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ABSTRACT
Pointcuts in aspect-oriented languages can be seen as pred-
icates over events in the computation of a program. The
ability to express temporal relations between such events is
a key feature towards more expressive pointcut languages.
In this paper, we describe the design and implementation of
a pointcut language within which pointcuts are predicates
over the complete execution trace of the program. In par-
ticular, pointcuts may refer to events that will happen in
the future. In this model, advice application is an iterative
process that stops once a fixed-point is reached. On the
negative side, we do not have a “killer example” for these
kinds of pointcuts, there are still some serious limitations,
and our implementation strategy is not suitable for a prac-
tical language. However, we think that considering point-
cuts as predicates over the whole computation and advice
application as a fixed point problem is an interesting new
perspective on pointcuts for the FOAL audience.

1. INTRODUCTION
In aspect-oriented programming, dynamic join points are
points in the execution of a program, and pointcuts are
predicates over join points. In the past, aspect-oriented pro-
gramming has concentrated on pointcuts that are only pred-
icates over the current join point and can thus efficiently be
implemented by means of static weaving. However, these
pointcuts are not powerful enough to express relations be-
tween different join points.

AspectJ has one special construct to relate different join
points in the form of the cflow pointcut designator [7]. More
recent works try to make more information about history of
the computation available for describing pointcuts [3, 10].

In this paper we want to increase the expressiveness of
pointcuts even further and consider pointcuts as predicates
over the whole execution trace. We have designed and im-
plemented a prototypical aspect-oriented languages within
which the execution trace is reified as a deductive database

in Prolog [9] and pointcuts are queries over this database.

Advice application is a fixed point problem in this language.
Our implementation computes a solution to the fixed point
problem with an iterative process, within which from all
advices that are applicable for a given trace, the advice that
starts at the smallest point T in time is executed by resetting
the application to the state at time T, and executing the
advice and the remainder of the application. This process
is iterated until a fixed-point is reached.

This model allows pointcuts to refer to future events in the
computation, and also allows sophisticated interactions be-
tween advices. However, the power that comes with this
model is also not without disadvantages. For example, it
is easy to create examples with paradox aspects where the
aforementioned iterative process does not have a fixed-point.

The remainder of the paper is structured as follows. Sec. 2
presents our language Gamma. Sec. 3 presents some ex-
ample programs. Sec. 4 discusses the problem of semantics
and some preliminary results on the applicability of domain
theory and static analysis techniques to guarantee that it-
erative advice-application is well-behaved. Our prototype
implementation is presented in Sec. 5. Sec. 6 discusses re-
lated work. Sec. 7 concludes.

2. AN OVERVIEW OF THE GAMMA LAN-
GUAGE

Our prototype language Gamma is an aspect-oriented lan-
guage on top of a minimal object-oriented core language.
This object-oriented core language is based on the teaching
calculus L2 from Sophia Drossoupolou [4], which is similar
to Featherweight Java [6], but also has an object store and
hence supports assignments, aliasing etc. A formal syntax,
operational semantics, and type system are described in [4].
Here we will use and describe this core only informally.

Gamma supports classes and single inheritance. The only
primitive type is bool. Methods have a return type and al-
ways one argument whose name is always x. If no argument
is required, we add a dummy argument of type bool.

Gamma is expression-oriented, so the body of a method is
an expression. All names have to start with a lower-case
letter. This makes interoperability with Prolog a little bit
easier because then every name in this language can directly
be used as a Prolog atom. Minimal I/O is available via a



print expression that can print strings or objects.

In addition to fields and methods the class main1 can contain
aspects, which consist of a keyword indicating the kind (be-
fore or after), a pointcut term (a pattern in the execution
trace) and advice, code whose execution is triggered by the
pointcut. A pointcut is basically a Prolog query (with some
restrictions) in which at least one predicate should have the
variable Now as its first argument. The value of this variable
determines at which point in the computation the advice
should be executed.
An advice is similar to a normal method but it can use uni-
fied variables of the query as expressions. If this is used
inside an advice body it always refers to the first main in-
stance that has been created.

