
Interference of Larissa Aspects

David Stauch
Verimag/INPG, Grenoble

Centre Equation – 2, avenue
de Vignate, F 38610 GIERES

David.Stauch@imag.fr

Karine Altisen
Verimag/INPG, Grenoble

Centre Equation – 2, avenue
de Vignate, F 38610 GIERES

Karine.Altisen@imag.fr

Florence Maraninchi
Verimag/INPG, Grenoble

Centre Equation – 2, avenue
de Vignate, F 38610 GIERES

Florence.Maraninchi@imag.fr

ABSTRACT
Aspect Oriented Programming is a programming language
concept for expressing cross-cutting concerns. A key point
when dealing with aspects is the notion of interference. Ap-
plying several aspects to the same program may lead to un-
intended results because of conflicts between the aspects. In
this paper, we study the notion of interference for Larissa,
a formally defined language. Larissa is the aspect extension
of Argos, a StateChart-like automata language designed to
program reactive systems. We present a way to weave sev-
eral aspects in a less conflict-prone manner, and a means to
detect remaining conflicts statically, at a low complexity.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions
and Theory; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Design, Languages, Theory, Verification

Keywords
reactive systems, aspect-oriented programming, formal se-
mantics, synchronous languages, aspect interference

1. INTRODUCTION

Aspect oriented programming (AOP).AOP has emerged
recently. It aims at providing new facilities to implement or
modify existing programs: it may be the case that imple-
menting some new functionality or property in a program
P can not be done by adding a new module to the existing
structure of P but rather by modifying every module in P .
This kind of functionality or property is then called an as-
pect. AOP provides a way to define aspects separately from
the rest of the program and then to introduce or ”weave”

FOAL ’06 Bonn, Germany

them automatically into the existing structure. Many pro-
gramming languages have been, now, extended with aspects.

Larissa. In this paper, we study the notion of aspect in-
terferences for a formally defined language called Larissa.
Larissa [1] is an aspect extension for Argos [13], a language
used to program reactive systems. Argos pertains to the syn-
chronous languages family; it is based on Mealy machines
that communicate via Boolean signals, plus a simple set of
atomic operators on the machines. The semantics of Ar-
gos programs is formally defined. Larissa defines aspects
that are woven into Argos programs. The selection of join
points is based on temporal pointcuts and the advice is some
modification of the transitions of the basic machines. The
weaving of Larissa aspects preserves the equivalence between
programs.

Interferences.A key point when dealing with aspects is
the notion of interferences. If A1 and A2 are aspects, and
weaving first A1 and then A2 yields a different program than
weaving first A2 and then A1, A1 and A2 are said to inter-
fere. Aspect interference may depend on how the weaver
proceeds: if it sequentially weaves first A1 into a program
P and then A2 into the result — denoted by P / A1 / A2

— or if it weaves A1 and A2 together into P — denoted by
P / {A1, A2}.

In general, sequential weaving often causes interference.
This may be one reason why languages such as AspectJ do
not proceed sequentially. As an explanation, let us look at
the following example. The class Test has a method foo

and a method main, which calls foo on some Test object.

class Test {

public void foo () { ... }

public static void main (String [] args)

{ (new Test ()).foo (); } }

We then define the aspect A1 that has a method bar() and
adds a call to bar at the end of every call to every method
named foo.

aspect A1 {

void bar () { ... }

after(): call(* foo (..)) { bar ();} }

After compiling together the class Test and the aspect A1

(Test/ A1), the execution of main executes foo () and then
bar (). Let us introduce another aspect A2 which adds some
code at the end of every method named bar.

aspect A2 { after(): call(* bar (..)) { XXX } }

If the class Test is compiled with A2 only (Test/ A2), nothing
changes (the class Test is unchanged, since no method bar

exists, we have Test = Test/ A2).
Now imagine that a weaver for AspectJ produces Java

code as a backend, and that for weaving two aspects, we
first weave the first one, obtain some Java code, and weave
the second aspect into the result. We call this sequential
weaving of aspects. Larissa works this way: as the other
Argos operators, aspect weaving is defined as the transfor-
mation of an Argos program into another Argos program.

Sequentially weaving A1 into Test and then A2 into the
result provides a different program from weaving first A2

and then A1. If we execute the main method in both cases,
(Test/ A1)/ A2 executes foo, bar and then the code XXX

added by A2, whereas (Test/ A2)/ A1 only executes foo and
bar. A2 is activated in the first case, but not in the second.

AspectJ does not work this way. Join points are defined
as points in the execution of the woven program, including
those contained in advice. Thus, aspects affect each other,
and cannot be woven sequentially. They must be woven to-
gether, i.e., for the example, Test/ {A1, A2}. In the example,
this produces the same result as (Test/ A1)/ A2.

In this paper we propose a weaving mechanism for Larissa
that weaves several aspects together into a program, and
thus eliminates some cases of interference. As opposed to
AspectJ, pointcuts do not capture join points in the woven
program, but in the base program. In Larissa, advice only
affects the base program, whereas in AspectJ, advice also
affects advice.

Aspects in AspectJ may still interfere. This is illustrated
by the second example:

aspect A3 {

declare precedence : A4, A3; // (**)

before(): call(* foo (..)) { ... } }

aspect A4 {

before(): call(* foo (..)) { ... } }

The sets of join points selected by A3 and by A4 are the
same. The interference here is unavoidable since the advice
programs have to be executed sequentially. In such a case,
AspectJ allows to describe the order of application of the
advice (see line (**)).

Likewise, aspects in Larissa may still interfere if they share
join points, even if they are woven together into a program.
We further analyze interference for aspects that are woven
together. We present sufficient conditions to prove non-
interference, either for two aspects in general or two aspects
and a specific program.

