
MiniMAO: Investigating the Semantics of Proceed∗

Curtis Clifton and Gary T. Leavens
Dept. of Computer Science

Iowa State University
229 Atanasoff Hall

Ames, Iowa 50010-1041
{cclifton,leavens}@cs.iastate.edu

ABSTRACT
This paper describes the semantics of MiniMAO1, a core aspect-
oriented calculus. Unlike previous aspect-oriented calculi, it allows
around advice to change the target object of an advised operation
before proceeding. MiniMAO1 accurately models the ways As-
pectJ allows changing the target object, e.g., at call join points.
Practical uses for changing the target object using advice include
proxies and other wrapper objects.

In addition to accurate modeling of bindings for around advice,
MiniMAO1 has several other features that make it suitable for the
study of aspect-oriented mechanisms, such as those found in As-
pectJ. Like AspectJ, the calculus consists of an imperative, object-
oriented base language plus aspect-oriented extensions. MiniMAO1
has a sound static type system, facilitated by a slightly different
form of proceed than in AspectJ.

1. INTRODUCTION
This paper describes MiniMAO1, a core aspect-oriented [13] cal-

culus. MiniMAO1 is designed to explore two key issues in reason-
ing about operations in aspect-oriented programs:

— when advice may change the target object of the operation,
possibly affecting dynamic method selection, and

— when advice may change or capture the arguments to, or re-
sults from, the operation.

MiniMAO1 is sufficiently expressive to encode key aspect-oriented
idioms. But by minimizing the set of features, we arrive at a core
language that is sufficiently small as to make tractable formal proofs
of type soundness and—in planned extensions—proofs of desired
modularity properties and verification conditions.

In this paper we describe the dynamic semantics of MiniMAO1
and an interesting portion of its type system. We also state its
soundness theorem. We assume that the reader is familiar with the
basic concepts of aspect-oriented programming as embodied in the
AspectJ programming language [12]. Because of space limitations,
we refer interested readers to a companion technical report [4] for
details that we omit here. We also leave the study of reasoning
issues to future work.

For clarity, we begin with a core object-oriented calculus with
classes. We then extend this object-oriented calculus with aspects
and advice binding.

∗Supported by NSF grants CCF-0428078 and CCF-0429567.

FOAL ’05 Chicago, Illinois USA
Copyright c© 2005, Curtis Clifton and Gary T. Leavens.

P :: = decl∗ e

decl :: = class c extends c { field∗ meth∗ }
field :: = t f

meth :: = t m(form∗) { e }
form :: = t var, where var 6= this

e :: = new c() | var | null | e.m(e∗) |
e. f | e. f = e | cast t e | e; e

c,d ∈ C , the set of a class names
t,s,u ∈T , the set of types

f ∈F , the set of field names
m ∈M , the set of method names

var ∈ {this}∪V , where V is the set of variable names

Figure 1: Syntax of MiniMAO0

2. THE BASE LANGUAGE: MiniMAO0

In this section we introduce MiniMAO0, an imperative object-
oriented calculus with classes, derived from Classic Java [8]. Fol-
lowing the lightweight philosophy of Featherweight Java [9], we
eliminate interfaces, super calls, and method overloading. We drop
let expressions and instead use e1; e2 to sequentially evaluate e1
and then e2. We adopt Featherweight Java’s technique of treating
the current program and its declarations as global constants. This
avoids burdening the formal semantics with excess notation.

To allow later modeling of method call and execution join points,
we also separate call and execution in the semantics.

2.1 Syntax of MiniMAO0

The syntax for MiniMAO0 is given in Figure 1. A program con-
sists of a sequence of declarations followed by a single expression.
Running a program consists of evaluating this expression.

In MiniMAO0 the declarations are all of classes. We omit access
modifiers, which would only add gratuitous complexity; hence all
methods and fields are globally accessible. MiniMAO0 also omits
constructors. All objects are created with their fields set to null.

The set of types is denoted by T . MiniMAO0 includes just one
built-in type, Object, the top of the class hierarchy. Object con-
tains no fields or methods. For MiniMAO0, T = C , the set of valid
class names. C is left unspecified, but we use Java identifier con-
ventions in examples. We follow the same convention for the sets
F , M , and V used in Figure 1.

Most expressions in MiniMAO0 have a meaning like that in Java,

but there are some differences. The expression new C() creates an
instance of the class named C, setting all of its fields to the default
null value. For syntactic clarity, we follow Classic Java in using a
non-Java syntax, cast t e, to represent the Java cast (t) e.

2.2 Operational Semantics of MiniMAO0

We describe the dynamic semantics of MiniMAO0 using a struc-
tured operational semantics [7, 15, 18]. The semantics is quite sim-
ilar to that for Classic Java. There are two main differences: a
stack (used for aspect binding in MiniMAO1) and the separation of
method call and execution into separate primitive operations.

For the operational semantics we add two expressions that do not
appear in the user-visible syntax.

e :: = . . . | loc | (l (v . . .))

l :: = fun m〈var∗〉.e : τ

τ :: = t× . . .× t → t

v :: = loc | null
loc ∈L , the set of store locations

One can think of locations, loc ∈L , as addresses of object records
in a global heap, but we just require that L is some countable set.
The application expression form is used to model method execu-
tion independently from method calls. In these expressions, l is a
(non-first-class) fun term that represents a method and (v . . .) is
an operand tuple that represents the actual arguments. The appli-
cation expression thus records information from method dispatch,
but before execution of the method body. The fun term carries type
information—a function type, τ . This type information is not used
in evaluation rules, but is helpful in the subject-reduction proof.
The use of the application expression form in the operational se-
mantics is described in more detail below.

As is typical in an operational semantics, we consider a sub-
set of the expressions, denoted by v, to be irreducible values. The
values in MiniMAO0 are the locations and null. Evaluation of a
well-typed MiniMAO0 program will produce either a value or an
exception.

Evaluation contexts are denoted by E. The definition of evalua-
tion contexts below serves both to define implicit congruence rules
and to define a left-to-right evaluation order:

E :: =− | E. f | E. f = e | v. f = E | cast t E | E; e |
E.m(e . . .) | v.m(v . . .Ee . . .) | (l (v . . .Ee . . .))

The evaluation context for the application expression form only re-
curses on the arguments and not on the method body expression
in the fun term of the form. Evaluation of the method body does
not take place until the substitution of actuals for formals has been
done by the appropriate evaluation rule.

The relation, ↪→, describes evaluation steps:

↪→ :E ×Stack×Store → (E ∪Excep)×Stack×Store

This relation takes an expression e ∈ E , a stack, and a store and
maps this to a new expression or an exception, plus a new stack
and a new store. Exceptions are elements of

Excep = {NullPointerException,ClassCastException}.

For MiniMAO0, the evaluation relation on the stack is identity, so
we leave the set Stack undefined for now. The set Store contains
maps from locations to object records, where an object record has
the form [t �{ f 7→ v · f ∈ dom(fieldsOf (t))}].

Although suppressed in the evaluation relation, the declarations
of the program are used to populate a global class table, CT , that
maps class names to their declarations.