The execution trace is represented as a collection of facts
in a Prolog database, where each fact corresponds to one
step of the interpreter. The number of the current step, or
timestamp, is always stored as the first argument of a fact.

The following tables give an overview of the facts used in
traces and their arguments:

Fact Meaning
get( T, C, A, F, V ) reading field access
set( T, C, A, F, V ) writing field access
calls( T, C, A, M, V ) method call
endCall( T, B, R ) end of method call
newObject( T, C ) object creation

Arguments Meaning
A Address of target object
B Timestamp of begin of call
C Class of target/to create instance of
F Name of field
M Name of method
R Return value
T Timestamp
V Current/new value of field

The pointcut language is closely connected with the Prolog
syntax. In fact every pointcut is a Prolog query. Pointcut
terms consist of predicates that can be combined by commas
(a comma means and in Prolog). A predicate can contain
variables (which have to start with a capital letter, like Var),
anonymous variables ( ), predicates or atoms (which start
with a lower letter, like main. To negate a prolog term,
the predicate not2 can be used. The special variable Now

identifies the timestamp where the pointcut matches, i. e.
the point where advice should be inserted. Variables that
have been used in the pointcut can be used as expressions
in the advice. Fig. 1 shows a short program with an aspect
which demonstrates how variables used in the query (here
Address) can easily be accessed from within the advice.

To compare variables used for timestamps, the predicates
pred(T1,T2) and its transitive closure isbefore(T1,T2)

1Due to space limitations and for the sake of clarity we sim-
plified our language: only the class main can have aspects
and after as well as around advices have been omitted
2In Prolog one should rather use \+ than not, but this syntax
is easier to parse.

class main extds Object {
bool var;
before set(Now, ,Address, , ) {
print(Address)
}
bool main(bool x){

this.var := true
}
}

Figure 1: Class with aspect

are available. The pointcut not(set(T, ,Addr,Field, )),

get(Now, ,Addr,Field, ), isbefore(T, Now) for example
matches read access to any field of an object that has not
been set before. In contrast, set(Now, ,Addr,Field, ),

set(T, ,Addr,Field, ), pred(Now,T) matches any assign-
ment to a field immediately followed by another assignment
to the same field. If timestamp variables are not related,
they can match any point in the trace.

More complex predicates, like the well-known cflow, can be
easily formulated as rules:

% T2 is in the control flow of the call at T1

cflow(T1, T2) :-

calls(T1,_,_,_,_),

endcall(T3,T1,_),

isbefore(T1,T2),

isbefore(T2,T3).

Similarly the content of the store and the call stack at each
time can be reconstructed from the set resp. calls facts
using isbefore.

3. APPLICATION EXAMPLES
Consider an environment where a set of graphical objects
are potentially manipulated by some operation. There is
a display, which should only be updated if at least one ele-
ment has been changed and the number of updates should
be minimal. Fig. 2 shows a solution in Gamma. The point-
cut matches at the end of the execution of main.operation
if a call to point.setpos lies in its control flow.

before calls(T1, main, , operation, ),
cflow(T1, T2),
calls(T2, point, , setpos),
endCall(Now, T1, ) {

this.display .update(true)
}

Figure 2: A display example

This example shows how the pointcut languages allows us
to simply refer to the history of the execution, making the
aspect both short and easy to understand. In other pointcut
languages, one would have to manually store parts of the
history together with complicated imperative logic in order
to achieve the same effect.

The pointcut in Fig. 2 only refers to past events. This is
different in the next example. Fig. 3 illustrates a kind of



eager authentication, which performs authentication before,
but only if, a call to a protected database function is made
inside the control flow of server.execute. Such an aspect
may appear in a scenario where a complex command has
to be executed and it is necessary to be logged in if any
of the subcommands will require authentication during its
execution.

before calls(Now,server, ,execute, ),
cflow(Now,T),
calls(T,database, ,protected, ) {

this.db.authenticate(true)
}

Figure 3: An authentication example

By the usage of logical programming and predicates as the
base of our pointcut language we gain a great flexibility to
express temporal related pointcuts without making the lan-
guage too complex to use and understand.

