not the preferred level of abstraction for most 
programmers.  
Borba et al. introduce JaTS [2], a language for pattern based 
transformations of Java programs. Similar to our basic pointcuts, 
code patterns are used to describe program parts on which trans-

formations should take place. The transformation specification is 
described with another pattern. Like in LogicAJ 2, both parts can 
be linked by the use of meta-variables, which substitute syntactic 
elements at the interface level of a base-program. According to 
personal communication with the authors, meta-variables can also 
match finer grained elements. That lets JaTS appear to be the 
closest match for our concept of fine-grained genericity. 
Comparison of JaTS and LogicAJ 2 will therefore be a rewarding 
topic of future work.    

6. ONGOING WORK 
The design of LogicAJ 2 described in this paper is currently 
implemented as an extension of our existing LogicAJ compiler, 
which is available at [15]. 
The added expressive power of a generic aspect language does not 
come for free. In particular, static analysis of aspect code is 
difficult in the presence of meta-variables.  
In order to prevent substitution of statements where expressions 
are expected and vice-versa, meta-variables need to be 
syntactically typed, that is every meta-variable needs to have a 
type that determines the kind of syntactic entity from the base 
language that may be substituted. Syntactic types can either be 
declared or inferred from the definition of the predicates that are 
used to bind meta-variable values. For lack of space, we did not 
address this issue in this paper. This is a topic of ongoing work.  
Currently we do not support dynamic join points like cflow, this or 
target with our basic pointcut model. In contrast to static join 
points, dynamic ones have no counterpart in the base program that 
could be described by a unique code pattern. Overcoming this 
limitation is also subject of ongoing work. 
We will evaluate LogicAJ 2 by applying fine-grained genericity to 
different application areas. General software transformation 
approaches, like [18] have addressed optimizations techniques 
like partial evaluation and data-flow optimization with generic 
transformations. We will analyze how they can be translated to 
fine-grained generic aspects.  
Contract4J [20] uses AspectJ to check contracts on Java. Currently 
the contracts are limited to AspectJ join points. For instance loop 
invariants can not be checked. Fine-grained genericity could be 
used to remove this restriction. 

7. CONCLUSION 
In this paper, we have introduced the concept of fine-grained 
genericity for aspect languages. Our approach is based on a 
minimal set of fine-grained pointcuts and base-language code 
patterns containing logic-meta variables. This enables us to 
express context-dependent aspect effects and dependencies 
between multiple join points. In addition, we have shown that 
fine-grained genericity is able to express the static pointcuts 
known from AspectJ and to define arbitrary other kinds of 
pointcuts that previously required specific language extensions. 
Thus, we have shown that there is no need for extending an aspect 
language in order to implement new ‘basic’ pointcuts if the 
language itself is powerful enough to select all base-language join 
points. 
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Abstract
Aspect-oriented programming (AOP) has been shown to be a use-
ful model for software development. Special care must be taken
when we try to adapt AOP to strongly typed functional languages
which come with features like type inference mechanism, poly-
morphic types, higher-order functions and type-scoped pointcuts.
Specifically, it is highly desirable that weaving of aspect-oriented
functional programs can be performed statically and coherently. In
[13], we showed a type-directed weaver which resolves all advice
chainings coherently at static time. The novelty of this paper lies in
the extended framework which supports static and coherent weav-
ing in the presence of polymorphic recursive functions, advising
advice bodies and higher-order advices.

1. Introduction
Aspect-oriented programming (AOP) aims at modularizing con-
cerns such as profiling and security that crosscut the components
of a software system [7]. In AOP, a program consists of many func-
tional modules and some aspects that encapsulate crosscutting con-
cerns. An aspect provides two specifications: A pointcut, compris-
ing a set of functions, designates when and where to crosscut other
modules; and an advice, which is a piece of code, that will be exe-
cuted when a pointcut is reached. The complete program behavior
is derived by some novel ways of composing functional modules
and aspects according to the specifications given within the aspects.
This is called weaving in AOP. Weaving results in the behavior of
those functional modules impacted by aspects being modified ac-
cordingly.

Two highly desirable properties of weaving are it being static
and coherent. Static weaving refers to making as many weaving
decisions at compilation time as possible, usually by static trans-
lation to a “less-aspect-oriented” program. A direct benefit out of
static weaving is that less run-time checking overhead is required.
In addition, a weaver should allow different invocations of a func-
tion with inputs of the same type to be advised with the same set of
advices. This property is known as coherence. Coherent weaving
is also crucial as it ensures correct and understandable behavior of
programmes. However, it is far from straightforward to bring these
two properties together particularly under a strongly typed func-
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tional language setting. Let’s consider a small example to have a
feel of the intricacy involved.

Example 1
n1@advice around {h} (arg::Int) = proceed (arg+1) in
n2@advice around {h} (arg) = proceed arg in
let h x = x in
let f x = h x in
(f 1) + (h 2)

This piece of code defines two pieces of advice namely n1 and
n2; it also defines a main program consisting of declarations of
f and h and a main expression specifying applications of f and
h. The first advice, n1, designates execution of h as its pointcut.
It also contains a type constraint, which is called a type scope,
attached to the first argument. n1 is only triggered when h is
executed with an Int argument. On the other hand, the pointcut
of n2 is not constrained by a type-scope. Thus all executions of
function h match the pointcut. Consequently, pointcuts of n1 and
n2 overlap in that the former is subsumed by the latter. In general,
it is not possible to determine locally if a particular advice should be
triggered. Let’s consider the main program of the above example.

From a syntactic viewpoint, function h will be called in the body
of f. If we naively infer that the argument x to function h in the
RHS of f’s definition is of polymorphic type, we will be tempted
to conclude that (1) advice n2 should be triggered at the call, and
(2) advice n1 should not be called as its type scope is less general
than ∀a.a → a. As a result, n2 will be statically chained to the call
to h.

Unfortunately, this approach will cause incoherence behavior
of h at run-time. Specifically, in the main expression, (h 2) will
trigger both advices n1 and n2. On the other hand, (f 1) in the
main expression will actually pass integer argument 1 to h. There,
triggering of n1 is missed out since the weaver has mistakenly
committed its choice in the definition of f. The only coherent
behavior of a weaver in this case is to have h being advised by
both n1 and n2, during both invocations of h, i.e., (h 1) and (h
2).

It appears that the goals of achieving static weaving while en-
suring coherent weaving are not in tandem here. In PolyAML [4],
dynamic type checking is employed to handle matching of type-
scoped pointcuts; on the other hand, Aspectual Caml [9] takes a
syntactic approach which sacrifices coherence for static weaving.

In our earlier work [13], we designed a static weaving strategy
that smoothly incorporates essential features of aspects into a core
functional language with parametric polymorphism and higher-
order functions. In contrast with the work done on PolyAML and
Aspectual Caml, our strategy synthesizes functional core and as-
pects during compilation, thus successfully reconciling the desires
to be static and to be coherent. The central idea there is to make
full advantage of type information, both from the base program and

37



the type-scoped pointcuts, to guide the weaving of aspects. Specifi-
cally, it advocates a source-level type inference system for a higher-
order, polymorphic language coupled with type-scoped pointcuts.
A type-directed translation scheme is then devised to resolve all
advice applications, thus eliminating any future need for dynamic
type checking. The translation removes advice declarations from
source programs and produces translated codes in an intermediate
language which is essentially polymorphically typed lambda calcu-
lus with a small extension. The program in example 1 is translated
as follows.

let n1 = \arg -> proceed (arg+1) in
let n2 = \arg -> proceed arg in
let h x = x in
let f dh x = dh x in
(f <h,{n1,n2}> 1) + (<h,{n1,n2}> 2)

Note that all advice declarations are translated into functions and
are woven in. A special syntax 〈 , {. . .}〉 is used to chain together
advices and advised functions. For instance, 〈h , {n1, n2}〉 denotes
the chaining of advices n1 and n2 to advised function h. In the
above example, the two invocations of h in the original aspect pro-
gram have been translated to an invocation of the chained function
〈h , {n1, n2}〉. This shows that our weaver respects the coherence
property.

This coherent weaving of advices to h entails passing appropri-
ate chained expressions of h to those function calls in the program
text from which h may be called indirectly. This requirement is sat-
isfied by allowing functions of those affected calls to carry extra
parameters. In the code above, the translated definition of function
f carries such an additional parameter, dh. The original (f 1) call
is then translated to (f <h,n1,n2> 1), in which the chained ex-
pression for h is passed.

In this paper, we re-engineer our type system and translation
scheme to handle recursive functions, advising advice bodies and
higher-order advices; this gives full-fledged support of aspects.1

Previously, functions and advices in our framework were treated
very differently. In particular, advices cannot be the targets of ad-
vising, neither directly by another advice nor indirectly through
calls to advised functions in advice bodies. While completely blur-
ring the distinction between functions and advices is not desir-
able, maintaining an unnecessary wide gap between them can also
make aspect programming overly restrictive. As well argued by Ra-
jan et al [11], two-layered models of advice and function cannot
provide proper modularization for higher-order crosscutting con-
cerns. Therefore, we refine our framework by devising new typing
and translation rules that handle both advising advice bodies and
higher-order advices, i.e., advices advising other advices.

The main contributions of this paper are:

• A translation scheme that enables static and recursive weaving
of advices into recursive function definitions.

• A set of novel type rules with the support of an intermediate
language that ensure static and coherent weaving of advanced
aspect-oriented features. Specifically,

The weaving of advices into other advices’ bodies. Static
and coherent weaving of such advices has been challenging
because the decision for weaving is only known after the
context of invoking the underlying advice is known.
The weaving of higher-order advices. These are advices
that advise other named advices. Such feature demands a
uniform typing and translation scheme that not only infer

1 Previously supported features such as higher-order functions, curried
pointcuts and any pointcut are compatibly supported in the new system
even though a discussion of them are omitted from this paper.

the types of both functions and advices consistently but also
weave in proper advices in a cascading manner according
the type context.

The outline of the paper is as follows: Section 2 describes an
aspect-oriented language and provides background information and
terminologies used. In Section 3, we describe the intermediate lan-
guage to be used as target of type-directed weaving. Section 4 de-
scribes our type-directed weaving algorithm, and presents our so-
lutions to the handling of giving advice to both recursive functions
and other advices, and the handling of higher-order advices. Sec-
tion 5 surveys related work done in this field, and Section 6 con-
cludes our work.

2. Aspect Language
In this section, we introduce an aspect-oriented functional language
for our investigation. We shall focus on only some essential features
of aspects, namely, around advice with execution pointcuts. Note
that we drop the description of some features discussed previously
in [13], namely higher-order functions, curried pointcuts and any
pointcuts, as they are orthogonal to the discussion of this paper.
However, it should be understood that they are still safely supported
by the new system. The following syntax specifies the language.

Expressions e ::= x | λx.e | e e |
let f = e in e | proceed |
n@advice around pc = e in e

Arguments arg ::= x | x :: t
Pointcuts pc ::= {jp} (arg)
Joinpoints jp ::= f | n

We write ō as an abbreviation for a sequence of objects o1, ..., on

(e.g. expressions, types etc). Note that we generally assume ō and
o denotes non-related objects which should not be confused. The
term [o/a]o′ denotes simultaneous substitution of oi for variables
ai in o′, for i = 1, . . . , n. We write t1 ∼ t2 to specify equality
between two types t1 and t2 (a.k.a, unification) to avoid confusing
with assignment =. We write fv(o) to denote the free variables in
some object o.

For simplicity, we leave out type annotations, user defined data
types, if statements and patterns but may make use of them in
examples. Basic types such as booleans, integers, tuples and lists
are predefined and their constructors are recorded in some initial
environment.

In our language, an aspect is an advice declaration which in-
cludes a piece of advice and its target pointcut. Pointcuts are rep-
resented by {jp} (arg) where jp stands for joinpoints, comprising
f , ranging over functions, and n, ranging over advices. A pointcut
describes the point in time any function or advice from the set is
executed. Usually function names are included in the pointcuts to
designate the target functions for advice weaving. Since advices are
also named, we allow advices advising other advices, i.e., higher-
order advices. The argument variable arg is bound to the actual ar-
gument of the function execution and it may contain an annotated
type.

Advice is a function-like expression that executes before, after,
or around a pointcut. Note that around advice executes in place
of the indicated pointcut, allowing a function to be replaced. A
special function proceed may be called inside the body of an around
advice. It is bound to a function that represents the rest of the
computation at the advised pointcut. It is easy to see that both
before advice and after advice can be simulated by around advice
that always proceeds. Therefore, our aspect language only needs to
support around advice.
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There are two things about our pointcuts that merit further dis-
cussion. Firstly, the pointcut designator around pc represents the
point in time when the functions or advices in pc are about to exe-
cute. Like the execution pointcuts of AspectJ, these pointcuts cover
the cases when functions are explicitly invoked as well as those
when they are implicitly called. They are necessary for languages
with functions as first-class values, for, in such languages, functions
can be applied directly through name-based invocation as well as
indirectly through aliasing and functional arguments to a higher-
order function. The following simple program illustrates the situa-
tions.

n@advice around {f} (arg) = e in
let f x = x in
let g = f in
let h k x = k x in
(f True, g ’a’, h g 3)

Clearly, in this example, if we look for only the function calls
made to f, following the call pointcuts of AspectJ, we will not be
able to capture the applications of f through g and k. However, de-
riving a static weaving scheme for advices on execution pointcuts
in a statically typed functional language is not as easy as it may
appear. In AspectJ, the pointcut designator, execution f (arg),
will direct the weaver to insert the advice call into the body of f.
As a result, the invocations of f through g and k will also trigger
the advice. However, this naive approach will encounter great sta-
tic typing difficulties when handling advices with additional type
constraints, which is strongly related to the following discussion
on type-scoped advices.

Secondly, as well demonstrated in [4] and [9], it is very often
that we need to have advices with type constraints to confine the ap-
plicable scope of such advices. Our aspect language support such
advices as it allows type constraints to be imposed on the argu-
ments of those functions occurring in pointcuts. We call such point-
cuts type-scoped pointcuts. Advices with type scoped pointcuts are
henceforth called type-scoped advices. However, having such type-
scoped advices in a statically typed language will pose significant
challenges for advice weaving, since it calls for a smooth reconcili-
ation between type-based advice dispatch and static weaving. In our
opinions, previous work did not address this issue adequately. In
designing Aspectual Caml, Masuhara et al. also suggest using exe-
cution pointcuts to handle indirect function calls. But they followed
the weaving scheme of AspectJ by inserting a call to the associ-
ated advice in the advised function. Apparently, this scheme will
only work for monomorphic functions; dynamic type-dispatch is
needed to support polymorphic yet type-scoped advices. This may
also partly explain why Dantas et al. include runtime type analy-
sis mechanism in their design of PolyAML. By contrast, our aspect
language supports type-scoped advices while retaining both static
typing and static weaving.

The following syntax defines the type expressions in our aspect
language.

Types t ::= a | t → t
Type Schemes σ ::= ∀ā.ρ
Advised Types ρ ::= (x : t).ρ | t

Basic types such as booleans, integers, tuples and lists are pre-
defined and their constructors are recorded in some initial environ-
ment. Central to our approach is the construct of advised types, in-
spired by the predicated types [12] used in Haskell’s type classes.
These advised types augment common type schemes with advice
predicates, which are used to capture the need of future advice
weaving dependent on the type context. For example, the type
scheme for the function g in the above example will be ∀a.(f :
a → a).a → a, which indicates that whenever g is applied in a

specific context, the advices on f will also be triggered. We shall
explain them in detail in Section 4.

In the next a few (sub)sections, we show how the features
discussed in this paper are used when programming with aspects.
The challenges in incorporating them into a static and coherent
weaving framework are also outlined.

2.1 Recursive Functions

Recursive functions are widely used in functional programming.
When type-scope advices are defined on a polymorphic recursive
function, it may yield an interesting advised type which has a
predicate refers the function itself. Let’s consider a small example
for illustration.

Example 2
let g x = x + 1 in
n@advice around {f} (arg:[Int])
= Cons (g (head arg)) (proceed arg) in

let f x = if (length x) > 0 then f (tail x) else x
in f [1,2,3]

The function f above defines a generic traversal of an input list.
When the input list contains Int elements, advice n intercepts the
execution and applies function g to the list head. Thus, it simulates
the behavior of the standard map function.

In an AO system which performs weaving by static translation,
the definition of function f should be translated into an expression
with relevant advices chained. However, because of the recursion,
the translation of f requires a translated definition of itself which
results into a cyclic process!

A syntactic weaver may sees this matter from a syntactic view
by chaining advices into the type-annotated abstract syntax tree. In
that case, coherence is lost as the execution of the recursive calls
may be chained with a different set of advices other than those of
the initial call even when the recursion is monomorphic.

Let’s consider the program in Example 2. The typed AST an-
notates the initial f-call in the main expression with type [Int] →
[Int] and the recursive f-calls in the definition of f with type [a] →
[a]. Thus, the former is chained with advise n whereas the later is
not even though both receive arguments of type [Int] → [Int] dur-
ing the actual execution.

In Section 4, we show how a fixed point combinator can be
employed to achieve coherent weaving of recursive functions.

2.2 Nested Advices

Aspects are not limited to observing base programs. Inside the
bodies of advice definitions, there may be calls to other functions
that are advised. We call these nested advices.

The program in example 2 increments all the elements of a list
by one through the interception of aspect n. However, when f is
called with the empty list [], the program crashes as the advice
attempts to extract the head from [] before the test of list length in
the body of f is performed.

