
A join point for loops in AspectJ

Bruno Harbulot
bruno.harbulot@cs.man.ac.uk

John R. Gurd
jgurd@cs.man.ac.uk

Centre for Novel Computing, School of Computer Science,
University of Manchester, Oxford Road, Manchester M13 9PL, UK

ABSTRACT
The current AspectJ join points represent locations in the
code that are at the interface of the Java objects. However,
not all the “things that happen”1 happen at the interfaces.
In particular, loops are a key place that could be advised
for parallelisation. Although parallelisation via aspects can
be performed in certain cases by refactoring the Java code,
it is not always possible or desirable. This article presents a
model of loop join point, which allows AspectJ to intervene
directly in loops.
The approach used for recognising loops is based on a
control-flow analysis at the bytecode level; this avoids am-
biguities due to alternative forms of source-code that would
effectively produce identical loops. This model is also embel-
lished with a mechanism for context exposure, which is piv-
otal for giving a meaning to the use of this join point. This
context exposure is particularly useful for writing pointcuts
that select specific loops only, and the problem of loop se-
lection is also presented in the paper.
Finally, LoopsAJ, an extension for the abc compiler that
provides AspectJ with a loop join point, is presented. It
is shown how to use this extension for writing aspects that
parallelise loops.

1. INTRODUCTION
When parallelising code in order to improve performance,
loops are the natural places to make changes. There are
sometimes several alternative ways of parallelising the same
loop, depending on various parameters, such as the nature
of the data being processed, or the architecture on which the
application is going to be executed. In certain cases, it is
possible to use aspects for parallelising loops, in particular
for choosing a method of parallelisation [3]. However, since
there is currently no join point for loops in AspectJ [5], the
method proposed in [3] resorts to refactoring the base-code.
In order to eliminate this inconvenience, this paper proposes

1(to use the AspectJ guide phrasing for introducing the con-
cept of join point).

Foundations Of Aspect-oriented Languages workshop (FOAL 2005),
held in conjunction withAOSD 2005 in Chicago, USA.
Copyright retained by the authors.

a loop join point model for AspectJ which allows direct par-
allelisation of loops, without refactoring of the base-code.

Section 2 presents a formal definition of the loop join point
model. This includes the definition of a loop and the way
it can be identified. Although this approach is based on
Java and AspectJ, the model can potentially be applied to
other languages. Section 3 embellishes the loop join point
model with a relation to the data handled by the loops.
Section 4 explains the specific requirements for loop selec-
tion, and describes the associated difficulties, compared with
other kind of join points. Section 5 introduces LoopsAJ, a
prototype implementation of a weaver capable of handling
the loop join point model, based on abc [2].Section 6 shows
how to write aspects for parallelisation using the loop join
point. Section 7 describes some of the problems related to
base-code containing exceptions. Section 8 briefly intro-
duces ideas about other potential fine-grained join points:
a “loop-body” join point and an “if-then-else” join point.
Finally, Section 9 concludes.

2. LOOP JOIN POINT MODEL
This section presents the definition of a loop join point
model. It could be applied to various aspect-oriented sys-
tems, but the presentation focusses on the approach used in
AspectJ. Section 2.1 describes the general approach used to
recognise loops in the code. Section 2.2 gives a summary of
compiler theory related to loop recognition. Finally, in Sec-
tion 2.3, the definition of a loop is progressively restricted
in order to build a model suitable for a join point.

The first step is to identify what the shadow of the loop join
point is. The shadow of a join point is defined as follows:
“[A] join point is a point in the dynamic call graph of a
running program [...]. Every [such] dynamic join point has
a corresponding static shadow in the source code or bytecode
of the program. The AspectJ compiler inserts code at these
static shadows in order to modify the dynamic behavior of
the program” [4]. The main elements required for a join
point shadow are:

• a weaving point for before-advice,

• a weaving point (or maybe several points) for after-
advice, and

• the eventual ability to weave around-advice.

Then, for the dynamic part, the model should make it pos-
sible to extract information regarding the execution context
at the join point.

2.1 From source or from bytecode
The first decision to be made is whether the join point is
recognised at source code level or at bytecode level. The
way loops are programmed in Java is not necessarily directly
reflected in the generated bytecode. For example, instinc-
tively, most Java programmers would consider the body of
a for-loop to be the lines of code within the curly brack-
ets following the for(;;) statement. However, a loop with
the same effect can also be written in different ways, for ex-
ample as a while-loop, or with some of the for statements
displaced, as shown in Figure 1.

for (int i = 0 ; i < MAX ; i++) {
/* A */

}

int j = 0 ;
int STRIDE = 1 ;
for (; j < MAX ; j += STRIDE) {

/* A */
}

int k = 0 ;
while (k < MAX) {

/* A */
k++ ;

}

Figure 1: Simple examples of equivalent loops.

In addition, the main conditional expression of a loop may
encompass several instructions, in particular if it involves
a call to a method or a complex expression, as shown in
Figure 2. Although the condition may not seem to be part of
the loop body, it could always be refactored so as to be part
of it (for example through a temporary boolean variable).
Moreover, the compiled code does not necessarily reflect the
way a complex expression has been written in the source
code.

int i = 0 ;
while (condition(i) || (i >10)) {

/* A */
i++ ;

}

int j = 0 ;
boolean ok = condition(j) || (j >10) ;
while (ok) {

/* A */
j++ ;
ok = condition(j) || (j >10) ;

}

Figure 2: Loop with more complex conditions.