Section 2 presents the Argos language and the Larissa
extension, Section 3 illustrates the language on an exam-
ple, Section 4 deals with interferences for Larissa, Section 5
explores some related work and Section 6 gives some con-
clusions and perspectives.

2. LANGUAGE
This section presents a restriction of the Argos lan-

guage [13], and the Larissa extension [1]. The Argos lan-
guage is defined as a set of operators on complete and
deterministic input/output automata communicating via
Boolean signals. The semantics of an Argos program is given
as a trace semantics that is common to a wide variety of re-
active languages.

2.1 Traces and trace semantics

Definition 1 (Traces) Let I, O be sets of Boolean in-
put and output variables representing signals from and to
the environment. An input trace, it, is a function: it :
N −→ [I −→ {true, false}]. An output trace, ot, is a
function: ot : N −→ [O −→ {true, false}]. We denote
by InputTraces (resp. OutputTraces) the set of all input
(resp. output) traces. A pair (it, ot) of input and output
traces (i/o-traces for short) provides the valuations of ev-
ery input and output at each instant n ∈ N. We denote by
it(n)[i] (resp. ot(n)[o]) the value of the input i ∈ I (resp.
the output o ∈ O) at the instant n ∈ N.

A set of pairs of i/o-traces S = {(it, ot) | it ∈
InputTraces ∧ ot ∈ OutputTraces} is deterministic iff
∀(it, ot), (it′, ot′) ∈ S . (it = it′) =⇒ (ot = ot′).

A set of pairs of i/o traces S = {(it, ot) | it ∈
InputTraces ∧ ot ∈ OutputTraces} is complete iff ∀it ∈
InputTraces . ∃ot ∈ OutputTraces . (it, ot) ∈ S.

A set of traces is a way to define the semantics of an Argos
program P , given its inputs and outputs. From the above
definitions, a program P is deterministic if from the same
sequence of inputs it always computes the same sequence of
outputs. It is complete whenever it allows every sequence
of every eligible valuations of inputs to be computed. De-
terminism is related to the fact that the program is indeed
written with a programming language (which has determin-
istic execution); completeness is an intrinsic property of the
program that has to react forever, to every possible inputs
without any blocking.

2.2 Argos
The core of Argos is made of input/output automata, the

synchronous product, and the encapsulation.
The synchronous product allows to put automata in par-

allel which synchronize on their common inputs. The en-
capsulation is the operator that expresses the communica-
tion between automata with the synchronous broadcast: if
two automata are put in parallel, they can communicate via
some signal s. This signal is an input of the first automaton
and an output of the second. The encapsulation operator
computes this communication and then hides the signal s.

The semantics of an automaton is defined by a set of
traces, and the semantics of the operators is given by trans-
lating expressions into flat automata.

Definition 2 (Automaton) An automaton A is a tuple
A = (Q, sinit, I,O, T) where Q is the set of states, sinit ∈ Q
is the initial state, I and O are the sets of Boolean input and
output variables respectively, T ⊆ Q×Bool(I)×2O×Q is the
set of transitions. Bool(I) denotes the set of Boolean for-
mulas with variables in I. For t = (s, `, O, s′) ∈ T , s, s′ ∈ Q
are the source and target states, ` ∈ Bool(I) is the triggering
condition of the transition, and O ⊆ O is the set of outputs
emitted whenever the transition is triggered. Without loss
of generality, we consider that automata only have complete
monomials as input part of the transition labels.

Complete monomials are conjunctions that for each i ∈ I
contain either i or i. Requiring complete monomials as in-
put labels makes the definition of the operators easier. A
transition with an arbitrary input label can be easily con-
verted in a set of transitions with complete monomials, and

can thus be considered as a macro notation. We will use
such transitions in the examples.

The semantics of an automaton A = (Q, sinit, I,O, T) is
given in terms of a set of pairs of i/o-traces. This set is built
using the following functions:

S stepA : Q× InputTraces× N −→ Q

O stepA : Q× InputTraces× N \ {0} −→ 2O

S step(s, it, n) is the state reached from state s after per-
forming n steps with the input trace it; O step(s, it, n) are
the outputs emitted at step n:

n = 0 : S stepA(s, it, n) = s

n > 0 : S stepA(s, it, n) = s′ O stepA(s, it, n) = O

where ∃(S stepA(s, it, n− 1), `, O, s′) ∈ T
∧ ` has value true for it(n− 1) .

We note Traces(A) the set of all traces built following this
scheme: Traces(A) defines the semantics of A. The automa-
ton A is said to be deterministic (resp. complete) iff its set
of traces Traces(A) is deterministic (resp. complete) (see
Definition 1). Two automata A1, A2 are trace-equivalent,
noted A1 ∼ A2, iff Traces(A1) = Traces(A2).

Definition 3 (Synchronous Product) Let A1 = (Q1,
sinit1, I1,O1, T1) and A2 = (Q2, sinit2, I2,O2, T2) be au-
tomata. The synchronous product of A1 and A2 is the au-
tomaton A1‖A2 = (Q1×Q2, (sinit1sinit2), I1∪I2,O1∪O2, T)
where T is defined by:

(s1, `1, O1, s
′
1) ∈ T1 ∧ (s2, `2, O2, s

′
2) ∈ T2 ⇐⇒

(s1s2, `1 ∧ `2, O1 ∪O2, s
′
1s
′
2) ∈ T .

The synchronous product of automata is both commuta-
tive and associative, and it is easy to show that it preserves
both determinism and completeness.