Evaluation of a MiniMAO0 program begins with the triple con-
sisting of the main expression of the program, a stack, and an empty
store. The ↪→ relation is applied repeatedly until the resulting triple
is not in the domain of the relation. This terminating condition can
arise because the resulting triple contains either an irreducible value
or an exception. If the resulting triple contains an irreducible value,
then that value, interpreted in the resulting store, is the result of the
program. There is no guarantee that this evaluation terminates.

The ↪→ relation is defined by a set of mutually disjoint rules.
Except for the CALL and EXEC, these rules are standard and are
omitted here. The CALL rule is:

〈E[loc.m(v1, . . . ,vn)],J,S〉 CALL
↪→ 〈E[(l (loc,v1, . . . ,vn))],J,S〉
where S(loc) = [t �F] and methodBody(t,m) = l

This says that a method call expression, where the target is a loca-
tion bound in the store, is evaluated by looking up the body of the
method and constructing an application form with a function term,
l, recording the formal parameters and method body and an argu-
ment tuple recording the actual arguments. The interesting part in
the definition of the method lookup function is:

CT(c) = class c extends d { field∗ meth1 . . .methp }
∃i ∈ {1..p} ·methi = t m(t1 var1, . . . , tn varn) { e }

τ = c× t1× . . .× tn → t
methodBody(c,m) = fun m〈this,var1, . . . ,varn〉.e : τ

Another part recursively searches in superclasses when a method is
not found. This models inheritance of methods.

The application form produced by the CALL rule is evaluated by
the EXEC rule:

〈E[(fun m〈var0, . . . ,varn〉.e : τ (v0, . . . ,vn))],J,S〉 EXEC
↪→ 〈E[e{|v0/var0, . . . ,vn/varn|}],J,S〉

This rule replaces this and the formal parameters in the body with
the appropriate values. (The notation e{|e′/var|} denotes the stan-
dard capture-avoiding substitution of e′ for var in e.)

An example showing the CALL and EXEC rules is given in Sec-
tion 3.2.6. The companion technical report [4] contains the com-
plete operational semantics. It also contains a separate static se-
mantics and soundness theorem for MiniMAO0.

3. MiniMAO1: ADDING ASPECTS
In this section we add advice binding to MiniMAO0, producing

the aspect-oriented core calculus MiniMAO1. Continuing with our
minimalist philosophy, the join point model of MiniMAO1 is quite
simple. The model only includes call and execution join points,
the parameter binding forms this, target, and args, and the op-
erators for pointcut union, intersection, and negation. We inten-
sionally omit temporal join points, such as cflow; the techniques
for dealing semantically with such join points are well understood
[17], and such temporal join points do not substantially affect the
typing rules for aspects.

MiniMAO1 accurately models AspectJ’s semantics for around
advice [12], in that it allows advice to change the target object of
a method call or execution before proceeding with the operation.
Moreover, as in AspectJ, changing the target object at a call join
point affects method selection for the call, but changing the target
object at an execution join point merely changes the self object of
the already selected method. Changing the target object is useful
for such idioms as introducing proxy objects. Such proxy objects
can be used in aspect-oriented implementations of persistence or
for redirecting method calls to remote machines.

decl :: = . . . | aspect a { field∗ adv∗ }
adv :: = t around(form∗) : pcd { e }
pcd :: = call(pat) | execution(pat) |

this(form) | target(form) | args(form∗) |
pcd && pcd | !pcd | pcd || pcd

pat :: = t idPat(..)

e :: = . . . | e.proceed(e∗)

a ∈A , the set of aspect names
idPat ∈I , the set of identifier patterns

Figure 2: Syntax Extensions for MiniMAO1

MiniMAO1 does depart from AspectJ’s semantics for around ad-
vice in two ways: it does not allow changing the this (i.e., the
caller) object at a call join point and it uses a different form of
proceed, which syntactically looks like the advised method call
rather than the surrounding advice declaration as in AspectJ. These
differences are discussed more below.

One motivation for the design of MiniMAO1 is to keep pointcut
matching, advice execution, and primitive operations in the base
language as separate as possible. This goal causes us to use more
evaluation rules that are strictly necessary. One way to think of
MiniMAO1 is as an operational semantics for an aspect-oriented
virtual machine, where each primitive operation may generate a
join point that may trigger other rules for advice matching. Our
approach increases the syntactic complexity of the calculus, but we
find that it actually simplifies reasoning. The approach keeps sep-
arate concepts in separate rules that can be analyzed with separate
lemmas.

No previous work on formalizing the semantics of an aspect-
oriented language deals with the actual AspectJ semantics of ar-
gument binding for proceed expressions and an object-oriented
base language. Our calculus is motivated by the insight of Walker
et al. [16] that labeling primitive operations is a useful technique
for modeling aspect-oriented languages. However, to handle the
run-time changing of the target object and arguments when pro-
ceeding from advice, we replace their simple labels with more ex-
pressive join point abstractions. Also, rather than introduce these
join point abstractions through a static translation from an aspect-
oriented language to a core language, we generate them dynam-
ically in the operational semantics. The extra data needed for the
join point abstractions (versus the simple static labels) is more read-
ily obtained when they are generated dynamically. (This dynamic
generation is also adopted by Dantas and Walker [5].) Also, di-
rectly typing the aspect-oriented language, instead of just showing
a type-safe translation to the labeled core language, seems to more
clearly illustrate the issues in typing advice, though this is a mat-
ter of taste. Our type system is motivated by that of Jagadeesan
et al. [11]. We discuss this and other related work in more detail in
Section 4.

3.1 Syntax of MiniMAO1

Figure 2 gives the additional syntax for MiniMAO1. To the dec-
larations of MiniMAO0 we add aspects. For a MiniMAO1 program
the set of types, T , is C ∪A , where A is the set of aspect names.
An aspect declaration includes a sequence of field declarations and
a sequence of advice declarations.

We only include around advice in MiniMAO1. Operationally,

around advice can be used to model both before and after ad-
vice. (As noted by Jagadeesan et al. [11], the typing rules necessary
for soundness may be less restrictive for before or after advice.)

An advice declaration in MiniMAO1 consists of a return type,
followed by the keyword around and a sequence of formal para-
meters. The pointcut descriptor that follows specifies the set of
join points—the pointcut—where the advice should be executed.
A join point is any point in the control flow of a program where
advice may be triggered. The pointcut descriptor for a piece of ad-
vice also specifies how the formal parameters of the advice are to
be bound to the information available at a join point. The final part
of an advice declaration is an expression that is the advice body.

MiniMAO1 includes a limited vocabulary for pointcut descrip-
tors. The call pointcut descriptor matches the invocation of a
method whose signature matches the given pattern. Similarly, the
execution pointcut descriptor matches the join point correspond-
ing to a method execution. In both of these, we restrict method
patterns to a concrete return type plus an identifier pattern that is
matched against the name of the called method. We choose not
to include matching against target or parameter types here because
that is just syntactic sugar for the target and args pointcut de-
scriptors.

