
Modular Generic Verification of LTL Properties for Aspects

Max Goldman Shmuel Katz
Computer Science Department

Technion — Israel Institute of Technology

{mgoldman, katz}@cs.technion.ac.il

ABSTRACT
Aspects are separate code modules that can be bound (“wo-
ven”) to a base program at joinpoints to provide an aug-
mented program. A novel approach is defined to verify
that an aspect state machine will provide desired proper-
ties whenever it is woven over a base state machine that
satisfies the assumptions of the aspect. A single state ma-
chine is constructed using the tableau of the linear temporal
logic (LTL) description of the assumptions, a description of
the joinpoints, and the state machine of the aspect code. A
theorem is shown that if the constructed machine satisfies
the desired properties, so will an augmented state machine
using any base machine that satisfies the assumptions. The
theorem is stated and shown for assumptions and properties
given in LTL, for a somewhat restricted form of joinpoint
description, and for aspect code that ends in states already
reachable in the base state machine. A language-based de-
scription of aspects, as in AspectJ, can be converted to a
state machine version using existing tools, thus providing
generic modular verification of code-level aspects.

1. INTRODUCTION
1.1 Aspect-Oriented Programming
The aspect-oriented approach to software development is
one in which concerns that cut across many parts of the
system are encapsulated in separate modules called aspects.
For example, when security or logging are encapsulated in an
aspect, this aspect contains both the code associated with
the concern, called advice, and a description of when this
advice should run, called a pointcut descriptor. The point-
cut descriptor identifies those points in the execution of a
program at which the advice should be invoked. The combi-
nation of some base program with an aspect (or in general,
a collection of aspects), is termed an augmented program.

1.2 Formal Verification
In this work we are concerned with generic formal verifica-
tion of aspects relative to a specification. The specification

of an aspect consists of assumptions about any base pro-
gram to which the aspect can reasonably be woven, and de-
sired properties intended to hold for the augmented program.
We view both base programs and aspect code as nondeter-
ministic finite state machines, in which particular computa-
tions are realized as infinite sequences of states within the
machine. For both assumptions and desired properties to
be verified we consider formulas written in linear temporal
logic (LTL). An LTL formula consists of a path formula us-
ing temporal quantifiers and logical combinations of atomic
propositions, prefixed by a single (usually implicit) universal
path quantifier. The atomic propositions in a formula refer
to the labels of states in a finite state machine; temporal
quantifiers specify when these assertions about states must
be true. The universal path quantifier requires that, in order
for some initial state to satisfy an LTL assertion, all infinite
paths from that state must satisfy the path formula. In gen-
eral, a state machine also includes a fairness constraint, and
only fair paths are considered.

1.3 Modular Aspectual Verification
It is clear that given a base program, a collection of aspects
with their pointcut descriptors and advice, and a system for
weaving together these components to produce a stand-alone
augmented program, we can verify properties of this aug-
mented system using the usual model checking techniques.
Such weaving involves adding edges from joinpoint states
of the base program to the initial states of the advice, and
from the states after an advice segment to states where base
program statements are executed.

It would be preferable, however, if we could employ a mod-
ular technique in which the aspect can be considered sepa-
rately from the base program. This would allow us to:

• obtain verification results that hold for a particular
aspect with any base program from some class of pro-
grams, rather than for only one base program in par-
ticular;

• use the results to reason about the application of as-
pects to base programs with multiple evolving state
machines describing changing configurations during ex-
ecution, or to other base systems not amenable to
model checking; and

• avoid model checking augmented systems, which may
be significantly larger than their base systems, and
whose unknown behavior may resist abstraction.

The second point above relates to general object-oriented
programs that create new instances of classes (objects) with
associated state machine components. Often, the assump-
tion of an aspect about the key properties of those base state
machines to which it may be woven can indeed be shown to
hold for every possible machine that corresponds to an ob-
ject configuration of a program. For example, it may involve
a so-called class invariant, provable by reasoning directly on
class declarations, as in [1]. This point and more details on
the connections between code-based aspects (as in AspectJ)
and the state machine versions seen here are discussed in
Section 5.

This problem of creating a single generic model that can rep-
resent any possible augmented program for an aspect woven
over some class of base programs is especially difficult be-
cause of the aspect-oriented notion of obliviousness: base
programs are generally unaware of aspects advising them,
and have no control over when or how they are advised.
There are no explicit markers for the transfer of control
from base to advice code, nor are there guarantees about
if or where advice will return control to the base program.

