How to Compile Aspects with Real-Time Java

Pengcheng Wu

College of Computer & Information Science
Northeastern University
Boston, Massachusetts 02115 USA
wupc@ccs.neu.edu

ABSTRACT

The Real-Time Specification for Java(RTSJ) uses a special
memory model based on scoped memory areas to address
the unpredictability of Java’s Garbage Collection mecha-
nism, which makes Java unsuitable to write real-time ap-
plications. It has been widely believed that Aspect-oriented
Programming (AOP) is helpful for implementing distributed
computing applications where a lot of crosscutting concerns
exist, including real-time concerns. While it is tempting to
use AspectJ with RTSJ programs, both of the AspectJ com-
pilers cannot handle complication in the RTSJ setting cor-
rectly, since they didn’t take into account the special mem-
ory model of the RTSJ. This paper reports our exploration
in this area and proposes a compilation approach that takes
into account of the memory model of the RTSJ.

1. INTRODUCTION

Although Java [1] has been successfully used for developing
complex enterprise-level softwares, it has hardly been used
for developing real time applications. Real time systems
have stringent time constraints that Java is unsuitable to
implement. One of the major obstacles is Java’s Garbage
Collection (GC) mechanism. While the GC provides im-
portant software engineering benefits by freeing developers
from error-prone manual memory deallocation tasks, its un-
predictable object allocation performance (due to the un-
predictable behaviors of the garbage collector) makes it im-
possible to write real time programs.

The Real-Time Specification for Java (RTSJ) [9] was pro-
posed and released to address this problem and it promises
to make Java suitable to construct large scale real-time sys-
tems. One official reference implementation of the RTSJ
has been provided by TimeSys Corp. [10], and several other
open source implementations [8, 7] are being developed as
well.

One of the most significant features offered by the RTSJ is

a new memory management model based on scoped mem-
ory areas. A real-time thread can enter a scoped memory
area. When it does so, all subsequent object allocation re-
quests (using the new operator) until the thread exits from
the scoped memory will allocate objects in the scoped mem-
ory area, which is not interfered by the GC, and the whole
memory area will be freed once all real time threads have
exited from it. Thus the time needed to allocate an object
in a scoped memory is predictable. Scoped memory areas
can be nested. To keep the safety of Java programming,
some important object reference rules are set and enforced
by RTSJ-compliant JVMs. For example, objects allocated
in outer memory scopes must not refer to objects allocated
in inner scopes to prevent dangling references.

On the other hand, Aspect-oriented Programming (AOP) [3]
was proposed as a new programming paradigm to modular-
ize crosscutting concerns and AspectJ [2, 6], as an AOP
extension to Java, is the most widely used AOP language.
It is widely believed that distributed system applications
have many crosscutting concerns and thus are ideal working
platforms for AOP techniques. One of the common concerns
in distributed system applications is to implement real time
requirements. So it would be tempting to use Aspect] on
RTSJ systems to see how it could improve implementations
of distributed applications.

However, current compilation approaches used by two major
AspectJ compilers (one is Eclipse AspectJ team’s Aspect]
compiler [6] and the other one is the AspectBench Compiler
for AspectJ or abc [5].) fail to work in the RTSJ settings,
because neither of them took into account the RTSJ’s special
memory management schema.

This position paper reports our recent experience of using
Aspect] in RTSJ programs and our exploration why the cur-
rent compilation approaches fail to work with them. Based
on the findings, we propose the correct compilation strategy
with the RTSJ’s memory management schema taken into
account.

The rest of the paper is organized as follows: Section 2 pro-
vides an overview of the RTSJ’s memory management model
and show how the current AspectJ’s compilation approaches
fail in this setting; Section 3 proposes a new compilation ap-
proach to address those problems; Section 4 discusses future
work.

2. ASPECTJCOMPILATIONAND RTSJ MEM-

ORY MODEL

2.1 RTSJ’s Memory Model

To address the unpredicatability of Java’s GC mechanism,
the RTSJ extends the Java memory model by providing
memory areas other than the heap. Memory areas are di-
vided into three categories, i.e., ImmortalMemory, HeapMemory
and ScopedMemory as shown in Figure 1.

ImmortalMemory is a singleton memory area and objects al-
located in it have the same lifetime of the JVM, i.e., they
are never reclaimed and the GC will never interfere with
them. Objects allocated in HeapMemory are just like regular
Java objects that are subject to GC’s reclaim.

A ScopedMemory area provides guarantees on object allocation
time. A real-time thread can enter a scoped memory and
when it does so, all subsequent object allocation requests
using the new operator until the thread exits from it will al-
locate objects in the scoped memory area. Objects allocated
in a scoped memory area are not reclaimed by the GC, in-
stead, the whole memory area will be freed once all real time
threads have exited from it. Thus the time needed to allo-
cate an object in a scoped memory is predictable. LTMemory
and VTMemory provide linear time and a variable amount of
time allocation respectively.

