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ABSTRACT
The proof of the behaviour-preserving property of program-
ming laws is not trivially demonstrated. It is necessary
to show that the programs, before and after the transfor-
mation, have the same behaviour. In this paper we show
how it is possible to prove that an aspect-oriented program-
ming law preserves behaviour; an operational semantics for
Method Call Interception is used. An equivalence relation
stating that two programs have the same behaviour is de-
fined. We use these concepts and discuss soundness for the
law Add-Before Execution.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Aspect-Oriented
Programming ; D.3.2 [Programming Languages]: Lan-
guage Classifications—AspectJ

General Terms
Languages

Keywords
Refactoring, AspectJ, Aspect-Oriented Programming, Sep-
aration of concerns

1. INTRODUCTION
In order to explore the benefits of refactoring [7, 17, 18],
aspect-oriented developers are identifying common transfor-
mations for aspect-oriented programs [16, 14, 10, 12], mostly
in AspectJ [13], a general purpose aspect-oriented extension
to Java [9]. However, they lack support for assuring that the
transformations preserve behaviour and are indeed refactor-
ings.

∗Supported by CAPES.
†Partially supported by CNPq.

FAOL2005 Chicago, USA

It is possible to use AspectJ programming laws [5] to de-
rive or create behaviour preserving transformations (refac-
torings) for a subset of this language. Programming laws
[11] define equivalence between two programs, given that
some conditions are respected. By applying and composing
those laws, one can show that an AspectJ transformation
is a refactoring. A refactoring denotes a behaviour preserv-
ing transformation that increases code quality. Contrasting
with a refactoring, a law is bi-directional and it does not al-
ways increase code quality, it is part of a bigger strategy that
does. Besides, the laws are much simpler than most refactor-
ings because they involve only localized changes, and each
one focuses on one specific AspectJ construct. The laws
form a basis for defining refactorings with confidence that
they preserve behaviour. Hence, soundness of the laws with
respect to a formal semantics is a necessary property.

This paper shows one way to prove that those aspect-oriented
laws indeed preserve behaviour. We use the semantics of
an aspect-oriented language [15] in which we can represent
part of the laws. This language is not as expressive as As-
pectJ, but provides mechanisms to define some kinds of As-
pectJ advices with a well defined semantics. It allows us
to explore notions of semantic equivalence between aspect-
oriented programs. This increases the confidence that the
transformations applied by the laws preserve behaviour. How-
ever, some hypothesis must be satisfied in order to enable
the laws proof. For instance, the programs can not use re-
flection and can not be concurrent. Those hypothesis are
also considered for object-oriented programming laws [4].

A limitation to our current work is a consequence of be-
ing able to represent only part of the laws with the chosen
semantics. As the chosen language is not as powerful as
AspectJ, we can represent Laws 3 - Add before-execution,
4 - Add before-call, 7 - Add after-execution returning, 13 -
Merge advices, 15 - Remove target parameter, and 14 - Re-
move this parameter. It would be necessary to define another
language (or extend the one we used) to prove the remain-
ing laws. Nevertheless, we can use this subset of the laws
to show that some important refactorings indeed preserve
behaviour, for instance, the Extract Method Calls [14].

This paper is organized as follows. Section 2 discusses the
semantics used here and our notion of equivalence between
two programs. Section 3 introduces the laws, showing their
structure, preconditions and intent. Section 4 shows a for-



mal argumentation about soundness of one law. Then, we
discuss related work in Section 5 and conclude in Section 6.

2. SEMANTICS OF METHOD CALL INTER-
CEPTION (MCI)

Semantics for aspect-oriented languages is still en emerg-
ing field. The aspect-oriented languages used today still do
not have an associated formal semantics where it is possi-
ble to reason about programs. However, there are several
approaches [3, 1, 20, 15, 19, 6, 2] that try to solve this prob-
lem. In this section we discuss an aspect-oriented semantics
based on Method Call Interception (MCI) [15].

The MCI semantics was chosen because it allows us to rep-
resent several of the advice types offered by AspectJ. Hence,
allowing us to reason about programming laws involving
those kinds of advice. Moreover, the MCI semantics is
described as an extension to an object-oriented one, simi-
larly to the way AspectJ extends Java. Therefore, provid-
ing an easier comprehension of how the semantics change
from the object-oriented language to its aspect-oriented ex-
tension. This semantics only deals with advices, which we
consider as a core concept in aspect-orientation. However,
other AspetcJ constructs, such as inter-type declarations,
are also important and the proof for laws involving them
should consider a different or extended language.