Definition 4 (Encapsulation) Let A = (Q, sinit, I,O, T)
be an automaton and Γ ⊆ I∪O be a set of inputs and outputs
of A. The encapsulation of A w.r.t. Γ is the automaton
A \ Γ = (Q, sinit, I \ Γ,O \ Γ, T ′) where T ′ is defined by:

(s, `, O, s′) ∈ T ∧ `+ ∩ Γ ⊆ O ∧ `− ∩ Γ ∩O = ∅ ⇐⇒
(s,∃Γ . `, O \ Γ, s′) ∈ T ′

`+ is the set of variables that appear as positive elements in
the monomial ` (i.e. `+ = {x ∈ I | (x ∧ `) = `}). `− is
the set of variables that appear as negative elements in the
monomial l (i.e. `− = {x ∈ I | (¬x ∧ `) = `}).

Intuitively, a transition (s, `, O, s′) ∈ T is still present in
the result of the encapsulation operation if its label satisfies
a local criterion made of two parts: `+ ∩ Γ ⊆ O means that
a local variable which needs to be true has to be emitted
by the same transition; `− ∩ Γ ∩ O = ∅ means that a local
variable that needs to be false should not be emitted in the
transition.

If the label of a transition satisfies this criterion, then the
names of the encapsulated variables are hidden, both in the
input part and in the output part. This is expressed by
∃Γ . ` for the input part, and by O \ Γ for the output part.

In general, the encapsulation operation does not pre-
serve determinism nor completeness. This is related to the

so-called “causality” problem intrinsic to synchronous lan-
guages (see, for instance [4]).

An example
Figure 1 (a) shows a 3-bits counter. Dashed lines denote
parallel compositions and the overall box denotes the en-
capsulation of the three parallel components, hiding signals
b and c. The idea is the following: the first component on
the right receives a from the environment, and sends b to the
second one, every two a’s. Similarly, the second one sends
c to the third one, every two b’s. b and c are the carry
signals. The global system has a as input and d as output;
it counts a’s modulo 8, and emits d every 8 a’s. Apply-
ing the semantics of the operator (first the product of the
three automata, then the encapsulation) yields the simple
flat automaton with 8 states (Figure 1 (b)).

a
aa

a

a

a a
a/d

0

1

aa/b

0

1

b

0

1

cc/d

b,c

b/c

(a) (b)

Figure 1: A 3-bits counter. Notations: in each au-
tomaton, the initial state is denoted with a little arrow; the
label on transitions are expressed by “triggering cond. /

outputs emitted”, e.g. the transition labelled by “a/b” is
triggered when a is true and emits b.

2.3 Larissa
Argos operators are already powerful. However, there are

cases in which they are not sufficient to modularize all con-
cerns of a program: some small modifications of the global
program’s behavior may require that we modify all paral-
lel components, in a way that is not expressible with the
existing operators.

Therefore, we proposed Larissa [1], an aspect-oriented ex-
tension for Argos, which allows the modularization of a num-
ber of recurrent problems in reactive programs. As most
aspect languages, Larissa contains a pointcut and an advice
construct. The pointcut selects a number of transitions,
called join point transitions, from an automaton, and the
advice modifies these transitions, both their outputs and
their target state.

In this paper, we only present a simple kind of advice, in
which the target state is the same for all join point transi-
tions. In [1, 2] we present more sophisticated kinds of advice,
which allow to jump forward or backward from the join point
transition, and to replace join point transitions with com-
plete automata. We believe that the ideas presented in this
paper can be extended easily to the other kinds of advice,
as the join point mechanism is the same.

We ensure the semantic properties that make it possible to
introduce aspects as a normal operator into Argos. Specifi-
cally, as shown in [1], determinism and completeness are pre-
served, as well as semantic equivalence between programs:
when we apply the same aspect to two trace-equivalent pro-
grams, we obtain two trace-equivalent programs.

Specifying pointcuts.Because we want to preserve trace
equivalence, we cannot express pointcuts in terms of the
internal structure of the base program. For instance, we
do not allow pointcuts to refer explicitly to state names (as
AspectJ [9] can refer to the name of a private method). As a
consequence, pointcuts may refer to the observable behavior
of the program only, i.e., its inputs and outputs. In the
family of synchronous languages, where the communication
between parallel components is the synchronous broadcast,
observers [8] are a powerful and well-understood mechanism
which may be used to describe pointcuts. An observer is
a program that may observe the inputs and the outputs
of the base program, without modifying its behavior, and
compute some safety property (in the sense of safety/liveness
properties as defined in [11]).

We use an observer PJP that emits a special output JP to
describe a pointcut. Whenever PJP emits JP, “we are in” a
join point, and the woven program executes the advice.

Join Point Weaving.If we simply put a program P and
an observer PJP in parallel, P ’s outputs O will become syn-
chronization signals between them, as they are also inputs
of PJP. They will be encapsulated, and are thus no longer
emitted by the product. We avoid this problem by intro-
ducing a new output o′ for each output o of P : o′ will be
used for the synchronization with PJP, and o will still be
visible as an output. First, we transform P into P ′ and
PJP into P ′

JP, where ∀o ∈ O, o is replaced by o′. Sec-
ond, we duplicate each output of P by putting P in par-
allel with one single-state automaton per output o defined
by: duplo = ({q}, q, {o′}, {o}, {(q, o′, o, q)}). The complete
product, where O is noted {o1, ..., on}, is given by:

P(P, PJP) = (P ′‖P ′
JP‖duplo1

‖ ... ‖duplon
) \ {o′1, ..., o′n}

The program P(P, PJP) is first transformed into the single
trace-equivalent automaton by applying the definition of the
operators. We use the same notation, P(P, PJP), for the
program and its transformation. Then, the join points are
selected: they are the transitions of P(P, PJP) that emit JP.