We leave the set I of identifier patterns underspecified. Gener-
ally, one can think of I as a class of regular expression languages
such that all members of M are elements of a language in I .

The this, target, and args pointcut descriptors correspond to
the parameter-binding forms of these descriptors in AspectJ; they
bind the named formal parameters to the corresponding informa-
tion from the join point. To simplify the operational semantics, the
syntax requires a type and a formal parameter. For example, where
one could write this(n) in AspectJ, one must write this(Number
n) in MiniMAO (where Number is the type of the formal parame-
ter n in the advice declaration). While this type could be inferred,
including it in the syntax clarifies the formalism. Another sim-
plification versus AspectJ is that the args pointcut descriptor in
MiniMAO1 binds all arguments available at the join point; such
bindings do not allow matching of methods with differing num-
bers of arguments, unlike those in AspectJ. MiniMAO1 does not
include any wildcard or subtype matching for this, target, or
args pointcut descriptors.

The final three pointcut descriptor forms represent pointcut nega-
tion (!pcd), union (pcd || pcd), and intersection (pcd && pcd).
Pointcut negation only reverses the boolean (match or mismatch)
value of the negated pointcut. Any parameters bound by the negated
pointcut are dropped. Pointcut union and intersection are “short cir-
cuiting”; for example, if pcd1 in the form pcd1 || pcd2 matches a
join point, then the bindings defined by pcd1 are used and pcd2 is
ignored.

MiniMAO1 also includes proceed expressions, which are only
valid within advice. An expression such as e0.proceed(e1, . . . ,en)
takes a target, e0, and sequence of arguments, e1, . . . ,en, and causes
execution to continue with the code at the advised join point—
either the original method or another piece of advice that applies
to the same method. As noted above, the proceed expression in
MiniMAO1 differs from AspectJ. In MiniMAO1, an expression of
the form e0.proceed(e1, . . . ,en) must be such that the type of the
target, e0, and the number and types of the arguments, e1, . . . ,en,
match those of the advised methods. In AspectJ, the arguments to
proceed must match the formal parameters of the surrounding ad-
vice. This design decision matches our intuition for how proceed

should work; it has little effect on expressiveness in a language
with type-safe around advice. Our design also precludes changing
the this object at call join points. Such changes would only be

J :: = j + J | •
j :: = (|k,vopt,mopt, lopt,τopt|)
k :: = call | exec | this

vopt :: = v | −
mopt :: = m | −
lopt :: = l | −
τopt :: = τ | −

Figure 3: The Join Point Stack

visible from other aspects, not the base program. Precluding these
changes eliminates some possibilities for aspect interference, a use-
ful property for our work on aspect-oriented reasoning. We are not
aware of any use cases demonstrating a need to allow changing the
this object.

3.2 Operational Semantics of MiniMAO1

This section gives the changes and additions to the operational
semantics for MiniMAO1. We describe the stack, new expression
forms introduced for the operational semantics, the new evaluation
rules, pointcut descriptor matching, and give evaluation examples.

3.2.1 The Join Point Stack
The stack in MiniMAO1, as shown in Figure 3, is a list of join

point abstractions, which are five-tuples surrounded by half-moon
brackets, (|. . .|). A join point abstraction records all the information
in a join point that is needed for advice matching and advice para-
meter bindings, together referred to as advice binding. A join point
abstraction also includes all the information necessary to proceed
from advice to the original code that triggered the join point. A join
point abstraction consists of the following parts (most of which are
optional and are replaced with “−” when omitted):

— a join point kind, k, indicating the primitive operation of the
join point, or this to record the self object at method or ad-
vice execution (for binding the this pointcut descriptor);

— an optional value indicating the self object at the join point;

— an optional name indicating the method called or executed at
the join point;

— an optional fun term recording the body of the method to be
executed at an execution join point; and

— an optional function type indicating the type of the code un-
der the join point (or, equivalently, the type of a proceed

expression in any advice that binds to the join point).

The code under a join point is the program code that would ex-
ecute at that join point if no advice matched the join point. For
example, the code under a method execution join point is the body
of the method. The function type includes the type of the target
object as the first argument type.

3.2.2 New Expression Forms
The operational semantics relies on three extra expression forms,

shown in Figure 4. The first, joinpt, reifies join points of a pro-
gram evaluation into the expression syntax. A joinpt expression
consists of a join point abstraction followed by a sequence of actual
arguments to the code under the join point.

e :: = . . . | joinpt j(e∗) | under e | chain B̄, j(e∗)

B̄ :: = B+ B̄ | •
B :: = dbb, loc,e,τ,τce
b :: = 〈α,β ,β ∗〉
α :: = var 7→ loc | −
β :: = var | −
b ∈B, the set of advice parameter bindings

Figure 4: Expression Forms Added for the Semantics

The second expression form that we add for the operational se-
mantics is under. An under expression serves as a marker that
the nested expression is executing under a join point; that is, a join
point abstraction was pushed onto the stack before the nested ex-
pression was added to the evaluation context. When the nested
expression has been evaluated to a value, then the corresponding
join point abstraction can be popped from the stack.

The final additional expression form is chain. A chain expres-
sion records a list, B̄, of all the advice that matches at a join point,
along with the join point abstraction and the original arguments to
the code under the join point.

The advice list of a chain expression consists of body tuples,
one per matching piece of advice. For visual clarity, “snake-like”
brackets, db. . .ce, surround each body tuple. A body tuple is com-
prised of two parts: operational information and type information.
The operational information includes: b, a parameter binding term
described below, loc, a location, and e, an expression. The loca-
tion is the self object; it is substituted for this when evaluating the
advice body. The expression is the advice body.

The binding term, b, describes how the values of actual argu-
ments should be substituted for formals in the advice body. This
substitution is somewhat complex to account for the special bind-
ing of the this pointcut descriptor, which takes its data from the
original join point, and the target and args pointcut descriptors,
which take their data from the invocation or proceed expression
immediately preceding the evaluation of the advice body.

Structurally, a binding term consists of a variable-location pair,
var 7→ loc, which is used for any this pointcut descriptors, fol-
lowed by a non-empty sequence of variables, which represent the
formals to be bound to the target object and each argument in order.
The “−” symbol is used to represent a hole in a binding term. A
hole might occur, for example, if a pointcut descriptor did not use
this. The set of all possible binding terms is B.

The type information in a body tuple is contained in its last two
elements. The first of these represents the declared type of the
advice, an arrow from formal parameter types to the return type.
The second type element, the last element in the body tuple, is the
type of any proceed expression contained within the advice body.
While this type information simplifies the subject-reduction proof,
it is not used in the evaluation rules.

3.2.3 Evaluation Rules for MiniMAO1

Next we give an intuitive description of the new evaluation rules
in MiniMAO1. We add new evaluation context rules to handle the
joinpt, under, and chain expressions.

E :: = . . . | joinpt j(v . . .Ee . . .) | under E |
chain B̄, j(v . . .Ee . . .)

The semantics replaces proceed expressions with chain expres-
sions, so we do not need additional rules for handling proceed.