Lämmel starts defining the semantics for a small java-like
object-oriented language called µO2 [15]. He describes an
operational semantics and defines the rules for this language.
Although Lämmel describes both static and dynamic seman-
tics, we consider only the dynamic semantics because we
want to compare behaviour of programs. The static seman-
tics is useful to verify if the programs are well constructed
according to the type system. Hence, the static semantics
would be necessary to proof that the laws relate valid pro-
grams, this is regarded as a future work.

After defining the semantics for µO2, Lämmel extends this
language to incorporate the new construct superimpose,
which allows the definition of an advice intercepting a me-
thod. However, the first definition for the superimpose con-
struct is very simple and was extended in two ways. First he
introduces interactivity, allowing advices to expose and use
variables from the method’s execution context. Second, he
extends the language definition including quantitative mech-
anisms, allowing a single advice to intercept several meth-
ods. The syntax for the resulting aspect-oriented language
can be seen in Figure 1. The MCI extension starts at the
caller definition.

The superimpose construct defines that some code (exp) is
to be executed on the occurrence of an event (eve). Compar-
ing to AspectJ, the exp can be regarded as the advice body,
and eve can be regarded as the pointcut expression. The
description of an event defines when and where a method
interception occurs. A method can be intercepted at three
distinct points (mci): dispatch, before its arguments evalu-
ation; enter, after the arguments evaluation but before the
method’s execution; and exit, after the method’s execu-
tion. Those mci points are analogous to the before-call,
before-execution and after-returning-execution from
AspectJ. The other component of an event (loc) describes

prog = cdef ∗ cn.mn
cdef = class cn extends cn {field∗ mdef ∗}
field = type fn

mdef = type mn (arg∗) body
type = cn | void
arg = type vn

body = exp | abstract
cn = class names
fn = field names

mn = method names
vn = variable names

exp = null
| this
| vn
| view type exp
| exp.fn
| exp.vn = exp
| exp.mn (exp∗)
| super.mn (exp∗)
| let vn : type = exp in exp
| exp;exp
| while (exp) exp
| caller
| callee
| superimpose exp on eve

eve = mci loc | eve within loc
mci = dispatch | enter | exit
loc = *

| object exp
| class cn
| subclass cn
| method mn
| result type
| argument type vn
| loc && loc
| loc || loc
| !loc

Figure 1: MCI syntax

the location of the method interception, which is an expres-
sion that matches methods based on its name, class, argu-
ments, return type, etc. An event can also be constrained
to occur only within another location.

Lämmel defines an operational semantics for this language
[15]. He defines several rules to show how an expression
should be evaluated. Each rule shows the return value of
the evaluated expression and shows how the state changes.
Some rules may depend on the the execution of other rules
to achieve its result. Hence, the evaluation of a program can
be represented as a tree showing several evaluation rules.

The domains for a rule consist of a method code table (T),
which links method names with its parameters and body.
An object store (Σ) that holds references to objects and its
field values. This object store also hold the advice registry.
There is also a reference to the executing object (θ) and an
environment for the program variables (η). The expression
Πi(t) denotes the ith projection of a tuple t .

Figure 2 shows the evaluation rule [15] for the superimpose

construct. This rule states that evaluating a superimpose

declaration returns a null reference (0 is the meaning of a
null expression) and updates the object store (Σ′′). The su-
perimpose evaluation consists of three steps: first, we eval-



uate the event expression (1), which yields the event de-
scription (k) and an updated object store (Σ′); second, we
create the advice, represented by α (2); finally, we call the
register helper function (3), which updates Σ′ by register-
ing the event and advice from the previous evaluations.

T , Σ, θ, η ` eve ⇒ k , Σ′ (1)

∧ α = ((Πcn(θ), Πmn(θ)), exp) (2)

∧ register(Σ′, k , α)⇒ Σ′′ (3)

T , Σ, θ, η ` superimpose exp on eve ⇒ 0, Σ′′ (4)

Figure 2: superimpose evaluation rule

We do not show all the evaluation rules, more details can
be found elsewhere [15]. As mentioned before, one of the
reasons to choose the MCI semantics is that it shows an
object-oriented semantics and extends it to introduce MCI.
This description allows us to see exactly how the semantics
change when we introduce aspect-oriented features to the
language. As the superimpose construct affects only method
calls, the only rule changed during the MCI extension is the
method call evaluation rule.