1.4 Results
In this paper we show how to verify once-and-for-all that
for any base state machine satisfying the assumptions of
the aspect, and for a weaving that adds the aspect advice
as indicated in the joinpoint description, the resulting aug-
mented state machine is guaranteed to satisfy the desired
properties given in the specification. A single generic state
machine is constructed from the tableau of the assumption,
the pointcut descriptor, and the advice state machine, and
verified for the desired property. Then, when a particular
base program is to be woven with the aspect, it is suffi-
cient to establish that the base state machine satisfies the
assumption. Thus the entire augmented program never has
to be model checked, achieving true modularity and gener-
icity in the proof. This approach is especially appropriate
for aspects intended to be reused over many base programs,
e.g., those in libraries or middleware components.

LTL model checking is based on creating a tableau state
machine automaton that accepts exactly those computations
that satisfy the property to be verified. Usually, the negation
of this machine is then composed as a cross-product with the
model to be checked. A counter-example is produced when
the composed system contains some infinite path, and the
property is satisfied for the model when the cross-product
has no such paths. Here we use the tableau of the assump-
tion in a unique way, as the basis of the generic model to be
checked for the desired property. It represents any base ma-
chine satisfying the assumption, because the execution se-
quences of the base program can be abstracted by sequences
in the tableau.

For the soundness theorem presented in Section 4, the as-
pects treated are assumed to be weakly invasive, as defined
in [7]. This means that when advice has completed exe-
cuting, the system continues from a state that was already
reachable in the original base program (perhaps for different
inputs or actions of the environment). Many aspects fall into
this category, including spectative aspects that never modify
the state of the base system (logging is a good example), and

regulative aspects that only restrict the reachable state space
(for example, aspects implementing security checks). Also
weakly invasive would be an aspect to enforce transactional
requirements, which might roll back a series of changes so
that the system returns to the state it was in before they
were made. Even a ‘discount policy’ aspect that reduces the
price on certain items in a retail system is weakly invasive,
since the original price given as input could have been the
discounted one.

Additionally, we assume that any executions of an aug-
mented program that infinitely often include states resulting
from aspect advice will be fair (and thus must be considered
for correctness purposes). The version here does not treat
multiple aspects or joinpoints influenced by the introduction
of advice, although the approach can be expanded to treat
such cases as well.

In the following section, needed terms and constructs are
defined. Section 3 presents the algorithm, and Section 4
gives a proof of soundness in the weakly invasive aspect case.
This section also gives an example. Section 5 details works
related to the result here, and is followed by the conclusion.

2. DEFINITIONS

2.1 LTL Tableaux
Intuitively, the tableau of an LTL forumla f is a state ma-
chine whose fair infinite paths are exactly all those paths
which satisfy the formula f . This intuition will be realized
formally in Theorem 1 below.

In the context of performing model checking to verify sat-
isfaction of an LTL property, a tableau is constructed for
the negation of that property, in order to capture all possi-
ble computations that would cause a machine not to satisfy
the formula in question. It is important to stress that here
we use the tableau for the original non-negated formula.
Nevertheless, because of the use of tableaux by LTL model
checking tools, modules to perform the construction of a
formula’s tableau are available. For exploratory purposes,
the authors have used the translator module of NuSMV [10],
which produces a (tableau) finite state machine from a given
LTL formula.

We define Tf , the tableau for LTL path formula f , as given in
Model Checking [3] in the section on “Symbolic LTL Model
Checking” (6.7). In this construction, the original formula is
decomposed into the set of elementary formulas it contains,
where all other temporal operators, such as from now on
(G) and eventually (F), are expressed in terms of next (X)
and strong until (U). Each state in the tableau is a subset
of these elementary formulas, and the path relation between
these states is defined by means of a function sat(g), which
captures the set of states in which subformula g of f is sat-
isfied.

We denote Tf = (ST , S
T
0 , RT , LT , FT), where ST is the set

of states; ST0 is the set of initial states, RT is the transition
relation, LT is the labeling function, and FT is the set of fair
state sets. For ease of discussion, we clarify the definition
as follows:

Define ST0 , where for χ = Af , we have Tf |= χ:

ST0 = sat(f)

Define FT , where any fair path in Tf must visit each set in
FT infinitely many times:

FT = {sat((¬(gUh)) ∨ h) | gUh is a subformula of f}

This fairness constraint guarantees that obligations of the
form gUh are fulfilled, either by visiting a state in sat(h)
infinitely often, or by infinitely often visiting a state outside
of sat(gUh), which can only be reached by going via sat(h)
according to the construction of the path relation (not de-
tailed here).