Specifying the advice.A piece of advice modifies the join
point transitions: it redefines their target states and their
outputs. The only advice presented in this paper specifies
the target state of the join point transition globally, by a
finite input trace σ. When executing σ on P(P, PJP) from its
initial state, this leads to some state of P(P, PJP), targ. targ
is the unique new target state for any join point transition.

Advice Weaving.Advice weaving consists in changing the
target state of the join point transitions to the single state
specified by the finite input trace σ, and in replacing their
outputs by the advice outputs Oadv.

Definition 5 (Advice weaving) Let A =
(Q, sinit, I,O, T) be an automaton and adv = (Oadv, σ) a
piece of advice, with σ : [0, ..., `σ] −→ [I −→ {true, false}]
a finite input trace of length `σ + 1. The advice weaving
operator, /JP, weaves asp on A and returns the automaton
A /JP adv = (Q, sinit, I,O ∪ Oadv, T ′), where T ′ is defined
as follows, with targ = S stepA(sinit, σ, `σ) being the new

target state:`
(s, `, O, s′) ∈ T ∧ JP /∈ O

´
=⇒ (s, `, O, s′) ∈ T ′ (1)`

(s, `, O, s′) ∈ T ∧ JP ∈ O
´

=⇒ (s, `, Oadv, targ) ∈ T ′ (2)

Transitions (1) are not join point transitions and are left
unchanged. Transitions (2) are the join point transitions,
their final state targ is specified by the finite input trace σ.
S stepA (which has been naturally extended to finite input
traces) executes the trace during `σ steps, from the initial
state of A.

General aspect definition.Putting together the pointcut
and the advice, we define an aspect as follows:

Definition 6 (Larissa aspect) An aspect, for a program
P on inputs I and outputs O, is a tuple (PJP, adv) where

• PJP = (Qpc, sinit, I∪O, {JP}∪Opc, Tpc) is the pointcut
program, and JP occurs nowhere else in the environ-
ment.

• adv = (Oadv, σ) is the advice, which contains two
items:

– Oadv is the set of outputs emitted by the advice
transitions, which may contain fresh variables as
well as elements of O.

– σ : [0, ..., `σ] −→ [I −→ {true, false}] is a finite
input trace of length `σ + 1. It defines the single
target state of the advice transitions by executing
the trace from the initial state.

An aspect is woven into a program by first determining
the join point transitions and then weaving the advice.

Definition 7 (Aspect weaving) Let P be a program and
asp = (PJP, adv) an aspect for P . The weaving of asp on P
is defined as follows:

P / asp = P(P, PJP) /JP adv .

3. EXAMPLE
As an example, we present a simplified view of the inter-

face of a complex wristwatch, implemented with Argos and
Larissa. The full case study was presented in [2]. The inter-
face is a modified version of the Altimax1 model by Suunto1.

3.1 The Watch
The Altimax wristwatch has an integrated altimeter, a

barometer and four buttons, the mode, the select, the
plus, and the minus button. Each of the main functionali-
ties (time keeping, altimeter, barometer) has an associated
main mode, which displays information, and a number of
submodes, where the user can access additional functional-
ities. An Argos program that implements the interface of
the watch is shown in Figure 2. For better readability, only
those state names, outputs and transitions we will refer to
are shown.

In a more detailed model (as in [2]) the submode states
would contain behavior using the refinement operator of Ar-
gos (see [13] for a definition). We choose not to present this

1Suunto and Altimax are trademarks of Suunto Oy.

operator in this paper since we do not need it to define as-
pect weaving. Adding refinement changes nothing for the
weaving definition, as it works directly on the transforma-
tion of the program into a single trace-equivalent automaton.
For the same reason, the interference analysis presented in
Section 4 is also the same.

mode/
Baro-Mode

mode/
Alti-Mode

m
od

e/
B

ar
o-

M
od

e

m
od

e/
T

im
e-

M
od

e

Time

mode/Time-Mode

BarometerAltimeter

select

m
ai

n
m

od
es

DT-mode
mode/

mode

select

A
lt

i-
M

od
e

mode

mode

select

mode

su
b

m
od

es

m
od

e/

Dual Time Logbook Memory

Figure 2: The Argos program for the Altimax watch.

The buttons of the watch are the inputs of the program.
The mode button circles between modes, the select button
selects the submodes. There are two more buttons: the plus
and the minus button which modify current values in the
submodes, but their effect is not shown in the figure. The
buttons have different meanings depending on the mode in
which the watch is currently.

The interface component we model here interprets the
meaning of the buttons the user presses, and then calls a
corresponding function in an underlying component. The
outputs are commands to that component. E.g., whenever
the program enters the Time Mode, it emits the output
Time-Mode, and the underlying component shows the time
on the display of the watch.

3.2 Two Shortcut Aspects
The plus and the minus buttons have no function consis-

tent with their intended meaning in the main modes: there
are no values to increase or decrease. Therefore, they are
given a different function in the main modes: when one
presses the plus or the minus button in a main mode, the
watch goes to a certain submode. The role of the plus and
minus buttons in the main modes are called shortcuts since
it allows to quickly activate a functionnality, which would
have needed, otherwise, a long sequence of buttons.

Pressing the plus button in a main mode activates the
logbook function of the altimeter, and pressing the minus

button activates the 4-day memory of the barometer. These
functions are quite long to reach without the shortcuts since
the logbook is the third submode of the altimeter, and the
4-day memory is the second submode of the barometer.