We replace the CALL rule of MiniMAO0 with a pair of rules,
CALLA and CALLB described below, that introduce join points and
handle proceeding from advice respectively. We replace the EXEC
rule similarly. This division exposes join points for call and execu-
tion to the evaluation rules. Just as virtual dispatch is a primitive
operation in a Java virtual machine, our semantics models advice
binding as a primitive operation on these exposed join points. This
advice binding is done by the new BIND rule. The new ADVISE
rule models advice execution, and an UNDER rule helps main-
tain the join point stack by recording when join point abstractions
should be popped.

The evaluation of a program in MiniMAO1 does not begin with
an empty store as in MiniMAO0. Instead, a single instance of each
declared aspect is added to the store. The locations of these in-
stances are recorded in the global advice table, AT , which is a set
of 5-tuples. Each 5-tuple represents one piece of advice. The 5-
tuple for the advice t around(t1 var1, . . . , tn varn): pcd { e },
declared in aspect a, is 〈loc,pcd,e,(t1× . . .× tn → t),τ〉, where loc
is such that S0(loc) = [a �F] is the aspect instance for a in the initial
store, S0. The function type τ is the type of proceed expressions
in e, derived from pcd.

The global class table, CT , is extended in MiniMAO1 to also
map aspect names to the aspect declarations.

3.2.4 Splitting the Call Rule
In MiniMAO0, a method call is evaluated by applying the CALL

and EXEC rules in turn. In MiniMAO1, each of these steps is bro-
ken into a series of steps. The CALL step becomes:

— CALLA: creates a call join point

— BIND: finds matching advice

— ADVISE: evaluates each piece of advice

— CALLB: looks up method, creates an application form

A similar division of labor is used for EXEC. We next describe each
of these steps in turn.

Create a Join Point. The CALLA rule is as follows:

〈E[loc.m(v1, . . . ,vn)],J,S〉 CALLA
↪→ 〈E[joinpt (|call,−,m,−,τ|)(loc,v1, . . . ,vn)],J,S〉
where S(loc) = [t �F],

methodType(t,m) = t1× . . .× tn → t ′,
origType(t,m) = t0, and τ = t0× . . .× tn → t ′

This says that a method call expression with a non-null target eval-
uates to a joinpt expression where the join point abstraction car-
ries the information about the call necessary to bind advice and to
proceed with the original call. This information is: the call kind,
the method name, and a function type, τ , for the method that in-
cludes a target type in the first argument position. The function
type is determined using a pair of auxiliary functions, the interest-
ing bits of which are:

CT(c) = class c extends d { field∗ meth1 . . .methp }
∃i ∈ {1..p} ·methi = t m(t1 var1, . . . , tn varn) { e }

methodType(c,m) = t1× . . .× tn → t

origType(t,m) =
max{s ∈T · t 4 s∧methodType(s,m) = methodType(t,m)}

The function, methodType, is essentially the same as methodBody,
defined earlier, but it yields a function type instead of a function

term. The function, origType, finds the type of the “most super”
class of the target type that also declares the method m. (The sub-
typing relation used in origType is just the reflexive transitive clo-
sure of the extends relation on classes, treating aspects as sub-
types of Object.) The target type included in the call join point
abstraction generated by CALLA is this most super class. Using the
most super class allows advice to match a call to any method in a
family of overriding methods, by specifying the target type as this
most super class. We discuss this a bit more when describing the
target pointcut descriptor below. Finally, the arguments of the
generated joinpt expression are the target location—again in the
first position—and the arguments of the original call, in order.

Find Matching Advice. The BIND rule is the only place in
the calculus where advice binding (lookup) occurs. This rule takes
a joinpt expression and converts it to a chain expression that
carries a list of all matching advice for the join point. It also pushes
the expression’s join point abstraction onto the join point stack.

〈E[joinpt j(v0, . . . ,vn)],J,S〉 BIND
↪→ 〈E[under chain B̄, j(v0, . . . ,vn)], j + J,S〉
where adviceBind(j + J,S) = B̄

The rule uses the auxiliary function adviceBind to find the (possibly
empty) list of advice matching the new join point stack and store.

adviceBind(J,S) = B̄, where B̄ is a smallest list satisfying

∀〈loc,pcd,e,τ,τ ′〉 ∈ AT · ((matchPCD(J,pcd,S) = b 6=⊥)

=⇒ dbb, loc,e,τ,τ ′ce ∈ B̄)

The adviceBind function applies the matchPCD function, described
in Section 3.2.5, to find the matching advice in the global advice
table. (We leave adviceBind underspecified. In particular, we don’t
give an order for the advice in the list. For practical purposes some
well-defined ordering is needed, but any consistent ordering, such
as the declaration ordering used in our examples, will suffice.)

Having found the list of matching advice, the BIND rule then
constructs a new chain expression consisting of this list of advice,
the original join point abstraction, and the original arguments. The
result expression is wrapped in an under expression to record that
the join point abstraction must later be popped from the stack.

Evaluate Advice. The ADVISE rule takes a chain expression
with a non-empty list of advice and evaluates the first piece of ad-
vice.

〈E[chain dbb, loc,e, , ce+ B̄, j(v0, . . . ,vn)],J,S〉 ADVISE
↪→ 〈E[under e′{|loc/this|}{|(v0, . . . ,vn)/b|}], j′+ J,S〉
where e′ = 〈〈e〉〉B̄, j and j′ = (|this, loc,−,−,−|)

The general procedure is to substitute for this in the advice
body with the location, loc, of the advice’s aspect and substitute
for the advice’s formal parameters according to the binding term,
b. We describe below how the binding term is used for the sub-
stitution. However, before the substitution occurs the rule uses the
〈〈−〉〉B̄, j auxiliary function to eliminate proceed expressions in the
advice body.

The “advice chaining” auxiliary function, 〈〈−〉〉B̄, j, is defined for
proceed expressions as:

〈〈e0.proceed(e1, . . . ,en)〉〉B̄, j

= chain B̄, j(〈〈e0〉〉B̄, j,〈〈e1〉〉B̄, j, . . . ,〈〈en〉〉B̄, j)

For all other expression forms, the chaining operator is just ap-
plied recursively to every subexpression. Thus 〈〈−〉〉B̄, j rewrites all

e{|〈v0, . . . ,vn〉/〈var 7→ loc,β0, . . . ,βp〉|}=
e{|loc/var|}{|vi/vari|}i∈{0..n}·βi=vari

where n ≤ p

e{|〈v0, . . . ,vn〉/〈−,β0, . . . ,βp〉|}=
e{|vi/vari|}i∈{0..n}·βi=vari

where n ≤ p

In all other cases, binding substitution is undefined.

Figure 5: Binding Substitution

proceed expressions, replacing them with chain expressions car-
rying the remainder of the advice list B̄, along with the join point
abstraction, j, needed to proceed to the original operation once the
advice list has been exhausted. This rewriting is like that used by
Jagadeesan et al. [10], though they do not consider the target ob-
ject to be one of the arguments to proceed. Advice chaining is
illustrated with an example in Section 3.2.6.