Scoped memory areas can be nested. Each real-time thread
is associated with a scope stack that defines its allocation
context and the history of the scoped memory areas it has
entered [4]. The RTSJ also provides APIs for program-
mers to explicitly specify in which memory area an ob-
ject should be allocated (not just in the most recently en-
tered scoped area). Due to the special characteristics of
the RTSJ’s memory model, to keep the safety of Java pro-
gramming, some important object reference rules are set
and enforced by RTSJ-compliant JVMs. One of the most
important rules is that objects allocated in outer memory
scopes must not refer to objects allocated in inner scopes
to avoid dangling references. At run time, if such kind of
references are ever detected by RTSJ-compliant JVMs, an
IllegalAssignmentException will be thrown and the whole
execution will be stopped. It is programmer’s responsibility
to make sure that object references obey those rules.

To give readers some intuitions, Listing 1 is a short RTSJ
program for an aircraft detection system as presented in [11]
Class App implements a real time thread. It creates a
scoped memory (line 9) and runs a task (implemented by
class Runner) in the context of that memory area. The Runner
then creates another memory area (line 16) and allocates a
Detector object in the area referred by mem(line 17). Then the
thread enters a loop in which the detector continuously re-
ceives position frames from aircrafts and stores those frames
so that it can determine, for example, whether two aircrafts
are too close each other. Note that the run method (line
24) of class Detector is called in the dynamic extent of the
execution of method cdmem.enter(...)(line 19) and thus all
of the new requests associated with that run method will
allocate objects in the memory area referred by cdmem.

M)

0

10

12

14

16

18

20

22

24

26

28

Listing 1: A RTSJ program
class App extends RealtimeThread {

public static void main(String[] args) throws Exception {

MemoryArea mem = ImmortalMemory.instance();
App app = (App) mem.newInstance(App.class);
app.start();

public void run() {
ScopedMemory mem = new LTMemory(...);
mem.enter (new Runner());
}
}

class Runner implements Runnable {
public void run() {
LTMemory cdmem = new LTMemory(...);
Detector cd = new Detector(...);
while(true)
cdmem.enter (cd) ;
}
¥

class Detector implements Runnable {
public void run() {
Frame frame = receiveFrame();
//get a frame and stores it into a table

2.2 Aspectd’s Compilation Approaches Break

RTSJ Memory Model

We want to deploy aspects to RTSJ programs to improve
implementations of crosscutting concerns. However, the As-
pectJ ’s compilation approaches (both the official AspectJ
compiler and the AspectBench Compiler for AspectJ) do
not take into account the RTSJ’s special memory model and
object reference rules, so the compiled code fail to run on
RTSJ compliant JVMs. The following subsections present
the cases where the compiled code may fail (they may not
be all the cases, instead, they are just the cases we have
explored).

2.2.1 Instance-based Aspect Instantiation

In the AspectJ language, aspect instantiation is always im-
plicit. Although programmers can specify how aspect should
be instantiated, they have no control when the instantiation
should happen, neither can they explicitly instantiate as-
pects. When a programmer defines an aspect, she can spec-
ify how the aspect should be instantiated by using perthis
, pertarget, percflow keywords or just without specifying
anything, which indicates there will be only a singleton in-
stance of the aspect during the program execution. We call
perthis and pertarget instance-based aspect instantiation,
because for each this (and target respectively) object of
the corresponding join point (as specified by a pointcut des-
ignator(PCD)), there is a separate instance of that aspect
associated with the object and the advice will be executed
on the particular aspect instance corresponding to the this
(or target) object of a join point. Interested readers are
referred to the Aspect] language manual [6] for the details.

For an instance-based aspect, the AspectJ compilers gener-

MemoryArea

Immortal Memory

Scoped

Memory

HeapMemory

LTMemory

VTMemory

Figure 1: The RTSJ Memory Areas

ate code such that each of those object instances will main-
tain a reference to its corresponding aspect instance and
thus the aspect instance looking up has little runtime over-
head. And the aspect instantiation is a “lazy” procedure in
that the instantiation (and the reference assignment) only
occur when an join point matched with the PCD actually is
reached at runtime, instead of whenever an object of such
types is created. This approach avoids unnecessary aspect
instantiations if no join point matched with the PCD is
reached at runtime.