Originally a method call is evaluated according to the rule
listed in Figure 3. First, we evaluate the expression that
yields the object on which the method is being called (5).
Second, we search the environment for the method defini-
tion (6). Then, it is necessary to evaluate the expressions
representing the arguments values (7-9). Finally, an envi-
ronment is mounted with the evaluated arguments (10) to
execute the method’s body (11).

T , Σ0, θ, η ` exp ⇒ ρ, Σ1 (5)

∧ Π1(T ) • (ρ,mn) = ((vn1, ..., vnn), exp′) (6)

∧ T , Σ1, θ, η ` exp1 ⇒ v1, Σ2 (7)

∧ ... (8)

∧ T , Σn , θ, η ` expn ⇒ vn , Σn+1 (9)

∧ η′ =⊥ [vn1 7→ v1, ..., vnn 7→ vn ] (10)

∧ T , Σn+1, η
′ ` exp′ ⇒ v , Σn+2 (11)

T , Σ0, θ, η ` exp.mn(exp1, ..., expn)⇒ v , Σn+2
(12)

Figure 3: Object-oriented call evaluation rule

A general object reference is represented by ρ. The function
application is denoted as f • x , and the entirely undefined
function is denoted as ⊥. The evaluation of a method call
yields its value (v ′) and an updated object store (Σ′

n+2).

With the MCI extension, the call rule is changed to verify
at certain points, if there is a registered event that should
be executed. Figure 4 shows the call rule with the MCI
extension. The lookup for registered events matching this
method’s execution is done through the helper functions
dispatch (15), enter (20), and exit (22).

An event can be registered using the superimpose construct.
The lookup functions showed in the MCI call rule, search the

T , Σ0, θ, η ` exp ⇒ ρ, Σ1 (13)

∧ Π1(T ) • (ρ,mn) = ((vn1, ..., vnn), exp′) (14)

∧ dispatch(T , Σ1, θ, (ρ,mn))⇒ Σ′
1 (15)

∧ T , Σ′
1, θ, η ` exp1 ⇒ v1, Σ2 (16)

∧ ... (17)

∧ T , Σn , θ, η ` expn ⇒ vn , Σn+1 (18)

∧ η′ =⊥ [vn1 7→ v1, ..., vnn 7→ vn ] (19)

∧ enter(T , Σn+1, θ, (ρ,mn), η′)⇒ Σ′
n+1 (20)

∧ T , Σ′
n+1, ((ρ,mn),⊥) ` exp′ ⇒ v , Σn+2 (21)

∧ exit(T , Σn+2, θ, (ρ,mn), η′, v)⇒ v ′, Σ′
n+2 (22)

T , Σ0, θ, η ` exp.mn(exp1, ..., expn)⇒ v ′, Σ′
n+2

(23)

Figure 4: MCI call evaluation rule

environment to see if the registered event matches the exe-
cuting method. If there is a match, the registered expression
is executed. Note that the superimpose must be evaluated
before the method call for the advice to take effect. Any
method calls made before the superimpose evaluation will
behave according to the µO2 rule because the environment
will not have a registered event. This feature allows us to
dynamically introduce advices, which is not possible in As-
pectJ.

As we want to map the MCI semantics to AspectJ, we need
to constrain the language to ensure that all superimpose ex-
pressions are evaluated before the program starts executing.
This can be achieved by allowing superimpose declarations
only at the beginning of the main method (method called
to initiate the program execution according to the language
grammar, see prog in Figure 1).

It is possible to represent part of the advice types provided
by AspectJ using the superimpose construct. In fact, we
can represent before-call, before-execution and after-

returning-execution advices. The first type maps to a
superimpose on dispatch construct, the other two can be
mapped to superimpose on enter and superimpose on exit

constructions, respectively.

Other AspectJ constructs, including pointcuts, inter-type
declarations, and other kinds of advice, can not be repre-
sented with the MCI semantics. This limitation enables us
to reason only about Laws 3 - Add before-execution, 4 - Add
before-call, 7 - Add after-execution returning, 13 - Merge ad-
vices, 15 - Remove target parameter, and 14 - Remove this
parameter. In Section 4 we discuss the soundness of Law 3
- (Add Before-Execution). To enable the proof of the other
laws, it would be necessary to extend the showed language,
or to define a completely new one. This is regarded as a
future work.