After using the advice chaining function to rewrite the advice
body, the ADVISE rule uses variable substitution to bind the formal
parameters of the advice to the actual arguments. It substitutes the
aspect location, loc, for this and substitutes the actuals for the for-
mals according to b. We overload the usual substitution notation to
define substitution for binding terms. Figure 5 gives this definition.
The definition says that the variable in the var 7→ loc pair is replaced
with the location, unless there is a hole,“−”, in this position of the
binding term. (Here var is a formal parameter of the advice and loc
is the location of the calling object at the join point.) Each element,
βi, in the binding term that is not a hole must be a variable. Each
such variable is replaced with the corresponding argument, vi. For
example:

(x.f = y){|〈loc0,loc1〉/〈x 7→ loc2, −, y〉|}
= (loc2.f = loc1)

The x 7→ loc2 in the binding term does not use data from the
arguments 〈loc0,loc1〉; the value loc0 is not used because of the
hole in the binding term; and y is replaced with loc1. The type
system rules out repeated use of a variable in a binding term.

After substitution, the ADVISE rule pushes a this join point ab-
straction onto the stack—equivalent to the self reference stored on
the call stack in a Java virtual machine—and wraps the result ex-
pression in an under expression, which records that the join point
abstraction should be popped from the stack later.

Finish the Original Operation. Once the list of advice has
been exhausted, the result is a chain expression with an empty
advice list, the original join point abstraction, and a sequence of ar-
guments. If the BIND rule had found no advice, then the arguments
will be the target and arguments from the original call. Otherwise,
the arguments will be whatever was provided by the last piece of
advice. This chain expression is used by the CALLB rule to eval-
uate the original call.

〈E[chain •,(|call,−,m,−,τ|)(loc,v1, . . . ,vn)],J,S〉 CALLB
↪→ 〈E[(l (loc,v1, . . . ,vn))],J,S〉
where S(loc) = [t �F] and methodBody(t,m) = l

The CALLB rule looks up the type of the (possibly changed) target
object in the store and finds the method body in the global class
table. The rule takes the method name from the join point abstrac-
tion. The result of the rule is an application expression, just like the
result of the CALL rule in MiniMAO0.

Because both the CALLA and CALLB rules use a target location
for method lookup, there are corresponding rules for null targets.
These rules just map to a triple with a NullPointerException

and are omitted here.

A General Technique. The technique used to convert the
CALL rule from the MiniMAO0 calculus into a pair of rules, with
intervening advice binding and execution, is general. The first rule
in the new pair replaces the original expression with a joinpt ex-
pression, ready for advice binding. The second rule in the pair takes
a chain expression, exhausted of advice, and maps it to a new
expression like the result expression of the rule from MiniMAO0.
This is how the two new EXEC rules are generated:

〈E[(l (v0, . . . ,vn))],J,S〉 EXECA
↪→ 〈E[joinpt (|exec,v0,m, l,τ|)(v0, . . . ,vn)],J,S〉
where l = fun m〈var0, . . . ,varn〉.e : τ

〈E[chain •,(|exec,v,m, l,τ|)(v0, . . . ,vn)],J,S〉 EXECB
↪→ 〈E[under e{|v0/var0, . . . ,vn/varn|}], j + J,S〉
where l = fun m〈var0, . . . ,varn〉.e : τ and

j = (|this,v0,−,−,−|)

The EXECA rule replaces the application expression with a joinpt
expression. The join point abstraction of this expression includes
the exec kind, the method name, the fun term of the application,
and the type of the fun term. The abstraction also includes, in the
position reserved for this objects, the value of the target object
from the argument tuple, because target and this objects are the
same at an execution join point. The arguments to the joinpt

expression are the arguments to the original application expression.
The EXECB rule takes a chain expression that has been ex-

hausted of its advice. It applies the fun term from the chain’s join
point abstraction to the argument sequence, substituting the argu-
ments for the variables in the body of the fun term. Like ADVISE,
the EXECB rule pushes a this join point abstraction onto the stack
and wraps its result expression in an under expression.

It would be straightforward to add pointcut descriptors and join
points for any of the primitive operations in the original calculus,
such as field assignment. We would have to generalize the data
carried in the join point abstractions to accommodate additional
information, but the BIND and ADVISE rules would remain un-
changed. Because the call and exec join points are sufficient for
our study, we choose not to include join points for the other prim-
itive operations. To do so would just introduce additional notation
and bookkeeping.

The Under Rule. The UNDER rule is the simplest of the new
evaluation rules.

〈E[under v],J,S〉 ↪→ 〈E[v],J′,S〉 UNDER
where J = j + J′, for some j

It just extracts the value from the under expression and pops one
join point abstraction from the stack.

3.2.5 Pointcut Matching
Following Wand et al. [17], we define the matchPCD function

for matching pointcut descriptors to join points using a boolean
algebra over binding terms. Our binding terms, as described in
Section 3.2.2 above, are somewhat more complex than theirs, since
we model this, target, and args pointcut descriptors and faith-
fully model the semantics of proceed from AspectJ with regard to
changing target objects in advice. Nevertheless, the basic technique
is the same.

The boolean algebra is:

B⊥ = B∪{⊥} b ∈B r ∈B⊥ b∨ r = b

⊥∨ r = r ⊥∧ r =⊥ b∧⊥=⊥ b∧b′ = bt· b′

¬⊥= 〈−,−〉 ¬b =⊥

The terms of the algebra are drawn from the set B⊥ = B∪{⊥},
where binding terms can be thought of as “true” and ⊥ as “false”.
The operators in the algebra are conjunction (∧), disjunction (∨),
and complement (¬). The double complement of an element is
not necessarily the original element, unless we consider all binding
terms to be isomorphic; the effect of this detail on advice binding
is discussed below. The binary operators are short circuiting; for
example, b∨ r = b, ignoring the value of r. One difference in our
algebra, versus Wand et al. [17], is in the conjunction of two non-⊥
terms. Our calculus must consider the bindings from both terms,
because we have more than one pointcut descriptor that can bind
formals. Sometimes these bindings must be combined, for example
when both a target and args pointcut descriptor are used. The
bindings are combined using a pointwise join:

〈α,β0, . . . ,βn〉t· 〈α ′,β ′
0, . . . ,β

′
p〉

= 〈α tα
′,β0tβ

′
0, . . . ,βqtβ

′
q〉

where q = max(n, p),
∀i ∈ {(n+1)..q} · (βi =−), and
∀i ∈ {(p+1)..q} · (β ′

i =−)

The pointwise join operator extends the shorter binding term if the
two terms do not have the same number of elements. The join
operator, t, on pairs of α or β terms resolves to the term that is not
a hole. Collisions in the join operator, where neither binding has a
hole at a given position, are resolved in favor of the left-hand term;
however, the typing rules for pointcut descriptors ensure that such
collisions do not occur in well-typed programs.

The rules defining matchPCD are straightforward. If the pointcut
descriptor matches the join point stack, then the rules construct the
appropriate binding term; otherwise they evaluate to ⊥. The only
complications are to accommodate the multiple parameter binding
forms. For example, this and target matching must be done
without information on how many additional arguments might be
bound by an args pointcut descriptor. Thus, the length of binding
terms must be allowed to vary.