4. PARADOX ASPECTS
In the preceding examples it was intuitively clear what the
semantics of the programs should be, even in the case that
a pointcut refers to the future. But we can easily construct
examples where it is hard to say how the semantics of the
program should be defined. We will discuss some of these
examples and different strategies to solve the problems these
examples impose.

As mentioned before, the execution of advice can enable
pointcuts at every other position in the computation. This
can easily produce a phenomenon that is similar to the
“grand-mother paradoxon” in time travel: an aspect whose
pointcut is enabled by the base program uses its advice to
change the control flow in such a way, that the pointcut is
not being enabled. Fig. 4 gives an example of such an as-
pect. The problem is that the trace of this program is not
consistent in any of both cases: if the advice is not exe-
cuted, its aspects pointcut is enabled but if it is executed,
its pointcut is not enabled.

class main extds Object{
bool create;
before calls(Now, , ,foo, ),

newObject(T,a),
isbefore(Now,T) {

this.create := false
}
bool foo(bool x){

if this.create
then (new a; true)
else false

}
bool main(bool x){

this.create := true;
this.foo()

}
}

Figure 4: A paradox aspect

4.1 Properties of advice application
We can view advice application in our language as a non-
deterministic transition system on traces, whereby t → t′

means that the trace t′ is the result of applying an advice
to the trace t.

An activation point of a trace is a position in the trace, where
advice has to be inserted due to an enabled pointcut or
inserted advice has to be removed because the corresponding
pointcut is not enabled any longer. For convenience we write
AP (t) for the activation points of a trace t. In general,
several pointcuts may be applicable to a trace (i.e., there is
more than one activation point), hence the transition system
is non-deterministic. Unfortunately, this transistion system
does not enjoy the confluence property, meaning that the
final result depends on the non-deterministic choice of the
next advice to apply. It also does not have a standardization
property, informally meaning that there is no “best” choice
for the next advice.

4.2 Traces as domains
Domain theory provides a general setting within which re-
cursive equations have a proper solution. When we look at
the process of advice application as a function on the set of
all traces of a program P , F : TP → TP , one way to reason
about termination is to apply the fixpoint theorem, a result
of domain theory. As mentioned before, there may be sev-
eral strategies to define such a function, so we will discuss
those functions in general. A specific selection strategy is
presented in Sec. 5.

If there is a partial order v that makes the set (TP ,v) a
cpo3 and if the advice application operator F is mono-
tonic and Scott-continuous w. r. t. v, then the fixpoint
theorem garantees that µ(F) =

⊔
n∈N F

n(⊥) exists with
F(µ(F)) = µ(F). This fixed point thus can be constructed
by repeatedly applying advice. The bottom element ⊥ is in
our case the trace of the base program without any advice.
The challenging part is to define F and v.

One example to construct such an order is as follows. Let
lap(t) (least activation point of t) be the first point where
advice has to be inserted or must be removed. Furthermore,
let s = (s0, . . . , sn−1), t = (t0, . . . , tm−1), a = lap(s) and
b = lap(t) then consider the transitive and reflexive closure
vP of the following relation:

s <P t ⇔ t = (s0, . . . , sa−1,

trace of advice︷ ︸︸ ︷
u0, . . . , uk−1, v0, . . . , vl−1)(1)

∧ b > a + k + 1 (2)

∧ n < a + l (3)

In words, a trace t is greater than another trace s, if it
can be obtained (possibly in more than one step) from s
by simply inserting advice at the earliest possible point (1).
Conditions (2)+(3) ensures that no advice will be removed,
that each new advice is always executed after the last one
and that the part of the trace after the advice invocation
does not get longer.
It is easy to see that this order makes TP a cpo because every
chain starting with s = (s0, . . . , sn−1) can have at most n
distinct traces. However, this condition is very restrictive
and hard to check statically. For example, pointcuts cannot

3A cpo is a partial ordered set where the supremum of each
ω-chain is also contained in the set.



change the control flow after advice application in such a
way that the trace gets longer (condition (3)).