2.1 MCI Program Equivalence
We want to use the MCI semantics to reason about aspect-
oriented programs and verify whether two programs behave
the same. Thus, it is necessary to define an equivalence
relation between them. This equivalence relation can be



difficult to define. For instance, if we choose an equivalence
relation that compares two environments (states) resulting
from programs execution, it would fail to compare programs
that behave the same but use different data structures. Dif-
ferent data structures may result in different environments
at the end of a program execution. For example, consider
two stack implementations: the first uses an array to repre-
sent the stack, and the second uses a linked list. Both im-
plementations may behave as a stack, but their final states
are different because their data structures are different. In
this case, it would be necessary to isolate input and out-
put variables from the environment and compare only those
variables.

As the programming laws we are willing to proof, with the
MCI semantics, do not change the data structure, we can es-
tablish equivalence by comparing the object stores generated
by the evaluation of both programs. Figure 5 shows the ob-
ject store (Σ) domain to evaluate an expression [15]. This
domain has three components: a function that associates
data locations with their values (δ →fin v), a function that
associates object references with their types (ρ →fin cn),
and the advice registry (∆). Our equivalence notion only
uses the first component of the object store comparing the
field values and how they change, as stated by Definition 1.

Σ = δ →fin v (Object store)
× ρ→fin cn (Runtime type information)
× ∆ (Advice registry)

δ = ρ× fn (Data locations)
ρ (Object references)

Figure 5: Object Store

Definition 1 (Program Equivalence). Let P and Q
be two MCI programs. P is equivalent to Q (P ≡ Q) iff, for
all valid input, the fields and their values from the resulting
object store of P equals that of Q.

We are only interested in the first component from the ob-
ject store, which maps field locations to their values. Thus,
after the programs evaluation we can compare the values of
their fields and state that two programs behave the same if
all their fields and values are equal. The runtime type infor-
mation is not relevant to our relation, it is part of the object
store to allow the evaluation of expressions like type casts.
The advice registry is expected to change because we intend
to introduce new superimpose commands to the program.

This equivalence notion is rather strong. It may distinguish
two programs even if they have the same behaviour. The
stack implementations using an array or a linked list would
be different programs according to our definition. This is not
a problem because two programs that are equivalent accord-
ing to our definition, would also be equivalent using a more
precise definition. Besides, our definition is the simplest so-
lution suitable to our goals. Also, note that we are interested
on the external behaviour of a program. Hence, our defini-
tion deals with closed programs and not with equivalence of
classes. For instance, a method never called by a program do
not influence the equivalence notion because its behaviour
do not contribute to the external program behaviour.

Although we define the equivalence relation for MCI, this
notion is independent of programming languages. However,
this equivalence relation can only be considered for sequen-
tial programs. If the programs are concurrent, the equiva-
lence relation should consider the structure of the evaluation
tree as well. Nevertheless, our laws do not deal with those
mechanisms.

3. LAWS
Sometimes, modifications required by refactorings are diffi-
cult to understand as they might perform global code changes.
We use programming laws [5] to increase the confidence that
an AspectJ transformation preserves behaviour. The laws
are much simpler than most refactorings because they in-
volve only localized changes, and each one focuses on one
specific AspectJ construct. The laws form a basis for defin-
ing refactorings with confidence that they preserve behaviour.

In this section we describe a simple law, showing its intent,
structure, and preconditions. The laws establish the equiv-
alence of AspectJ programs given that some restrictions are
respected. Therefore, the structure of each law consists of
three parts: left-side, right-side and preconditions. The first
two are templates of the equivalent programs. The third
part indicates conditions that must hold to ensure the equiv-
alence is valid. For example, the following law is useful to
extract code from the beginning of a method into an aspect.
If the extracted code is spread through several methods, we
would apply the law several times to isolate this code. Af-
terwards, we would use another law to merge the resulting
advices, increasing reuse.

Law 3. Add Before-Execution

ts
class C {

fs
ms
T m(ps) {

body ′;
body

}
}
paspect A {

pcs
bars
afs

}

=

ts
class C {

fs
ms
T m(ps) {

body
}

}
paspect A {

pcs
bars
before(context) :
exec(σ(C .m)) &&
bind(context) {
body ′[cthis/this]

}
afs

}

provided

(→) body ′ does not declare or use local variables;
body ′ does not call super;

(←) body ′ does not call return;

(↔) A has the lowest precedence on the join
points involving the signature σ(C .m);



The laws basically represent two transformations, one apply-
ing the law from left to right and another one in the opposite
direction. Each law has preconditions to ensure that the pro-
gram is valid after the transformation and preconditions to
ensure that the transformation preserves behaviour. When
applied from left to right, this law moves part of a method’s
body into an advice that is triggered before method execu-
tion.