Since the main concern is to recognise the behaviour of the
code, rather than the way it was written, the choice was
made to base the representation of loops at the bytecode
level rather than at the source code level. As a result, the
representation is more robust to variations in programming
style. However, this choice introduces limitations regard-
ing (a) the potential specific handling of abrupt exit (see
Section 2.4), and (b) the nature of the control-flow graphs.
Indeed, as explained in more detail in Section 7, the model

expects a reducible (or well-structured [1, 10]) graph. When
exceptions are not used, Java source-code produces bytecode
with reducible control-flow graphs, but this is not necessarily
the case for bytecode produced by other means.

2.2 Dominators, back edges and natural loops
The initial approach for finding loops in the control-flow
graph follows the method described in [1, 10]. This method
is based on finding dominators and back edges, defined as
follows: “Node d of a flow graph dominates node n [...] if
every path from the initial node of the flow graph to n goes
through d. [... The] edges in the flow graph whose heads
dominate their tails [are called] back edges. (If a → b is an
edge, b is the head, a is the tail.) [... Also, a is a predecessor
of b, and b is a successor of a ...] Given a back edge n →
d, we define the natural loop of the edge to be d plus the set
of nodes that can reach n without going through d. Node d
is called the header of the loop” [1].

Figures 3(a) and 3(b) represent, respectively, the (block-
level 2) control-flow graph and the associated dominator tree
for the simple for-loop shown in Figure 1. In this example,
the only back edge is 3 → 2, and its natural loop comprises
blocks (nodes) 2 (which is the header) and 3.

(a) (b)

Figure 3: Control-flow graph (a) and dominator tree (b) for
a simple for-loop.

Natural loops can be confusing because there could be sev-
eral loops with the same header. As shown in Figure 4, what
appears to be a single loop actually corresponds to two nat-
ural loops sharing the same header. In such a case, defining
the points immediately before or after a natural loop would
be ambiguous. Therefore, instead of using natural loops for
the join point model, the union of all the natural loops shar-
ing the same header is considered as a single combined loop.
To avoid ambiguous cases, implementations should consider
a node containing only an unconditional goto as the same
node as its successor node. In the remainder of this article,
the term “loop” will be used to mean a “combined loop”,
unless otherwise stated.

Following this style, an inner loop is a loop whose blocks
are all contained within another loop, but do not share the
latter’s header. This also happens to match the natural
definition of inner loops at the source level.

In the following sections, three categories of loops are pre-
sented, together with their characteristics pertinent to pos-
sible use as join points. The categories introduce increasing

2i.e., the nodes of the control-flow graph are basic blocks [1]
of code statements.

int i = 0 ;
while (i<MAX) {

if (cond(i++)) {
/* A */

} else {
/* B */

}
}

Figure 4: Two natural loops with the same header.

degrees of constraint which affect their ability to weave the
three forms of advice: before, after and around.

2.3 Loops in the general case
A loop always has a unique entry point, namely its header.
Before-advice can therefore be woven in a pre-header, that
is, a node (block) inserted before the header to which the
jumps from outside the considered loop are redirected, but
the jumps from inside it are not (see Figure 5).

Figure 5: Insertion of a pre-header.

Without further constraint, it cannot be guaranteed that
there is a unique point in the control flow that is executed
immediately after execution of a loop. In order to introduce
appropriate constraints, the following definitions are added.
A node in a loop is an exit node if it can branch outside that
loop. A node outside a loop which has predecessors inside
that loop is termed a successor node of the loop.

Typically, a non-nested loop which contains a break state-
ment has two exit nodes and one successor node, while a
double loop nest with a break statement in the inner loop
that branches outside the outer loop has two exit nodes and
two successor nodes. For example, Figure 6 shows the source
code and the corresponding (block-level) control-flow graph
for a doubly nested loop:

• The inner loop consists of blocks 4, 5 and 6; its exit
nodes are blocks 4 and 5; its successor nodes are blocks
7 and 8.

• The outer loop consists of blocks 2, 3, 4, 5, 6 and 7;
its exit nodes are blocks 2 and 5; its (sole) successor
node is block 8.

int i = 0 ;
outside:
while (i < maxI) {

int j = 0 ;
while (j < maxJ) {

if (c(i,j))
break outside ;

j++ ;
}
i++ ;

}
/* A */

Figure 6: Two nested loops and break statement jumping
outside outer-loop.

In this case, “after” loop {4, 5, 6} is both on the transitions
between blocks 4 and 7, and between blocks 5 and 8.

In such cases, where there are several successor nodes, weav-
ing an after piece of advice would require replication of the
woven code at all edges between exit nodes and their succes-
sor nodes. Although it is, in principle, possible to achieve
this, some aspect-oriented tools do not allow this kind of
weaving.