Call and Execution. The call rule only matches if the most
recent join point is of the corresponding kind and the return type
and name of the method under the join point are matched by the
pattern:

matchPCD((|k, ,m, , t0× . . .× tp → t|)+ J,

call(u idPat(..)),S)

=

{
〈−,−〉 if k = call, t = u, m ∈ idPat
⊥ otherwise

Because this pointcut descriptor does not bind formal parameters, a
match is indicated by an empty binding term. The execution rule
is similar.

This. Two rules are used to handle this pointcut descriptors:

matchPCD((| ,v, , , |)+ J,this(t var),S)

=

{
〈var 7→ v,−〉 if v 6= null, S(v) = [s �F], s 4 t
⊥ otherwise

matchPCD((| ,−, , , |)+ J,this(t var),S)
= matchPCD(J,this(t var),S)

Together, these rules find the most recent join point where the op-
tional self object location is provided in the join point abstraction.
Once found, if the object record in that location is a subtype of
the formal parameter type, then the formal named by the pointcut
descriptor is mapped to the location; otherwise the result is ⊥.

Target. The target pointcut descriptor is handled similarly to
this, but uses the target type from the join point instead:

matchPCD((| , , , ,s0× . . .× sn → s|)+ J,

target(t var),S)

=

{
〈−,var〉 if s0 = t
⊥ otherwise

A rule for searching through the join point stack is elided. Unlike
the this pointcut descriptor, the location to be bound to the for-
mals is not available from the join point abstraction. The location
may come from a proceed expression to be evaluated later. Also
unlike this, target requires an exact type match. This is nec-
essary for type soundness, as noted by Jagadeesan et al. [11]. If
the descriptor were to match when the target type was a supertype
of the parameter type, then the advice could call a method on the
object bound to the formal that did not exist in the object’s class.
On the other hand, if the descriptor were to match when the target
type was a subtype of the parameter type, then the advice could
replace the target object with a supertype before proceeding to a
method call. If this supertype did not declare the method, then a
runtime type error would result.1 Thus, for soundness the target
pointcut descriptor must use exact type matching. If advice were
not allowed to change the target object, then less restrictive target
type matching could be used.

This restriction to exact type matching is not as severe as it may
seem at first. This is because when the CALLA rule generates the
target type for its join point abstraction, it uses the type of the class
declaring the top-most method in the method overriding hierarchy.
Thus, the actual target object for a matched call may be a subtype
of the target type that was matched exactly. Using the declaring
class of this top-most method also means that advice can be written
to match a call to any method in a family of overriding methods.
Unlike the CALLA rule, the EXECA rule creates a join point ab-
straction using the actual target type. Again, this is necessary for
soundness. At an exec join point method selection has already oc-
curred and advice cannot be allowed to change the target object to
a superclass even if that superclass declared an overridden method.

We are also interested in investigating whether a more elaborate
type system might permit more expressive pointcut matching while
maintaining soundness. However, this is orthogonal to our con-
cerns with modular reasoning and so we leave it for future work.

Args. The rule for the args pointcut descriptor is similar to the
one for target above. It matches if the argument types of the most
recent join point match those of the pointcut descriptor. The result-
ing binding includes all formals named in the pointcut descriptor in
the corresponding positions. As with the target pointcut descrip-
tor, only the relative position to be bound, not the actual value, is
available until the advice is executed.

The rules for pointcut descriptor operators (which we elide) sim-

1Indeed, in AspectJ 1.2, which includes subtype matching for its
target pointcut descriptor, one can generate a run-time type error
in just this way.

class Cl extends Object {

Object m(Cl a) { this; a }

}

new Cl().m(new Cl);

Figure 6: A Sample Program Without Aspects

ply appeal to the corresponding operators in the binding algebra:
union to disjunction, intersection to conjunction, and negation to
complement. The definition of complement implies that ¬¬pcd 6=
pcd. Both would match the same pointcut, but the former would not
bind any formals while the later might. (This is slightly different
than AspectJ, which simply disallows binding pointcut descriptors
under negation operators.)

A final rule says that any cases not covered by the other rules
evaluates to⊥. This just serves to make matchPCD a total function,
handling cases that do not occur in the evaluation of a well-typed
program (such as matching against an empty join point stack).

3.2.6 Example Evaluations in MiniMAO1

This section gives examples of several evaluations.

Calls in MiniMAO0 vs. MiniMAO1. Suppose we have the
program declared in Figure 6. This program does not include any
aspects and the result of evaluating it is the same in MiniMAO0 and
MiniMAO1, though the difference in the steps taken is illustrative.
In both cases there is an evaluation step with left hand side:

〈L0.m(L1),•,S〉

where the store S maps both L0 and L1 to Cl objects. In MiniMAO0
this evolves by the CALL and EXEC rules:

↪→ 〈(fun m〈this, a〉.(this;a):τ (L0,L1)),•,S〉
(CALL)

↪→ 〈L0; L1,•,S〉 (EXEC)

where we leave τ as an exercise for the reader. On the other hand,
the evaluation in MiniMAO1 is:

〈L0.m(L1),•,S〉
↪→ 〈joinpt (|call,−,m,−,τ ′|) (L0, L1),•,S〉 (CALLA)
↪→ 〈under chain •,(|call,−,m,−,τ ′|) (L0, L1),J,S〉

(BIND)
↪→ 〈under

(fun m〈this, a〉.(this;a):τ (L0,L1)),J,S〉
(CALLB)

↪→ 〈under
joinpt (|exec,L0,m,l,τ|) (L0, L1),J,S〉

(EXECA)

↪→ 〈under under

chain •,(|exec,L0,m,l,τ|) (L0, L1),J′,S〉
(BIND)

↪→ 〈under under (L0; L1),J′,S〉 (EXECB)

where l is fun m〈this, a〉.(this;a):τ , and τ ′, J, and J′ are left
to the reader. Each step in the original evaluation is split into two
parts, with intervening advice lookup.

Advice Binding. Suppose we add the aspect declaration of
Figure 7 to the program in Figure 6. The presence of this advice
changes the result of the first BIND step above (i.e., the one for

aspect A {

Object around(Cl t, Cl s) :

call(Object m(..))