We denote the set of class and aspect declarations by ts,
and the set of field declarations and method declarations by
fs and ms, respectively. We also abstract the privileged

modifier from AspectJ as priv. The set of pointcut decla-
rations is denoted as pcs. Note that the advices can not be
considered as a set, since order of declaration dictates prece-
dence of advices. According to the AspectJ semantics, if two
advices are after, the one declared later has precedence, in
every other case, the advice declared first has precedence.
Thus, we divide the list of advices in two. The first part
(bars) contains the list of all before and around advices,
while the second part contains only after advices (afs).
This separation ensures that after advices always appear
at the end of the aspect. It also allows us to define exactly
the point where the new advice should be placed to execute
in the same order in both sides of the law. Additionally, for
advices declared in different aspects, precedence depends on
their hierarchy or their order in a declare precedence con-
struct.

Inside advices, we can access variables in the context of
the captured join point. The law always expose the max-
imum context available, in this case, the executing object
(this(cthis)) and the method parameters (args(ps)). The
expression bind(context) includes those pointcut designators
for exposing context. We omit visibility modifiers, throws
clauses and inheritance constructs for simplicity. However,
there are similar laws that include the variations of visibility
modifiers, exceptions and inheritance constructs.

Examining the left hand side of Law 3, we see that body ′ exe-
cutes after all before advices declared for this join point. It
also executes after all the around advices, intercepting this
join point, call proceed. This means that the new advice
on the right hand side of the law should be the last one to
execute, preserving the order in which the code is executed
in both sides of the law. Thus, the before advice should
be placed after the list of before and around advices, but
before the list of after advices. Moreover, to ensure that
the new advice created with Law 3 is the last one to execute,
we have a precondition stating that aspect A has the lowest
precedence over other aspects defined in ts. This precondi-
tion must hold in both directions.

As we move body ′ to the aspect, its visible context changes.
Hence, it is necessary to constrain the context dependencies
in order to guarantee that the law relates valid AspectJ pro-
grams. Therefore, we impose conditions on accessing private
members, local variables (not including the methods argu-
ments) and calls to super. While the last two are forbidden,
access to private members is allowed if done through this.
This is necessary to enable the mapping of accesses to the
object referenced by this, to the object exposed as the exe-

cuting object on the advice (cthis). The mapping is denoted
by the expression body ′[cthis/this], where we substitute all
occurrences of this for the variable cthis in body ′.

However, there are other implications that must be con-
sidered. Changes to the method execution flow (calls to
return) are generally not allowed because the advice can-
not implement it, or it would increase complexity. This
precondition is necessary to ensure that the law preserves
behaviour.

Other laws are similarly defined in terms of transformations
and preconditions, and establish properties of other con-
structs besides before advice. Table 1 shows a summary
of the laws. More details about AspectJ programming laws
can be found elsewhere [5].

4. SOUNDNESS OF THE ADD BEFORE-EXE-
CUTION LAW

In this section we show that the Law 3 (Add Before-Execu-
tion) is sound using the semantics we chose. We interpret
both sides of the law according to the semantics. Then we
compare the resulting environments according to our equiv-
alence notion to see whether the two sides of the law have
the same meaning.

Following, we show the Law 3 written in terms of the MCI
syntax. Thus, we map the before-execution advice from
AspectJ to a superimpose on enter construct from the MCI
language (see Section 2). Also, we constrain the language
allowing only declarations of the superimpose construct at
the beginning of the main method. Moreover, the MCI lan-
guage does not have any modular concept similar to an as-
pect. Thus, the aspect simulation is also accomplished by
the use of a main method with superimpose declarations
at the beginning. As a consequence, changes made to the
aspect are represented as changes made to the main method
and its superimposes. Note that, similarly to the AspectJ
law, we have to substitute the this keyword for the callee

keyword when using body ′ on the right hand side of the law.