2.4 Loops with a unique successor node
The problem of having multiple exit nodes only occurs when
there are nested break or continue statements that branch
outside the inner-most loop to which they belong. The de-
fault case (of a break statement with no label specified)
corresponds to an exit node that branches outside the loop,
but to the same successor node as the normal exit would
go. In this case, weaving an after piece of advice could be
done either at the end of each exit node (possibly at mul-
tiple points, as described previously) or at the beginning of
the (unique) successor node (which thus guarantees a single
weaving point). Weaving an after-advice (at a single weav-
ing point) therefore consists of inserting a pre-successor, i.e.,
a new node inserted prior to the successor node, to which the
jumps from the exit nodes to the (unique) successor node
are redirected.

A loop with a unique successor node can also be reduced to
a single node in the control-flow graph. This then makes it
possible to weave an around-advice at the join point for the
loop.

Just as there are two different constructs for writing after-
advice depending on whether the execution returns normally

or throws an exception3, so might be abrupt exits be handled
differently (due to break statements). However, there are
cases where it is not possible to tell from the bytecode how
such exits would differ from those due to the main condition
of the loop evaluating to false. This is a limitation that
might have been avoided if a source-code representation had
been used, but it does make the model robust to changes in
programming style, as illustrated by the code in Figure 7.
The two loops in the figure might well produce the same
bytecode and control-flow graph, in which case the use of
break would not be distinguishable from the use of the “&&”
operator. It would thus be impossible to treat an exit from
the loop due to the break statement any differently than an
exit from the loop due to b evaluating to false.

while (a && b) {
/* Do something */

}

while (a) {
if (!b)

break ;
/* Do something */

}

Figure 7: Considered special handling of break statements.

2.5 Loops with a unique exit node
The full potential of a loop join point can only be exploited
if its model comprises information regarding the behaviour
of the loop. In particular, it can be useful to predict as far
as possible that the loop iterates over a specific range of in-
tegers or over an Iterator (see Section 3). However clever
such a prediction may be, the programmer of an aspect deal-
ing with loops might want to handle cases where there is no
possibility of an abrupt exit (i.e., there is no break state-
ment in the loop). As shown in Figure 7, this case may also
exclude loops with complex conditions (in particular expres-
sions comprising and operations, which may create several
exit points).

2.6 Summary
Three categories of loops have been identified, with increas-
ing degrees of constraint. All three forms could be imple-
mented by a different pointcut, each with different meaning
and weaving capabilities. The more general form (several
successor nodes possible) would only allow the weaving of
before-advice, and possibly after-advice if the implementa-
tion of the weaver allows multiple weaving points. The in-
termediate form (unique successor node possible) and the
restricted form (only one exit node and one successor node)
would allow the weaving of before-, after- and around-advice.
The latter also guarantees that there is a single condition for
exit from the loop. This information is summarised in Ta-
ble 2.6; it will be used for context exposure in Section 3.

3. CONTEXT EXPOSURE
Although loops do not have arguments in the same way as
other join points (such as method calls), they often depend
on contextual information to which programmers may want

3“after() returning(...):” executes the advice after a
normal execution, “after() throwing(...):” executes the
advice if an exception has been thrown, and “after():”
executes the advice in both cases.

Before After Around
several successor
nodes

√
multiple weav-
ing points

×

several exit nodes,
1 successor node

√ √ √

1 exit node, 1 suc-
cessor node

√ √ √

Table 1: Different loop types and their weaving capabilities.

access. In particular, two forms of contextualised loops are
frequently found:

• loops iterating regularly over a range of integers (pre-
sented in Section 3.1), and

• loops iterating over an Iterator (presented in Sec-
tion 3.2).

Knowing that a loop is of one of these forms allows one to
predict the execution behaviour of the loop in some detail.
In order to make the resulting predictions meaningful, only
loops with unique exit points and unique successors are con-
sidered in this section. This prevents loops which have any
potential abrupt exits (e.g., using break statements) from
consideration; a potential use of break would make the find-
ing of a range of integers or of an Iterator less useful, since
the loop might exit before the predicted end.

3.1 Loop iterating over a range of integers
Loops iterating over a range of integers, following an arith-
metic sequence, are one of the most frequent forms of loops.
They consist of: initialising an integer local variable before
the loop; incrementing this value by a constant (the stride)
at the end of each iteration; and exiting the loop when the
value reaches a given maximum value. This form of loop
follows the pattern shown in Figure 1.

As explained in [3], exposing the iteration space is essential
to make it possible to write aspects for parallelisation. The
initial value, the stride and the final value will be available
in the execution context of the loop join point model, when
possible. Since these values are parameters ruling the execu-
tion of the loop, they could be considered, in aspect-oriented
models such as AspectJ, as “arguments” of the loop.

Predicting what the range of integer values is going to be
at the time of execution is not always possible. In order
to be exposed to the join point model, these values have to
be determinable before the join point is encountered. The
availability of these values will depend on the capabilities
of the implemented static analysis in the shadow matcher.
Determination of these values ought to be implemented in
a conservative way, discarding the cases where it cannot be
certain that these values will not change during the execu-
tion of the loop.

3.2 Loop iterating over an Iterator
Another frequent form of loop (found in particular in Java
programs) is that conducted by an Iterator. In a man-
ner similar to that presented in Section 3.1, the instance of
Iterator controlling the loop can be seen as an “argument”
to be included in the join point context.