These shortcuts can be implemented easily with Larissa
aspects. Figure 3 (a) shows the pointcut for the logbook
aspect, and Figure 3 (b) the pointcut for the memory aspect.
In both pointcuts, state main represents the main modes
and state sub represents the submodes. When, in a main
mode, plus (resp. minus) is pressed, the pointcut emits
JPl (resp. JPm), thus the corresponding advice is executed;
when select is pressed, the pointcut goes to the sub state,
so as to record that the shortcuts are no longer active and

Alti-Mode∨
Time-Mode∨

Baro-Mode
Alti-Mode∨
Time-Mode∨

Baro-Mode
select

(b) (c)

main

sub

(a)

select

sub

main

minus∧plus/JPl minus∧plus/JPm

DT-Mode/JPn

Figure 3: The pointcuts for the aspects.

that the plus and minus buttons have their usual meaning.
As advice, we specify the trace that leads to the functionality
we want to reach, i.e. σl =mode.select.mode.mode for the
logbook aspect and σm =mode.mode.select.mode for the 4-
day memory aspect, and the output that tells the underlying
component to display the corresponding information.

3.3 The No-DTM Aspect
We want to reuse the interface program of the Altimax

to build the interface of another wristwatch, which differs
from the Altimax in that it has no Dual-Time mode (third
submode of the main mode Time). Therefore, we write an
aspect that removes the Dual-Time mode from the interface:
all incoming transitions are redirected to another state. Fig-
ure 3 (c) shows the pointcut for the No-DTM aspect. It se-
lects all transitions that emit DT-Mode, the output that tells
the underlying component to show the information corre-
sponding to the Dual-Time mode on the display. Because
the Dual-Time mode is the last submode of the Time mode,
we want the join point transitions to point to the Time main
mode, i.e. the initial state of the program. Thus, as advice,
we specify Time-Mode as output and an empty trace, which
points to the Time main mode.

4. INTERFERENCE
This section identifies problems that occur when several

aspects are applied to a program, and, as a solution, pro-
poses to weave several aspects at the same time. A mecha-
nism to prove that no interferences remain is also proposed.

4.1 Applying Several Aspects
If we apply first the logbook aspect and then, sequentially,

the memory aspect to the watch program, the aspects do not
behave as we would expect. If, in the woven program, we
first press the minus button in a main mode, thus activating
the logbook aspect, and then the plus button, the memory
aspect is activated, although we are in a sub mode. This
behavior was clearly not intended by the programmer of the
memory aspect.

The problem is that the memory aspect has been written
for the program without the logbook aspect: the pointcut
assumes that the only way to leave a main mode is to press
the select button. However, the logbook aspect invalidates
that assumption by adding transitions from the main modes
to a submode. When these transitions are taken, the point-
cut of the memory aspect incorrectly assumes that the pro-
gram is still in a main mode.

Furthermore, for the same reason, applying first the
memory aspect and then the logbook aspect produces (in
terms of trace-equivalence) a different program from apply-
ing first the logbook aspect and then the memory aspect:

watch / logbook / memory � watch / memory / logbook.
As a first attempt to define aspect interference, we say

that two aspects A1 and A2 interfere when their application
on a program P in different orders does not yield two trace-
equivalent programs: P / A1 / A2 � P / A2 / A1. We say
that two aspects that do not interfere are independent.

With interfering aspects, the aspect that is woven second
must know about the aspect that was applied first. To be
able to write aspects as the ones above independently from
each other, we propose a mechanism to weave several as-
pects at the same time. The idea is to first determine the
join point transitions for all the aspects, and then apply the
advice.

Definition 8 (Joint weaving of several aspects) Let
A1 . . .An be some aspects, with Ai = (PJPi , advi), and P a
program. We define the application of A1 . . .An on P as
follows:

P/(A1, . . . ,An) = P(P, PJP1‖ . . . ‖PJPn)/JPnadvn . . ./JP1adv1

Jointly weaving the logbook and the memory aspect leads
to the intended behavior, and the weaving order does not
influence the result, because both aspects first select their
join point transitions in the main modes, and change the
target states of the join point transitions only afterwards.

Note that Definition 8 does not make sequential weaving
redundant. We still need to weave aspects sequentially in
some cases, when the second aspects must be applied to
the result of the first. For instance, imagine an aspect that
adds an additional main mode to the watch (with a kind
of advice not presented in this paper). Then, the shortcut
aspects must be sequentially woven after this aspect, so that
they can select the new main mode as join point.

Definition 8 does not solve all conflicts. Indeed, the Ai

in P / (A1, . . . ,An) do not commute, in general, since the
advice weaving is applied sequentially. We define aspect
interference for the application of several aspects.

Definition 9 (Aspect Interference) Let A1 ... An be
some aspects, and P a program. We say that Ai and Ai+1

interfere for P iff

P / (A1 . . .Ai,Ai+1 . . .An) � P / (A1 . . .Ai+1,Ai . . .An)

As an example for interfering aspects, assume that the
condition of the join point transition of the pointcut of the
logbook aspect (Figure 3 (a)) is only minus and the condition
of the join point transition of the pointcut of the logbook
aspect (Figure 3 (b)) is only plus. In this case, the two
aspects share some join point transitions, namely when both
buttons are pressed at the same time in a main mode. Both
aspects then want to execute their advice, but only one can,
thus they interfere. Only the aspect that was applied last is
executed.

In such a case, the conflict should be made explicit to the
programmer, so that it can be solved by hand. Here, it was
resolved by changing the pointcuts to the form they have in
Figure 3, so that neither aspect executes when both buttons
are pressed.

4.2 Proving Non-Interference
In this section, we show that in some cases, non-

interference of aspects can be proven, if the aspects are wo-

ven jointly, as defined in Definition 8. We can prove non-
interference of two given aspects either for any program, or
for a given program. Following [6], we speak of strong inde-
pendence in the first case, and of weak independence in the
second.