To remedy this safety violation, we may implement a patch
aspect by setting the head of [] to an invalid bit, say -1.

n1@advice around {head} (arg:[Int])
= if arg == [] then -1 else proceed arg

Note that advice n1 advises on a function called inside the body of
an advice. In another words, n1 is a nested advice.

This small example sheds light on a wide range of applications
of nested advices. When aspects are used for enforcing safety and
security concerns, it is important that the advices are applied to
every execution of the target functions. Therefore, nested advices
becomes the essential feature which supports this behavior.
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Note that we do not allow circular around advices that apply to
the execution of their own bodies, directly or indirectly. The rea-
son for this restriction is that circular around advices together with
potential recursive functions that they are advising may form a sce-
nario similar to polymorphic mutual recursion which threatens de-
cidability of type inference. We leave this for future investigation.

Even without circular around advices, weaving nested advices
statically is a challenging task primary for the following two rea-
sons.

1. Advice chainings only appear in the woven program which is
not a subject for further weaving. A syntactic approach to solve
this problem is to have an iterative process which repetitively
feeds the woven program back to the weaver until no more
advice can be woven. One side condition for this approach
is that both input and output of weaver are from the same
language.

2. The typing context where an advice n is chained may not be
sufficiently specific for another advice to be chained to the calls
inside n’s body. This complicates coherent weaving.

In Section 4, we show in details how our translation works coher-
ently without the need of iteratively feeding the woven program
back to the weaver.

2.3 Higher-Order Advices

The two-layered design of AspectJ like languages only allow ad-
vices to advise other advices in a very restricted way. The loss of
expressiveness of such an approach has been well argued in [11].
The idea of a multi-layered design dates back to [5, 1, 10]; and this
is sometimes called higher-order advices.

In Section 2.2, we use a piece nested advice to patch an unsafe
program. However, the result is not completely satisfactory as n1
always inserts an extra invalid bit into the result list. The root of
the problem is the inability of advising an advise directly. In this
section, we show a solution with a higher-order advice which cause
no undesirable side effects such as the extra bit.

n2@advice around {n} (arg)
= if arg == [] then [] else proceed arg

Advice n2 advise directly on n which allows us to short circuit
the head-call when the input is [].

There has been some argument that higher-order advices can be
simulated by nested-advices. Take AspectJ as an example. Advices
are nameless in AspectJ, hence we cannot directly advise another
advice. Instead, if we know there are such requirements in advance,
we can shape the target advice for advice nesting as follows: Move
its entire advice body into a help method, and write a piece of
advice that advise this help method, thus achieving the effect of
advising advices to a certain degree. But there are at least two
shortcomings using this way of simulation. Firstly, this only works
for before and after advices, because proceed will take effect only
when it occurs inside an around advice. Thus, the example given
above cannot be handled. Secondly. This scheme does not scale up
well. What if later we want yet another third-order advice on the
second-order one?

Besides being used as patches for other advices, higher-order
advices are also useful as development aspects. Let’s say we want
to compute the total amount of a customer order and apply discount
rates according to certain regular rules as follows.

Example 3
let calcPrice cart = sum (map discount cart) in
let discount item = (getRate item) * (getPrice item)

In addition to regular discount rules, there are also other ad-hoc
sale discounts that may be put into effect on certain occasions, such

as special holiday-sales, anniversary-sales, etc. Due to their ad-hoc
nature, it is better to separate them from the functional modules and
put them in aspects that advise on the discount rate query function.

n1@advice around {getRate} (arg) =
(getHolidayRate arg) * (proceed arg)

n2@advice around {getRate} (arg) =
(getAnniversaryRate arg) * (proceed arg)

Furthermore, it is common to have some business rules that
govern all the sales promotions offered to customers. For example,
there may be a rule stipulates the maximum discount rate that is
applicable to any product item, regardless of the multiple discounts
it qualifies. Such business rules can be realized using aspects of
higher-order in a modular manner.

n3@advice around {n1,n2} (arg) =
let finalRate = proceed arg
in if (finalRate < 0.5) then 0.5 else finalRate

Here the second-order advice n3 has meta-control over advices
n1 and n2. The call to proceed gets the compounded discount rate
and the rule that no products can be sold under 50% of their list
prices is applied.

Weaving higher-order advices involves allowing advices to be
advised as functions. This adds in another layer of complexity to the
translation. Again, we refer the readers to Section 4 for a detailed
discussion of the solution.

3. Intermediate Language
Our type-directed weaving produces codes in an intermediate lan-
guage, which explicitly expresses the chaining of advices. The in-
termediate language is based on a polymorphically typed lambda
calculus plus let introductions, extended with chaining expressions
which are used to model advice invocations triggered by function
calls.

3.1 Operational Semantics

The syntax of the language is displayed below.

Values v ::= λx.e | µf.e | 〈v, {v̄}〉
Expressions e ::= v | x | proceed | λx.e | e e | 〈e, {ē}〉

| let f = e in e

There is no notion of advices in this language as they are mod-
elled straightforwardly as functions. Pointcuts are also not neces-
sary since we assumes all advices are already woven in place. A
chaining expression of the form 〈e, {ē}〉 consists of an expression
e which evaluates to a function (or an advice) and a chain of ex-
pressions ē which evaluates to advices to be triggered by the func-
tion call. We call e occurring at the left component the active func-
tion/advice, and {ē} the dormant advices. When both e and ē are
values, the chaining expression is itself a value.

The set of β reductions are defined as follow:

(λx.e v) 7−→β (e[v/x])
(µf.e v) 7−→β (e[µf.e/f ] v)
(let x = v in e) 7−→β (e[v/x])
(〈v, {}〉 v′) 7−→β (v v′)
(〈v, {v1, v̄}〉 v′) 7−→β (v1[〈v, {v̄}〉/proceed] v′)

These rules specifies a call-by-value evaluation strategy which
is orthogonal to the language design. The first three rules are stan-
dard β-rules for lambda calculus. In the fourth rule, when the ad-
vice sequence is empty, the chaining returns the original function.
Otherwise, as shown in the last rule, the chaining replaces the pro-
ceed in the first advice in sequence by a value which chains the
function v with the remainder of the advice sequence.
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The substitution operation e[v/x] performs the usual substitu-
tion of values for variables, with one exception: When the variable
being substituted is proceed, and the expression is a chained ex-
pression, then the corresponding substitution is performed only on
the active expression, but not the dormant expressions:

〈e, {ē}〉[v/proceed] ≡ 〈e[v/proceed], {ē}〉.

Note that the dormant advices above, {ē}, have not been substi-
tuted, because the proceed is bound to the existing active expres-
sion e, not the dormant expression ē. This point is particularly im-
portant in the case of second-order advice, which will have different
proceed value from the advice which the former is advising.

3.2 Type System

Programs produced in the intermediate language first undergo α-
conversion. This frees the programs from scoping concerns. Con-
sequently, the program can be type-checked for its correctness. The
type system is defined in Figure 1.

(VAR)
x : σ ∈ Γ

Γ `i x : σ
(CHAIN)

Γ, proceed : t′ `i ē : t̄

Γ `i e : t′ t′ E t̄

Γ `i 〈e, {ē}〉 : t′

(ABS)
Γ, x : t1 `i e : t2

Γ `i λx.e : t1 → t2
(FIX)

Γ, f : t `i e : t

Γ `i µf.e : t

(∀ELIM)
Γ `i e : ∀a.σ

Γ `i e : [t/a]σ
(APP)

Γ `i e1 : t1 → t2
Γ `i e2 : t2

Γ `i e1 e2 : t2

(∀INTRO)
Γ `i e : σ a 6∈ Γ

Γ `i e : ∀a.σ

(LET)
Γ, proceed : t′, f : σ `i e1 : σ

Γ, f : σ `i e2 : t σ D t′

Γ `i let f = e1 in e2 : t

Figure 1. Typing Rules

There is no introduction of new type syntax other than the one
of the standard polymorphically typed lambda calculus.

Types t ::= a | t → t
Type Schemes σ ::= ∀ā.t

The typing rules are presented in Figure 1 which are mostly
standard except that type bindings of proceed is needed for func-
tion definitions introduced by let. The reason for this is that advices,
which may contain proceed-calls, appear as functions in the inter-
mediate language. In Rule (CHAIN), the advices are typed under
the assumption that proceed is an instance of the function. We also
require the advices have types more general than that of the func-
tion. We say a type scheme is more general than the other if it can
be instantiated to the latter via variable substitutions. The relation
is formally defined as:

(GEN)
[t̄/ā]t1 ∼ t2

∀ā.t1 D ∀b̄.t2

The type system enjoys the standard safety properties.

Theorem 1 (Progress) If `i e : σ, then either e is a value or else
there is some e’ with e 7−→β e’.

Theorem 2 (Preservation) If Γ `i e : σ and e 7−→β e’, then
Γ `i e′ : σ.

4. Type Directed Weaving
As introduced in Section 2, advised type denoted as ρ is used
to capture function names and their types that may be required
for advice resolution. For instance, in the main program given in
Example 1, function f possesses the advised type ∀a.(h : (a →
a)).a → a, in which (h : a → a) is called an advice predicate.
It signifies that the execution of any application of f may require
advices of h applied with type which should be no more general
than a → a.

Note that advised types are used to indicate the existence of
some indeterminate advices. If a function contains only applica-
tions whose advices are completely determined, then the function
will not be associated with an advised type; it will be associated
with a normal (and possibly polymorphic) type. As an example,
the type of the advised function h in Example 1 is ∀a.a → a since
it does not contain any applications of advised functions in its def-
inition.

(AERASE) [[∀ā.(x : t).ρ]] = [[∀ā.ρ]] [[∀ā.(x : t).t′]] = ∀ā.t′

(GENF ) gen(Γ, σ) = ∀ā.σ where ā = fv(σ)\fv(Γ)

(CARD) |o1...ok| = k (CARDp) |∀ā.p̄.t|pred = |p̄|

Figure 2. Auxiliary Definitions

Figure 2 defines a set of auxiliary functions/relations that as-
sists type inference. The letter t ranges over unification (type-
)variables which are distinct from quantified rigid type variable a.
Rule (AERASE) defines a function [[·]] which removes all advice
predicates from an advised type scheme. We also define, in rule
(GENF ), a generalization procedure which turns a type into a type
scheme by quantifying type variables that do not appear free in the
type environment. The (CARD) function, denoted by |·|, returns the
cardinality of a sequence of objects. The (CARDp) function returns
the number of advice predicates in a type scheme.

The main set of type inference rules, as described in Figure 3,
is an extension to the Hindley-Milner system. We introduce a judg-
ment Γ ` e : σ  e′ to denote that expression e has type σ under
type environment Γ and it is translated to e′. We assume that the ad-
vice declarations are preprocessed and all the names which appear
in any of the pointcuts are recorded in an initial global store A. We
also assume that the base program is well typed in Hindley-Milner
and the type information of all the functions are stored in Γbase.

The typing environment Γ contains not only the usual type
bindings (of the form x : σ  e) but also advice bindings of the
form n : σ ./ x̄. This states that an advice with name n of type σ
is defined on x̄. We may drop the ./ x̄ part when it is not relevant.
When the bound variable is advised (i.e. x ∈ A), we use a different
binding :∗ to distinguish from the non-advised case. We also use
the notation :(∗) to represent a binding which is either : or :∗.

Note that while it is possible to present the typing rules without
the translation detail by simply deleting the ‘ e’ portion, it is not
possible to present the translation rules independently since typing
controls the translation.

4.1 Predicating and Releasing

There are two rules for variable lookups. Rule (VAR) is standard.
In the case that variable x is advised, rule (VAR-A) will check all
advices defined on x (we do not distinguish : and :∗-binding for
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(VAR)
x : σ  e ∈ Γ

Γ ` x : σ  e
(VAR-A)

x :∗ σx ∈ Γ [[σ̄]] 5 [[σ′]] Γ ` ni : [[σ′]] ei

n̄ :(∗) σ ./ x n̄′ ∈ Γ {ni | [[σi]] D [[σ′]]}
|ȳ| = |σx|pred ȳ is fresh σx D σ′

Γ ` x : σ′  λȳ.〈x ȳ , {ei}〉

(∀ELIM)
Γ ` e : ∀a.σ e′

Γ ` e : [t/a]σ  e′
(∀INTRO)

Γ ` e : σ  e′ a 6∈ Γ

Γ ` e : ∀a.σ e′
(APP)

Γ ` e1 : t1 → t2  e′1
Γ ` e2 : t1  e′2

Γ ` e1 e2 : t2  (e′1 e′2)

(ABS)
Γ, x : t1  x ` e : t2  e′

Γ ` λx.e : t1 → t2  λx.e′
(LET)

Γ ` e1 : σ  e′1
Γ, f :(∗) σ  f ` e2 : t e′2

Γ ` let f = e1 in e2 : t let f = e′1 in e′2

(PRED)
x :∗ σx ∈ Γ t E [[σx]]

Γ, x : t xt ` e : ρ e′t x ∈ A

Γ ` e : (x : t).ρ λxt.e
′
t

(REL)
Γ ` e : (x : t).ρ e′

Γ ` x : t e′′ x ∈ A x 6= e

Γ ` e : ρ e′ e′′

(FIX)
Γ, f :(∗) ρ f ` e : ρ e′

Γ ` µf.e : ρ e′
(REL-F)

Γ ` f : (f : t).ρ e′ F fresh f ∈ A

Γ ` f : ρ let F = (e′ F ) in F

(ADV)
Γ, proceed : t ` λx.ea : p̄.t e′a fi : σ′ ∈ Γbase

σ′ E [[σ]] Γ, n :(∗) σ ./ f̄  n ` e : t′  e′ σ = gen(Γ, p̄.t)

Γ ` n@advice around {f̄} (x) = eain e : t′  let n = e′a in e′

(ADV-AN)
Γ, proceed : t ` λx : tx.ea : p̄.t e′a fi : ∀ā.ti → t′i ∈ Γbase

tx E ∀ā.ti (ti → t′i) ∼ t Γ, n :(∗) σ ./ f̄  n ` e : t′  e′ σ = gen(Γ, p̄.t)

Γ ` n@advice around {f̄} (x :: tx) = eain e : t′  let n = e′a in e′

Figure 3. Type-directed Weaving by translation

these advices here) to see whether any of them has a more specific
type than x’s. This is to ensure that chaining of advices is only
done in a sufficiently specific context. We call this check sufficiently
specific context check, and it is expressed in the rule as the guard
[[σ̄]] 5 [[σ′]] (the relation 5 is defined in Section 3.2). If the check
succeeds (i.e., no advice has a more specific type than x), x will
be chained with the translated forms of all those advices defined
on it, having the same or more general types than x has. We give
all these selected advices a non-advised type in the translation of
them Γ ` ni : [[σ′]]  ei. This ensures correct weaving of
nested advices advising the bodies of the selected advices. The
detail will be elaborated in Section 4.4. Finally, the final translated
expression is normalized by bringing all the advice abstractions of
x outside the chain 〈. . .〉. This ensures type compatibility between
the advised call and its advices as required by the type system of
the intermediate language.

If the check for sufficiently specific context fails, there must ex-
ists some advices for x with more specific types, and rule (VAR-A)
fails to apply. Since x ∈ A still holds, rule (PRED) can be applied.
This rule introduces an advice parameter to the program (through
the corresponding translation scheme). This advice parameter en-
ables concrete advice-chained functions to be passed in at a later
stage, called releasing, through the application of rule (REL).

Before we describe rules (PRED) and (REL) in detail, we illus-
trate the application of these rules by derving the type and the wo-
ven code for the program shown in Example 1. During the deriva-
tion of the definition of f , we have:

Γ = { h :∗ ∀a.a → a h, n2 : ∀a.a → a ./ h, n1 : I → I ./ h}

h : t → t dh ∈ Γ2
(VAR)

Γ2 ` h : t → t dh

x : t x ∈ Γ2
(VAR)

Γ2 ` x : t x
(APP)

Γ2 = Γ1, x : t x ` (h x) : t (dh x)
(ABS)

Γ1 = Γ, h : t → t dh ` λx.(h x) : t → t λx.(dh x)
(PRED)

Γ ` λx.(h x) : (h : t → t).t → t λdh.λx.(dh x)

Next, for the derivation of the main expression, we have:

Γ3 = { h :∗ ∀a.a → a h, n2 : ∀a.a → a ./ h,
n1 : I → I ./ h, f : ∀a.(h : a → a).a → a f}

f : ∀a.(h : a → a).a → a f ∈ Γ3
(VAR)

Γ3 ` f : (h : I → I).I → I  f
a©

(REL)
Γ3 ` f : I → I  (f 〈h , {n1, n2}〉)

...

(APP)
Γ3 ` (f 1) : I  (f 〈h , {n1, n2}〉 1)

a© =
h :∗ ∀a.a → a h ∈ Γ3 ...

(VAR-A)
Γ3 ` h : I → I  〈h , {n1, n2}〉

We note that rules (ABS),(LET), (APP), (∀INTRO) and (∀ELIM)
are rather standard, with the tiny exception that rule (LET) will bind
f with : when it is not in A; and with :∗ otherwise.

Rules (PRED) and (REL) respectively introduces and eliminates
advice predicates just as (∀INTRO) and (∀ELIM) do to bound type
variables. Rule (PRED) adds an advice predicate to a type (Note
that we only allow sensible choices of t constrained by t E [[σx]]).
Correspondingly, its translation yields a lambda abstraction with
an advice parameter. At a later stage, rule (REL) is applied to
release (i.e.,remove) an advice predicate from a type. Its translation
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generates a function application with an advised expression as
argument.