3.3 Parallel with Java 5 for-construct
Java 5 offers a new way to write for-loops iterating over
all the elements of an array or Collection, similar to “for-
each” constructs in certain other languages; this is shown in
Figure 8.

/* Before Java 5 */
Collection c ;
for (Iterator it = c.iterator () ; it.hasNext ();) {

Object obj = it.next () ;
/* Do something with obj */

}

/* Since Java 5 */
Collection <Object > c ;
for (Object obj: c) {

/* Do something with obj */
}

Figure 8: Example of new Java 5 for-loops.

For iterating over the elements of an array or of a
Collection, the for-loop construct before Java 5 relies on
the abstraction provided by an array index or, respectively,
by an Iterator. Java 5 gives a new abstraction, more mean-
ingful in terms of data representation. The data guiding the
loop execution is directly and explicitly included in the way
the for-loop is written in the source code.4 This is a useful
piece of information regarding this kind of loop, and the loop
join point model should also be able to expose it, wherever
possible. It can also be useful for loop selection, as described
in Section 4, and for certain forms of parallelisation, as de-
scribed in Section 6.

4. LOOP SELECTION
This section analyses and proposes solutions to the problem
of writing pointcuts for loops. In particular, the aim is to
determine which characteristics can be used for making a
selection. In aspect-oriented systems such as AspectJ, the
means of selection for a join point is, in most cases, ulti-
mately based on the naming of some source element char-
acterising the join point, possibly by using a regular ex-
pression. For example, to advise a method call or a group of
methods, the pointcut has to contain an explicit reference to
some names characterising the method signatures, whether
it be a pattern matching the name of the methods, or a pat-
tern matching the parameter types. Since loops cannot be
named, it is impossible to use a name-based pattern to write
a pointcut that would select a particular loop.

Neither loop labels, nor Java 5 (or C#) metadata, can be
used to identify a particular loop in a method. Firstly, the
loop labels will not be kept in the bytecode (and, in any case,
they are rarely used, unless motivated by a break statement
branching outside an inner loop). Secondly, Java 5 meta-
data cannot be applied to statements (apart from variable
declarations).

If it is known for certain that all the loops within a method
are to be advised, it would be possible, in AspectJ, to use
pointcut constructs such as withincode or cflow to restrict

4This is solely a source-code enhancement; the bytecode still
contains Iterators (for Collections) or temporary vari-
ables (for arrays).

the pointcut to all the loops contained in the methods tra-
ditionally picked up by those constructs. However, selecting
only one of several loops within the same method turns out
to be impossible without any further mechanism.

In order to solve this problem, it is proposed that selection
of loops is made to rely on the data being processed, as
well as the method in which the join point’s shadow is lo-
cated. In this case, the context —or what was called the
“arguments” of the loop in Section 3— can be used to refine
the selection. For example, the programmer might want to
write a pointcut that would only select loops iterating over
a specified range of integers, over a particular array, or over
a particular Collection. Such an example is shown in Fig-
ure 11 (Section 6): the parallelising advice only applies to
arrays of bytes.

More speculatively, there might be a potential application
for metadata, which could be introduced in the declarations
of the local variables that refer to the arrays, Collections
or Iterators utilised as “arguments” to certain loops.

5. IMPLEMENTATION IN abc
Although the loop join-point model could potentially be im-
plemented in various aspect-oriented tools, based for exam-
ple on Java or C#, the focus has been put on a model in-
tegrable into AspectJ. The implementation uses abc,5 an
alternative AspectJ compiler, for two main reasons:

• extensibility was at the core of the abc design [2]; and

• abc relies heavily on the Soot framework [12], which
provides most of the infrastructure for performing the
analyses, in particular those described in Section 2.2.

This section describes an extension for abc, known as
LoopsAJ, which implements a loop join point for AspectJ
and subsequently provides the loop() pointcut. The lat-
ter picks out loops with unique exit points (as described in
Section 2.5) and provides contextual information where pos-
sible. Other pointcuts for the other forms of loops could also
be provided (by lowering the degree of constraint imposed
in the shadow matcher).

5.1 Shadow matching
The Soot framework, and subsequently abc, use Jimple,
which is a three-address representation of bytecode. This
makes it possible to look for loops at bytecode level (as de-
scribed in Section 2.1). The shadow matcher and all pre- or
post-transformations operate on this representation.

LoopsAJ extends the method that finds the shadows in
each method, so that it looks for loops as well. For each
method processed, the control-flow graph and its corre-
sponding dominator tree are built using the Soot framework
toolkits. Then combined loops are identified, as described
in Section 2.2.

abc provides two kinds of classes representing a shadow-
match: BodyShadowMatch and StmtShadowMatch (both ex-
tend ShadowMatch). The former is utilised when the shadow
5http://www.aspectbench.org/

http://www.aspectbench.org/

is the whole method body; for example, when a method-
execution pointcut is used. The latter is used for pin-
pointing a specific statement (or group of statements) in
the method; for example, when a method-call pointcut is
used.

One of the requirements of abc is to insert nop operators in
the shadow, at the points where before and after 6 pieces of
advice might be woven. Given this, most of the abc infras-
tructure can already handle loop shadows if they are treated
like StmtShadowMatch for before and after pieces of advice.