We use the operator advTrans to determine interference
between aspects. It computes all the join point transitions
of an automaton, i.e. all transitions with a given output JP.

Definition 10 Let A = (Q, sinit, I,O, T) be an automaton
and JP ∈ O. Then,

advTrans(A, JP) = {t|t = (s, `, O, s′) ∈ T ∧ JP ∈ O} .

The following theorem proves strong independence between
two aspects.

Theorem 1 (Strong Independence) Let A1 . . .An be
some aspects, with Ai = (PJPi , advi). Then, the following
equation holds:

advTrans(PJPi‖PJPi+1 , JPi)

∩ advTrans(PJPi‖PJPi+1 , JPi+1) = ∅
⇒ P / (A1 . . .Ai,Ai+1 . . .An) ∼ P / (A1 . . .Ai+1,Ai . . .An)

See appendix A for a proof. Theorem 1 states that if there
is no transition with both JPi and JPi+1 as outputs in the
product of PJPi and PJPi+1 , Ai and Ai+1 are independent
and thus can commute while weaving their advice. Theo-
rem 1 defines a sufficient condition for non-interference, by
looking only at the pointcuts. When the condition holds,
the aspects are said to be strongly independent.

Theorem 2 (Weak Independence) Let A1 . . .An

be some aspects, with Ai = (PJPi , advi), and
Ppc = P(P, PJP1‖ . . . ‖PJPn). Then, the following equation
holds:

advTrans(Ppc, JPi) ∩ advTrans(Ppc, JPi+1) = ∅
⇒ P / (A1 . . .Ai,Ai+1 . . .An) ∼ P / (A1 . . .Ai+1,Ai . . .An)

See appendix B for a proof. Theorem 2 states that if there is
no transition with both JPi and JPi+1 as outputs in Ppc, Ai

and Ai+1 do not interfere. This is weaker than Theorem 1
since it also takes the program P into account. However,
there are cases in which the condition of Theorem 1 is false
(thus it yields no results), but Theorem 2 allows to prove
non-interference. See Section 4.4 for an example.

Theorem 2 is a sufficient condition, but, as Theorem 1, it
is not necessary: it may not be able to prove independence
for two independent aspects. The reason is that it does not
take into account the effect of the advice weaving: consider
two aspects such that the only reason why the condition for
Theorem 2 is false is a transition sourced in some state s,
and such that s is only reachable through another join point
transition; if the advice weaving makes this state unreach-
able, then the aspects do not interfere.

The results obtained by both Theorems are quite intuitive.
They mean that if the pointcut mechanism does not select
any join points common to two aspects, then these aspects
do not interfere. This condition can be calculated on the
pointcuts alone, or can also take the program into account.

Note that the detection of non-interference is a static
condition that does not add any complexity overhead. In-
deed, to weave the aspects, the compiler needs to build first

PJP1‖ ... ‖PJPn = Pall JP: the condition of Theorem 1 can
be checked during the construction of Pall JP. Second, the
weaver builds Ppc = P(P, Pall JP). Afterwards, it can check
the condition of Theorem 2. Thus, to calculate the condi-
tions of both Theorems, it is sufficient to check the outputs
of the transitions of intermediate products during the weav-
ing. The weaver can easily emit a warning when a potential
conflict is detected.

To have an exact characterization of non-interference,
it is still possible to compute the predicate P /
(A1 . . .Ai,Ai+1 . . .An) ∼ P / (A1 . . .Ai+1,Ai . . .An), but
calculating semantic equality is very expensive for large pro-
grams.

Note that the interference presented here only applies to
the joint weaving of several aspects, as defined in Defini-
tion 8. Sequentially woven aspects may interfere even if their
join points are disjoint, because the pointcut of the second
aspects applies to the woven program. A similar analysis to
prove non-interference of sequential weaving would be more
difficult, because the effect of the advice must be taken into
account. Moreover, it is not clear when such an analysis
makes sense: sequential weaving should be used only if one
aspect depends on the other, and interference is unavoid-
able.

4.3 Interference between the Shortcut Aspects
Figure 4 (a) shows the product of the pointcuts of the

logbook and the memory aspect. There are no transitions
that emit both JPl and JPm, thus, by applying Theorem 1,
we know that the aspects do not interfere, independently of
the program they are applied to.

(a)

select

sub

main

(minus∨
DT-mode∧

...

(b)

minus∧

minus∧
DT-mode∧

mainplus/JPl

Alti-Mode∨
Time-Mode∨

Baro-Mode

minus∧
DT-mode∧

plus/JPl plus)/JPn

plus/JPl,JPn

minus∧plus/JPm

Figure 4: Interference between pointcuts.

Let us assume again that the condition of the join point
transition of the pointcut of the logbook aspect (Figure 3
(a)) is only minus and the condition of the join point
transition of the pointcut of the logbook aspect (Figure 3
(b)) is only plus. In this case, the state main in Fig-
ure 4 (a) would have another loop transition, with label
minus∧plus/JPl,JPm. Thus, Theorem 1 not only states
that the aspects potentially interfere, but it also gives a
means to determine where: here, the problem is that when
both minus and plus are pressed in a main mode, at the
same time, both aspects are activated. Larissa thus emits a
warning and the user is invited to solve the conflict if needed.

4.4 Interference between a Shortcut and the
No-DTM Aspect

Figure 4 (b) shows the initial state of the product of the
pointcuts of the logbook (Figure 3 (a)) and the No-DTM
aspect (Figure 3 (c)). There is a transition that has both
JPl and JPn as outputs. Theorem 1 states that the aspects
may interfere, but when applied to the wristwatch controller,

they do not. This is because the DT-mode is an output of
the controller and is never emitted when the watch is in a
main mode, where the logbook aspect can be activated. As
the DT-mode is always false in the main modes, the conflict-
ing transition is never enabled. When applied to another
program, however, the aspects may interfere.