Two notable properties of Tf will be used below. First, if
APf is the set of atomic propositions in f , then LT : S →
P(APf) — that is, the labels of the states in the tableau
will include sets of the atomic propositions appearing in f .
A state in any machine is given a particular label if and only
if that atomic proposition is true in that state.

The second interesting feature is a main theorem from the
discussion in [3]:

Definition 1. For path π, let label(π) be the sequence of
labels (subsets of AP) of the states of π. For such a sequence
l = l0, l1, . . . and set Q, let l|Q = m0,m1, . . . where for each
i ≥ 0, mi = li ∩Q.

Theorem 1. Given Tf , for any Kripke structure M , for
all fair paths π′ in M , if M,π′ |= f then there exists fair
path π in Tf such that π starts in ST0 and label(π′)|APf =
label(π).

That is, for any possible computation of M satisfying for-
mula f , there is a path in the tableau of f which matches
the labels within APf along the states of that computation.

In the algorithm of Section 3, we restrict the tableau to
its reachable component. Such restriction does not affect
the result of this theorem, since all reachable paths are pre-
served, but is necessary in order to achieve useful results.
This follows from the observation that the tableau for the
negation of a formula has precisely the same states and tran-
sition relation, but the complementary set of initial states.
Thus, any unreachable portion of the tableau is liable to
contain exactly those behaviors which violate the formula of
interest.

Finally, for χ = Af , define Tχ = Tf as a convenient notation
(a tableau can only be constructed for a path formula).

2.2 Aspects
An aspect machine A = (SA, S

A
0 , S

A
ret , RA, LA) over atomic

propositions AP is defined as usual for a machine with no
fairness constraint, with the following addition:

Definition 2. SAret is the set of return states of A, where
SAret ⊆ SA and for any state s ∈ SAret , s has no outgoing
edges.

2.3 Pointcuts
We do not give a prescriptive definition for pointcut de-
scriptors here; in practice pointcut descriptions might take
a number of forms. However, we require that descriptors
operate in the following manner:

Definition 3. Given a pointcut descriptor ρ over atomic
propositions AP and a finite sequence l of labels (subsets of
AP), we can ask whether or not the end of l is matched by
ρ, written l |≡ ρ.

A reasonable choice for describing pointcuts might be LTL
path formulas containing only past temporal operators. For
example, the descriptor ρ1 = a ∧ Y b ∧ Y Y b would match
sequences ending with a state where a is true, preceded by
b, preceded by another b (operator Y is the past analogue of
X). Other languages could be imagined, for example regular
expressions, where ρ2 = true∗ · b · b ·a might be equivalent to
ρ1. The use of regular expressions over automata is popular
in industrial specification languages and has been examined
in formal combination with LTL for example in [2].

2.4 Specifications
In addition to its advice, in the form of state machine A, and
pointcut, described by ρ, an aspect is considered to have two
pieces of formal specification:

• Formula ψ expresses the assumptions made by the as-
pect about any base machine to which it will be woven.
This ψ is thus a requirement to be met by any such
machine.

• Formula φ expresses the desired result to be satisfied
by any augmented machine built by weaving this as-
pect with a conforming base machine. In other words,
φ is the guarantee of the aspect.

2.5 Weaving
Weaving is the process of combining a base machine with
some aspect according to a particular pointcut descriptor;
the result is an augmented machine that includes the advice
of the aspect.

The weaving algorithm has the following inputs:

• aspect machine A = (SA, S
A
0 , S

A
ret , RA, LA) over AP ,

• pointcut ρ over AP , and

• base machine B = (SB , S
B
0 , RB , LB , FB) over APB ⊇

AP .

And it produces as output:

• augmented machine eB = (S eB , S eB
0 , R eB , L eB , F eB).

The weaving is performed in two steps. First we construct
from the base machine B a new state machine Bρ which is
pointcut-ready for ρ, wherein each state either definitely is
or is not matched by ρ. Then we use Bρ and A to build the

final augmented machine eB.