However, handling around pieces of advice requires a few
modifications in the abc around-weaver [6]. One of the
cases where a group of statements is used is the constructor-
call shadow match. In this case, two consecutive state-
ments are included in the shadow-match. However, loop
shadows are not necessarily formed by consecutive state-
ments. Indeed, at bytecode or Jimple level, the blocks
forming a given loop may be spread across the method,
with jumps from one block to another leaving blocks that
do not belong to the loop interleaved between blocks that
do. For this reason, StmtShadowMatch has been extended
by NonContiguousStmtGroupShadowMatch, for which the
around weaver has been modified in order to utilise its new
type.

5.2 Transformations for context exposure
Exposing the context, as described in Section 3, depends on
the cleverness of analysis and on the feasibility of certain
transformations. For the context exposed to make sense, it
has to be constant during execution of the join point.

In order to ensure this, as long as it is possible to predict that
the transformation will not change the meaning of the loop,
loop-invariant assignments are moved to the pre-header (be-
fore the shadow matching takes place), using a scheme in-
spired by [1, Ch 10.7].

5.2.1 Exposing the boundaries or theIterators
Further, in the case of loop iterating over a range of in-
tegers, if the context values are numerical constants, tem-
porary variables are introduced and initialised in the pre-
header, in order to make it possible to modify these values
via calls to proceed(...) within an around-advice. An ex-
ample transformation is shown in terms of source-code in
Figure 9.

The part of the implementation that determines the fea-
sibility of these transformations uses the dataflow analysis
facilities provided by Soot; these have also been used to
implement a code-motion method and a reaching-definition
analysis [10, 1].

5.2.2 Exposing the originating array orCollection
It is not always possible to find an array to which the range
of integers corresponds (i.e. when minimum=0, stride=1, and
maximum is the length of the array). For example, if the
boundaries and the array are passed as arguments to the
containing method, finding the array that was the origin

6It is not always possible to insert after-advice, as described
in Section 2.

/* Moving the invariants outside */
int i = 0 ;
while (i < 10) {

/* ... */
int stride = 3 ;
i = i + stride ;

}
// ---
/* First step : moving the invariants outside */
int i = 0 ;
int stride = 3 ;
while (i < 10) {

/* ... */
i = i + stride ;

}
// ---
/* Second step : storing the boundaries in

temporary variables */
int stride = 3 ;
int minimum = 0 ;
int maximum = 10 ;
int i = minimum ;
while (i < maximum) {

/* ... */
i = i + stride ;

}

Figure 9: Code-motion example.

of these values might require much more complex, cross-
methods and points-to, analysis. The current implementa-
tion requires at least the statement initialising maximum to
the length of the array to be within the same method as the
loop.

Similarly, a Collection will only be exposed if the
Iterator used for the loop comes from a call to
Collection.iterator() and Iterator.next() is not called
before the beginning of the loop.

5.2.3 Writing pointcuts
For loops iterating over a range of integers, the boundary
values are passed via the args construct of AspectJ, to which
int values are bound (for minimum, maximum and stride).
Also, an extra argument will be bound to the originating
array, if it has been found.

For loops iterating over an Iterator, the first argument
of args will be bound to the corresponding instance of
Iterator. Also, an extra argument will be bound to the
originating Collection, if it has been found.

In cases where the originating array or Collection do not
matter, it is recommended to use the double-dot wildcard
notation (“..”) [5], to make the argument optional. For
example:

• loop() && args(min, max, stride) will match only
loops iterating over an arithmetic sequence of integers
for which the compiler was unable to find an array
(although it may exist);

• loop() && args(min, max, stride, ..) will match
all the loops iterating over a particular arithmetic se-
quence of integers; and

• loop() && args(min, max, stride, array) will
match all the loops iterating over an array, a refer-

ence to which will be bound to pointcut parameter
“array”.

5.3 Limitations
The limitations in the current implementation of LoopsAJ
divide into two categories: limits of analysis and predictabil-
ity; and limits due to features not yet written in this pre-
liminary version.

5.3.1 Analysis and predictability
One of the main limitations is the predictability on which
the invariant code-motion is based. Although code-motion is
currently done successfully in most useful cases, it will not be
performed in cases where an invariant is not spotted by the
data analysis. The implementation of such transformations
ought to be conservative, that is to say, it should not be done
unless it is certain that the resulting code will be equivalent.

Another limitation is the lack of points-to analysis in respect
of Iterators. Indeed, even though an Iterator instance
may look like it is being iterated regularly in the loop (i.e.
there is one and only one call to next() per iteration), noth-
ing guarantees that no other thread is holding a reference to
the same Iterator and is calling next() concurrently. In
this respect, the exposure of Iterators is probably not con-
servative enough. There may be a solution to this problem
if a form of whole-program analysis were to be used. (This
concurrency problem does not occur for loops iterating over
a range of integers since int is a primitive type and the int

values are local variables that cannot be modified by another
thread.)

More generally, there could be further dependency analysis
to provide safeguards in case of concurrent execution of a
join point. Again a whole-program analysis may be required
to be sure that a loop can be executed in parallel. Such
analyses can be much more complicated, and are beyond
the scope of this article.