In this example, the use of Theorem 2 is thus needed to
show that the aspects do not interfere when applied to the
wristwatch controller. Its condition is true, as expected,
because JPl is only emitted in the main modes, and JPn

only in the Time submodes.

5. RELATED WORK
Some authors discuss the advantages of sequential vs.

joint weaving. Lopez-Herrejon and Batory [12] propose to
use sequential weaving for incremental software develop-
ment. Colyer and Clement [5, Section 5.1] want to apply
aspects to bytecode which already contains woven aspects.
In AspectJ, this is impossible because the semantics would
not be the same as weaving all aspects at the same time.

Sihman and Katz [15] propose SuperJ, a superimposi-
tion language which is implemented through a preproces-
sor for AspectJ. They propose to combine superimpositions
into a new superimposition, either by sequentially apply-
ing one to the other, or by combining them without mutual
influence. Superimpositions contain assume/guarantee con-
tracts, which can be used to check if a combination is valid.

A number of authors investigate aspect interference in dif-
ferent formal frameworks. Much of the work is devoted to
determining the correct application order for interfering as-
pects, whereas we focus on proving non-interference.

Douence, Fradet, and Südholt [6] present a mechanism to
statically detect conflicts between aspects that are applied
in parallel. Their analysis detects all join points where two
aspects want to insert advice. To reduce the detection of
spurious conflicts, they extend their pointcuts with shared
variables, and add constraints that an aspect can impose on
a program. To resolve remaining conflicts, the programmer
can then write powerful composition adaptors to define how
the aspects react in presence of each other.

Pawlak, Duchien, and Seinturier [14] present a way to
formally validate precedence orderings between aspects that
share join points. They introduce a small language, Comp-
Ar, in which the user expresses the effect of the advice that is
important for aspect interaction, and properties that should
be true after the execution of the advice. The CompAr
compiler can then check that a given advice ordering does
not invalidate a property of an advice.

Durr, Staijen, Bergmans, and Aksit [7] propose an inter-
action analysis for Composition Filters. They detect when
one aspect prevents the execution of another, and can check
that a specified trace property is ensured by an aspect.

Balzarotti, Castaldo D’Ursi, Cavallaro and Monga [3] use
program slicing to check if different aspects modify the same
code, which might indicate interference.

Clean interfaces which take aspects into account can
also help to detect interferences. E.g., aspect-aware inter-
faces [10] indicate where two aspects advise the same meth-
ods in a system.

6. CONCLUSION
We present an analysis for aspect interference for a simple

but significant part of Larissa. We expect that it can be
applied without major modifications to the rest of Larissa.
First, we introduced an additional operator which jointly
weaves several aspects together into a program, closer to
the way AspectJ weaves aspects. Because Larissa is defined
modularly, we only had to rearrange the building steps of
the weaving process. Then, we could analyze interference
with a simple parallel product of the pointcuts.

When a potential conflict is detected, the user has to solve
it by hand, if needed. In the examples we already stud-
ied, the conflicts were solved by simple modifications of the
pointcut programs. We plan to further explore this problem,
but we believe no new language construct will be needed.

It seems that the interference analysis for Larissa is quite
precise, i.e. we can prove independence for most indepen-
dent aspects. One reason for that are Larissa’s powerful
pointcuts, which describe join points statically, yet very pre-
cisely, on the level of transitions. Another reason is the ex-
clusive nature of the advice. Two pieces of advice that share
a join point transition never execute sequentially, but there
is always one that is executed while the other is not. If
the two pieces of advice are not equivalent, this leads to a
conflict. Thus, as opposed to [6], assuming that a shared
join point leads to a conflict does not introduce spurious
conflicts.

In addition, because our language is connected to formal
verification tools, we can check whether different aspect or-
derings result in trace-equivalent automata. This, however,
is only possible because Argos is restricted to Boolean sig-
nals; otherwise trace-equivalence is not decidable. It would
be interesting to design an approximate interference analysis
for Larissa aspects in the presence of valued signals.

7. REFERENCES
[1] K. Altisen, F. Maraninchi, and D. Stauch.

Aspect-oriented programming for reactive systems: a
proposal in the synchronous framework. Science of
Computer Programming, Special Issue on Foundations
of Aspect-Oriented Programming, 2006. To appear.

[2] K. Altisen, F. Maraninchi, and D. Stauch. Larissa:
Modular design of man-machine interfaces with
aspects. In 5th International Symposium on Software
Composition, Vienna, Austria, Mar. 2006. To appear.

[3] D. Balzarotti, A. C. D’Ursi, L. Cavallaro, and
M. Monga. Slicing AspectJ woven code. In G. T.
Leavens, C. Clifton, and R. Lämmel, editors,
Foundations of Aspect-Oriented Languages, Mar. 2005.

[4] G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics,
implementation. Sci. Comput. Programming,
19(2):87–152, 1992.

[5] A. Colyer and A. Clement. Large-scale AOSD for
middleware. In K. Lieberherr, editor, AOSD-2004,
pages 56–65, Mar. 2004.

[6] R. Douence, P. Fradet, and M. Südholt. Composition,
reuse and interaction analysis of stateful aspects. In
K. Lieberherr, editor, AOSD-2004, pages 141–150,
Mar. 2004.

[7] P. Durr, T. Staijen, L. Bergmans, and M. Aksit.
Reasoning about semantic conflicts between aspects.
In K. Gybels, M. D’Hondt, I. Nagy, and R. Douence,
editors, 2nd European Interactive Workshop on
Aspects in Software (EIWAS’05), Sept. 2005.