This two-step division of the weaving process means that
the algorithm cannot handle a number of problematic cases:
when the pointcut descriptor matches advice states, and
thus advice should be inserted on other advice; when the
addition of advice states creates a new matching pointcut in
the computation, and advice should be inserted; and when
the addition of advice states causes a location that once
matched a pointcut selector not to match it any longer.
Proper handling of these scenarios is the subject of ongo-
ing work.

2.5.1 Constructing a Pointcut-Ready Machine
Pointcut-ready machine Bρ = (SBρ , SB

ρ

0 , RBρ , LBρ , FBρ) is
a machine in which unwinding of certain paths has been per-
formed, so that we can separate paths which match point-
cut descriptor ρ from those that do not. The pointcut-ready
machine contains states with a new label, pointcut, that in-
dicates exactly those states where the descriptor has been
matched.

This machine must meet the following requirements:

• SBρ ⊇ SB

• SB
ρ

0 = SB0

• LBρ is a function from SBρ to P (APB ∪ {pointcut})

• For all finite-length paths π = s0, . . . , sk in Bρ such
that s0 ∈ SB

ρ

0 , label(π) |≡ ρ⇔ sk |= pointcut .

• For all infinite sequences of labels l = (P(APB))ω,
there is a fair path πBρ in Bρ where label(πBρ)|APB =
l if and only if there is a fair path πB in B where
label(πB) = l.

Note that since B and Bρ have the same paths (over AP ,
ignoring the added pointcut label), they must satisfy exactly
the same LTL formulas over AP .

Figure 1 shows a simple example of this construction. Note
that in state diagrams, the absence of an atomic proposition
indicates that the proposition does not hold, not that the
value is unknown or irrelevant. This is in contrast to a
formula, where unmentioned propositions are not restricted.

2.5.2 Constructing an Augmented Machine
We construct the components of augmented machine eB =

(S eB , S eB
0 , R eB , L eB , F eB) as follows:

• S eB = SBρ ∪ SA

• S
eB
0 = SB

ρ

0

a b

M Mρ

a b

ba
 pointcut

Figure 1: Constructing a pointcut-ready machine
Mρ for the given M and LTL past formula pointcut
descriptor ρ = a ∧ Y b ∧ Y Y b.

• (s, t) ∈ R eB ⇔8>>>><>>>>:
(s, t) ∈ RBρ ∧ s 6|= pointcut if s, t ∈ SBρ

(s, t) ∈ RA if s, t ∈ SA
s |= pointcut ∧ t ∈ SA0

∧ LBρ(s)|AP = LA(t) if s ∈ SBρ , t ∈ SA
s ∈ SAret ∧ LA(s) = LBρ(t)|AP if s ∈ SA, t ∈ SBρ

Note that this relationship is ‘if and only if.’ In words,
the path relation contains precisely all the edges from the
pointcut-ready base machine Bρ and from aspect machine
A, except that pointcut states in Bρ have edges only to
matching start states in A, and aspect return states have
edges to all matching base states.

• L eB(s) =


LBρ(s) if s ∈ SBρ

LA(s) if s ∈ SA

• F eB = FBρ × SA

That is, F eB = {Fi ∪ SA | Fi ∈ FBρ}. A path is fair if it
either satisfies the fairness constraint of the pointcut-ready
machine, or if it visits some aspect state infinitely many
times — a conservatively inclusive definition.

A weaving is considered successful if every reachable node
in S eB has a successor according to R eB .

2.6 Weakly Invasive Aspects
As mentioned above, we show our result for the broad class
of aspects which, when they return from advice, do so to
a reachable state in the base machine. Without this re-
striction, the aspect may return to unreachable parts of the
base machine whose behavior is not bound by assumption
formula ψ. In this case, the augmented system contains
portions with unknown behavior, and is difficult to reason
about in a modular way.

Definition 4. An aspect A and pointcut ρ are said to be
weakly invasive for a base machine B if, for all states in SBρ

that are reachable by a fair path in eB, those states were
reachable by a fair path in Bρ.

Aspect Machine

Base Machine

s0 s1 sk−1
... pc

sk

... ...
πsk

π′
M

sk+1
...

...

...

...

...

...

...
t1 t!

... ...
πt1

πt!

Figure 2: Using fair paths in M (small states along the top) to guarantee a matching path in fTψ.