4.2 Advising Recursive Functions

Now let’s consider Example 2 given in Section 2.1 where the
advised function f is recursive. The code is reproduced below.

let g x = x + 1 in
n@advice around {f} (arg:[Int])
= Cons (g (head arg)) (proceed arg) in

let f x = if (length x) > 0 then f (tail x) else x
in f [1,2,3]

In our type system, rule (FIX) is used to type and translate recur-
sive functions. In this above example, our translation produces an
interesting advised type ∀a.(f : [a] → [a]).[a] → [a] for f. If
Rule (REL) is applied to release this type, the translation will not
terminate as the derivation of Γ ` f : [a] → [a] depends on itself.
The solution is to break the loop by using a fixed point combinator
as the translation result. This is manifested in Rule (REL-F), by
which example 2 is translated to the following:

let g x = x + 1 in
let n = \arg.(Cons (g (head arg)) (proceed arg)) in
let f df x = if (length x) > 0

then df (tail x) else x in
(let F = \y.<f y,{n}> F in F) [1,2,3]

By a simple Let-lifting, we lift the local definition of F to the top
level. The final translation result is:

let g x = x + 1 in
let n = \arg.(Cons (g (head arg)) (proceed arg)) in
let f df x = if (length x) > 0

then df (tail x) else x in
let F = \y.<f y,{n}> F in
F [1,2,3]

The fixed point combinator F correctly captures the desired be-
havior by chaining every execution of f with n. In the following,
we sketch the evaluation steps for the main expression F [1,2,3]
based on the operational semantics given in Section 3.

For the sake of presentation, some long expressions are renamed
as follows.

v1 = \x.if (length x) > 0 then F (tail x) else x
v2 = \arg.(Cons (g (head arg)) (v1 arg))

We also use −→β
∗ to represent multiple steps of β reduction.

F [1, 2, 3]
−→β (\y.〈f y , {n}〉 F) [1, 2, 3]
−→β 〈f F , {n}〉 [1, 2, 3]
−→β 〈v1 , {n}〉 [1, 2, 3]
−→β v2 [1, 2, 3]
−→β

∗ Cons 2 (F [2, 3])
...

4.3 Handling Advices

There are two type-inference rules for handling advices. Rule
(ADV) handles non-type-scoped advices, whereas rule (ADV-AN)
handles type-scoped advices. In rule (ADV), we firstly infer the
(possibly advised) type of the advice as a function λx.ea under
the type environment extended with proceed. The advice body is
therefore translated. Note that this translation does not necessarily
complete all the chaining because the most specific context con-
dition may not hold. In this case, just like functions, the advice is
parameterized. At the same time, an advised type is assigned to it
and only released when it is chained in Rule (VAR-A).

After type inference of the advice, we ensure that all functions
in the pointcut have type schemes that are not more general than
the advice’s. Note that the type information of all the functions are
stored in Γbase. Then, this advice is added to the environment. It
does not appear in the translated program, however, as it is trans-
lated into a function awaiting for participation in advice chaining.

In rule (ADV-AN), variable x can only be bound to a value of
type tx such that tx is no more general than the input type of those
functions in the pointcut. We also require the type of all functions
in the pointcut to be unifiable to the advice type, so that any bogus
advices which can never be safely triggered will be rejected by our
type system.

Note that we do not allow the annotated type tx to be more
general than the input type of any function in the pointcut, as this
will be contrary to the intention of type-scoped advices.

4.4 Advising Advice Bodies

As mentioned in the previous (sub)section, the Rules (ADV) and
(ADV-AN) make an attempt to translate advice bodies. However,
just like the translation of function bodies, the local type contexts
may not be specific enough to chain all the advices. We illustrate
this with an example.

Example 4
n1@advice around {f} (arg::Int) = e1 in
n2@advice around {f} (arg) = e2 in
let f x = x in
n3@advice around {g} (arg) = f arg in
let g x = x in
let h x = g x in
h 1

Here, advice n3 calls f which is in turn being advised. The goal
of our translation is to chain advices which are applicable to the
call of f inside an advice. Concretely, when a call to g is chained
with advice n3, the body of n3 must also be advised. Moreover, the
choice of advices must be coherent.

At the time when the declaration of n3 is translated, the body
of the advice is translated. An advised type is given to it since the
currently context is not sufficiently specific.

When the translation attempts to chain an advice in Rule
(VAR-A), the judgment Γ ` ni : [[σ′]]  ei in the premise
forces the advice to have a non-advised type. This is to ensure that
all the advice abstractions are fully released so that chaining can
take effect.

In the case that this derivation fails, it signifies that the current
context is not sufficiently specific for advising some of the calls in
this advice’s body, and chaining has to be delayed. In example 4,
the call to g in the body of h’s definition is of type a → a. This is
sufficiently specific for advising g, since n3 is the only candidate.
Consequently, the call to f inside the body of n3 is also of type
a → a. However, this type is not sufficiently specific for advising
f. As a result, we have to give h an advised type and it is translated
as follows.

let n1 = \arg.e1 in
let n2 = \arg.e2 in
let f x = x in
let n3 = \df.\arg.df arg in
let g x = x in
let h dg x = dg x in
h <g,{n3 <f,{n1,n2}>}> 1

n3 is only chained in the main expression where the context is
sufficiently specific for both the calls to g and f.
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4.5 Higher-Order Advices

In our system, we show that, just like functions, advices can be
advised liberally. An example is given below.

Example 5
n1@advice around {f} (arg::Int) = e1 in
n2@advice around {n1} (arg::Int) = e2 in
let f x = x in
let g x = f x in
g 1

The second advice declaration is higher-order as it advises an-
other advice n1. The advising mechanism in our language does not
prejudice functions over advices. The translation Γ ` ni : [[σ′]] 
ei in the premise of Rule (VAR-A) not only translates bodies of
advices but also chains ni with advices defined on it.

In the premises of Rule (ADV) and (ADV-AN), we note that
typing information of advices is not stored in Γbase. Thus, we
replace fi : σ′ ∈ Γbase by ni :∗ σ′ ∈ Γ.2 Consequently, the
check σ′ E [[σ]] in (ADV) becomes [[σ′]] E [[σ]] as σ′ may be
an advised type. By doing this, we assume advised advices are
translated before the advices defined on them. This is valid because
circular cases are precluded.

Thus, example 5 is translated into

let n1 = \arg.e1 in
let n2 = \arg.e2 in
let f x = x in
let g df x = df x in
g <f,{<n1,{n2}>}> 1

Note that advice n1 is chained with n2 before the chaining to f.

4.6 Correctness of Translation

One of the desirable properties of our type-directed weaving algo-
rithm is its reliance on a type-inference system that is a conserva-
tive extension of the Hindley-Milner Type System. (Note that the
notation [[·]] is defined in Figure 2.)

Theorem 3 (Conservative Extension) Given a program P con-
sisting of a set of advices and a closed base program e. If

` P : σ  P ′,

then

` e : [[σ]].

Our main theorem is to ensure that our translated program pre-
serves the type of the original program. When the original program
is of an advised type, the translated scheme will concretize the ad-
vice predicates into advice parameters, which constitute part of the
translated program. To this end, we define a function η that trans-
lates advised type to normal polymorphic type.

η(∀ā.ρ) = ∀ā.η(ρ)
η((x : t).ρ) = t → η(ρ)

η(t) = t

This main theorem ensures that the type-directed weaving is type-
safe.

Theorem 4 (Type Preservation) Given a program P consisting of
a set of advices and a closed base program. If

` P : σ  P ′,

2 Advices defined on functions cannot be treated this way because of possi-
ble recursiveness of the functions.

then
`i P ′ : η(σ).

5. Related Works and Discussions
Since the introduction of aspect-oriented paradigm [7], researchers
have been developing its semantic foundations. Most of the works
in this aspect were done in object-oriented context in which type
inference, higher-order functions and parametric polymorphism are
of little concern. Recently, researchers in functional languages have
also started to study various issues of adding aspects to functional
languages. Two notable works in this area, PolyAML [4] and As-
pectual Caml [9], have made many significant results in support-
ing polymorphic pointcuts and advices in strongly typed functional
languages such as ML. While these works have introduced some
expressive aspect mechanisms into the underlying functional lan-
guages, they have not successfully reconciled aspects with para-
metric polymorphism and higher-order functions – two essential
features of modern functional languages. Neither have they ade-
quately addressed the issues of advising advices, which we have
discussed in this paper.

PolyAML advocates first-class join points for constructing
generic aspect libraries [4]. It allows programmers to define poly-
morphic advices using type-annotated pointcuts. Unfortunately,
PolyAML in [4] does not support around advice. The authors are
currently extending the language to remedy this [14, 3]. In order
to support non-parametric polymorphic advice, PolyAML includes
case-advices which are subsumed by our type-scoped advices. Its
type system is a conservative extension to Hindley-Milner type
inference algorithm with a form of local type inference based on
the required annotation on pointcuts. A type-preserving translation
inserts labels which serve as marks of control-flow points. During
execution, advices are looked-up through the labels and runtime
type analysis are performed to handle the matching of type-scoped
pointcuts, through which execution pointcuts with higher-order
functions are supported. It is worth mention that this translation
has little resemblance to ours as it does not strive to make weaving
decisions at static time. Lastly, advices are anonymous in PolyAML
and apparently not intended to be the targets of advising, aka. no
higher-order advices.

Aspectual Caml [9], on the other hand, does not require annota-
tions on pointcuts. It gives pointcuts the most general types avail-
able in context and ensures that the types of the advices hinged on
the pointcut are consistent with the type of the pointcut. Similar to
PolyAML, it also allows a restricted form of type-scoped advices.
Yet, unlike our approach, the types of the functions specified in a
pointcut are not checked against the type of the pointcut during type
inference. Type safety of advice application is considered later in
the weaving process. After type inference, its weaver goes through
all type-annotated functions to insert advice calls. For each expres-
sion, it looks for advice definitions which have pointcuts that match
this expression. If the type of the pointcut is more general than
the type of the matched expression, the expression will be replaced
by an application to the advice function. This syntactic approach
makes it easy to advise anonymous functions. However, for poly-
morphic functions invoked indirectly through aliases or functional
arguments, this approach cannot achieve coherent weaving results.
It is also not clear how to extend the syntactic weaving scheme to
handle nested advices or higher-order advices.

The current work is a conservative extension of our previous
work [13], where we developed a type-directed weaving strategy
for functional languages featuring higher-order functions, curried
pointcuts and overlapping type-scoped advices. Around advices
are woven into the base program based on the underlying type
context using a Hindley-Milner type inference system extended
with advised types and source translation. Coherent translations are

44



achieved without using any dynamic typing mechanisms. However,
in that work, advices and functions are still kept in two completely
different levels: advices can neither invoke advised functions nor
advise other advices. It was also not clear how to weave advice into
polymorphic recursive functions properly. All these shortcomings
are fully addressed in this paper by re-designing our type inference
system and translation scheme.

In contrast to AspectJ’s direct translation into a non-aspect-
oriented language, our targeted intermediate language requires ad-
dition of chaining expressions. This has been designed for the pur-
pose of presentation clarity. There are many well known schemes
such as inlining and closure [2] which can be directly applied to
translate the intermediate language into a main stream non-aspect-
oriented language. For the purpose of this paper, we omit discus-
sions on this aspect as the added complexity does not contribute
any further insights into the static and coherent weaving problem
addressed here. Another advantage of our intermediate language is
that it supports incremental weaving. Note that a chaining expres-
sion 〈f , {ē}〉 has the same static semantics as f . Therefore, it is
straightforward to extend our current system to incorporate chain-
ing expressions of the form 〈f , {ē}〉 as the targets for chaining any
future advices defined on f.

Our type-directed translation was originally inspired by the
dictionary translation of Haskell type classes [12]. A number of
subsequent applications of it [8, 6] also shares some similarities.
However, the issues discussed in this paper are unique, which
makes our translation substantially different from the others.

6. Conclusion
Static typing, static and coherent weaving are our main concerns in
investigating how to incorporate the essential features of aspects
into a core functional language with higher-order functions and
parametric polymorphism. As a sequel to our previous results, this
paper has advanced our investigation in a variety of ways. Firstly,
the target language of our translational semantics of advice weaving
has been refined and given a neater formalization. Secondly, we
have devised new typing and translation rules to handle the weaving
of advices on polymorphic recursive functions. Thirdly, while the
basic structure of our type system remains the same, the typing
rules have been significantly refined and extended beyond the two-
layered model of functions and advices. Consequently, advices
can also be advised, either directly or indirectly. All these are
accomplished by fully exploring the type information available in
context and a novel technique of threading the types of matching
advice chains; it is truly a type-directed weaving.

Moving ahead, we shall continue this line of investigation in a
few directions. Currently the operational semantics of the interme-
diate language is purely reduction-based and hence we need to per-
form α-conversions to avoid name clashes. We plan to look into a
closure-based semantics for the intermediate language that should
be free of such intricacies. At the aspect language side, some ex-
tensions of the pointcuts are worth further investigation. Specifi-
cally, we shall consider how to support the control-related Cflow
pointcuts available in many Java-based aspect-oriented languages.
Finally, a prototype implementation is surely a necessary means
for us to explore potential applications of our type-scoped advices
[13].
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A. Sample Derivations
In this section, we present the typing/translation derivation of the
examples given in the paper. We use I as a short hand for Int to
save space. Some obvious details are also omitted.

A.1 Example 1

The derivation of the definition of f is:

Γ = {h :∗ ∀a.a → a h, n2 : ∀a.a → a ./ h,
n1 : I → I ./ h}

h : t → t dh ∈ Γ2
(VAR)

Γ2 ` h : t → t dh

x : t x ∈ Γ2
(VAR)

Γ2 ` x : t x
(APP)

Γ2 = Γ1, x : t x ` (h x) : t (dh x)
(ABS)

Γ1 = Γ, h : t → t dh ` λx.(h x) : t → t λx.(dh x)
(PRED)

Γ ` λx.(h x) : (h : t → t).t → t λdh.λx.(dh x)

The derivation of the main expression is:

Γ3 = {h :∗ ∀a.a → a h, n2 : ∀a.a → a ./ h,
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n1 : I → I ./ h, f : ∀a.(h : a → a).a → a f}

f : ∀a.(h : a → a).a → a f ∈ Γ3
(VAR)

Γ3 ` f : (h : I → I).I → I  f
a©

(REL)
Γ3 ` f : I → I  (f 〈h , {n1, n2}〉)

...

(APP)
Γ3 ` (f 1) : I  (f 〈h , {n1, n2}〉 1)

a© =
h :∗ ∀a.a → a h ∈ Γ3 ...

(VAR-A)
Γ3 ` h : I → I  〈h , {n1, n2}〉

A.2 Example 2

The derivation of the definition of f is:

Γ = {g : I → I  g, head : ∀a.[a] → a head,
tail : ∀a.[a] → [a] tail}

f : [a] → [a] df ∈ Γ2
(VAR)

Γ2 ` f : [a] → [a] df
...

(APP)
Γ2 = Γ1, x : [a] ` f (tail x) : [a] df (tail x)

(*)
Γ1 = Γ, f : [a] → [a] df ` λx....then f (tail x)...

: [a] → [a] λx....then df (tail x)...
(PRED)

Γ ` λx....then f (tail x)... : (f : [a] → [a]).[a] → [a]
 λdf.λx....then df (tail x)...

The derivation of the main expression is:

Γ3 = {g : I → I  g, head : ∀a.[a] → a head,
tail : ∀a.[a] → [a] tail, n : I → I ./ f,
f :∗ ∀a.(f : [a] → [a]).[a] → [a] f}

f :∗ ∀a.(h : [a] → [a]).[a] → [a] f ∈ Γ3
(VAR-A)

Γ3 ` f : (f : [I] → [I]).[I] → [I] λy.〈f y , {n}〉
(REL-F)

Γ3 ` f : [I] → [I] let F = λy.〈f y , {n}〉 F

...

(APP)
Γ3 ` (f [1, 2, 3]) : [I] (let F = λy.〈f y , {n}〉 F ) [1, 2, 3]

A.3 Example 4

The derivation of the definition of n3 is:

Γ = {f :∗ ∀a.a → a f, n1 : I → I ./ f,
n2 : ∀a.a → a ./ f}

f : a → a df ∈ Γ2
(VAR)

Γ2 ` f : a → a df
...

(APP)
Γ2 = Γ1, arg : a arg ` f arg : a df arg

(ABS)
Γ1 = Γ, f : a → a df ` λ arg.f arg : a → a

 λ arg.df arg
(PRED)

Γ1 = Γ, prd : a → a ` λ arg.f arg : (f : a → a).a → a
 let n = λ df.λ arg.df arg

(ADV)
Γ ` n3@advice around g (arg) = f arg in ... : ...

 let n = λ df.λ arg.df arg in...

Similarly, h is inferred to have type (g : a → a).a → a. The
reason for this advised type is that n3 fails to be chained with the
g-call in that context as the sub-derivation Γ ` n3 : a → a in
(VAR-A) fails.

The derivation of the main expression is:

Γ3 = {f :∗ ∀a.a → a f, n1 : I → I ./ f,

n2 : ∀a.a → a ./ f, n3 : ∀a.(f : a → a).a → a ./ g
g :∗ ∀a.a → a g, h :∗ ∀a.(g : a → a).a → a h}

h : ∀a.(g : a → a).a → a h ∈ Γ3
(VAR)

Γ3 ` h : (g : I → I).I → I  h
a©

(REL)
Γ3 ` h : I → I  (h 〈g , {n3 〈f , {n1, n2}〉}〉)

...