Now we need to define an advice application operator F
that is monotonous and continuous. Our general strategy
is to select always the earliest activation point in the trace
whose advice has not yet been executed. However, we need
additional restrictions in order to ensure that t vP F(t).

This can be ensured by a (conservative) static analysis of
advice bodies. We present the basic ideas for an algorithm
to identify programs that meet the desired restriction.

For each pointcut there is a set of shadows, locations in
the source code, where it is possible that it could match.
We say that an aspect A precedes another aspect B if the
earliest shadow of A is below or equal to a shadow of B in at
least one control path. Furthermore an A affects B, if the
execution of A can affect the pointcut matching of B, i. e. if
a shadow of B lies in that part of the program that can be
possibly affected by the execution of A. One condition for
the class of acceptable programs could be formulated as: if
A precedes B, then B must not affect A (and therefore
A must not affect itself) and the affect relation should
not have any cycles.

The crucial point is clearly to identify the part of a program
that can be affected by an aspect. We developed some basic
techniques, but they are rather inaccurate and inefficient, so
further work on this topic is required.

5. PROTOTYPE IMPLEMENTATION
As a result of the powerful pointcut language and execution
model, some new problems arise in determining the seman-
tics of a program. First, as pointcuts can refer to events in
the future, we can not make judgments about advice invoca-
tions before the complete trace of the execution is available.
Therefore we must run the program at least once to see,
where advice has to be executed. Another problem is that
the execution of advice itself can effect the execution of other
aspects at any point in the execution trace, after and even
before the point at which this advice has been inserted. Our
solution to these problems is presented in this section.

Our approach is to iterate advice application, beginning
with a trace that does not invoke any advice at all, to (hope-
fully) get better and better approximations of the final ex-
ecution trace. If more than one pointcut matches, the first
one is chosen to be executed. We model this procedure as an
“advice-application-operator” F which takes a trace t and
returns another trace t′.

The interpreter we use to run the program creates and stores
a copy of its internal state at every step. The interpreter can
thus be reset to any point in the execution of the program.
This feature is necessary to restart the execution from the
first point where changes in the behavior are expected (due
to advice insertion or removal).

To find the points in a trace where advice has to be inserted,
the pointcuts of all aspects must be evaluated. The queries
are passed to the Prolog engine which returns a set of vari-
able bindings for each positive answer. So we can determine

the timestamp of the match by looking at the value of the
variable Now. These timestamps along with the associated
advices and the variable bindings describe the activation
points in the trace. The set of APs that has been identi-
fied in the current trace is called foundAPs. By oldAPs we
denote the set of APs that has been found in the last trace
(this set is empty in the first iteration).

Now there are two things that can happen: a pointcut could
match a position it did not match before or a pointcut did
match a position in the old trace but does not in the actual
one. In the first case, the AP is in the set foundAPs\oldAPs
otherwise it is in oldAPs\foundAPs. The earliest such event
(currentAP) is that a ∈ oldAPs4foundAPs4 with the mini-
mal timestamp (the textual order of the aspects is consid-
ered, if two APs have the same timestamp).

After determining currentAP, the interpreter (and with it
the fact database) is reset to the timestamp of that point
and the program is executed from this point in the next
iteration. The interpreter does not need to considers other
APs than currentAP because the execution trace of those
that were before stays in the database and APs that lie
in the future may become invalid due to the execution the
advice. When the advice has been inserted, the timestamp
of corresponding AP in oldAPs must be updated, because
the matching point of the pointcut trace has moved due to
the trace produced by the advice.

When the advice has been executed, the currentAP must be
updated, because the timestamp of the matching position
in the trace has moved. A fixed-point of the iteration is
reached, if both sets, oldAPs and foundAPs, are the same.

There are two properties of advice application that follow
from the procedure described above:

1. Advice application will only terminate if the base pro-
gram (without advice) terminates.

2. If advice must be removed at any point in the trace,
the iteration ends up in a cycle since the resulting trace
has been processed before.