In particular, this means that all states to which the aspect
returns are states reachable in the pointcut-ready base ma-
chine. This could of course be checked directly, but would
require construction of the augmented machine — precisely
the operation we would like to avoid. In many cases, the
aspect can be shown weakly invasive for any base machine
satisfying its assumption ψ, by using static analysis, local
model checking, or additional information (our reasoning in
the discount price example from Section 1.4 uses such infor-
mation). For further discussion, see [7].

3. ALGORITHM
The algorithm builds a tableau from ψ and weaves A with
this tableau according to ρ, then performs model checking to
verify the result with respect to φ. In the following section
we prove that when this model check of the constructed aug-
mented tableau succeeds, then for any base system satisfying
requirement ψ, applying aspect A according to pointcut de-
scriptor ρ will yield an augmented system satisfying result
φ.

Given:

• set of atomic propositions AP ;

• assumption ψ for base systems, an LTL formula over
AP ;

• desired result φ for augmented systems, an LTL for-
mula over AP ; and

• aspect machine A and pointcut descriptor ρ over AP .

Perform the following:

0. If it does not already, augment ψ with clauses of the
form · · · ∧ (a∨¬a), such that ψ contains every atomic
proposition a ∈ AP , without altering its meaning.

1. Construct Tψ, the tableau for ψ. Since ψ contains
every AP , the result of Theorem 1 will hold when all
labels in AP are considered.

2. Restrict Tψ to only those states reachable via a fair
path.

3. Weave A into Tψ according to ρ, obtaining fTψ.

4. Perform model checking in the usual way to determine

if fTψ |= φ.

4. CORRECTNESS
Given the components defined above, suppose that:fTψ |= φ .

What we have shown, then, is that the tableau for assump-
tion ψ woven with aspect A according to ρ gives a resulting
machine that satisfies desired augmented result φ. Our goal

is to use the properties of fTψ to show that A and ρ, when
woven with any possible base machine M for which M |= ψ,

will always yield an augmented fM such that fM |= φ. The
proof below gives this result for a particular class of aspects.

Theorem 2. Given AP , ψ, φ, A, and ρ as defined, iffTψ |= φ, then for any base program program M over a su-
perset of AP such that A and ρ are weakly invasive for M ,

if M |= ψ then fM |= φ.

Proof. Since M and Tψ contain exactly the same fair
paths asMρ and T ρψ, andM |= ψ, by Theorem 1, for any fair

path πM in Mρ |= ψ starting from SM
ρ

0 , there is a fair path
πT in T ρψ with the same labels (restricted to AP). It suffices
to show that after augmenting both of these pointcut-ready
machines, this correspondence still holds.

Consider any fair path π′
M in fM starting from an initial

state.

Unmodified path Suppose no state on π′
M is labeled with

pointcut. Then π′
M must be the same as some fair path

πM in Mρ, which has matching fair path πT in T ρψ.
This path πT contains no states labeled with point-
cut, since for every finite subpath of πM , ρ was not
matched, and the labels on πT are the same (restricted
to AP).

Since πT has no states labeled with pointcut, by the

construction of fTψ, none of the edges along this path

have been removed during weaving. Therefore πT is

identical to a fair path π′
T in fTψ, and we have a match-

ing path for π′
M .

Modified path Path π′
M must begin with a sequence of

k+1 states s0, s1, . . . , sk in Mρ, where k ≥ 0. Since sk
must be reachable from a fair path πsk in Mρ, we can
consider the path which begins s0, . . . , sk and contin-
ues along the remainder of πsk after sk (see Figure 2).
This path must also be fair, since it has the same in-
finite tail as πsk itself, and so must have a matching
path in T ρψ; we begin π′

T by following this path.

Suppose that sk |= pointcut , so sk+1 is in A. This
state sk can be labeled pointcut if and only if we have
label(s0, . . . , sk) |≡ ρ. In this case, the matching sub-
path in T ρψ must also match ρ, and will have pointcut on
the state matching sk. From both states, all edges go
to machine A, so we can continue π′

T along an identi-
cal advice path; this includes the case when the advice
never returns to the base machine.

If and when π′
M follows an edge from an aspect return

state to a state t1 in Mρ, it does so to a state which
is on a fair path πt1 in that machine. There must be
a matching path to πt1 in the tableau. Furthermore,
if we continue along a sequence of base machine states
t1, . . . , t`, since t` is also reachable from a fair path πt` ,
the path which reaches t1 via πt1 , goes to t`, and then
continues along πt` from t` is also fair in Mρ.