Whatever the implementation of a weaver capable of han-
dling loop join points is, it should be stated clearly by the
implementors how conservative their implementation is, in
particular, how certain it is that a specified Collection is
at the origin of an Iterator.

5.3.2 Future work
The LoopsAJ implementation is still being worked on. In its
current state, only cases where the loop termination condi-
tion is of the form i < max and where the increment is of the
form i = i + ... are handled. Eventually, other conditions,
using ≤, > or ≥, will be handled as well.

Also, the around weaving has only been implemented in
cases that do not generate closures (see [6] for further de-
tails). One of the difficulties being currently addressed is to
keep the block graphs up-to-date after weaving an around-
advice. At the time of writing, the implementation works
only partially on loop nests.

Moreover, the handling of traps is not always updated,
which can lead to the generation of bytecode with incorrect
exception tables.

6. ASPECTS FOR PARALLELISATION
This section shows an application of the loop() pointcut,
namely parallelisation of loops.

The example advice shown in Figure 10 executes in parallel
(using cyclic loop scheduling) all the loops contained in class
LoopsAJTest which are recognised as iterating over a range
of integers. As shown, the loop() pointcut combines ideally
with the “worker object creation pattern” [7], which creates
new Runnables to execute join points on separate threads.

void around(int min , int max , int step):
within(LoopsAJTest)
&& loop () && args (min , max , step , ..) {

int numThreads = 4 ;
Thread [] threads = new Thread[numThreads] ;
for (int i = 0 ; i<numThreads ; i++) {

final int t_min = min+i ;
final int t_max = max ;
final int t_step = numThreads*step ;
Runnable r = new Runnable () {

public void run () {
proceed(t_min , t_max , t_step) ;

}
} ;
threads[i] = new Thread(r) ;

}
for (int i = 1 ; i<numThreads ; i++) {

threads[i]. start () ;
}
threads [0]. run () ;
try {

for (int i = 1 ; i<numThreads ; i++) {
threads[i].join () ;

}
} catch (InterruptedException e) { }

}

Figure 10: Loop parallelisation using Java Threads.

The aspect shown in Figure 11 is slightly more complex. It
executes in parallel, using MPI for Java,7 the loops working
on a array of bytes that are in method LoopsAJTest.test.
The original array, a, is exposed to the pointcut. It is then
sliced into an array p per MPI task. Then proceed uses
array p instead of a, so the loop in each MPI task only
iterates over its local portion of a.

When using these kinds of aspects, the programmer needs
to make sure that the loops that are going to be executed
in parallel can actually be parallelised. As explained in
Section 5.3, no inter-dependency analysis is currently per-
formed.

7. ISSUES RELATED TO EXCEPTIONS
This model and the way the loops are recognised do not
work properly if exceptions are used in the methods advised.
Firstly, exceptions handlers are activated according to posi-
tion between two bytecode instructions. Weaving may insert
code within the range of an exception handler when this may
not be intended. Secondly, combined loops correspond ap-
proximately to loops written in the source-code, as long as
the graph is reducible (or well-structured). This is the case
for bytecode produced by Java source-code when the graph
does not contain edges due to the potential handling of ex-
ceptions. However, taking the exceptions into account adds

7http://www.hpjava.org/mpiJava.html

http://www.hpjava.org/mpiJava.html

import mpi .* ;

aspect MPIParallel {
int rank ;
int nthreads ;

void around(String [] arg):
execution(void LoopsAJTest.main (..))
&& args(arg) {

try {
MPI.Init(arg);
rank = MPI.COMM_WORLD.Rank ();
nthreads = MPI.COMM_WORLD.Size ();

proceed(arg) ;

MPI.Finalize ();
} catch (MPIException e) {

e.printStackTrace () ;
}

}

void around(int min , int max , int stride , byte [] a):
loop () && args(min , max , stride , a , ..) &&
withincode (* LoopsAJTest.test (..)) {

try {
MPI.COMM_WORLD.Barrier ();
int slice_length = a.length / nthreads ;
byte [] p = new byte[slice_length] ;
if (rank == 0) {

for (int i = 0 ; i < slice_length ; i++) {
p[i] = a[i] ;

}
for (int k = 1; k < nthreads ; k++) {

MPI.COMM_WORLD.Ssend(a, k*slice_length ,
slice_length , MPI.BYTE , k, k) ;

}
} else {

MPI.COMM_WORLD.Recv(p, 0, slice_length ,
MPI.BYTE , 0, rank) ;

}
proceed (0, slice_length , 1, p) ;
MPI.COMM_WORLD.Barrier ();

} catch (MPIException e) {
e.printStackTrace () ;

}
}

}

Figure 11: Loop parallelisation using mpiJava.

extra edges to the graph, which may make the graph non-
reducible. The main characteristics of non-reducible graphs
are that: (a) loops may have several headers; and (b) there
are still cycles in the graph after all the back edges have
been removed.