(APP)
Γ3 ` (h 1) : I  (h 〈g , {n3 〈f , {n1, n2}〉}〉 1)

a© =

...
(VAR)

Γ3 ` n3 : (f : I → I).I → I n3

...
(VAR-A)

Γ3 ` f : I → I
 〈f , {n1, n2}〉

(REL)
Γ3 ` n3 : I → I  n3 〈f , {n1, n2}〉

(VAR-A)
Γ3 ` g : I → I  〈g , {n3 〈f , {n1, n2}〉}〉

A.4 Example 5

The derivation of the main expression is:

Γ = {f :∗ ∀a.a → a f, n1 :∗ I → I ./ f,
n2 : I → I ./ n1, g : ∀a.(f : a → a).a → a g}

g : ∀a.(h : a → a).a → a g ∈ Γ
(VAR)

Γ ` g : (f : I → I).I → I  g
a©

(REL)
Γ ` g : I → I  g 〈f , {〈n1 , {n2}〉}〉

...

(APP)
Γ ` (g 1) : I  (g 〈f , {〈n1 , {n2}〉}〉 1)

a© =

n1 :∗ I → I  n1 ∈ Γ ...
(VAR-A)

Γ ` n1 : I → I  〈n1 , {n2}〉
...

(VAR-A)
Γ ` f : I → I  〈f , {〈n1 , {n2}〉}〉
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ABSTRACT 
Unless explicitly prevented, aspects can apply to themselves and 
can therefore change their own behaviour. This self-adaptation 
can lead to syntactically correct programs that express antino-
mies, i.e., that are meaningless (have no intuitive semantics). 
Drawing the parallel to mathematical logic, we suggest adopting 
the classical solution presented by Russell and Tarski, i.e., the 
separation of language into different levels. We propose a simple 
static type system for AOP that is based on such stratification and 
that not only helps avoid certain common programming errors, 
but also reflects on its inherent nature. 

Categories and Subject Descriptors 
D.3.1 [Programming Languages]: Formal Definitions and The-
ory – Semantics, Syntax 

D.3.3 [Programming Languages]: Language Constructs and 
Features – Recursion  

General Terms 
Languages, Theory, Verification. 

Keywords 
Aspects, aspect-oriented programming, meta-programming, self-
referentiality, antinomy, paradox, types 

1. INTRODUCTION 
AOP [4] [11] evolved out of meta programming [12]. It packs 
intercession, i.e., the possibility to intercept certain events in the 
course of a program and to insert event-specific behaviour, into a 
new language construct, the aspect. 

Aspects are extremely powerful. In fact, they are so powerful that 
most contemporary implementations restrict their expressive 
power through certain syntactical constraints. For instance, most 
AOPLs do not let aspects advise other aspects (or even them-
selves). AspectJ [1][10], which has a primitive pointcut advice-
execution() that covers all executions of advices, provides con-
structs such as cflow(.) and within(.) (or, rather, !within(.)) 

that can be used to prevent self-reference and hence infinite recur-
sion. However, these restrictions and by-passes are usually ad hoc 
in nature and not argued for on conceptual grounds; in fact, the 
general approach of language development seems to be that 
AOPLs are evolved according to their users’ needs, and problems 
are fixed once they are discovered. 

In this paper, we take a more principled approach to restricting 
the expressive power of AOPLs by revisiting a famous series of 
problems in logic and drawing the analogy to AOP. For this, we 
briefly recapitulate an ancient paradox known as the antinomy of 
the liar, and present certain variations of it that can be trans-
formed into aspect-oriented programs (Section 2). Following the 
reasoning of the logicians who first solved the problem, we argue 
that any formal language allowing the expression of such antino-
mies is unsound, and needs mending (Section 3). In Section 4 we 
present several technical variants of a surprisingly simple solution 
that not only avoids all paradoxes of the discussed kind, but also 
other unwanted recursion of aspect application that until today 
can only be avoided by explicitly introducing certain run-time 
checks. In the discussion we compare our approach to related 
work, and find that it sheds some light on the nature of AOP. 

2. FAMOUS ANTINOMIES AND THEIR 
TRANSLATION TO AOP 
One of the oldest and also best known antinomies is that of the 
liar: when Epimenides the Cretan said that all Cretans are liars, 
and everything else they said was in fact untrue1, he begged the 
question whether he himself told the truth, or lied. While the an-
tinomy in Epimenides’ utterance depends on certain assumption 
concerning the meaning of words, the paradox in it its simplest 
reduction, 

“This sentence is false.” 

is fairly obvious: if the sentence is true, then by its meaning it 
must be false, and if it is false, the opposite of its meaning must 
be true, i.e., it must be true, thereby contradicting the presupposi-
tion. 
 
This antinomy, which could not be resolved for some 2,500 years, 
has many incarnations. For instance, consider the following two 
sentences which, each one for itself being easy to understand, 
form an unpleasant loop ([8], p. 21): 

                                                                 
1 quoted after Bertrand Russell [13]. The original statement of 

Epimenides does not appear to have been formulated to provoke 
a contradiction. 
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1. The following sentence is false. 
2. The preceding sentence is true. 

Interpreting the first sentence as true makes the second sentence 
false which, assuming a binary (Boolean) logic, would make the 
first sentence false, thus making the second sentence true. Inter-
preting the second sentence as true makes the first one true and 
thus makes itself, the second sentence, false, and so on. There is 
no way out of this. 

2.1 Formulations in AOP 
Translating the above two sentences to an AspectJ program is 
almost straightforward. All we have to do is to replace the truth 
values true and false with execution and non-execution, respec-
tively. Sentence 1 then translates to 
public aspect S1 { 
  void around(): adviceexecution() && within(S2) { 
  } 
} 

i.e., the advice of S1 negates the execution of S2’s advice (because 
it contains no proceed()). Accordingly, sentence 2 translates to 
public aspect S2 { 
  void around(): adviceexecution() && within(S1) { 
    proceed(); 
  } 
} 

i.e., the advice of S2 confirms the execution of S1’s advice. The 
intuitive semantics of these two aspects would imply that when-
ever the advice of S1 is to be executed, it does not get executed, 
because the proceed() in the advice of S2 (which would com-
mence its execution) is cancelled by S1. Now if one accepts that 
execution of S1’s advice is cancelled, the advice of S2 (the pro-
ceed()) does not get cancelled (by S1), so that there is not reason 
why S1 should not get executed in the first place. 
Starting the loop with the advice of S2, the picture is not much 
different: before S2’s advice can get executed, that of S1 is exe-
cuted, which cancels the execution S2’s advice and with it, 
through cancellation of proceed(), also cancels the execution of 
S1’s advice. 
The operational semantics of AspectJ (as implemented by its 
compiler) has a simple solution to this paradox: since it calls the 
advices of both aspects in alternating order before it does any-
thing (i.e., call or not call proceed()), it never comes to the core 
of the problem, but rather causes a stack overflow. 
One might argue that S2 is really a non-aspect, since it does not 
do anything other than intercept an invocation of S1’s advice and 
then continue with it. In fact, the following reduced aspect S could 
be thought of as inlining S2 in S1: 
public aspect S { 
  void around(): adviceexecution() && within(S) { 
    // do something, but do not proceed 
  } 
} 

It could be interpreted as the programmatic form of “This sen-
tence is false”. Its intuitive semantics again would imply that 
whenever the advice of S is to be executed, it does not get exe-
cuted, because the proceed() in the advice of S is lacking. With-
out a non-executed proceed(), however, there is no reason why S 
should not get executed. Admittedly, this is taking intuition a little 

far, but on the other hand, what is aspect S to express? Should it 
“do something”, do nothing, or recur infinitely?2 
Finally, the antinomy of the liar can be paraphrased in program-
ming terms beginning with “all routines returning a truth value are 
always (i.e., for all calls) wrong”. The passionate AO programmer 
might believe that this could easily be corrected by introducing a 
repair aspect, namely by 
aspect Negate { 
  Object around(): execution(* *(..)) 
      || adviceexecution() { 
    Object c = proceed(); 
     if (c instanceof Boolean && c!= null) 
 return !((Boolean) c);  
     else 
       return c; 
   } 
} 

However, since the aspect would also have to correct itself, it is 
unclear what it should return in this case: upon execution, the 
above AspectJ code does the best it can — it runs into an infinite 
recursion, thus refusing to give an answer to the question. 

2.2 Antinomies That Currently Cannot Be 
Expressed 
There are also variations of the antinomy that cannot be expressed 
in AspectJ. Among the most famous is the barber who shaves all 
and only the people who do not shave themselves: assuming the 
barber shaved himself he would disregard the condition to shave 
only the people who do not shave themselves; assuming that he 
did not shave himself on the other hand he would, by the premise 
of his job description, have to shave himself. One way or another, 
the barber fails to meet the requirements of his task. 

At first glance, this antinomy can be easily transcribed to AOP, 
namely to the following, informally defined aspect: 

“Aspect Barber advises all and only the aspects 
that do not advise themselves.” 

In AspectJ, that a concrete aspect A advises itself, i.e. its own 
pieces of advice, is expressed by the following pointcut: 
adviceexecution() && within(A) 

Conversely, that the aspect A does not advise itself is expressed by 
adviceexecution() && !within(A) 

The difficulty comes from generically expressing all aspects that 
advise, or do not advise, themselves. Due to existing language 
restrictions, AspectJ currently has no means of checking if an 
aspect advises itself. Whether intentional or not, this restriction 
saves AspectJ from being able to express the Barber’s antinomy. 

2.3 Non-Paradoxical Recursion 
That the adviceexecution() pointcut designator can lead to infi-
nite recursion is a well-known problem. In fact, in [6] it is stressed 
that 

                                                                 
2 As it turns out, it will recur infinitely as the advice is executed 

(“called”) even though it does nothing. An optimizing aspect 
compiler might however change this semantics. 
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[t]he preferred way to use the adviceexecution() point-
cut is to pair it with within(YourAspect), thus limiting its 
scope to advice appearing in the body of YourAspect. 

 “The AspectJ Programming Guide” [3] gives a concrete example 
of this and shows how to avoid it: 
aspect TraceStuff { 
  pointcut myAdvice(): adviceexecution() &&   
    within(TraceStuff); 
  before(): call(* *(..)) && !cflow(myAdvice()) { 
    // do something matching call(* *(..)) 
  } 
} 

However, the recursion that would occur in the application of 
TraceStuff if !cflow(myAdvice()) were not included in the 
pointcut of the before advice can be considered a plain program-
ming error.3 In particular, it does not give rise to antinomies of the 
above kind, and its interpretation by the AspectJ compiler is not at 
conflict with its intuitive semantics. On the other hand, it is a 
programming error that is easily overlooked, one that would be 
nice if the language definition prevented the programmer from. 
We will return to this issue in Section 4. 

2.4 Aspect Recursion Not Involving the Ad-
vising of Advice 
Finally, we point the reader to the fact that there is a form of (usu-
ally unintended, i.e., erroneous) recursion that is caused by aspect 
application, but that does not involve the advising of aspects. The 
following gives an example of this: 
public class Innocent { 
   public void someMethod() { 
     ... 
   } 
} 
 
public aspect Naughty { 
   before(Innocent a): 
       execution(void Innocent.someMethod()) 
       && target(a) { 
     a.someMethod(); 
   } 
} 

Note that recursion does not involve an adviceexecution() point-
cut. 
This kind of problem occurs when aspects access elements of the 
base program, thereby triggering (other) aspects including them-
selves. This however is of a different quality than the problems 
induced by the self-referentiality of aspects discussed above, and 
we make no proposals suggesting how to avoid such problems. 

3. GREAT ESCAPES 
It was one of the most significant mathematical discoveries of the 
early 20th century that antinomies of the presented kind are not the 
result of some linguistic sophistry, but rather question the funda-
mentals of all mathematical reasoning. In fact, mathematicians of 
that time (including Russell) seriously considered abandoning set 
theory altogether (and with it the concept of classes and relation-
ships). Luckily for us, they did not, but instead came up with sev-
eral solutions that avoided these problems. One of the earliest was 
                                                                 
3 In fact, in [2] the authors note that “circular adviceexecution() 

applications are very rare, and usually pathological and a symp-
tom of an error in the program.” 

formulated by Russell himself as his “theory of types”, the essen-
tial idea of which, the distinction of different levels of proposi-
tions, was later repeated in Tarski’s contemplations regarding the 
notion of truth. As it turns out, Russell’s and Tarski’s solution 
makes a useful contribution to AOP, but before transferring it to 
our problem, we briefly revisit the original works, one by one.   

3.1 Russell’s Theory of Types 
In the year 1901 Russell discovered a fundamental problem in the 
naïve form of set theory that at that time was thought to be the 
basis of mathematics. In [13] he formulated “the class of all those 
classes which are not members of themselves”: 

}|{ XXXM ∉=  

The problem with this definition is that whichever of the two 
possible alternatives M ∈ M and M ∉ M one assumes, the oppo-
site follows: 

MMMM
MMMM

∈⇒∉
∉⇒∈

 

Russell noted that the problem can only be avoided by agreeing 
that “[w]hatever involves all of a collection must not be one of 
the collection”. However, the problem is that it is unobvious how 
to specify such a condition, since  

[w]e cannot say: “When I speak of all propositions, I 
mean all except those in which ‘all propositions’ are men-
tioned”; for in this explanation we have mentioned the 
propositions in which all propositions are mentioned, 
which we cannot do significantly. […] The exclusion 
[therefore] must result naturally and inevitably from our 
positive doctrines, which must make it plain that “all 
propositions” and “all properties” are meaningless 
phrases. [13] 

Russell solved this problem constructively by introducing a “hier-
archy of types”: 

A type  is defined as the range of significance of a pro-
positional function, that is, as the collection of arguments 
for which the said function has values. Whenever an ap-
parent variable occurs in a proposition, the range of val-
ues of the apparent variable is a type, the type being 
fixed by the function of which “all values” are con-
cerned. The division of objects into types is necessitated 
by the reflexive fallacies which otherwise arise. These 
fallacies, as we saw, are to be avoided by what may be 
called the “vicious-circle principle”, that is, “no total-
ity can contain members defined in terms of itself”. 
This principle, in our technical language, becomes: 
“Whatever contains an apparent variable must not 
be a possible value of that variable”. Thus whatever 
contains an apparent variable must be of a different type 
from the possible values of that variable; we will say 
that it is of a higher type. Thus the apparent variables 
contained in an expression are what determines its type. 
This is the guiding principle in what follows. [13] 

Transferred to our problem of self-reference in AOP, the function 
advice(joinpoint) 

defines as a type the set of possible values the variable joinpoint 
may adopt. The value of advice(joinpoint) however must be of a 
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higher type, so that it cannot be a value of joinpoint. It follows 
that no advice can serve as its own join point or, phrased differ-
ently, that no advice can advise itself. We will exploit this in our 
typing system for AOP described in Section 4. 
It is interesting to note that Russell’s type theory was only later 
generalized into sorted (and also order-sorted) predicate logic, 
whose sorts map closely to the types we know from typed pro-
gramming languages. Since logic is usually restricted to first or-
der, its sorts are all of Russell’s type 1, i.e., they are sets of indi-
viduals (the objects). Our type system suggested in Section 4 lifts 
this restriction. 

3.2 Tarkski’s Distinction between Object 
Language and Meta-Language 
In his discussion of the semantic conception of truth [17] Tarski 
analyzed the assumptions which lead to the antinomy of the liar, 
and observed the following: 

I. We have implicitly assumed that the language in 
which the antinomy is constructed contains, in addi-
tion to its expressions, also the names of these expres-
sions, as well as semantic terms such as the term 
“true” referring to sentences of this language; we 
have also assumed that all sentences which determine 
the adequate usage of this term can be asserted in the 
language. A language with these properties will be 
called “semantically closed.”  

II. We have assumed that in this language the ordinary 
laws of logic hold.  

[…] Since every language which satisfies both of these 
assumptions is inconsistent, we must reject at least one of 
them. [17] 

Because the ordinary laws of logic are hard to renounce, it seems 
that semantic closedness cannot be upheld. Now if we agree 

not to employ semantically closed languages, we have to 
use two different languages in discussing the problem of 
the definition of truth and, more generally, any problems 
in the field of semantics. The first of these languages is the 
language which is “talked about” and which is the sub-
ject matter of the whole discussion; the definition of truth 
which we are seeking applies to the sentences of this lan-
guage. The second is the language in which we “talk 
about” the first language, and in terms of which we wish, 
in particular, to construct the definition of truth for the 
first language. We shall refer to the first language as “the 
object language,” and to the second as “the meta-
language.” [17] 

Tarski further argues that in order to make statements about state-
ments formulated in the object language, “the meta-language must 
be rich enough to provide possibilities of constructing a name for 
every sentence of the object language.” Regarding truth, the meta-
language must also contain terms of general logic such as AND, 
OR and NOT. 
It springs to mind that the meta-language of Tarski and aspect 
languages (AspectJ in particular) have a lot in common. Quite 
obviously, since AspectJ extends Java, every sentence of the ob-
ject language (Java) can occur in the meta-language (AspectJ). 
Names for expressions in the object language can be constructed 

by using pointcuts (the fact that it is not possible to construct a 
pointcut for every element of the object language is merely a limi-
tation of the implementation). Last but not least, the meta-
language contains logical terms for the formulation of pointcuts. 
Because we were able to reconstruct the antinomies in AspectJ, 
we conclude that it is semantically closed; in order to avoid them, 
we have to introduce a clear distinction between object language 
and meta-language. 