Law 3. Add Before-Execution (MCI)

ts
class C ext T {
fs
ms
Type m(ps) {

body ′;
body

}
}
class M ext T {
void main() {

sis;
mainBody

}
}

=

ts
class C ext T {
fs
ms
Type m(ps) {

body
}
}
class M ext T {
void main() {

superimpose body ′

on enter

class C &&
method m &&
argument ps;

sis;
mainBody

}
}



Table 1: Summary of laws
Law Name Law Name
1 Add empty aspect 16 Remove argument parameter
2 Make aspect privileged 17 Add catch softened exception
3 Add before-execution 18 Soften exception
4 Add before-call 19 Remove exception from throws clause
5 Add after-execution 20 Remove exception handling
6 Add after-call 21 Move exception handling to aspect
7 Add after-execution returning successfully 22 Move field to aspect
8 Add after-call returning successfully 23 Move method to aspect
9 Add after-execution throwing exceptions 24 Move implements declaration to aspect
10 Add after-call throwing exceptions 25 Move extends declaration to aspect
11 Add around-execution 26 Extract named pointcut
12 Add around-call 27 Use named pointcut
13 Merge advices 28 Move field introduction up to interface
14 Remove this parameter 29 Move method introduction up to interface
15 Remove target parameter 30 Remove method implementation

There is also the advice ordering problem discussed in Sec-
tion 3. According to our understanding from the MCI se-
mantics, advices declared later have precedence, no matter
the kind of MCI. Thus, we do not need to separate ad-
vices as we do with AspectJ. It is only necessary to de-
clare the new superimpose on enter, just before all the
other superimpose declarations (sis) to ensure that the new
one is the last to be executed. If we were dealing with
Law 7 (Add after-execution returning successfully), the new
superimpose declaration should be placed after all the exist-
ing ones to ensure that the after advice should be the first
to execute. We assume that the kind of rewriting discussed
so far, does not change the semantics of Law 3.

In Section 2 we showed that there is just one evaluation rule
that changes with the MCI extension. Thus, our soundness
discussion involves only the call rule. A complete proof
would involve all the language constructs and use induction
on the structure of mainBody . The base case would consider
each single command that can appear in mainBody , while
the induction step would consider every composition of those
commands. This complete proof is regarded as a future
work, here we provide a formal argumentation to show that
Law 3 is sound.

Our argumentation is based on a case where the mainBody
represents a single call to method m of class C (note that
we need to create an object, using the let construct, to
call a method). This comes directly from the fact that the
superimpose only affects the method call semantics. Any
other simple construction for mainBody would trivially pre-
serve behaviour because the other language constructs are
not affected by the superimpose.

Figure 6 shows the evaluation tree for the left hand side of
the law, considering that mainBody is the command: let c :
C = new C in c.m(ps). Every node consists of a program
state. The transitions represent applications of transition
rules according to the semantics. Thus, each transition is
labeled after the applied rule. Also, the left square represent
the input object store and the right square represents the
output object store for each rule applied. The nodes are
numbered according to the execution order, with label L1
being the first.

Figure 6: Evaluation tree for the left hand side.

The left hand side consists in evaluating a sequential compo-
sition (L2), which leads to the evaluation of the superimpose
declarations present in sis (L3) and the evaluation of the let
command (L4). The let updates the store and calls method
m of class C (L5). The method call evaluation occurs as
showed in Figure 4. First, events registered for dispatch

MCI are executed (L7). Next we evaluate the method’s pa-
rameters (L8). Then, events registered for enter MCI are
executed (L10). Following we evaluate the method’s body,
which is a sequential composition (L11) of body’ (L12) and
body (L13). Finally, events registered for exit MCI are
executed (L15). As we want to compare the execution of
two programs, we do not expand execution nodes that are
equal for both. For instance, the evaluation of body , body ′,
ps, dispatch and exit advice nodes are the same for both
programs.

Next, Figure 7 shows the evaluation tree for the right hand
side of the law. In this case, there is a sequential composi-
tion(R2) that first evaluates another sequential composition
(R3), which includes our new superimpose (R4) and the old
ones (R5). Then it starts the program similarly to the left
hand side. The evaluation of the superimpose command
updates the registry located on the object store by regis-



tering body ′ to be executed when entering the method m
with arguments ps of class C . As a result, the evaluation of
the enter helper function (R11) performs a lookup in the
registry for events registered for this method and finds that
body ′ should be executed (R12). Another difference is that
the evaluation of the method’s body now includes only body
(R14).

Figure 7: Evaluation tree for the right hand side.