To illustrate this problem, Figure 12 shows an example of
code that involves loops and exceptions (taken from [9]).
Figure 13 shows the corresponding complete block-level
control-flow graph (including exceptions, shown as dashed
lines) using the Jimple intermediate representation for this
example, as produced by the control-flow graph viewer in-
cluded in the Soot framework. The edges due to traps
are dashed only in the illustration; in the system they are
treated as regular edges. Without entering into the details
of the syntax of Jimple, in this example, i0 and i1 represent
i and j, respectively, in the Java source-code.

The back edges found using the method described in Sec-
tion 2.2 are 4 → 1 and 5 → 5. The graph is not reducible
because, after these back edges have been removed, a cycle
made of nodes 1 and 5 exists. This gives a loop comprising

public int foo (int i, int j) {
while (true) {

try {
while (i < j)

i = j++/i ;
} catch (RuntimeException re) {

i = 10 ;
continue ;

}
break ;

}
return j ;

}

Figure 12: Example of loops involving exceptions.

Figure 13: Complete block-level control flow graph.

nodes 1, 2, 3 and 4 —which corresponds to “while (i<j)

i=j++/i;” in the source-code— and another loop compris-
ing node 5 (which handles the exception in the source-code)
only. Although the first loop is meaningful, and corre-
sponds to what would be naturally expected by looking at
the source-code, the second would cause before-advice to be
inserted just before the exception is caught, and after-advice
just before “continue” (without even dealing with the cor-
rectness of trap handling). This effect would not necessarily
be meaningful or useful for advising this loop.

Moreover, such code is not robust to changes of compilation
strategy. For example, a different compiler might insert an
extra, “useless” goto statement between nodes 0 and 1 in
this graph, yielding the control-flow graph shown in Fig-
ure 14. In this case there is a third back edge (5 → 8),
which gives a natural loop that could be assimilated into
the outer “while(true) { ... }” loop in the source-code.
The method used so far is not suitable for such cases involv-
ing exceptions, since the loop model should depend as little
as possible on the compilation strategy utilised.

Figure 14: Another possible control-flow graph.

The problem with exceptions lies in the edges they add to
the graph. In particular, the edges between the predeces-
sors of the first node that could throw an exception and
the node catching the exceptions distort the dominator tree
when trying to find the back edges. Because these edges do
not actually come from the predecessors, but from a point
just before the nodes that could throw an exception, a pos-
sible solution would be to change this representation and
to introduce separate nodes for throwing exceptions. For
each node A that could potentially throw an exception rep-
resented as an edge from A to B, a new node EA would be
inserted before A, so that all the edges pointing to A would
be redirected to EA, and an extra edge EA → B would be
added. The resulting control-flow graph for the example in
Figure 12 is sketched in Figure 15. This is similar to the
graph in Figure 13, but contains extra nodes E1, E2, E3

and E4, which preceed nodes 1, 2, 3 and 4, respectively, and
represent the cases where an exception would be thrown in
one of these nodes, thus preventing the operations in that
node from being performed. This representation now gives
two back edges (4 → E1 and 5 → E1) corresponding to a
single combined loop. To avoid ambiguity, chains of uncon-
ditional gotos should be considered as a single node if they
can all throw exceptions to the same catching blocks. This
approach has not yet been implemented in our prototype.

8. RELATED TOPICS
This section explores two related potential fine-grained join
points (i.e. join points that recognise complex behaviour
within a method and not only at the interface of the ob-
ject), namely a loop-body join point (Section 8.1), and an
“if-then-else” join point (Section 8.2).

8.1 “Loop-body” join point
The model of loop join point presented thus far takes an out-
side view of the loop; the points before and after the loop are
not within the loop itself. As a consequence, however many
iterations there may be for a given loop, before and after-
advice will be executed only once. For some applications, for
example for inserting a piece of advice before each iteration,
it might be desirable to advise the loop body. However, the
semantics would be difficult to define.

Figure 15: Control-flow graph with special nodes for excep-
tions.

Even in the source-code, there is ambiguity about where to
weave before and after advice in such a case. For example,
is the termination condition in the loop-body or not? (see
Figure 16). This question is even more relevant for complex
conditions that may include calls to methods.

int i = 0;
while (i <2) {

/* Is ‘‘before ’’ the loop -body right here , or
should it be before (i <2) is evaluated ? */

System.out.println("i: "+i) ;
i++ ;
/* Is ‘‘after ’’ the loop -body here ? Would ‘‘i++’’

be included in the loop -body of the equivalent
for -loop ? */

}

i = 0 ;
do {

/* Before the loop -body */
System.out.println("i: "+i) ;
i++ ;
/* Is ‘‘after ’’ here , or should it be after (i <2)

has been evaluated ? */
} while (i <2) ;

Figure 16: Loop-body join point: where are “before” and
“after”?

Again, a basic-block control-flow approach may solve the
problem. It may be possible to define that “before” the
loop-body is the point at the begining of the header, in-
cluded in the loop, and that “after” the loop-body is a point
inserted on the back edge of the natural loop. If there were
several back edges in the corresponding combined loop, an
equivalent of the “pre-header” could be inserted between the
back edges and the header, in order to keep a single weaving
point. In the case of a while-loop or a for-loop, “before”
the loop-body would also be before the evaluation of the
condition.

Without any enhancement, such a model would not com-
prise any contextual information (or “arguments” to the
loop-body).