4. TYPE-SAFE AOP 
We will start the presentation of our solution with a practical ex-
ample. It contains a recursion analogous to those presented in 
Section 2.3 and [3], but no antinomy. However, as we will elabo-
rate later our solution is powerful enough to also avoid all an-
tinomies we were able to express in Section 2.1, as well as ones 
that cannot (yet) be formulated, enabling certain future language 
extensions that seem too risky today. 
One of the best known (and most often cited) applications of as-
pects is tracing: if the execution paths of a program become unob-
vious, a trace may help to find out what exactly is going on. How-
ever, because of its obliviousness property AOP comes with its 
very own tracing demands: the programmer might be particularly 
interested when a certain aspect (or all aspects) are executed or, 
more challenging, in which order certain conflicting pieces of 
advice are executed on the same join point4.  
Writing an advice that traces all method executions and advice 
executions seems an easy exercise. The first solution a program-
mer might propose, namely 
public aspect Tracing { 
  void around(): adviceexecution()  

    || execution
5
 (* *(..)) { 

    System.out.println("Entering:" +   
      thisJoinPoint); 
    proceed(); 
    System.out.println("Leaving: " +  
      thisJoinPoint); 
  } 
} 

as a tracing aspect that traces both method and advice executions, 
as for instance 
public aspect Worker { 
  void around(): execution(* *(..)) {...} 
} 

and 
public class Base { 
  public void doSomething() {...} 
} 

does not work. Taking a closer look reveals that the pointcut at-
tached to the tracing advice selects the tracing advice itself (by 
means of the unrestricted primitive pointcut adviceexecution()), 
sending AspectJ into infinite recursion. This is clearly a pro-
gramming error, which has to be fixed somehow. 

                                                                 
4  Note that by the current definition of advice precedence in As-

pectJ this order might be impossible to determine. Even worse, 
it may change in between two compiler runs. [5] 

5  Although we consistently use the pointcut designator execu-
tion(.) for referring to the base program throughout the fol-
lowing, it should be understood that it could be replaced by 
other pointcut designators such as set(.) or get(.). 
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An immediate solution would appear to be using the pointcut 
designator within(<TypePattern>), where <TypePattern> 
identifies a number of classes, interfaces and/or aspects. The 
formerly unrestricted pointcut adviceexecution() can then 
anded with (restricted by) !within(Tracing), i.e. only pieces of 
advice which are not in the lexical scope of the aspect Tracing 
are selected, as the following example shows. 
public aspect Tracing { 
  void around(): (adviceexecution() 
    && !within(Tracing))  
    || execution (* *(..)) { 
    ... 
  } 
} 

As it turns out, however, this construction cannot avoid indirect 
recursion. In fact, when applying it to aspect S1 from Section 2.1, 
it must remain ineffective, since within(S2) implies !within(S1). 
Therefore, one has to check explicitly whether S1 has already 
been activated, a test that can be performed with the aid of the 
cflow() function. Hence, in order to be sure that self application 
is under all circumstances avoided, one has to include the verbose 
construct presented in Section 2.3. Thus, our tracing aspect be-
comes the clumsy 
public aspect Tracing { 
  pointcut guard(): adviceexecution() &&  
    within(Tracing); 
  void around(): (adviceexecution() 
    || execution (* *(..))) && 
    !cflow(guard()) { 
    ... 
  } 
} 

It seems that the introduction of adviceexecution() as a means to 
let aspects apply to aspects has made necessary a programming 
pattern that serves to fix the resulting problems. However, this 
pattern means that the infinite recursion introduced by advice-
execution() has to be explicitly detected and broken, and this at 
runtime. What would be desirable instead is that adviceexecu-
tion(), while allowing certain (wanted) recursion, can never 
mean the (generally nonsensical) infinite recursion to itself.6 In 
the following, we build such a solution on a theory of types as 
proposed by Russell or, equivalently, on a theory of object lan-
guage and meta-language as proposed by Tarski. We develop the 
solution in a stepwise manner, by first presenting a programming 
pattern using annotations to introduce type (or meta) levels, then 
sketching a preprocessor utility for AspectJ that frees the pro-
grammer from the coding overhead and error-proneness of the 
pattern, and finally by suggesting the addition of a new keyword 
meta to AspectJ whose semantics does the job all automatically. 

4.1 Step 1: Using Annotations and a Simple 
Programming Pattern 
The basic idea of the solutions of Tarski and Russell was the in-
troduction of different levels of language. What we need, there-
fore, is a way to organize the elements of an aspect-oriented pro-
gram into several levels. With the new annotation feature of Java 
                                                                 
6  Note that this cannot be achieved simply by excluding every 

occurrence of adviceexecution() from its own scope, since the 
recursion may be indirect. Cf. also Russell’s comment on the 
impossibility of explicit avoidance of self-reference in Section 
3.1. 

5.0 and AspectJ5 one can introduce such stratification, thereby 
simulating the distinction of Java as the object language and As-
pectJ as the meta-language, or the type levels of Russell. 
We declare the annotation needed for this purpose as follows: 
@Retention(RetentionPolicy.SOURCE) 
@Target(ElementType.TYPE) 
public @interface TypeLevel { 
   int value() default 0; 
} 

Note that our annotating TypeLevel with the built-in meta-
annotation @Retention(RetentionPolicy.SOURCE) implies that 
we evaluate the annotations statically (in contrast to cflow(), 
which can only be evaluated dynamically!). A second built-in 
meta-annotation, @Target, is set to ElementType.TYPE; it prevents 
the annotation of elements other than types, i.e. classes, inter-
faces, and aspects, by prompting a corresponding compilation 
error.  
Our TypeLevel annotation has one argument which represents the 
meta-level of the annotated element. By definition the elements 
(class or interface) of the object language will have a meta-level 
of 0, meaning that they must be annotated with @TypeLevel(0), 
and the elements (aspects) of the meta-language addressing ele-
ments of the object language (i.e., advice without an adivce-
execution() in its pointcut) will have a meta-level of 1, meaning 
that they must be annotated with @TypeLevel(1).7 Thus, the base 
of our aspect Tracing must be annotated as 
@TypeLevel(0) 
public class Base { 
  public void doSomething() {...} 
} 
 
@TypeLevel(1) 
public aspect Worker { 
  void around(): execution(* *(..)) {...} 
} 

When moving to the next higher level, the (former) meta-
language becomes the (new) object language, so that the (new) 
meta-language ranges at level 2: advice with an adviceexecu-
tion() in its pointcut is to be annotated with @TypeLevel(2) or 
higher:  
@TypeLevel(2) 
public aspect Tracing { 
  void around(): adviceexecution() {...} 
} 

The problem that remains is how to restrict the scope of the ad-
viceexecution() pointcut to aspects of levels lower than that of 
its enclosing aspect. As it turns out, AspectJ 5 is equipped with 
the @within(Annotation) pointcut designator that matches only 
join points belonging to a type annotated with Annotation. By 
adding @within(TypeLevel) plus the explicit guard 
if(TypeLevel.value() < 2) to the pointcut, our tracing aspect 
can be formulated as  
@TypeLevel(2) 
public aspect Tracing { 
  void around(): (adviceexecution() 
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 2)) 
    || execution (* *(..)) { 
    System.out.println("Entering: " +  

                                                                 
7  Note that both Russell and Tarski introduced no absolute, but 

only relative levels. However, since our domain is AOP, the 
level of the (non-aspect) base program is as low as we can get. 
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      thisJoinPoint); 
    proceed(); 
    System.out.println("Leaving: " +  
      thisJoinPoint); 
  } 
} 

without limiting its meaning unduly. 
Unfortunately, things are not as simple with the current imple-
mentation of AspectJ, as the following example shows: 
@TypeLevel(2) 
public aspect Tracing { 
  void around(): (adviceexecution() 
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 2)) 
    || execution (* *(..)) { 
      helpMethod(); 
    } 
  } 
  void helpMethod() {...} 
} 
 
@TypeLevel(1) 
public aspect Worker { 
  void around(): execution(* *(..)) {...} 
} 

When including in the aspect Tracing an arbitrary helper method 
(here: helpMethod()) and calling it from the aspect’s advice, as-
pect Worker (which advises all method executions) advises the 
execution of this method, and therefore indirectly also the aspect 
Tracing even though it is of a higher type level. This leads to an 
infinite recursion as the execution of Worker’s advice triggers the 
advice of Tracing’s which executes the method helpMethod() 
again. The only way out of this (without checking the call stack) 
is to exclude execution() from applying to methods defined 
within aspects.8 To achieve this, execution(.) pointcuts also 
have to be guarded:  
@TypeLevel(2) 
public aspect Tracing { 
  void around(): (adviceexecution() 
    || execution (* *(..))) 
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 2) { 
    helpMethod() 
  } 
  void helpMethod() {...} 
} 
 
@TypeLevel(1) 
public aspect Worker { 
  void around(): execution(* *(..))  
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 1) { 
    ... 
  } 
} 

The accidental recursion is thus removed. It follows immediately 
that annotating base type (classes and interfaces) with 
@TypeLevel(0) cannot be avoided, although at first glance this 
seems to be redundant (because the base has execution and other 

                                                                 
8  One may ask oneself why AspectJ, while granting advice exe-

cution a different status (“higher level”) than method execution, 
does not extend this to the methods defined within the aspect, in 
particular since inlining these methods should not change the 
meaning of the aspect. 

exclusive pointcut designators that cannot apply to pieces of ad-
vice, and because it cannot be caught by adviceexecution()).9 
Unfortunately, this solution has several problems. First, it only 
works if all types are tagged with their corresponding annotation, 
because if a type (class, interface, or aspect) is not annotated, a 
guarded pointcut will not select its join points, voiding all its as-
pects. Second, the programmer is responsible for ensuring the 
constraint that the value of the type guard of a pointcut is always 
lower than its own aspect’s type level (because there are no means 
to instruct the compiler to check annotation values). Last but not 
least, the required code is highly stereotypical (it is in fact a cod-
ing pattern), and experience teaches that the implied programming 
overhead will not be welcomed by practicing programmers, par-
ticularly if workarounds requiring less coding (the within(.)/ 
!cflow(.) pattern) are available. Since annotating types and 
guarding advice cannot be enforced by the compiler, it will most 
likely not be used. On the other hand, much of the task is so 
stereotypical that it can be delegated to a pre-processor, as dis-
cussed next.  

4.2 Step 2: Using a New Built-in Annotation 
The next major Java release (codenamed “Mustang”) will allow 
user-defined annotations to be included into the compilation proc-
ess by means of a special interface to the compiler [9]. Once 
available, this pre-processing facility should allow us to extend 
the compiler with a pre-processor reducing the work and respon-
sibility of the developer, and thus the likelihood of making errors. 
In this section we will therefore sketch such a pre-processor 
which, in concert with a correctly annotated program, statically 
ensures that the typing conditions of our language are satisfied.  
In our description, we assume a procedure for pre-processing 
described in the Annotation Preprocessing Tool Manual [16]. The 
pre-processor for the tagging task, making sure that every aspect 
is appropriately annotated, is straightforward to write:  
foreach type in program 
  if isTypeTagged(type) 
    do nothing 
  else 
    if (type == Class || type == Interface) 
      type.tagWithLevel(0) 
    if (type == Aspect) 
      type.tagWithLevel(1) 
endfor 

Therefore, when feeding an untagged program to the pre-
processor, it assumes that it consists of only base program and 
level 1 aspects, but no aspects advising aspects.10 After this pre-
processing step every type is, either by the pre-processor or by the 
developer, tagged with a TypeLevel annotation. 
In the next step the pre-processor must generate the guards which 
are required to complete stratification of our language. The fol-
lowing pseudo code attaches the code pattern 
@within(TypeLevel) && if(TypeLevel.value() < t), where t 
is the type level of the enclosing aspect, to every pointcut (un-
                                                                 
9  Note that if one insists that helpMethod() in Tracing is of type 

level 0 (the AspectJ view; cf. Footnote 8), i.e., part of the base, 
the resulting recursion is analogous to that discussed in Section 
2.4, meaning that it cannot be broken by our type system. 

10As we will see below, occurrence of an adviceexecution() 
pointcut in such a program will flag an error. 
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named or named) in the lexical scope of the aspect under investi-
gation. 
foreach aspect in program 
  foreach pointcut in aspect 
    t := getTypeLevel(aspect) 
    attachGuard(pointcut, t) 
  endfor 
endfor 

The generated guard allows the pointcut to select only join points 
occurring in the lexical scope of types annotated with a type level 
below its own. Thus our tracing advice  
@TypeLevel(2) 
aspect Tracing { 
  void around(): adviceexecution() 
    || execution (* *(..)) {...} 
} 

will be automatically extended to  
@TypeLevel(2) 
aspect Tracing { 
  void around(): (adviceexecution() 
    || execution (* *(..))) 
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 2) {...} 

whereas  
@TypeLevel(1) 
aspect Tracing { 
  void around(): adviceexecution() 
    || execution (* *(..)) {...} 
} 

will be extended to  
@TypeLevel(1) 
aspect Tracing { 
  void around(): (adviceexecution() 
    || execution (* *(..))) 
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 1) {...} 

which has an empty pointcut, because adviceexecution() only 
matches to program elements in the scope of type level 1 or 
higher. At this point, the pre-processor should flag a type level 
mismatch error. 
The annotation-based pre-processing suffers from one rather sub-
tle problem: it assumes that all pointcuts are intended to refer to 
program elements of any lower level. However, a programmer 
might want to specify that adviceexecution() should match ad-
vice at a particular level (and no other), and this level need not 
even be precisely 1 below itself. In such a case, an explicit guard 
(involving “=” rather than “<”) will be required. We will present a 
more elegant solution for this in the next step. 

4.3 Step 3: Extending the Language with the 
Meta Modifier 
Although the exploitation of “semantic” (i.e., built-in, but user-
defined) annotations reduces the programming overhead and the 
possibility to make mistakes, it is still only a precursor to full 
language support. In particular, it would be desirable for the com-
piler to detect and flag all errors related to the typing of aspects, 
just as it discovers other, conventional typing errors. Also, we 
believe that our suggested typing of aspects deserves the status of 
a new, native language construct, since it addresses a fundamental 
problem inherent in AO languages. Therefore, we propose a 
small, yet very effective extension to AspectJ which equips it 
with a type system à la Russell (not to be confused with the type 
system of Java) and Tarski, allowing the safe advising of advice. 

Frankly, in our extended language attempting to compile 
 
public aspect Tracing { 
  void around(): adviceexecution() ... 
} 

would result in an error message “type level mismatch error: con-
sider modifying aspect Tracing with meta”, because 
adviceexecution() may refer to itself. The keyword meta 
preceding an aspect definition lifts the so-declared aspect up one 
level, i.e., it declares it as an aspect of both aspects and base 
programs (where the former must themselves be aspects of base 
programs, not of aspects). For instance, 
meta aspect Tracing {...} 

makes Tracing a meta aspect that can apply to the base program 
and aspects (Base and Worker in the above example), but not meta 
aspects, thereby excluding self-reference. The pointcut definition 
of Tracing can remain as is; in particular, it need not be explicitly 
guarded: it can refer only to lower levels by the definition of the 
language. 
Now the lifting procedure can be applied repeatedly, raising the 
meta level of aspects even further. Although there will most likely 
be no need for having aspects on a level higher than 3 (given the 
usual four-layer architecture), there seems to be no obvious theo-
retical bound to meta levels. Therefore, rather that introducing 
ever new meta modifiers, we propose to denote the meta-meta 
level with meta^2, and generally concatenation of n metas by 
meta^n. meta is then simply shorthand for meta^1, and absence of 
meta is shorthand for meta^0. However, it is important to note that 
theoretically, for n > 0 each meta^n represents a different keyword 
of our language, and our shorthand notation is only introduced to 
allow the compiler to accept them as they are used in a program. 
We will return to this subtlety in Section 5.4. Here, we note that 
an aspect that is to apply to Tracing would have to be declared as 
meta^2 aspect GodAspect {...} 

or higher. 
Following Russell’s theory of types, we allow meta-aspects to 
apply to aspects as well as to base programs, rather than to aspects 
alone. We have no particular reason for this other than that we do 
not want to place unnecessary restrictions on the formalism. Had 
we decided that aspects can exclusively apply to program ele-
ments one level below them, no distinction between the execu-
tion() and the adviceexecution() pointcut designator would 
have been necessary: execution() would have sufficed (denoting 
base code or aspect execution, depending on the level of the de-
fining aspect). 
With the possibility of adviceexecution() pointcuts spanning 
arbitrary levels, we may wish to have increased precision avail-
able for expressing specifically to which level a pointcut applies. 
For instance, while we can already distinguish between base pro-
gram (execution(.)) and aspect (adviceexecution()) and thus 
between type level 0 and higher levels, we may wish to be able to 
differentiate in our pointcuts between type level 1 and 2. There-
fore, we allow that the pointcut designator adviceexecution() 
can also be modified with the keyword meta, specifying the exact 
type level to which the so-modified pointcut is to apply. The 
pointcut  
pointcut metaAdvice(): meta adviceexecution(); 
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would thus select only advice defined in aspects of type (or meta) 
level 2, like our aspect Tracing from above. The meaning of the 
(unmodified) pointcut designator adviceexecution() is then re-
stricted to aspects of type level 1, i.e., those that are not meta 
aspects. Our tracing aspect can thus be rewritten as 
public meta aspect Tracing { 
  void around(): adviceexecution() 
    || execution (* *(..)) { 
    ... 
  } 
} 
 
public aspect Worker { 
  void around(): execution(* *(..)) {...} 
} 
 
public class Base { 
  public void doSomething() {...} 
} 

Note that, as mentioned at the beginning of this subsection, using 
the pointcut designator adviceexecution() in an ordinary (i.e., 
non-meta) aspect or, generally, meta[^n] adviceexecution() in 
any aspect declared as meta[^m] with m ≤ n, would result in a 
compilation error, since it violates the typing rules of our lan-
guage extension. The following table summarizes what is possi-
ble. 