Proof. (Sketch) According to the equivalence notion es-
tablished in Section 2.1, we are interested on the nodes that
may update the first component of the object store (field val-
ues). First, the let command may update the object store
by adding a new object and the values of its fields. The
second way to update the field values in the object store
is through an assignment. Assignments can appear in any
expression and thus, we look for the nodes able to evaluate
expressions.

On the left hand side, the nodes related to the evaluation
of expressions are: let (L4), dispatch (L7), ps (L8), enter
(L10), body ′ (L12), body (L13), and exit (L15). Similarly,
the nodes we are interested on the right hand side are: let

(R6), dispatch (R9), ps (R10), enter (R12), body ′ (R13),
body (R14), and exit (R16).

Analyzing the equivalent nodes from both programs (i.e. L4
and R6, L7 and R9, etc) we can see they are syntactically
equal, and thus have an equivalent evaluation. The only
factor that may result in different field values at the end of
the program execution is the order in which the nodes are
evaluated. In both Figures 6 and 7, the number inside the
node represent the order of evaluation, which is the same in
both programs. During the evaluation, the field values are
supposed to be equal after the evaluation of nodes L13 and
R14. Thus, according to our equivalence notion, and con-
sidering that the programs are sequential, we can conclude
that the programs have the same behaviour. �

4.1 Soundness of Other Laws
This proof could be similarly extended for Laws 4 (Add
before-call), and 7 (Add after returning successfully). As
they only differ by the kind of advice (MCI) used. Law
4 would use the superimpose on dispatch construct and
Law 7 would use the superimpose on exit construct. For
this reason, we consider that this two laws are also sound.

The right hand side of Law 4 would generate an evalua-
tion tree where body ′ is evaluated before some other method
call. This means that body ′ is evaluated even before the ar-
guments of the method to be called. The evaluation tree
for the left hand side would place body ′ above the dispatch

node, ensuring that it is also evaluated before the arguments
of the considered method.

The proof for Law 7 is almost equal to the proof for Law 3.
The only difference is that on the evaluation tree for the left
hand side, body ′ appears after body , and on the right hand
side, body ′ appears above the exit node. This also ensures
that body ′ is evaluated after body in both sides of the law.

However, Laws 13, 14, and 15 should be considered differ-
ently. The proof for Law 13 would rely on the composition
of MCI locations (|| operand on event locations) to ensure
that a registered event matches two or more join points.
As the only difference between the left hand side and right
hand side is the superimpose declarations (consequently the
registry), both evaluation trees would be equal. According
to the MCI semantics, the evaluation of the || operator is
the same as evaluating its first operand an then its second
operand. Both evaluations register the same piece of code
to execute at different events.

The proof for Laws 15 and 14 would rely on removing the
callee and caller constructs respectively. In the MCI se-
mantics, these constructs only bind variables to be used by
the advice, they do not constrain the types as occurs with
this and target in AspectJ. As type restrictions are apart
from variable binding, we can remove the variable binding
given that the variable is not used inside the advice.

We do not discuss the remaining laws formally. As most laws
are very simple and intuitive, since each one deals with one
construct at a time, their description provides informal ar-
guments describing why the two sides of the laws are equiva-
lent. Hence, we generally described how to map an AspectJ
construct to its corresponding Java implementation. More-
over, some laws when applied from right to left, perform a
transformation very similar to the transformation applied
by the AspectJ compiler to weave aspects and classes.

5. RELATED WORK
This paper uses an existing operational semantics for Method
Call Interception [15] to represent aspect-oriented program-
ming laws and reason about them. It seemed appropriate to
choose this semantics because of its simplicity, its model of
extending an object-oriented language, and its capacity to
represent several types of advices from AspectJ.

However, there are other approaches for reasoning about
aspect-oriented programs. It would be difficult to represent
the laws using most of them. Douence et. al. [6] define a



domain-specific language, along with its semantics, to de-
fine crosscuts based no execution monitoring. His system is
based on events similarly to the Observer [8] pattern.

Andrews [2] presents process algebras as a formal basis for
aspect-oriented languages. He uses a subset of CSP tailored
to his purpose, representing join points as synchronization
sets. He also defines an equivalence notion between pro-
grams and uses it to show the correctness of his weaving
process. He uses an imperative language. We use the MCI
semantics because it is much simpler and extends the seman-
tics of an object-oriented language just as AspectJ extends
Java.