[8] N. Halbwachs, F. Lagnier, and P. Raymond.
Synchronous observers and the verification of reactive
systems. In M. Nivat, C. Rattray, T. Rus, and
G. Scollo, editors, Algebraic Methodology and Software
Technology, AMAST’93, June 1993.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. LNCS, 2072:327–353, 2001.

[10] G. Kiczales and M. Mezini. Aspect-oriented
programming and modular reasoning. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 49–58, 2005.

[11] L. Lamport. Proving the correctness of multiprocess
programs. ACM Trans. Prog. Lang. Syst.,
SE-3(2):125–143, 1977.

[12] R. E. Lopez-Herrejon and D. Batory. Improving
incremental development in AspectJ by bounding
quantification. In L. Bergmans, K. Gybels, P. Tarr,
and E. Ernst, editors, Software Engineering Properties
of Languages and Aspect Technologies, Mar. 2005.

[13] F. Maraninchi and Y. Rémond. Argos: an
automaton-based synchronous language. Computer
Languages, 27(1/3):61–92, 2001.

[14] R. Pawlak, L. Duchien, and L. Seinturier. Compar:
Ensuring safe around advice composition. In
FMOODS 2005, volume 3535 of lncs, pages 163–178,
jan 2005.

[15] M. Sihman and S. Katz. Superimpositions and
aspect-oriented programming. The Computer Journal,
46(5):529–541, Sept. 2003.

APPENDIX

A. PROOF FOR THEOREM 1
Theorem 1 is a consequence of Theorem 2. We show that

advTrans(P(P, PJP1‖ . . . ‖PJPn), JPi)∩
advTrans(P(P, PJP1‖ . . . ‖PJPn), JPi+1) = ∅

follows from

advTrans(PJPi‖PJPi+1 , JPi)

∩ advTrans(PJPi‖PJPi+1 , JPi+1) = ∅

JPi and JPi+1 can only occur in PJPi and PJPi+1 . Thus,
if a transition that has both of them as outputs in
P(P, PJP1‖ . . . ‖PJPn), there must already exist a transition
with both of them as outputs in PJPi‖PJPi+1 .

B. PROOF FOR THEOREM 2
Because the parallel product is commuta-

tive P(P, PJP1‖ . . . ‖PJPi‖PJPi+1‖ . . . ‖PJPn) and
P(P, PJP1‖ . . . ‖PJPi+1‖PJPi‖ . . . ‖PJPn) are the same.

Let P(P, PJP1‖ . . . ‖PJPn) /JPn advn . . . /JPi+2 advi+2 =
(Q, sinit, I,O, T) = Pi+2. Then Pi+2 /JPi+1 advi+1 yields an
automaton Pi+1 = (Q, sinit, I,O ∪Oadvi+1 , T ′), where T ′ is
defined as follows:`

(s, `, O, s′) ∈ T ∧ JPi+1 /∈ O
´

=⇒ (s, `, O, s′) ∈ T ′`
(s, `, O, s′) ∈ T ∧ JPi+1 ∈ O

´
=⇒

(s, `, Oadvi+1 , S stepP ′(sinit, σi+1, lσi+1)) ∈ T
′

and Pi+1 /JPi advi yields an automaton Pi =
(Q, sinit, I,O ∪ Oadvi+1 ∪ Oadvi , T

′′), where T ′′ is defined
as follows:`

(s, `, O,s′) ∈ T ∧ JPi+1 /∈ O ∧ JPi /∈ O
´

=⇒ (s, `, O, s′) ∈ T ′
(3)

`
(s, `, O,s′) ∈ T ∧ JPi+1 ∈ O ∧ JPi /∈ O

´
=⇒

(s, `, Oadvi+1 , S stepP ′(sinit, σi+1, lσi+1)) ∈ T
′ (4)`

(s, `, O,s′) ∈ T ∧ JPi+1 /∈ O ∧ JPi ∈ O
´

=⇒
(s, `, Oadvi , S stepP ′(sinit, σi, lσi)) ∈ T

′ (5)`
(s, `, O,s′) ∈ T ∧ JPi+1 ∈ O ∧ JPi ∈ O

´
=⇒

(s, `, Oadvi+1 , S stepP ′(sinit, σi+1, lσi+1)) ∈ T
′ (6)

If we calculate Pi+2 /JPi advi /JPi+1 advi+1, we obtain
the same automaton, except for transitions (6), which are
defined by`

(s, `, O, s′) ∈ T ∧ JPi+1 ∈ O ∧ JPi ∈ O
´

=⇒
(s, `, Oadvi , S stepP ′(sinit, σi, lσi)) ∈ T

′´
Transitions (6) are exactly the join point transi-

tions that are in advTrans(P(P, PJP1‖ . . . ‖PJPn), JPi) ∩
advTrans(P(P, PJP1‖ . . . ‖PJPn), JPi+1). By precondition,
there were no such transitions in P(P, PJP1‖ . . . ‖PJPn). Be-
cause we require that all the JPj outputs occur nowhere
else, JPi and JPi+1 cannot be contained in a Oadvj , thus
no transition of type (6) has been added by the weaving of
/JPnadvn . . . /JPi+2 advi+2.

Thus, we have P(P, PJP1‖ . . . ‖PJPn) /JPn advn . . . /JPi+2

advi+2 /JPi+1 advi+1 /JPi advi = P(P, PJP1‖ . . . ‖PJPn) /JPn

advn . . . /JPi+2 advi+2 /JPi advi /JPi+1 advi+1. Weaving
/JPi−1advi−1 . . . /JP1 adv1 trivially yields the same re-
sult.