However, in the settings of the RTSJ, the scoped memory
area in which an object instance is created is not necessarily
the same memory area in which the first join point matched
with the PCD occurs. And in such a scenario, the aforemen-
tioned object reference rule of the RTSJ may be violated.
For example, we want to deploy an aspect as defined in List-
ing 2 to the RTSJ base program as defined in Listing 1 so
that the detector won’t do busy polling about the positions
of the aircrafts. Instead, it asks those positions periodicly,
say every 2 seconds. Aspect PeriodicalPoll has to be de-
clared as perthis, since there may be many Detector objects
in the system and each detector has to maintain its own
state about when the last polling was.

As expected, an IllegalAssignmentException is thrown at
runtime (running on the RTSJ official JVM [10] and the
code generated by both of the AspectJ compilers show the
same behavior). The reason is that the Detector instance
in this example is allocated (line 17 of Listing 1) in the
scoped memory area referred by mem, while the run method
on this detector is first executed in the context of the scoped
memory area referred by cdmem, where the PeriodicalPoll
instance corresponding to the Detector instance is created
and associated with it, and memory area mem is an outer
scope of memory area cdmem. Thus the object reference rule
has been violated.

While it is reasonable for a programmer to obey the ob-
ject reference rules in her own code (e.g, code to implement
classes or advice), she has no way to fix the problem reported
here, since aspect instantiation is implicit and beyond the
control of her. It is not just a bug, instead, it is a sys-
tematic issue, since similar problems occur on other aspect
constructs as well, as presented later. A different compila-
tion approach must be proposed to take into account the
RTSJ’s memory model.

M)

10

12

14

16

Listing 2: An aspect applied on the program
//Make a detector do periodic polling, instead of busy
//polling.
aspect PeriodicPoll perthis(p()) {
Time lastTimePolled;
pointcut p(): execution(* Detector.run(..));

around(): p() {
if(it has not yet been 2 seconds since last polling)
getCurrentThread () .yield(); //don’t do polling
else {
//update the time
lastTimePolled = System.getCurrentTime();
proceed(); //do polling

2.2.2 CFLOW-based Aspect Instantiation

If we change the aspect declaration in Listing 2 to be a
percflow aspect, the same exception will be thrown when
the program is run on the RTSJ JVM. When an aspect is
declared as percflow, each time the execution enters the
dynamic extent of a join point matched with the PCD on
which the percflow is defined, there is an instance of the as-
pect created and associated with that extent and the aspect
program always operates on the innermost aspect instance.
Again, interested readers are referred to the AspectJ lan-
guage manual [6] for the details.

For a percflow aspect, the AspectJ compilers will generate
code such that there is a global stack to simulate the exe-
cution’s entering and leaving the extents of join points, and
to store the aspect instances in the stack. The global stack
is created in the class loading time, and thus is allocated in
the heap memory, while the percflow aspect instances may
be allocated in scoped memory areas, depending on the cur-
rent thread’s memory context. So the object reference rule
of RTSJ may be violated.

2.2.3 CFLOW Pointcut with Bindings

When an aspect has a cflow pointcut with bindings, the
program may also throw out an IllegalAssignmentException
when running on the RTSJ JVM. The AspectJ compilers
generate code using a similar stack based approach as for
percflow aspects. And the reason for the exception is also
similar.

2.2.4 Singleton Aspect and Reflective Access to thisJoin-

Point

Singleton aspect instantiation and the reflective access to
thisJoinPoint are other two cases where the code generated
by the AspectJ compilers will create instances that have
interactions with the base program. By analyzing the com-
pilation approaches, we expect those two cases won’t violate
the rules of the RTSJ memory model. And this expectation
has been consistent with our experiences of running AspectJ
programs on the RTSJ JVM.

3. PROPOSED COMPILATION APPROACH

We propose a different compilation approach with the RTSJ’s
special memory model and object reference rule taken into
account. We do a case by case explanation.

3.1 Instance-based Aspect Instantiation
There are several options to address the instance-based as-
pect instantiation problem. Let’s list and discuss them here.

e Always allocate instance-based aspect instances in the
heap memory. The IllegalAssignmentException prob-
lem will go away with this approach, since objects al-
located in scoped memory areas may have references
to heap objects. However, this approach is contradic-
tory to one of the original goals of the RTSJ, which
is to remove the unpredicatabilities of Java’s GC sys-
tem. Allocate an aspect instance in the heap memory
may trigger the GC thread and make the thread be
suspended infinitely. Worse, the RTSJ supports a spe-
cial yet very useful thread kind, NoHeapRealtimeThread,
which disallows any access to heap objects. So the
heap-allocated aspect instance approach cannot work
with NoHeapRealtimeThreads.

e Allocate instance-based aspect instances in the immor-
tal Memory. The IllegalAssignmentException problem
will also go away with this approach, since objects allo-
cated in ImmortalMemory have the lefetime as the JVM
and objects allocated in scoped memory areas may
have references to them. But we view ImmortalMemory

precious resources (because the memory cannot be
reclaimed, even when an aspect instance is no longer
reachable), so this approach should at least be discour-
aged so that ImmortalMemory can be saved for necessary
cases.

e Allocate instance-based aspect instances in the same
memory area as the host objects. This approach will
make the I1legalAssignmentException problem go away,
while avoids all of the problems of the previous two ap-
proaches. In addition, this approach is feasible, since
the RTSJ supports APIs to let the application allocate
objects in any accessible memory area.