Aspect level allowed pointcut designators 
aspect execution() 

meta aspect execution(), adviceexecution() 

meta^2 aspect execution(),adviceexecution(), 
meta adviceexecution()  

meta^3 aspect execution(),adviceexecution(), 
meta adviceexecution(), 
meta^2 adviceexecution() 

… … 

This so modified AspectJ is now type safe in terms of the type 
theory of Russell, and the antinomies presented in Section 2 can-
not be formulated in it, as the following demonstrates. 

4.4 Resolving the Antinomies 
With our new type system implemented, the code translation of 
the two contradictory sentences from Section 2.1 would now re-
sult in a type level mismatch (compilation) error, because the 
included (indirect) self-reference, i.e. adviceexecution(), while 
applying to type level 1, is in the lexical scope of an aspect of 
type level 1. In order to be well-typed, both S1 and S2 must be 
modified with meta as in 
public meta aspect S1 { 
  void around: adviceexecution() && within(S2) { 
  } 
} 
 
public meta aspect S2 { 
  void around: adviceexecution() && within(S1) { 
    proceed(); 
  } 
} 

This however automatically prevents the self-reference and thus 
the infinite recursion. In fact, both pointcuts do not select any join 
point, since adviceexecution() implicitly applies to type level 1 
whereas within(S2) and within(S1) apply to type level 2, so that 
the conjunction is always false. A corresponding compiler-

generated error, or at least a warning, to notify the developer of 
this problem would seem desirable. 
In the same vein, the recursions of all other paradoxical aspects 
presented above are naturally resolved. For instance, by modify-
ing the declaration of the Negate aspect to meta aspect Negate 
eliminates the possible self-reference, and thus the need to restrict 
adviceexecution() by means of other pointcuts like within(.) 
and cflow(.). The same holds for the unwanted recursion warned 
of in Refs. [3] and [6]. 

4.5 Handling of Aspect Members and Inter-
Type Declarations 
In Section 4.1 we mentioned that the weaving of AspectJ treats 
methods extracted from an advice as ordinary (base) methods, and 
showed how this can lead to indirect recursion. To solve this 
problem in our proposed extension of AspectJ, we assign to every 
join point in an aspect the type level of that aspect (cf. Footnote 
8). Therefore, it cannot be matched by pointcuts of the same or 
lower levels, breaking the recursion. 
To allow selective matching of the join points of an aspect ex-
posed by its members (methods and fields), we further extend 
AspectJ to allow modification of all other pointcut designators 
(i.e., call(.), execution(.), set(.), get(.), etc.) with meta^n. 
meta^n <pointcut> will select only join points occurring in the 
lexical scope of aspects of the corresponding level. Using meta^n 
<pointcut> in an aspect declared as meta^m with m < n will result 
in a (statically discovered) type level mismatch error. The com-
plete table of admissible pointcut designators in each aspect type 
level is the following:  

Aspect level allowed pointcut designators 
aspect current AspectJ pointcut designators ex-

cluding adviceexecution() 
meta aspect same as above plus adviceexecution() 

plus every other AspectJ pointcut designa-
tor modified with meta 

meta^2 aspect same as above plus meta adviceexecu-
tion() plus every other AspectJ pointcut 
designator modified with meta^2 

… … 

In order to catch all method executions in the base program and 
its (type level 1) aspects, our tracing aspect has to be rewritten as 
public meta aspect Tracing { 
  void around(): adviceexecution() 
    || meta execution (* *(..))  
    || execution (* *(..)) { 
    ... 
  }   
} 

It traces both the advice and the (helper) method of 
public aspect Worker { 
  void around(): execution(* *(..)) { 
    someMethod(); 
  } 
  void someMethod() {...} 
} 

For the convenience of the programmer it might prove useful to 
allow modification through meta^n also for defining the scope of 
named pointcuts. Instead of writing 
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void around(): meta get(* *)  
  && meta set(* *) {...} 

one could then write 
meta pointcut accessors(): set(* *) && get(* *); 
void around(): accessors() {...} 

One remaining issue is that of how AspectJ’s inter-type declara-
tions are to be integrated into our typing system. Returning to our 
tracing example once more, we extend the aspect Tracing with an 
introduction affecting the aspect Worker. 
public meta aspect Tracing { 
  void around(): adviceexecution() 
    || meta execution (* *(..))  
    || execution (* *(..)) { 
    ... 
  } 
  void Worker.doGood() {...}  
} 
 
public aspect Worker { 
  void around(): execution(* *(..)) {...} 
} 
 
public class Base { 
  public void doSomething() {...} 
} 

According to the current semantics of AspectJ the introduction 
Worker.doGood() is considered to be a member of the type it is 
introduced to, i.e., at least as regards join point matching it is 
equivalent to defining the method in the aspect Worker directly. 
This is in accord with our typing system: any aspect introducing 
elements to lower level types can also watch over their execution. 
For instance, in the above example the tracing aspect traces all 
executions of doGood() in Worker. Currently, we can see no need 
to restrict introductions to lower levels, i.e., introduction to same 
or higher levels should also be possible, with the restriction that 
these introductions can not be covered by pointcuts of the intro-
ducing aspect. 

4.6 Enabled Language Extensions 
With our type-level language extension defined as above, we are 
now ready to extend AspectJ safely with constructs allowing the 
expression of aspects that advise, or do not advise, themselves.11 
For instance, a special variable targetaspect can now be intro-
duced that refers to the (instance of) the aspect whose join point 
(as captured by an adviceexecution() pointcut) is currently han-
dled. Another special variable thisaspect can be added that re-
fers to the (instance of) the current (handling) aspect. Note that 
the type (level) of thisaspect is always the same as that of the 
advice in whose context (lexical scope) the variable occurs, while 
that of targetaspect is necessarily of a lower level; therefore, the 
expression of the aspect from Section 2.2 that advises all aspects 
that do not advise themselves, 
aspect Barber { 
  void around(): adviceexecution() {  
    if (targetaspect != thisaspect) { 
      proceed(); 
    else {} 
  } 
} 

causes a type level mismatch error in line 3. 

                                                                 
11 A similar request for language extension has been formulated in 

[14]. 

5. DISUSSION AND RELATED WORK 

5.1 Dependence of the Antinomies on a De-
clarative Interpretation 
When reconstructing the logical antinomies in AspectJ in Section 
2.1, we relied on what we called “intuitive semantics”. This as-
sumed intuitive semantics is basically a declarative one, i.e., we 
read the programs as assertions rather than as sequences of in-
structions. When looking at it with procedural glasses on, the 
advice of aspect S in Section 2.1 would read as “before executing 
any advice, call the advice of S”. Since “any advice” includes 
itself, the advice of S is called recursively before anything else is 
(not) done. Therefore, one might argue that there is no antinomy 
in the program, just an infinite recursion. However, the reader will 
agree that this procedural semantics (as defined by the AspectJ 
compiler) is non-obvious at best, and that in a well designed lan-
guage, intuitive semantics should match the operational one (the 
principle of least surprise). 
As an aside, it is interesting to note that the procedural semantics 
of aspects allows them to avoid self-reference through the 
cflow() construct. In fact, in a purely declarative interpretation, 
particularly without a notion of sequentiality and without having 
access to the history of execution, an exclusion of self-reference 
cannot be formulated (as noted by Russell in the quote of Section 
3.1). The price for this check is that it has to be done at runtime 
(and is in fact very expensive); by contrast, our type system al-
lows a static check, which (in terms of runtime overhead) is en-
tirely free. 
5.2 Typing to Prevent Programming Errors 
Even if one denies the existence of antinomies in the aspects con-
structed in Section 2.1, one will agree that a well-designed pro-
gramming language should save its programmers from program-
ming errors. In fact, type systems are generally accepted as serv-
ing this purpose; they discover many possible type mismatches at 
compilation time. However, the aspects of AspectJ, although syn-
tactically similar to classes, are untyped; therefore, current typing 
systems cannot prevent any errors related to advice application. 
We have adapted a typing system well-suited for this purpose 
from Russell’s theory of types and Tarski’s theory of object lan-
guage and meta-language; although it looks very different from 
that base language’s (i.e., Java’s) type system, it serves the same 
purpose: it prohibits the construction of illegal programs, and it 
prevents programming errors. 

5.3 The Orderedness of AOPLs 
It has been noted elsewhere that AOPLs are necessarily second-
order languages [15]. Second-orderedness by definition excludes 
self-referentiality, so that in all AOPLs that are true second order 
languages (as are all those languages that exclude aspects from 
being applied to aspects), the above antinomies cannot be ex-
pressed. However, as we have demonstrated here, at least AspectJ 
as its stands is an unordered language; like unordered logic, it 
allows the construction of Russell’s “vicious circles”. From all we 
can see, making AspectJ a well-ordered (“typed”) language as 
proposed here fixes the problems without imposing any undue 
restrictions. 
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5.4 Aspects of Aspects and the Closure of 
Languages 
The notion of aspects of aspects has stirred some theoretical con-
templation concerning the closedness of aspect languages. In  [7], 
the authors state that the goal of any aspect language should be 
that it be “closed with respect to aspectification (aspect closure)”. 
This is expressed by the equation A(L) = L, meaning that express-
ing aspect application to the language elements of L would make 
do with L, that is, would not require additional language elements. 
From this, they deduce that AspectJ as an instance of A(Java) is 
currently not closed, since obviously AspectJ ≠ Java, but also 
(currently) A(AspectJ) ≠ AspectJ. They argue in favour of such a 
closure since they observed that certain languages incorporating 
meta-programming, such as Smalltalk or CLOS, are also self-
contained, i.e., that there M(L) = L. However, they ignore that this 
is only possible because these languages resort to certain tricks: 
for instance, in Smalltalk the class MetaClass is an instance of 
itself. This however forbids the semantic interpretation of classes 
as sets and instances as elements of sets, since then the set of 
MetaClass would have to contain itself. At the same time, it is at 
odds with Tarski’s fundamental observation that the meta-
language must be richer than its object language, meaning that it 
cannot be “semantically closed”. 
Returning to the generic meta^n keyword discussion from Section 
4.3, we note that our language, although handled by a single com-
piler, is not semantically closed, since every new meta-level, i.e., 
A(L) where the highest type level in L is n, requires a new key-
word meta^n. In a similar vein, the syntax of predicate logic can 
encompass various orders (i.e., first order predicate logic, second 
order predicate logic, and so forth). 

5.5 Testing Advice 
In Ref. [14] it is argued that testing is a crosscutting concern, i.e., 
that testing code spreads across the whole system, and thus lends 
itself to being extracted to an aspect. All testing code can be en-
capsulated into one module which has privileged access to the 
original source without needing to modify it. Furthermore, the 
testing code is easily removed, by excluding it from compilation. 
As AOP seems to be well suited for testing object-oriented pro-
grams, the question arises whether it is also well suited for testing 
aspect-oriented programs. 
To focus the discussion, the authors distinguish between the “ap-
plication aspects”, i.e. aspects applying to the base program for 
some application-specific purpose, and “testing aspects”, i.e. as-
pect applying to the base program or application aspects for the 
purpose of testing them. With the aid of our type levels, one can 
syntactically separate these levels, by modifying testing aspects 
with meta. Also, our type-safeness opens the door for the exten-
sion of reflection mechanisms requested in [14] “so that informa-
tion about actual join points, pointcuts and advices can be ob-
tained”, without worrying about new problems (cf. Section 4.6).  

6. CONCLUSION 
As a form of meta-programming, aspects and AOP are so power-
ful concepts that their use must be regulated. In particular, possi-
ble self-application of aspects is a severe problem, since it cannot 
only cause infinite recursion, but also allows nonsensical expres-

sions. While the former should merely be prevented, the latter 
must be forbidden by any sound language definition. Based on the 
groundbreaking work of Russell and Tarski, we have proposed a 
simple language extension that equips AspectJ with a (formerly 
unavailable) typing system suitable to eliminate both kinds of 
problems through a simple static type check. Even though we 
based our argumentation on one specific implementation of AOP, 
the problem and the solution presented in this paper should be 
applicable to AOP in general. 
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ABSTRACT
Aspect Oriented Programming is a programming language
concept for expressing cross-cutting concerns. A key point
when dealing with aspects is the notion of interference. Ap-
plying several aspects to the same program may lead to un-
intended results because of conflicts between the aspects. In
this paper, we study the notion of interference for Larissa,
a formally defined language. Larissa is the aspect extension
of Argos, a StateChart-like automata language designed to
program reactive systems. We present a way to weave sev-
eral aspects in a less conflict-prone manner, and a means to
detect remaining conflicts statically, at a low complexity.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions
and Theory; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Design, Languages, Theory, Verification

Keywords
reactive systems, aspect-oriented programming, formal se-
mantics, synchronous languages, aspect interference

1. INTRODUCTION

Aspect oriented programming (AOP).AOP has emerged
recently. It aims at providing new facilities to implement or
modify existing programs: it may be the case that imple-
menting some new functionality or property in a program
P can not be done by adding a new module to the existing
structure of P but rather by modifying every module in P .
This kind of functionality or property is then called an as-
pect. AOP provides a way to define aspects separately from
the rest of the program and then to introduce or ”weave”

FOAL ’06 Bonn, Germany

them automatically into the existing structure. Many pro-
gramming languages have been, now, extended with aspects.

Larissa. In this paper, we study the notion of aspect in-
terferences for a formally defined language called Larissa.
Larissa [1] is an aspect extension for Argos [13], a language
used to program reactive systems. Argos pertains to the syn-
chronous languages family; it is based on Mealy machines
that communicate via Boolean signals, plus a simple set of
atomic operators on the machines. The semantics of Ar-
gos programs is formally defined. Larissa defines aspects
that are woven into Argos programs. The selection of join
points is based on temporal pointcuts and the advice is some
modification of the transitions of the basic machines. The
weaving of Larissa aspects preserves the equivalence between
programs.

Interferences.A key point when dealing with aspects is
the notion of interferences. If A1 and A2 are aspects, and
weaving first A1 and then A2 yields a different program than
weaving first A2 and then A1, A1 and A2 are said to inter-
fere. Aspect interference may depend on how the weaver
proceeds: if it sequentially weaves first A1 into a program
P and then A2 into the result — denoted by P / A1 / A2

— or if it weaves A1 and A2 together into P — denoted by
P / {A1, A2}.

In general, sequential weaving often causes interference.
This may be one reason why languages such as AspectJ do
not proceed sequentially. As an explanation, let us look at
the following example. The class Test has a method foo

and a method main, which calls foo on some Test object.

class Test {

public void foo () { ... }

public static void main (String [] args)

{ (new Test ()).foo (); } }

We then define the aspect A1 that has a method bar() and
adds a call to bar at the end of every call to every method
named foo.

aspect A1 {

void bar () { ... }

after(): call(* foo (..)) { bar ();} }

After compiling together the class Test and the aspect A1

(Test/ A1), the execution of main executes foo () and then
bar (). Let us introduce another aspect A2 which adds some
code at the end of every method named bar.

aspect A2 { after(): call(* bar (..)) { XXX } }
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If the class Test is compiled with A2 only (Test/ A2), nothing
changes (the class Test is unchanged, since no method bar

exists, we have Test = Test/ A2).
Now imagine that a weaver for AspectJ produces Java

code as a backend, and that for weaving two aspects, we
first weave the first one, obtain some Java code, and weave
the second aspect into the result. We call this sequential
weaving of aspects. Larissa works this way: as the other
Argos operators, aspect weaving is defined as the transfor-
mation of an Argos program into another Argos program.

Sequentially weaving A1 into Test and then A2 into the
result provides a different program from weaving first A2

and then A1. If we execute the main method in both cases,
(Test/ A1)/ A2 executes foo, bar and then the code XXX

added by A2, whereas (Test/ A2)/ A1 only executes foo and
bar. A2 is activated in the first case, but not in the second.

AspectJ does not work this way. Join points are defined
as points in the execution of the woven program, including
those contained in advice. Thus, aspects affect each other,
and cannot be woven sequentially. They must be woven to-
gether, i.e., for the example, Test/ {A1, A2}. In the example,
this produces the same result as (Test/ A1)/ A2.

In this paper we propose a weaving mechanism for Larissa
that weaves several aspects together into a program, and
thus eliminates some cases of interference. As opposed to
AspectJ, pointcuts do not capture join points in the woven
program, but in the base program. In Larissa, advice only
affects the base program, whereas in AspectJ, advice also
affects advice.

Aspects in AspectJ may still interfere. This is illustrated
by the second example:

aspect A3 {

declare precedence : A4, A3; // (**)

before(): call(* foo (..)) { ... } }

aspect A4 {

before(): call(* foo (..)) { ... } }

The sets of join points selected by A3 and by A4 are the
same. The interference here is unavoidable since the advice
programs have to be executed sequentially. In such a case,
AspectJ allows to describe the order of application of the
advice (see line (**)).

Likewise, aspects in Larissa may still interfere if they share
join points, even if they are woven together into a program.
We further analyze interference for aspects that are woven
together. We present sufficient conditions to prove non-
interference, either for two aspects in general or two aspects
and a specific program.

Section 2 presents the Argos language and the Larissa
extension, Section 3 illustrates the language on an exam-
ple, Section 4 deals with interferences for Larissa, Section 5
explores some related work and Section 6 gives some con-
clusions and perspectives.