8.2 “If-then-else” join point
Why stop at loops? Similar techniques could be applied
so as to provide aspect-oriented languages such as AspectJ
with a model for an “if-then-else” join point.

At source-code level, there is again the question of whether
the evaluation of the condition should or should not be in-
cluded in the “if-then-else” join point.

A basic-block control-flow approach may help to define a
model. A possible way to find the shadows of “if-then-else”
constructs might be in the combined use of dominators and
postdominators. “[We] say that node p postdominates node
i [...] if every possible execution path from i to [the exit] in-
cludes p” [10]. Given a node a that branches conditionally
to other nodes (unconditional branching presents no inter-
est), the smallest subgraph G of the control-flow graph that
contains another node b such that a dominates all the nodes
in G and b postdominates a, would represent an area of con-
ditional execution, starting from a and joining back at b.
Since a would dominate all the nodes in G, it would be the
unique entry node to G. Since b would postdominate a, b
would be the unique exit node from G. Just before the con-
ditional jump in a would be the before weaving point, and
just before b (for edges coming from inside G) would be the
after weaving point.

Again, it is unclear what kind of contextual information
could be included in such a model. Without it, such an
“if-then-else” join point would represent areas of code that
will only be partially executed (for a given (dynamic) join
point).

However, going a step further by making it possible to ad-
vise goto statements directly in the bytecode, may break
modularity and consistency, even within a method, which
would counteract the benefits of using aspects.

Apart from the usual debugging and tracing applications
of such join points, another successful approach for defining
fine-grained join points (including conditional if blocks) has
been applied to code-coverage analysis [11].

9. CONCLUSIONS
The paper demonstrates that it is possible to provide As-
pectJ (and perhaps other aspect-oriented systems) with a
loop join point, which can be applied, in particular, to loop
parallelisation.

The two main remaining difficulties are: (a) the cleverness
of the analysis for context exposure; and (b) the mechanisms
for loop selection. The context analysis is mostly implemen-
tation dependant. But the loop selection problem is more
fundamental, especially because loops cannot be named or
tagged. Loop selection based on contextual data can work,
but is also limited with the current AspectJ join points. A
possible way forward would be to use dataflow pointcuts, as
presented in [8]. An extension of this pointcut that would
predict the dataflow 8 would perhaps make it possible to

8A pdflow pointcut could be imagined in a similar way as
the pcflow pointcut mentioned by G. Kiczales in his keynote
talk at AOSD’2003.

determine at compile time which loops should be advised
by a parallelising aspect, therefore reducing the overhead of
run-time cflow (or dflow) checks.

10. ACKNOWLEDGMENTS
B. Harbulot acknowledges the support of the Engineering
and Physical Sciences Research Council (EPSRC) during
his doctoral studies.

11. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,
1985.

[2] P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc: An
extensible AspectJ compiler. In Proceedings of the 4th
international conference on Aspect-Oriented Software
Development (to appear). ACM Press, 2005.

[3] B. Harbulot and J. R. Gurd. Using AspectJ to
separate concerns in parallel scientific Java code. In
Proceedings of the 3rd international conference on
Aspect-Oriented Software Development, pages
122–131. ACM Press, 2004.

[4] E. Hilsdale and J. Hugunin. Advice weaving in
AspectJ. In Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 26–35. ACM Press, 2004.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In ECOOP ’01: Proceedings of the 15th
European Conference on Object-Oriented
Programming, pages 327–353. Springer-Verlag, 2001.

[6] S. Kuzins. Efficient implementation of around-advice
for the AspectBench Compiler. Master’s thesis,
Oxford University, UK, September 2004.

[7] R. Laddad. AspectJ in Action: Practical
Aspect-Oriented Programming. Manning, 2003.

[8] H. Masuhara and K. Kawauchi. Dataflow pointcut in
aspect-oriented programming. Lecture Notes in
Computer Science 2895, Proceedings of The First
Asian Symposium on Programming Languages and
Systems (APLAS’03)., pages 105–121, 2003.

[9] J. Miecznikowski and L. Hendren. Decompiling Java
bytecode: Problems, traps and pitfalls. In Proceedings
of CC’02, 2002.

[10] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[11] H. Rajan and K. Sullivan. Aspect language features
for concern coverage profiling. In Proceedings of the
4th international conference on Aspect-oriented
software development (to appear). ACM Press, 2005.

[12] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying
Java bytecode for analyses and transformations.
Technical report, Sable Group, McGill University,
Montreal, Canada, July 1998.

	Introduction
	Loop join point model
	From source or from bytecode
	Dominators, back edges and natural loops
	Loops in the general case
	Loops with a unique successor node
	Loops with a unique exit node
	Summary

	Context exposure
	Loop iterating over a range of integers
	Loop iterating over an Iterator
	Parallel with Java 5 for-construct

	Loop selection
	Implementation in abc
	Shadow matching
	Transformations for context exposure
	Exposing the boundaries or the Iterators
	Exposing the originating array or Collection
	Writing pointcuts

	Limitations
	Analysis and predictability
	Future work

	Aspects for parallelisation
	Issues related to exceptions
	Related topics
	``Loop-body'' join point
	``If-then-else'' join point

	Conclusions
	Acknowledgments
	References