After analyzing all the possibilities, we propose to use option
3, i.e., allocate instance-based aspect instances in the same
memory area as the host objects.

3.2 CFLOW-based Aspect Instantiation

Cflow-based aspect instantiation is more subtle to handle
with than the instance-based aspect instantiation, due to the

stack structure of a program execution. A simple approach
would be to allocate the cflow-based aspect instances in the
ImmortalMemory (the heap memory is definitely not an option,
as discussed before.), but it is not an optimal solution since
we want to save the ImmortalMemory.

With that in mind, we propose an approach that exploits
the tree structure of scoped memory areas and the fact that
there is a special communicating portal object associated
with each scoped memory area. Each of such a portal object
will maintain a map from threads to stacks, which are simi-
lar to the global stack used in the AspectJ compilers. Each
of the stacks stores the aspect instances associated with the
dynamic extent of the join point occurring in the current
scoped memory area in the corresponding thread. When
looking up a percflow aspect instance, the system will first
look it up in the stack (corresponding to the current execut-
ing thread) stored in the portal object of the current scoped
memory area; if it cannot find one, then it will climb up
the scoped memory area tree hierarchy and in each of those
scoped memories, look it up in the corresponding stack of
the portal object until it finds one, or it has reached the
root where we can determine there is no such an instance.

3.3 CFLOW Pointcut with Bindings

Our proposed approach for this case would be similar to the
approach for the previous case. We will exploit the portal
object and associate a stack to it and make use of the tree
structure of the scoped memory areas.

4. FUTURE WORK

We plan to implement the proposed compilation approach
in one of the AspectJ compilers and test the compiler on
some real RTSJ benchmarks. In addition, based on the se-
mantics of the RTSJ memory model and the semantics of
the AspectJ (we need to give a new one to incorporate the
instantiation respects and the cflow-related stuff), we are
aiming to give a formal proof that under this new compila-
tion approach, it is guaranteed that there will be no object
reference violation due to the instantiations introduced by
the compiler and the singleton aspect instantiation or the
reflective access to thisJoinPoint won’t violate those rules
either.

5. CONCLUSION

This paper addresses the issues of compiling aspects in the
settings of the Real-Time Specification for Java. We have
identified and analyzed the cases where the current com-
pilation approaches will fail due to the fact that the spe-
cial memory model of the RTSJ are not taken into account.
Based on the analysis, we propose a new compilation ap-
proach to address this problem.

6. ACKNOWLEDGEMENTS

‘We would like to thank Shriram Krishnamurthi, Karl Lieber-
herr and Mitchell Wand for their helpful discussion. We
are grateful to anonymous reviewers for their valuable com-
ments.

7. REFERENCES

[1] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. Java Language Specification. Addison-Wesley,
2000. Second edition.

[2] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mike
Kersten, Jeffrey Palm, and William Griswold. An
Overview of AspectJ. In Jorgen Knudsen, editor,
European Conference on Object-Oriented
Programming, pages 327-353, Budapest, 2001.
Springer Verlag.

[3] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-oriented programming. In
European Conference on Object-Oriented
Programming, pages 220-242. Springer Verlag, 1997.

[4] F. Pizlo, J. M. Fox, D. Holmes, and J. Vitek.
Real-time java scoped memory: Design patterns and
semantics. In Proceedings of the 7th IEEE
International Symposium on Object-Oriented
Real-Time Distributed Computing, 2004.

[5] Programming Tools Group at Oxford University and
the Sable Research Group at McGill University. The
AspectBench Compiler for AspectJ.
http://abc.comlab.ox.ac.uk/.

[6] AspectJ Team. AspectJ home page.
http://www.eclipse.org/aspectj. Continuously
updated.

[7] The jRate Team. The jRate Project.
http://jrate.sourceforge.net /index.html.

[8] The Ovm Project Team. The Ovm Project.
http://www.ovmj.org/.

[9] The Real-Time for Java Expert Group. The Real-Time
Specification for Java. https://rtsj.dev.java.net/.

[10] TimeSys Corp. Reference Implementation for RTSJ.
http://www.timesys.com.

[11] Tian Zhao, James Noble, and Jan Vitek. Scoped types
for real-time java. In Proceedings of the 25th IEEE
International Real-Time Systems Symposium, 2004.