In fTψ, we have an edge from the aspect return state
to every state whose labels match t1; in particular,
we must have an edge to the state corresponding to
t1 on the fair path matching our continuation from t1
constructed above. We can continue the match π′

T for
π′
M along this path.

If this continuation of base machine states is infinite,
then the matching path in the tableau must be fair,
since we are following the match of a fair path in Mρ.
If we never reach an infinite sequence of base states,
but always reach another advice, then there must be
some advice states which are visited infinitely many
times, and again the path in the tableau is fair.

Therefore, for every fair path π′
M in fM we have a corre-

sponding fair path π′
T in fTψ. This correspondence completes

the proof that fM |= φ.

4.1 Example
By way of example, suppose we have an aspect with base
system assumption ψ = A G ((¬a ∧ b) → F a) — that is,
any state satisfying ¬a ∧ b is eventually followed by a state
satisfying a. We would like to prove that the application of
our aspect to any base system satisfying ψ will give an aug-
mented system satisfying result φ = A G ((a ∧ b) → X F a)
— that is, any state satisfying a ∧ b will eventually be fol-
lowed by a later state satisfying a. While this example may
not have clear correlation to a code-level problem, it serves
to illuminate the capabilities of our technique.

Figure 3 shows the reachable portion of the tableau for the
assumption ψ. In the diagram, shaded states are those con-
tained in the only fairness set. The notation Xg, not actually

a a b

a Xg
a b
Xg

b XgXg

s0 s1

s2 s3

s4 s5

s6

Figure 3: The reachable portion of tableau Tψ for
ψ = A G ((¬a ∧ b) → F a).

a b b

Figure 4: A simple aspect machine A.

a a b

a Xg
a b
Xg

b XgXg

s0 s1

s2 s3

s4 s5

s6

a b

b

Figure 5: Augmented tableau fTψ, satisfying φ =
A G ((a ∧ b) → X F a).

part of the state label, designates states in the tableau which
satisfy Xg for subformula g = F a. For the example pointcut
descriptor ρ = (a∧ b), this tableau machine is also pointcut-
ready for ρ (since ρ references only the current state), simply
by adding pointcut to the labels of s3 and s5.

Figure 4 shows the state machine A for the advice of our
aspect. This advice will be applied at the states matched by
ρ, and Figure 5 gives the weaving of A with Tψ according
to ρ. Model checking this augmented tableau will indeed
establish that it satisfies the desired property φ. This result
follows neither from the aspect nor base machine behavior
directly, but from their combined behavior mediated by ρ.

And since fTψ |= φ, any M |= ψ will yield fM |= φ.

Reasoning intuitively about A and ρ without examining the
tableau supports this conclusion: the advice is invoked at
all states of such an M that match (a∧b), the advice always
leads to a state satisfying (¬a ∧ b), and ψ guarantees that
from such a state we will always reach a state satisfying a,
which is exactly the assertion of φ.

Figure 6 depicts a particular base machine M satisfying ψ,
as could be easily verified by model checking. Again, the
shaded states are those in the only fairness set. Although
this M is small, it does contain atomic proposition c not
‘visible’ to the aspect, and it has a disconnected structure
very much unlike the tableau. From Figure 7, one sees it

is indeed the case that the augmented machine fM satisfies
φ — but there is no need to prove this directly by model
checking. This holds true even though the addition of the
aspect has made a number of invasive changes to M : state
s1 is no longer reachable, because its only incoming edge
has been replaced by an advice edge; a new loop through s0
has been added, when in M there was no path visiting s0
more than once; there is a new path connecting the previ-
ously separated left-hand component to the right-hand; and
so forth. In more realistic examples, the difference in size
between the augmented tableau (involving only ψ, ρ, and
A) and a concrete augmented system with advice over a full
base machine would be substantial.

5. RELATED WORK
The first work to separately model check the aspect state
machine segments that correspond to advice is [9], where
the verification is modular in the sense that base and aspect
machines are considered separately. The verification method
also allows for joinpoints within advice to be matched by a
pointcut and themselves advised. However, the treatment
there is for a particular aspect woven directly to a particular
base program. Additionally, it shows only how to extend
properties which hold for that base program, proving that
the augmented program satisfies them as well (properties are
specified in branching-time logic CTL). A key assumption of
their method is that after the aspect machine completes, the
continuation is always to the state following the joinpoint
in the original base program. This requirement is much
stronger than the assumption used here of a weakly invasive
aspect.