2. LANGUAGE
This section presents a restriction of the Argos lan-

guage [13], and the Larissa extension [1]. The Argos lan-
guage is defined as a set of operators on complete and
deterministic input/output automata communicating via
Boolean signals. The semantics of an Argos program is given
as a trace semantics that is common to a wide variety of re-
active languages.

2.1 Traces and trace semantics

Definition 1 (Traces) Let I, O be sets of Boolean in-
put and output variables representing signals from and to
the environment. An input trace, it, is a function: it :
N −→ [I −→ {true, false}]. An output trace, ot, is a
function: ot : N −→ [O −→ {true, false}]. We denote
by InputTraces (resp. OutputTraces) the set of all input
(resp. output) traces. A pair (it, ot) of input and output
traces (i/o-traces for short) provides the valuations of ev-
ery input and output at each instant n ∈ N. We denote by
it(n)[i] (resp. ot(n)[o]) the value of the input i ∈ I (resp.
the output o ∈ O) at the instant n ∈ N.

A set of pairs of i/o-traces S = {(it, ot) | it ∈
InputTraces ∧ ot ∈ OutputTraces} is deterministic iff
∀(it, ot), (it′, ot′) ∈ S . (it = it′) =⇒ (ot = ot′).

A set of pairs of i/o traces S = {(it, ot) | it ∈
InputTraces ∧ ot ∈ OutputTraces} is complete iff ∀it ∈
InputTraces . ∃ot ∈ OutputTraces . (it, ot) ∈ S.

A set of traces is a way to define the semantics of an Argos
program P , given its inputs and outputs. From the above
definitions, a program P is deterministic if from the same
sequence of inputs it always computes the same sequence of
outputs. It is complete whenever it allows every sequence
of every eligible valuations of inputs to be computed. De-
terminism is related to the fact that the program is indeed
written with a programming language (which has determin-
istic execution); completeness is an intrinsic property of the
program that has to react forever, to every possible inputs
without any blocking.

2.2 Argos
The core of Argos is made of input/output automata, the

synchronous product, and the encapsulation.
The synchronous product allows to put automata in par-

allel which synchronize on their common inputs. The en-
capsulation is the operator that expresses the communica-
tion between automata with the synchronous broadcast: if
two automata are put in parallel, they can communicate via
some signal s. This signal is an input of the first automaton
and an output of the second. The encapsulation operator
computes this communication and then hides the signal s.

The semantics of an automaton is defined by a set of
traces, and the semantics of the operators is given by trans-
lating expressions into flat automata.

Definition 2 (Automaton) An automaton A is a tuple
A = (Q, sinit, I,O, T ) where Q is the set of states, sinit ∈ Q
is the initial state, I and O are the sets of Boolean input and
output variables respectively, T ⊆ Q×Bool(I)×2O×Q is the
set of transitions. Bool(I) denotes the set of Boolean for-
mulas with variables in I. For t = (s, `, O, s′) ∈ T , s, s′ ∈ Q
are the source and target states, ` ∈ Bool(I) is the triggering
condition of the transition, and O ⊆ O is the set of outputs
emitted whenever the transition is triggered. Without loss
of generality, we consider that automata only have complete
monomials as input part of the transition labels.

Complete monomials are conjunctions that for each i ∈ I
contain either i or i. Requiring complete monomials as in-
put labels makes the definition of the operators easier. A
transition with an arbitrary input label can be easily con-
verted in a set of transitions with complete monomials, and
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can thus be considered as a macro notation. We will use
such transitions in the examples.

The semantics of an automaton A = (Q, sinit, I,O, T ) is
given in terms of a set of pairs of i/o-traces. This set is built
using the following functions:

S stepA : Q× InputTraces× N −→ Q

O stepA : Q× InputTraces× N \ {0} −→ 2O

S step(s, it, n) is the state reached from state s after per-
forming n steps with the input trace it; O step(s, it, n) are
the outputs emitted at step n:

n = 0 : S stepA(s, it, n) = s

n > 0 : S stepA(s, it, n) = s′ O stepA(s, it, n) = O

where ∃(S stepA(s, it, n− 1), `, O, s′) ∈ T
∧ ` has value true for it(n− 1) .

We note Traces(A) the set of all traces built following this
scheme: Traces(A) defines the semantics of A. The automa-
ton A is said to be deterministic (resp. complete) iff its set
of traces Traces(A) is deterministic (resp. complete) (see
Definition 1). Two automata A1, A2 are trace-equivalent,
noted A1 ∼ A2, iff Traces(A1) = Traces(A2).

Definition 3 (Synchronous Product) Let A1 = (Q1,
sinit1, I1,O1, T1) and A2 = (Q2, sinit2, I2,O2, T2) be au-
tomata. The synchronous product of A1 and A2 is the au-
tomaton A1‖A2 = (Q1×Q2, (sinit1sinit2), I1∪I2,O1∪O2, T )
where T is defined by:

(s1, `1, O1, s
′
1) ∈ T1 ∧ (s2, `2, O2, s

′
2) ∈ T2 ⇐⇒

(s1s2, `1 ∧ `2, O1 ∪O2, s
′
1s
′
2) ∈ T .

The synchronous product of automata is both commuta-
tive and associative, and it is easy to show that it preserves
both determinism and completeness.

Definition 4 (Encapsulation) Let A = (Q, sinit, I,O, T )
be an automaton and Γ ⊆ I∪O be a set of inputs and outputs
of A. The encapsulation of A w.r.t. Γ is the automaton
A \ Γ = (Q, sinit, I \ Γ,O \ Γ, T ′) where T ′ is defined by:

(s, `, O, s′) ∈ T ∧ `+ ∩ Γ ⊆ O ∧ `− ∩ Γ ∩O = ∅ ⇐⇒
(s,∃Γ . `, O \ Γ, s′) ∈ T ′

`+ is the set of variables that appear as positive elements in
the monomial ` (i.e. `+ = {x ∈ I | (x ∧ `) = `}). `− is
the set of variables that appear as negative elements in the
monomial l (i.e. `− = {x ∈ I | (¬x ∧ `) = `}).

Intuitively, a transition (s, `, O, s′) ∈ T is still present in
the result of the encapsulation operation if its label satisfies
a local criterion made of two parts: `+ ∩ Γ ⊆ O means that
a local variable which needs to be true has to be emitted
by the same transition; `− ∩ Γ ∩ O = ∅ means that a local
variable that needs to be false should not be emitted in the
transition.

If the label of a transition satisfies this criterion, then the
names of the encapsulated variables are hidden, both in the
input part and in the output part. This is expressed by
∃Γ . ` for the input part, and by O \ Γ for the output part.

In general, the encapsulation operation does not pre-
serve determinism nor completeness. This is related to the

so-called “causality” problem intrinsic to synchronous lan-
guages (see, for instance [4]).

An example
Figure 1 (a) shows a 3-bits counter. Dashed lines denote
parallel compositions and the overall box denotes the en-
capsulation of the three parallel components, hiding signals
b and c. The idea is the following: the first component on
the right receives a from the environment, and sends b to the
second one, every two a’s. Similarly, the second one sends
c to the third one, every two b’s. b and c are the carry
signals. The global system has a as input and d as output;
it counts a’s modulo 8, and emits d every 8 a’s. Apply-
ing the semantics of the operator (first the product of the
three automata, then the encapsulation) yields the simple
flat automaton with 8 states (Figure 1 (b)).

a
aa

a

a

a a
a/d

0

1

aa/b

0

1

b

0

1

cc/d

b,c

b/c

(a) (b)

Figure 1: A 3-bits counter. Notations: in each au-
tomaton, the initial state is denoted with a little arrow; the
label on transitions are expressed by “triggering cond. /

outputs emitted”, e.g. the transition labelled by “a/b” is
triggered when a is true and emits b.

2.3 Larissa
Argos operators are already powerful. However, there are

cases in which they are not sufficient to modularize all con-
cerns of a program: some small modifications of the global
program’s behavior may require that we modify all paral-
lel components, in a way that is not expressible with the
existing operators.

Therefore, we proposed Larissa [1], an aspect-oriented ex-
tension for Argos, which allows the modularization of a num-
ber of recurrent problems in reactive programs. As most
aspect languages, Larissa contains a pointcut and an advice
construct. The pointcut selects a number of transitions,
called join point transitions, from an automaton, and the
advice modifies these transitions, both their outputs and
their target state.

In this paper, we only present a simple kind of advice, in
which the target state is the same for all join point transi-
tions. In [1, 2] we present more sophisticated kinds of advice,
which allow to jump forward or backward from the join point
transition, and to replace join point transitions with com-
plete automata. We believe that the ideas presented in this
paper can be extended easily to the other kinds of advice,
as the join point mechanism is the same.

We ensure the semantic properties that make it possible to
introduce aspects as a normal operator into Argos. Specifi-
cally, as shown in [1], determinism and completeness are pre-
served, as well as semantic equivalence between programs:
when we apply the same aspect to two trace-equivalent pro-
grams, we obtain two trace-equivalent programs.
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Specifying pointcuts.Because we want to preserve trace
equivalence, we cannot express pointcuts in terms of the
internal structure of the base program. For instance, we
do not allow pointcuts to refer explicitly to state names (as
AspectJ [9] can refer to the name of a private method). As a
consequence, pointcuts may refer to the observable behavior
of the program only, i.e., its inputs and outputs. In the
family of synchronous languages, where the communication
between parallel components is the synchronous broadcast,
observers [8] are a powerful and well-understood mechanism
which may be used to describe pointcuts. An observer is
a program that may observe the inputs and the outputs
of the base program, without modifying its behavior, and
compute some safety property (in the sense of safety/liveness
properties as defined in [11]).

We use an observer PJP that emits a special output JP to
describe a pointcut. Whenever PJP emits JP, “we are in” a
join point, and the woven program executes the advice.

Join Point Weaving.If we simply put a program P and
an observer PJP in parallel, P ’s outputs O will become syn-
chronization signals between them, as they are also inputs
of PJP. They will be encapsulated, and are thus no longer
emitted by the product. We avoid this problem by intro-
ducing a new output o′ for each output o of P : o′ will be
used for the synchronization with PJP, and o will still be
visible as an output. First, we transform P into P ′ and
PJP into P ′JP, where ∀o ∈ O, o is replaced by o′. Sec-
ond, we duplicate each output of P by putting P in par-
allel with one single-state automaton per output o defined
by: duplo = ({q}, q, {o′}, {o}, {(q, o′, o, q)}). The complete
product, where O is noted {o1, ..., on}, is given by:

P(P, PJP) = (P ′‖P ′JP‖duplo1‖ ... ‖duplon
) \ {o′1, ..., o′n}

The program P(P, PJP) is first transformed into the single
trace-equivalent automaton by applying the definition of the
operators. We use the same notation, P(P, PJP), for the
program and its transformation. Then, the join points are
selected: they are the transitions of P(P, PJP) that emit JP.

Specifying the advice.A piece of advice modifies the join
point transitions: it redefines their target states and their
outputs. The only advice presented in this paper specifies
the target state of the join point transition globally, by a
finite input trace σ. When executing σ on P(P, PJP) from its
initial state, this leads to some state of P(P, PJP), targ. targ
is the unique new target state for any join point transition.

Advice Weaving.Advice weaving consists in changing the
target state of the join point transitions to the single state
specified by the finite input trace σ, and in replacing their
outputs by the advice outputs Oadv.

Definition 5 (Advice weaving) Let A =
(Q, sinit, I,O, T ) be an automaton and adv = (Oadv, σ) a
piece of advice, with σ : [0, ..., `σ] −→ [I −→ {true, false}]
a finite input trace of length `σ + 1. The advice weaving
operator, /JP, weaves asp on A and returns the automaton
A /JP adv = (Q, sinit, I,O ∪ Oadv, T ′), where T ′ is defined
as follows, with targ = S stepA(sinit, σ, `σ) being the new

target state:`
(s, `, O, s′) ∈ T ∧ JP /∈ O

´
=⇒ (s, `, O, s′) ∈ T ′ (1)`

(s, `, O, s′) ∈ T ∧ JP ∈ O
´

=⇒ (s, `, Oadv, targ) ∈ T ′ (2)

Transitions (1) are not join point transitions and are left
unchanged. Transitions (2) are the join point transitions,
their final state targ is specified by the finite input trace σ.
S stepA (which has been naturally extended to finite input
traces) executes the trace during `σ steps, from the initial
state of A.

General aspect definition.Putting together the pointcut
and the advice, we define an aspect as follows:

Definition 6 (Larissa aspect) An aspect, for a program
P on inputs I and outputs O, is a tuple (PJP, adv) where

• PJP = (Qpc, sinit, I∪O, {JP}∪Opc, Tpc) is the pointcut
program, and JP occurs nowhere else in the environ-
ment.

• adv = (Oadv, σ) is the advice, which contains two
items:

– Oadv is the set of outputs emitted by the advice
transitions, which may contain fresh variables as
well as elements of O.

– σ : [0, ..., `σ] −→ [I −→ {true, false}] is a finite
input trace of length `σ + 1. It defines the single
target state of the advice transitions by executing
the trace from the initial state.

An aspect is woven into a program by first determining
the join point transitions and then weaving the advice.

Definition 7 (Aspect weaving) Let P be a program and
asp = (PJP, adv) an aspect for P . The weaving of asp on P
is defined as follows:

P / asp = P(P, PJP) /JP adv .

3. EXAMPLE
As an example, we present a simplified view of the inter-

face of a complex wristwatch, implemented with Argos and
Larissa. The full case study was presented in [2]. The inter-
face is a modified version of the Altimax1 model by Suunto1.

3.1 The Watch
The Altimax wristwatch has an integrated altimeter, a

barometer and four buttons, the mode, the select, the
plus, and the minus button. Each of the main functionali-
ties (time keeping, altimeter, barometer) has an associated
main mode, which displays information, and a number of
submodes, where the user can access additional functional-
ities. An Argos program that implements the interface of
the watch is shown in Figure 2. For better readability, only
those state names, outputs and transitions we will refer to
are shown.

In a more detailed model (as in [2]) the submode states
would contain behavior using the refinement operator of Ar-
gos (see [13] for a definition). We choose not to present this

1Suunto and Altimax are trademarks of Suunto Oy.
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operator in this paper since we do not need it to define as-
pect weaving. Adding refinement changes nothing for the
weaving definition, as it works directly on the transforma-
tion of the program into a single trace-equivalent automaton.
For the same reason, the interference analysis presented in
Section 4 is also the same.
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Figure 2: The Argos program for the Altimax watch.

The buttons of the watch are the inputs of the program.
The mode button circles between modes, the select button
selects the submodes. There are two more buttons: the plus
and the minus button which modify current values in the
submodes, but their effect is not shown in the figure. The
buttons have different meanings depending on the mode in
which the watch is currently.

The interface component we model here interprets the
meaning of the buttons the user presses, and then calls a
corresponding function in an underlying component. The
outputs are commands to that component. E.g., whenever
the program enters the Time Mode, it emits the output
Time-Mode, and the underlying component shows the time
on the display of the watch.

3.2 Two Shortcut Aspects
The plus and the minus buttons have no function consis-

tent with their intended meaning in the main modes: there
are no values to increase or decrease. Therefore, they are
given a different function in the main modes: when one
presses the plus or the minus button in a main mode, the
watch goes to a certain submode. The role of the plus and
minus buttons in the main modes are called shortcuts since
it allows to quickly activate a functionnality, which would
have needed, otherwise, a long sequence of buttons.

Pressing the plus button in a main mode activates the
logbook function of the altimeter, and pressing the minus

button activates the 4-day memory of the barometer. These
functions are quite long to reach without the shortcuts since
the logbook is the third submode of the altimeter, and the
4-day memory is the second submode of the barometer.

These shortcuts can be implemented easily with Larissa
aspects. Figure 3 (a) shows the pointcut for the logbook
aspect, and Figure 3 (b) the pointcut for the memory aspect.
In both pointcuts, state main represents the main modes
and state sub represents the submodes. When, in a main
mode, plus (resp. minus) is pressed, the pointcut emits
JPl (resp. JPm), thus the corresponding advice is executed;
when select is pressed, the pointcut goes to the sub state,
so as to record that the shortcuts are no longer active and

Alti-Mode∨
Time-Mode∨

Baro-Mode
Alti-Mode∨
Time-Mode∨

Baro-Mode
select

(b) (c)

main

sub

(a)

select

sub

main

minus∧plus/JPl minus∧plus/JPm

DT-Mode/JPn

Figure 3: The pointcuts for the aspects.

that the plus and minus buttons have their usual meaning.
As advice, we specify the trace that leads to the functionality
we want to reach, i.e. σl =mode.select.mode.mode for the
logbook aspect and σm =mode.mode.select.mode for the 4-
day memory aspect, and the output that tells the underlying
component to display the corresponding information.

3.3 The No-DTM Aspect
We want to reuse the interface program of the Altimax

to build the interface of another wristwatch, which differs
from the Altimax in that it has no Dual-Time mode (third
submode of the main mode Time). Therefore, we write an
aspect that removes the Dual-Time mode from the interface:
all incoming transitions are redirected to another state. Fig-
ure 3 (c) shows the pointcut for the No-DTM aspect. It se-
lects all transitions that emit DT-Mode, the output that tells
the underlying component to show the information corre-
sponding to the Dual-Time mode on the display. Because
the Dual-Time mode is the last submode of the Time mode,
we want the join point transitions to point to the Time main
mode, i.e. the initial state of the program. Thus, as advice,
we specify Time-Mode as output and an empty trace, which
points to the Time main mode.