Wand et. al. [19] define a semantic model for dynamic join
points. This is not appropriate to our purpose because we
needed a semantics in which we could represent AspectJ fea-
tures. Xu et. al. [20] use a reduction strategy to transform
aspect-oriented programs to implicit invocation. This trans-
formation allows them to reason about the programs using
already defined semantics for implicit invocation. Aldrich [1]
discusses the problem of modular reasoning about aspect-
oriented programs. He defines an aspect-oriented language
and associated semantics where modular reasoning is possi-
ble. Finally, Barzilay et. al. [3] examine call and execution
semantics in AspectJ and their interaction with inheritance.

There is also a related work [4] that includes the definition of
object-oriented programming laws, an associated semantics,
an equivalence notion, and soundness of the laws. Besides,
they also prove the relative completeness of their set of laws
by defining a normal form and a reduction strategy to trans-
form any program into the normal form.

Hanenberg, Oberschulte and Unland [10] propose some pre-
conditions to apply an object-oriented refactoring in the
presence of aspects. Those conditions guarantee a mapping
of join points during refactoring, therefore preserving be-
haviour. They also propose modifications to refactorings
such as Extract Class [7] in order to make them aspect-
aware and therefore respect the preconditions. The second
part of Hanenberg, Oberschulte and Unland’s research re-
gards refactorings to AspectJ. In fact, they propose some
new refactorings from Java to AspectJ. However, they only
discuss the refactoring as a whole and the conditions to ap-
ply the refactoring. We not only define preconditions but
we are able to prove that our transformations preserve be-
haviour. We also derived the proposed refactorings using
the laws, showing that they preserve behaviour.

Analogously, Iwamoto and Zhao [12] proposes modifications
to existing refactorings in order to make them aspect-aware.
However, it is a superficial discussion. They only show some
examples and give some guidelines on how to avoid the as-
pect effects on the object-oriented refactorings. They also
show examples of refactorings from Java to AspectJ. Al-
though, there is no argumentation about necessary condi-
tions to apply the refactorings to ensure that they preserve
behaviour. We used the suggested refactorings and derived
them as a composition of laws. Hence, we were able to state
in which conditions we can apply the refactorings as well.

Finally, there is a related work [14] that discusses aspect-

oriented refactorings showing problems when applying object-
oriented refactorings in the presence of aspects. It proposes
several complex and interesting refactorings and shows clear
and easy to understand examples. The laws we are able
to prove with the discussed semantics are enough to prove
some of his refactorings, for instance the Extract Method
Calls refactoring.

6. CONCLUSIONS
This paper is a complement to another work on aspect-
oriented programming laws [5]. The previous work relied on
the simplicity of the laws, which involve only local changes
and deal with one AspectJ construct each. Here we show
that the laws can be proved sound according to a formal
semantics. We show that specifically Law 3 (Add Before-
Execution). However, other five laws could be chosen.

For that, we use an operational semantics for Method Call
Interception [15] where we could represent some of the laws.
We also defined an equivalence relation stating the condi-
tions in which two programs behave the same. The proof
is based on the evaluation of both programs and then, the
analysis of the resulting environments comparing the values
of object fields.

However, we can not prove all the laws using this semantics.
The MCI semantics is able to represent only before-call,
before-execution and after-execution returning advices
from AspectJ. Thus, we can only reason about the laws re-
lated to those advices. To enable the proof of the remaining
laws, we should define a completely new language, along
with its semantics, including all the AspectJ constructs cov-
ered by the laws. Another solution would be to extend an
existing language (i.e MCI) to incorporate the missing con-
structs. Our current solution allows the proof of Laws 3
- Add before-execution, 4 - Add before-call, 7 - Add after-
execution returning, 13 - Merge advices, 15 - Remove target
parameter, and 14 - Remove this parameter. The proof of
other laws is regarded as a future work.
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C. Clifton, R. Lämmel, and G. T. Leavens, editors,
FOAL’04 Proceedings: Foundations of Aspect-Oriented
Languages Workshop at AOSD 2004; Technical Report
CS Dept., Iowa State Univ., Mar. 2004.

[2] J. H. Andrews. Process-algebraic foundations of
aspect-oriented programming. In REFLECTION ’01:
Proceedings of the Third International Conference on
Metalevel Architectures and Separation of Crosscutting
Concerns, volume 2192, pages 187–209.
Springer-Verlag, Sept 2001.



[3] O. Barzilay, Y. Feldman, S. Tyszberowicz, and
A. Yehudai. Call and Execution Semantics in AspectJ.
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