In [8], model checking tasks are automatically generated for
the augmented system that results from each weaving of an
aspect. That approach has the disadvantage of having to

b

a b c

a c

c

s0

s1

b

Figure 6: One particular base machine M |= ψ.

a b b

b

a b c

a c

c

b

s0

s1

Figure 7: Augmenting M with A according to ρ

gives result fM |= φ.

treat the augmented system, but at least the needed anno-
tations and set-up need only be prepared once. That work
takes advantage of the Bandera [5] system that generates in-
put to model checking tools directly from Java code, and can
be extended to, for example, the aspect-oriented AspectJ
language. Bandera and other systems like Java Pathfinder
[6] that generate state machine representations from code
can be used to connect common high-level aspect languages
to the state machines used in the results here.

In [7] a semantic model based on state machines is given,
and the treatment of code-level aspects and joinpoints de-
fined in terms of transitions, as in AspectJ, is described. In
particular, the variations needed to express in a state ma-
chine weaving the meaning of before, after, and around with
proceed are outlined, although work remains to fully capture
the intended semantics.

In [4] and [11], among others, an assume-guarantee structure
for aspect specification is suggested, similar to the specifi-
cations here, but model checking is not used.

6. CONCLUSION
By reusing the notion of a tableau which contains all possible
behaviors that satisfy a particular formula, we can achieve a
modular verification for aspects by augmenting the tableau
with the advice according to a pointcut descriptor and ex-

amining the result. In order to do so we must restrict our
view to aspects which are weakly invasive and always return
to states which were reachable in the original base system,
and we take a liberal view of fairness in which any computa-
tion that infinitely often visits an aspect state is considered
fair.

A number of directions for future work present themselves
quite clearly. While the current technique only addresses a
single aspect and pointcut descriptor, in principle it can be
extended to work for multiple aspects, given proper def-
initions of the weaving mechanics. Further development
of how weaving is formulated will also allow treatment of
cases where advice introduction changes the set of join-
points. Furthermore, the entire discussion here is given in
terms of states and state machines, while, as noted earlier,
the usual basic vocabulary of aspect-oriented programming
talks about events. The language-level aspect terminology
and problems of real object systems still must be fully ex-
pressed in the state-based model checking used here. Nev-
ertheless, the generic method in this paper allows us for
the first time to model check aspects independently of a
concrete base program, and is a significant step toward the
truly modular verification of aspects.

7. REFERENCES
[1] E. Abraham, F. de Boer, W.-P. de Roever, and

M. Steffen. An assertion-based proof system for
multithreaded java. Theoretical Computer Science,
331(2-3):251–290, 2005.

[2] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman,
and M. Y. Vardi. Regular vacuity. In D. Borrione and
W. Paul, editors, Proc. of Correct Hardware Design
and Verification Methods, CHARME’05, volume 3725
of LNCS, pages 191–206. Springer, 2005.

[3] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled.
Model Checking. MIT Press, Cambridge, MA, 1999.

[4] B. Devereux. Compositional reasoning about aspects
using alternating-time logic. In Proc. of Foundations
of Aspect Languages Workshop (FOAL03), 2003.

[5] J. Hatcliff and M. Dwyer. Using the Bandera Tool Set
to model-check properties of concurrent Java software.
In K. G. Larsen and M. Nielsen, editors, Proc. 12th
Int. Conf. on Concurrency Theory, CONCUR’01,
volume 2154 of LNCS, pages 39–58. Springer-Verlag,
2001.

[6] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. International
Journal on Software Tools for Technology Transfer
(STTT), 2(4), Apr 2000.

[7] S. Katz. Aspect categories and classes of temporal
properties. In Transactions on Aspect Oriented
Software Development, Volume 1, LNCS 3880, pages
106–134, 2006.

[8] S. Katz and M. Sihman. Aspect validation using
model checking. In Proc. of International Symposium
on Verification, LNCS 2772, pages 389–411, 2003.

[9] S. Krishnamurthi, K. Fisler, and M. Greenberg.
Verifying aspect advice modularly. In Proc. SIGSOFT
Conference on Foundations of Software Engineering,
FSE’04, pages 137–146. ACM, 2004.

[10] NuSMV. http://nusmv.irst.itc.it/.

[11] H. Sipma. A formal model for cross-cutting modular
transition systems. In Proc. of Foundations of Aspect
Languages Workshop (FOAL03), 2003.