&& target(Cl t) && args(Cl s)

{ this }

}

Figure 7: Aspect Added to Program of Figure 6

the call pointcut descriptor). BIND’s call to adviceBind uses the
following application of matchPCD:2

matchPCD((|call,−,m,−,τ ′|),pcd,S)
where τ ′ = Cl×Cl→Object, and

pcd is from Figure 7

= matchPCD((|call,−,m,−,τ ′|),call(Object m(..)),S)
∧matchPCD((|call,−,m,−,τ ′|),target(Cl t),S)
∧matchPCD((|call,−,m,−,τ ′|),args(Cl s),S)

= (〈−,−〉t· 〈−,t〉)t· 〈−,−,s〉
= 〈−,t〉t· 〈−,−,s〉
= 〈−,t,s〉

Using this matching derivation, the result of the BIND step is:

〈under chain db〈−,t,s〉, L2, this, τ ′, τ ′ce,
(|call,−,m,−,τ ′|) (L0, L1),J,S〉

where L2 is the location of A’s aspect instance in the initial store.
This triple evolves by the ADVISE rule. Because the body of the
advice does not proceed to the advised code, the result of this step
is the final result of the program, after using UNDER to pop the join
point stack:

↪→ 〈under under L2,J′′,S〉 (ADVISE)
↪→ 〈under L2,J,S〉 (UNDER)
↪→ 〈L2,•,S〉 (UNDER)

Advice Chaining. A final example considers advice that pro-
ceeds to the advised code and changes the target object. Consider
the program in Figure 8. Unlike our previous examples, the advice
proceeds and there is a subclass, SCl, which is used for the argu-
ment to the method call. Evaluation of this program reaches a stage
where the result of the BIND rule is:

〈under chain

db〈−,t,s〉, L2, s.proceed(t), τ ′, τ ′ce,
(|call,−,m,−,τ ′|) (L0, L1),J,S〉

where, as before, L2 is the location of A’s instance and L0 is the lo-
cation of a Cl instance, but now L1 is the location of a SCl instance.
This triple evolves by the ADVISE rule, which calculates

〈〈s.proceed(t)〉〉•, j = chain •, j (s, t)

where j = (|call,−,m,−,τ ′|). The rule then substitutes into this
expression according to the binding term 〈−,t,s〉 to form its re-
sult, with the order of the two locations swapped as compared to
the original, advice-free example above:

2Technically the store must be different than before, due to the as-
pect instance in the initial store. However, because S is underspec-
ified, we use the same meta-variable here to facilitate comparisons.

aspect A {

Object around(Cl t, Cl s) :

call(Object m(..))

&& target(Cl t) && args(Cl s)

{

s.proceed(t) // swaps target, argument
}

}

class Cl extends Object {

Object m(Cl a) { this; a }

}

class SCl extends Cl {

Object m(Cl a) { new Object() }

}

new Cl().m(new SCl);

Figure 8: A Sample Program Demonstrating Proceed

↪→ 〈under under chain •, j (L1, L0),J′′,S〉 (ADVISE)
↪→ 〈under

(fun m〈Cl this, Cl a〉.(new Object()):τ (L1,L0)),
J′′,S〉

(CALLB)

The method body found by the CALLB rule is declared in SCl,
instead of in Cl.

We invite the reader to consider the same example, but replace
the advice’s call pointcut descriptor with a similar execution
one. This will demonstrate that changing the target object when
proceeding at an exec join point does not affect method selection.

3.3 Static Semantics of MiniMAO1

We next sketch some of the static semantics of MiniMAO1. We
focus on the typing of pointcuts and advice, since they are the most
interesting deviations from past work.

The rules for typing pointcut descriptors make use of a simple
algebra over T ∪{⊥}, whose only operator, t, is used to combine
type information when pointcuts are intersected:

t t⊥= t ⊥t t = t ⊥t⊥=⊥

The operation is undefined for t t s, because in the type judgment
for pointcuts such a combination would indicate a collision and is
disallowed. This operation is also lifted to type sequences.

The type of a pointcut descriptor, pcd, has six parts, û � û′ �U � û′′ �
V1 �V2, where:

— û is the this type matched by pcd;

— û′ is the target type;

— U is the tuple of argument types;

— û′′ is the return type;

— V1 is the set of variables that would definitely be bound by
pcd at a matched join point; and

— V2 is the set of variables that might be bound there.

Each of the type parts may also be⊥ to indicate that the information
cannot be determined from the pointcut descriptor. The two sets of

variables, V1 and V2, represent “must-bind” and “may-bind” sets re-
spectively, which are useful in reasoning about variable bindings in
pointcut unions and intersections. Well-typed advice requires that
the must-bind and may-bind sets are identical (see the first hypoth-
esis of T-ADV below).

The pointcut descriptor typing rules are mostly straightforward.
We discuss a couple of them here. The T-TARGPCD rule gives the
type for a target pointcut descriptor:

T-TARGPCD
Γ(var) = t

Γ ` target(t var) :⊥ � t �⊥ �⊥ �{var} �{var}

The hypothesis of the above rule looks up the type of var in the type
environment Γ. (Γ is a partial map from V ∪{this,proceed} to
T .) The conclusion of the rule records the target type, t, of the
pointcut descriptor and records that the must- and may-bind sets are
both {var}. The rules for the other base cases (call, execution,
this, and args) are similar.

The most interesting of the typing rules for recursive pointcut
descriptors is the one for intersection:

T-INTPCD
Γ ` pcd1 : û1 � û′1 �U1 � û′′1 �V1 �V ′

1
Γ ` pcd2 : û2 � û′2 �U2 � û′′2 �V2 �V ′

2
û = û1t û2 û′ = û′1t û′2 U = U1tU2 û′′ = û′′1 t û′′2

V ′
1 ∩V ′

2 = /0 V = V1∪V2 V ′ = V ′
1 ∪V ′

2

Γ ` pcd1 && pcd2 : û � û′ �U � û′′ �V �V ′

This rule allows for the combination of the various binding forms
in pointcut descriptors like target(T t) && args(S s). The
first two hypotheses obtain the types of pcd1 and pcd2. The next
four hypotheses combine these types using thet operator described
above. These hypotheses select the non-⊥ entries from the types
and prevent duplicate bindings. For example, if both pcd1 and pcd2
have a non-⊥ target type, û′1t û′2 is undefined and pcd1 && pcd2 has
no type. Finally the last three hypotheses deal with the must- and
may-bind sets. V ′

1∩V ′
2 = /0 requires no overlap in the sets variables

that may be bound by the two pointcut descriptors. The last two
hypotheses calculate the combined must- and may-bind sets.

Advice is well typed if its pointcut descriptor matches a join
point where the code under the join point has target type u0, ar-
gument types u1, . . . ,up and return type u.

T-ADV
var1 : t1, . . . ,varn : tn ` pcd : �u0 � 〈u1, . . . ,up〉 �u �V �V

V = {var1, . . . ,varn}
var1 : t1, . . . ,varn : tn,this : a,proceed : (u0× . . .×up → u) ` e : s

s 4 t 4 u
` t around(t1 var1, . . . , tn varn) : pcd { e } OK in a

The “ ” in the first hypothesis indicates that the type bound by a
this pointcut descriptor does not affect the advice type. The point-
cut descriptor must also specify bindings for all of the formal para-
meters of the advice; the use of {var1, . . . ,varn} for both the must-
and may-bind sets ensures this. Finally, the body of the advice is
typed in an environment that gives each formal its declared type;
gives this the aspect type, a; and gives proceed the type derived
from pcd. In this environment, the advice body must have a type
that is a subtype of the declared return type of the advice. In turn,
this declared return type must be a subtype of the return type of
the original code under the join point. This allows the result of the
advice to be substituted for the result of the original code.