The program in Fig. 5 illustrates how a pointcut can refer
to future events: it only matches those assignments to varx

which are (not necessarily immediately) followed by an as-
signment to vary. The iteration process for this example is
shown in Fig. 6. It also shows how the AP is updated after
inserting the advice.

The first property of our model, namely that advice applica-
tion will only terminate if the base program does, is indeed
very restrictive. The consequence is that certain program
parts cannot be modelled as aspects, in particular aspects
that force the program to terminate. e. g. the break condi-
tion of an algorithm. For the same reason our model cannot
capture infinite computations.
We could overcome these limitations by changing the itera-
tion process to execute advice (and maybe reset the inter-

4A4B is the symmetric difference of the sets A and B:
x ∈ A4B ⇒ (x ∈ A\B or x ∈ B\A)



class main extds Object{
bool varx;
bool vary;
before set(Now, , ,varx, ),

set(T, , ,vary, ),
isbefore(now,T){

print(”in advice”)
}
bool main(bool x){
this.varx := true;
print(”between assignments” );
this.vary := true;
false
}
}

Figure 5: Example for a “clairvoyant” aspect

Run #1 starting at 0
=> newObject(0, main)
=> calls(1, main, iota1, main, false)
=> set(3, main, iota1, varx, true)

between assignments
=> set(4, main, iota1, vary, true)
=> endCall(6, 1, false)

old act.points: ()
found act.points: (3)
new act.points: (3)

Run #2 starting at 3
=> invokeAdvice(3)

in advice
=> endAdvice(4, 3)
=> set(5, main, iota1, varx, true)

between assignments
=> set(6, main, iota1, vary, true)
=> endCall(8, 1, false)

old act.points: (5)
found act.points: (5)
new act.points: (5)
Found fixed point after 2 runs.
Result is false

Figure 6: Example for an iteration

preter to a former state) directly at the step where its point-
cut matched. This of course means to execute all queries at
every step of computation. Since efficiency is not our pri-
mary consideration this may be tolerable, but it is not clear
how and if this process can be described elegantly, for ex-
ample in terms of domains as done above.

6. RELATED WORK
Walker and Viggers [8] discuss a kind of temporal pointcuts,
called history patterns or tracecuts, to enrich the AspectJ [1]
pointcut language with the abiblity to reason about former
calls and their temporal relations. Moreover, data that has
been passed as an argument can be accessed by the advice
as it could be done via variable binding in our language.
Tracecuts are patterns that are matched against a history of
calls by a finite automaton. The implementation translates a
program with tracecuts into AspectJ source code. However,
the model of history patterns is not as rich as ours since
it considers only method calls, whereas our approach may
refer to almost any event in the computation.

Douence et al describe a pattern matching language based
on Haskell [3] which allows pointcuts to relate different
points in the execution history. The Java prototype uses

an event monitoring system to accomplish pattern match-
ing. The pointcut language used in this approach describes
patterns as sequences of events. This is different to our lan-
guage where the relation of joinpoints can be stated in a
predicative way.

The work of Gybels and Brichau [5] is similar to our ap-
proach as they use logic programming and unification for
pointcut matching. However, since the model behind their
pointcut language does not cover the trace, it is not possible
to encode pointcuts that relate different points in the exe-
cution. Furthermore the language only offers access to the
current joinpoint, so it is not possible to access data from
the store. Finally, the approach does not cover the usage of
bound variables inside the advice.

Static analysis of aspect interaction is discussed by Douence
et al [2], but their focus lies on detecting overlapping shad-
ows of different aspects. They argue that aspects should be
orthogonal, that means not covering the same join points,
independent of the base program they are used with.

7. CONCLUSIONS
We have presented a powerful pointcut language, that makes
it easy to write pointcuts that can reason about the execu-
tion trace and temporal relations between join points (facts)
on a very abstract level. Our approach is so general that
even referring to future events is possible. However, our
results so far have some serious limitations. We need to
find less restrictive ways to ensure termination of the ad-
vice application process. An efficient implementation and
sophisticated tools for static analysis are also part of future
work.
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