4. INTERFERENCE
This section identifies problems that occur when several

aspects are applied to a program, and, as a solution, pro-
poses to weave several aspects at the same time. A mecha-
nism to prove that no interferences remain is also proposed.

4.1 Applying Several Aspects
If we apply first the logbook aspect and then, sequentially,

the memory aspect to the watch program, the aspects do not
behave as we would expect. If, in the woven program, we
first press the minus button in a main mode, thus activating
the logbook aspect, and then the plus button, the memory
aspect is activated, although we are in a sub mode. This
behavior was clearly not intended by the programmer of the
memory aspect.

The problem is that the memory aspect has been written
for the program without the logbook aspect: the pointcut
assumes that the only way to leave a main mode is to press
the select button. However, the logbook aspect invalidates
that assumption by adding transitions from the main modes
to a submode. When these transitions are taken, the point-
cut of the memory aspect incorrectly assumes that the pro-
gram is still in a main mode.

Furthermore, for the same reason, applying first the
memory aspect and then the logbook aspect produces (in
terms of trace-equivalence) a different program from apply-
ing first the logbook aspect and then the memory aspect:
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watch / logbook / memory � watch / memory / logbook.
As a first attempt to define aspect interference, we say

that two aspects A1 and A2 interfere when their application
on a program P in different orders does not yield two trace-
equivalent programs: P / A1 / A2 � P / A2 / A1. We say
that two aspects that do not interfere are independent.

With interfering aspects, the aspect that is woven second
must know about the aspect that was applied first. To be
able to write aspects as the ones above independently from
each other, we propose a mechanism to weave several as-
pects at the same time. The idea is to first determine the
join point transitions for all the aspects, and then apply the
advice.

Definition 8 (Joint weaving of several aspects) Let
A1 . . .An be some aspects, with Ai = (PJPi , advi), and P a
program. We define the application of A1 . . .An on P as
follows:

P/(A1, . . . ,An) = P(P, PJP1‖ . . . ‖PJPn)/JPnadvn . . ./JP1adv1

Jointly weaving the logbook and the memory aspect leads
to the intended behavior, and the weaving order does not
influence the result, because both aspects first select their
join point transitions in the main modes, and change the
target states of the join point transitions only afterwards.

Note that Definition 8 does not make sequential weaving
redundant. We still need to weave aspects sequentially in
some cases, when the second aspects must be applied to
the result of the first. For instance, imagine an aspect that
adds an additional main mode to the watch (with a kind
of advice not presented in this paper). Then, the shortcut
aspects must be sequentially woven after this aspect, so that
they can select the new main mode as join point.

Definition 8 does not solve all conflicts. Indeed, the Ai
in P / (A1, . . . ,An) do not commute, in general, since the
advice weaving is applied sequentially. We define aspect
interference for the application of several aspects.

Definition 9 (Aspect Interference) Let A1 ... An be
some aspects, and P a program. We say that Ai and Ai+1

interfere for P iff

P / (A1 . . .Ai,Ai+1 . . .An) � P / (A1 . . .Ai+1,Ai . . .An)

As an example for interfering aspects, assume that the
condition of the join point transition of the pointcut of the
logbook aspect (Figure 3 (a)) is only minus and the condition
of the join point transition of the pointcut of the logbook
aspect (Figure 3 (b)) is only plus. In this case, the two
aspects share some join point transitions, namely when both
buttons are pressed at the same time in a main mode. Both
aspects then want to execute their advice, but only one can,
thus they interfere. Only the aspect that was applied last is
executed.

In such a case, the conflict should be made explicit to the
programmer, so that it can be solved by hand. Here, it was
resolved by changing the pointcuts to the form they have in
Figure 3, so that neither aspect executes when both buttons
are pressed.

4.2 Proving Non-Interference
In this section, we show that in some cases, non-

interference of aspects can be proven, if the aspects are wo-

ven jointly, as defined in Definition 8. We can prove non-
interference of two given aspects either for any program, or
for a given program. Following [6], we speak of strong inde-
pendence in the first case, and of weak independence in the
second.

We use the operator advTrans to determine interference
between aspects. It computes all the join point transitions
of an automaton, i.e. all transitions with a given output JP.

Definition 10 Let A = (Q, sinit, I,O, T ) be an automaton
and JP ∈ O. Then,

advTrans(A, JP) = {t|t = (s, `, O, s′) ∈ T ∧ JP ∈ O} .

The following theorem proves strong independence between
two aspects.

Theorem 1 (Strong Independence) Let A1 . . .An be
some aspects, with Ai = (PJPi , advi). Then, the following
equation holds:

advTrans(PJPi‖PJPi+1 , JPi)

∩ advTrans(PJPi‖PJPi+1 , JPi+1) = ∅
⇒ P / (A1 . . .Ai,Ai+1 . . .An) ∼ P / (A1 . . .Ai+1,Ai . . .An)

See appendix A for a proof. Theorem 1 states that if there
is no transition with both JPi and JPi+1 as outputs in the
product of PJPi and PJPi+1 , Ai and Ai+1 are independent
and thus can commute while weaving their advice. Theo-
rem 1 defines a sufficient condition for non-interference, by
looking only at the pointcuts. When the condition holds,
the aspects are said to be strongly independent.

Theorem 2 (Weak Independence) Let A1 . . .An
be some aspects, with Ai = (PJPi , advi), and
Ppc = P(P, PJP1‖ . . . ‖PJPn). Then, the following equation
holds:

advTrans(Ppc, JPi) ∩ advTrans(Ppc, JPi+1) = ∅
⇒ P / (A1 . . .Ai,Ai+1 . . .An) ∼ P / (A1 . . .Ai+1,Ai . . .An)

See appendix B for a proof. Theorem 2 states that if there is
no transition with both JPi and JPi+1 as outputs in Ppc, Ai
and Ai+1 do not interfere. This is weaker than Theorem 1
since it also takes the program P into account. However,
there are cases in which the condition of Theorem 1 is false
(thus it yields no results), but Theorem 2 allows to prove
non-interference. See Section 4.4 for an example.

Theorem 2 is a sufficient condition, but, as Theorem 1, it
is not necessary: it may not be able to prove independence
for two independent aspects. The reason is that it does not
take into account the effect of the advice weaving: consider
two aspects such that the only reason why the condition for
Theorem 2 is false is a transition sourced in some state s,
and such that s is only reachable through another join point
transition; if the advice weaving makes this state unreach-
able, then the aspects do not interfere.

The results obtained by both Theorems are quite intuitive.
They mean that if the pointcut mechanism does not select
any join points common to two aspects, then these aspects
do not interfere. This condition can be calculated on the
pointcuts alone, or can also take the program into account.

Note that the detection of non-interference is a static
condition that does not add any complexity overhead. In-
deed, to weave the aspects, the compiler needs to build first
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PJP1‖ ... ‖PJPn = Pall JP: the condition of Theorem 1 can
be checked during the construction of Pall JP. Second, the
weaver builds Ppc = P(P, Pall JP). Afterwards, it can check
the condition of Theorem 2. Thus, to calculate the condi-
tions of both Theorems, it is sufficient to check the outputs
of the transitions of intermediate products during the weav-
ing. The weaver can easily emit a warning when a potential
conflict is detected.

To have an exact characterization of non-interference,
it is still possible to compute the predicate P /
(A1 . . .Ai,Ai+1 . . .An) ∼ P / (A1 . . .Ai+1,Ai . . .An), but
calculating semantic equality is very expensive for large pro-
grams.

Note that the interference presented here only applies to
the joint weaving of several aspects, as defined in Defini-
tion 8. Sequentially woven aspects may interfere even if their
join points are disjoint, because the pointcut of the second
aspects applies to the woven program. A similar analysis to
prove non-interference of sequential weaving would be more
difficult, because the effect of the advice must be taken into
account. Moreover, it is not clear when such an analysis
makes sense: sequential weaving should be used only if one
aspect depends on the other, and interference is unavoid-
able.

4.3 Interference between the Shortcut Aspects
Figure 4 (a) shows the product of the pointcuts of the

logbook and the memory aspect. There are no transitions
that emit both JPl and JPm, thus, by applying Theorem 1,
we know that the aspects do not interfere, independently of
the program they are applied to.

(a)

select

sub

main

(minus∨
DT-mode∧

...

(b)

minus∧

minus∧
DT-mode∧

mainplus/JPl

Alti-Mode∨
Time-Mode∨

Baro-Mode

minus∧
DT-mode∧

plus/JPl plus)/JPn

plus/JPl,JPn

minus∧plus/JPm

Figure 4: Interference between pointcuts.

Let us assume again that the condition of the join point
transition of the pointcut of the logbook aspect (Figure 3
(a)) is only minus and the condition of the join point
transition of the pointcut of the logbook aspect (Figure 3
(b)) is only plus. In this case, the state main in Fig-
ure 4 (a) would have another loop transition, with label
minus∧plus/JPl,JPm. Thus, Theorem 1 not only states
that the aspects potentially interfere, but it also gives a
means to determine where: here, the problem is that when
both minus and plus are pressed in a main mode, at the
same time, both aspects are activated. Larissa thus emits a
warning and the user is invited to solve the conflict if needed.

4.4 Interference between a Shortcut and the
No-DTM Aspect

Figure 4 (b) shows the initial state of the product of the
pointcuts of the logbook (Figure 3 (a)) and the No-DTM
aspect (Figure 3 (c)). There is a transition that has both
JPl and JPn as outputs. Theorem 1 states that the aspects
may interfere, but when applied to the wristwatch controller,

they do not. This is because the DT-mode is an output of
the controller and is never emitted when the watch is in a
main mode, where the logbook aspect can be activated. As
the DT-mode is always false in the main modes, the conflict-
ing transition is never enabled. When applied to another
program, however, the aspects may interfere.

In this example, the use of Theorem 2 is thus needed to
show that the aspects do not interfere when applied to the
wristwatch controller. Its condition is true, as expected,
because JPl is only emitted in the main modes, and JPn
only in the Time submodes.

5. RELATED WORK
Some authors discuss the advantages of sequential vs.

joint weaving. Lopez-Herrejon and Batory [12] propose to
use sequential weaving for incremental software develop-
ment. Colyer and Clement [5, Section 5.1] want to apply
aspects to bytecode which already contains woven aspects.
In AspectJ, this is impossible because the semantics would
not be the same as weaving all aspects at the same time.

Sihman and Katz [15] propose SuperJ, a superimposi-
tion language which is implemented through a preproces-
sor for AspectJ. They propose to combine superimpositions
into a new superimposition, either by sequentially apply-
ing one to the other, or by combining them without mutual
influence. Superimpositions contain assume/guarantee con-
tracts, which can be used to check if a combination is valid.

A number of authors investigate aspect interference in dif-
ferent formal frameworks. Much of the work is devoted to
determining the correct application order for interfering as-
pects, whereas we focus on proving non-interference.

Douence, Fradet, and Südholt [6] present a mechanism to
statically detect conflicts between aspects that are applied
in parallel. Their analysis detects all join points where two
aspects want to insert advice. To reduce the detection of
spurious conflicts, they extend their pointcuts with shared
variables, and add constraints that an aspect can impose on
a program. To resolve remaining conflicts, the programmer
can then write powerful composition adaptors to define how
the aspects react in presence of each other.

Pawlak, Duchien, and Seinturier [14] present a way to
formally validate precedence orderings between aspects that
share join points. They introduce a small language, Comp-
Ar, in which the user expresses the effect of the advice that is
important for aspect interaction, and properties that should
be true after the execution of the advice. The CompAr
compiler can then check that a given advice ordering does
not invalidate a property of an advice.

Durr, Staijen, Bergmans, and Aksit [7] propose an inter-
action analysis for Composition Filters. They detect when
one aspect prevents the execution of another, and can check
that a specified trace property is ensured by an aspect.

Balzarotti, Castaldo D’Ursi, Cavallaro and Monga [3] use
program slicing to check if different aspects modify the same
code, which might indicate interference.

Clean interfaces which take aspects into account can
also help to detect interferences. E.g., aspect-aware inter-
faces [10] indicate where two aspects advise the same meth-
ods in a system.

6. CONCLUSION
We present an analysis for aspect interference for a simple
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but significant part of Larissa. We expect that it can be
applied without major modifications to the rest of Larissa.
First, we introduced an additional operator which jointly
weaves several aspects together into a program, closer to
the way AspectJ weaves aspects. Because Larissa is defined
modularly, we only had to rearrange the building steps of
the weaving process. Then, we could analyze interference
with a simple parallel product of the pointcuts.

When a potential conflict is detected, the user has to solve
it by hand, if needed. In the examples we already stud-
ied, the conflicts were solved by simple modifications of the
pointcut programs. We plan to further explore this problem,
but we believe no new language construct will be needed.

It seems that the interference analysis for Larissa is quite
precise, i.e. we can prove independence for most indepen-
dent aspects. One reason for that are Larissa’s powerful
pointcuts, which describe join points statically, yet very pre-
cisely, on the level of transitions. Another reason is the ex-
clusive nature of the advice. Two pieces of advice that share
a join point transition never execute sequentially, but there
is always one that is executed while the other is not. If
the two pieces of advice are not equivalent, this leads to a
conflict. Thus, as opposed to [6], assuming that a shared
join point leads to a conflict does not introduce spurious
conflicts.

In addition, because our language is connected to formal
verification tools, we can check whether different aspect or-
derings result in trace-equivalent automata. This, however,
is only possible because Argos is restricted to Boolean sig-
nals; otherwise trace-equivalence is not decidable. It would
be interesting to design an approximate interference analysis
for Larissa aspects in the presence of valued signals.
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APPENDIX

A. PROOF FOR THEOREM 1
Theorem 1 is a consequence of Theorem 2. We show that

advTrans(P(P, PJP1‖ . . . ‖PJPn), JPi)∩
advTrans(P(P, PJP1‖ . . . ‖PJPn), JPi+1) = ∅

follows from

advTrans(PJPi‖PJPi+1 , JPi)

∩ advTrans(PJPi‖PJPi+1 , JPi+1) = ∅

JPi and JPi+1 can only occur in PJPi and PJPi+1 . Thus,
if a transition that has both of them as outputs in
P(P, PJP1‖ . . . ‖PJPn), there must already exist a transition
with both of them as outputs in PJPi‖PJPi+1 .

B. PROOF FOR THEOREM 2
Because the parallel product is commuta-

tive P(P, PJP1‖ . . . ‖PJPi‖PJPi+1‖ . . . ‖PJPn) and
P(P, PJP1‖ . . . ‖PJPi+1‖PJPi‖ . . . ‖PJPn) are the same.

Let P(P, PJP1‖ . . . ‖PJPn) /JPn advn . . . /JPi+2 advi+2 =
(Q, sinit, I,O, T ) = Pi+2. Then Pi+2 /JPi+1 advi+1 yields an
automaton Pi+1 = (Q, sinit, I,O ∪Oadvi+1 , T

′), where T ′ is
defined as follows:`

(s, `, O, s′) ∈ T ∧ JPi+1 /∈ O
´

=⇒ (s, `, O, s′) ∈ T ′`
(s, `, O, s′) ∈ T ∧ JPi+1 ∈ O

´
=⇒

(s, `, Oadvi+1 , S stepP ′(sinit, σi+1, lσi+1)) ∈ T
′
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and Pi+1 /JPi advi yields an automaton Pi =
(Q, sinit, I,O ∪ Oadvi+1 ∪ Oadvi , T

′′), where T ′′ is defined
as follows:`

(s, `, O,s′) ∈ T ∧ JPi+1 /∈ O ∧ JPi /∈ O
´

=⇒ (s, `, O, s′) ∈ T ′
(3)

`
(s, `, O,s′) ∈ T ∧ JPi+1 ∈ O ∧ JPi /∈ O

´
=⇒

(s, `, Oadvi+1 , S stepP ′(sinit, σi+1, lσi+1)) ∈ T
′ (4)`

(s, `, O,s′) ∈ T ∧ JPi+1 /∈ O ∧ JPi ∈ O
´

=⇒
(s, `, Oadvi , S stepP ′(sinit, σi, lσi)) ∈ T

′ (5)`
(s, `, O,s′) ∈ T ∧ JPi+1 ∈ O ∧ JPi ∈ O

´
=⇒

(s, `, Oadvi+1 , S stepP ′(sinit, σi+1, lσi+1)) ∈ T
′ (6)

If we calculate Pi+2 /JPi advi /JPi+1 advi+1, we obtain
the same automaton, except for transitions (6), which are
defined by`

(s, `, O, s′) ∈ T ∧ JPi+1 ∈ O ∧ JPi ∈ O
´

=⇒
(s, `, Oadvi , S stepP ′(sinit, σi, lσi)) ∈ T

′´
Transitions (6) are exactly the join point transi-

tions that are in advTrans(P(P, PJP1‖ . . . ‖PJPn), JPi) ∩
advTrans(P(P, PJP1‖ . . . ‖PJPn), JPi+1). By precondition,
there were no such transitions in P(P, PJP1‖ . . . ‖PJPn). Be-
cause we require that all the JPj outputs occur nowhere
else, JPi and JPi+1 cannot be contained in a Oadvj , thus
no transition of type (6) has been added by the weaving of
/JPnadvn . . . /JPi+2 advi+2.

Thus, we have P(P, PJP1‖ . . . ‖PJPn) /JPn advn . . . /JPi+2

advi+2 /JPi+1 advi+1 /JPi advi = P(P, PJP1‖ . . . ‖PJPn) /JPn

advn . . . /JPi+2 advi+2 /JPi advi /JPi+1 advi+1. Weaving
/JPi−1advi−1 . . . /JP1 adv1 trivially yields the same re-
sult.
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