Rule T-ADV permits advice to declare a return type that is a
subtype of that of the advised method. This means that advice like:

A around(C t) :

call(B m(..)) && target(C t) && args()

{ t.proceed() }

is not well typed if A is a proper subtype of B: the proceed expres-
sion has type B, which is not a subtype of the declared return type
of the advice. Wand et al. [17, §5.3] argue that this advice should
be typable, but we disagree. This case is really no different than a
super call in a language with covariant return-type specialization.
In such a language, an overriding method that specializes the re-
turn type cannot merely return the result of a super call as its result.
The overriding method must ensure that the result is appropriately
specialized.

3.4 Meta-theory of MiniMAO1

The key property of MiniMAO1 is that it is type sound: a well-
typed program either converges to a value or exception, or else
it diverges. We prove this using the usual subject reduction and
progress theorems. For MiniMAO0, the proofs closely follow those
of Flatt et al. [8]. The soundness proof for MiniMAO1 relies on a
pair of key lemmas that we sketch here. The companion technical
report [4] gives the full details.

The first key lemma is used in the BIND case of the subject re-
duction proof. The lemma relates advice binding to advice typing.
It is used to argue that the list of advice that matches at a joinpt

expression can be used by the BIND rule to generate a well typed
chain expression. We prove the lemma using a structural induction
on the type derivation for the pointcut of the matching advice.

The second key lemma states that advice chaining, replacing
proceed expressions with chain expressions, does not affect typ-
ing judgments given the appropriate assumptions. This lemma is
used for the ADVISE case in the subject reduction proof.

The subject reduction and progress theorems are standard and
are elided. Finally, we have the soundness theorem.

THEOREM 1 (SOUNDNESS). Given a program

P = decl1 . . .decln e, with ` P OK,

and a valid store S0, then either the evaluation of e diverges or else
〈e,•,S0〉

∗
↪→ 〈v,J,S〉 and one of the following hold for v:

— v = loc and loc ∈ dom(S),

— v = null, or

— v ∈ {NullPointerException,ClassCastException}

4. RELATED WORK
No previous work deals with the actual AspectJ semantics of ar-

gument binding for proceed expressions and an object-oriented
base language. Wand et al. [17] present a denotational semantics
for an aspect-oriented language that includes temporal pointcut de-
scriptors. Our use of an algebra of binding terms for advice match-
ing is derived from their work. Their semantics binds all advice
parameters at the join point instead of at each subsequent proceed
expression. Their calculus is not object-oriented and so does not
deal with the effects on method selection of changing the target ob-
ject. Douence et al. [6] present a system for reasoning about tem-
poral pointcut matching. They do not formalize advice parameter
binding and do not include proceed in their language.

Jagadeesan et al. [10] present a calculus for a multithreaded,
class-based aspect-oriented language. They omit methods, using
advice for all code abstraction. The lack of separate methods sim-
plifies their semantics, but makes their calculus a poor fit for our

planned studies of a verification logic for AspectJ-like languages.
Also, their calculus does not include the ability of advice to change
the target object of an invocation. In an unpublished paper [11]
they add a sound type system to their calculus. Our type system
is motivated by that work, but extends it to handle the separate
this, target, and args binding forms and the ability of advice
to change the target object.

Masuhara and Kiczales [14] give a Scheme-based model for an
AspectJ-like language. They do not include around advice in their
model. They do sketch how this could be added, but do not address
the effect on method selection of changing the target object.

Aldrich [2] presents a system called “open modules” that in-
cludes advice and dynamic join points with a module system that
can restrict the set of control flow points to which advice may be
attached. The system is not object-oriented, so it does not address
the issue of changing the target of a method call, and it does not
include state. Dantas and Walker [5] present a simple object-based
calculus for “harmless advice”. They use a type system with “pro-
tection levels” to keep aspects from altering the data of the base
program. However, in keeping with this non-interference property,
they do not allow advice to change values when proceeding to the
base program.

Bruns et al. [3] describe µABC, a name-based calculus in which
aspects are the primitive computational entity. Their calculus does
not include state directly, but can model it via the dynamic cre-
ation of advice. However, it is not obvious how such a model of
state could be used for our planned study of aspect-oriented rea-
soning when aspects may interfere with the base program via the
heap. Also, while their calculus does allow modeling of a form
of proceed, It is difficult to see how it could be used to study the
effects of advice on method selection. Finally, their calculus is un-
typed and is not class-based.

Walker et al. [16] use an innovative technique of translating an
aspect-oriented language into a labeled core language, where the
labels serve as both advice binding sites and targets for goto ex-
pressions, where they are used to translate around advice that does
not proceed. While their work does consider around advice and
proceed in an object-oriented setting—the object calculus of Abadi
and Cardelli [1]—it does not consider changing any arguments to
the advised code, let alone the effects on method selection of chang-
ing the target object of an invocation.

5. CONCLUSION
In many respects MiniMAO1 faithfully explains the semantics of

AspectJ’s around advice on method call and execution join points.
In particular, MiniMAO1 faithfully models the binding of argu-
ments and the ability of proceed to change the target object in
a call join point. The semantics supports this ability by breaking
the processing of method calls into several steps: (i) creating the
join point for the call, (ii) finding matching advice, (iii) evaluating
each piece of advice, and (iv) finally creating an application form.
Since the target object is only used to determine the method called
in step (iv) (the CALLB rule), the advice can change the target by
using a different target in the proceed expression. Such a change
affects the application form created, which affects the join point
created for the method’s execution.

In addition to the necessary simplifications, MiniMAO1, also has
a few interesting differences from AspectJ. In particular the typing
of proceed and the various pointcut descriptions has a different
philosophy from AspectJ. Its typing in MiniMAO1 corresponds to
the type of the method being advised, instead of being related to
the type of the advice’s formal parameters. This contributes to a
simpler and more understandable semantics for proceed.

Future work involves using MiniMAO1 to study the reasoning
problems indicated in the introduction.

6. ACKNOWLEDGMENTS
We would like to thank the anonymous referees for their helpful

comments.

References
[1] Martı́n Abadi and Luca Cardelli. A Theory of Objects. Mono-

graphs in Computer Science. Springer-Verlag, 1996.

[2] Jonathan Aldrich. Open modules: A proposal for mod-
ular reasoning in aspect-oriented programming. In Curtis
Clifton, Ralf Lämmel, and Gary T. Leavens, editors, FOAL
2004 Proceedings: Foundations of Aspect-Oriented Lan-
guages Workshop at AOSD 2004, pages 7–18, Lancaster, UK,
2004. URL http://www.cs.iastate.edu/∼leavens/
FOAL/papers-2004/proceedings.pdf.

[3] Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James
Riely. µabc: A minimal aspect calculus. In Proceedings of
the 2004 International Conference on Concurrency Theory,
pages 209–224. Springer-Verlag, 2004.

[4] Curtis Clifton and Gary T. Leavens. MiniMAO: Investigat-
ing the semantics of proceed. Technical Report TR05-01,
Iowa State University, 2005. Available from ftp://ftp.cs.

iastate.edu/pub/techreports/TR05-01/TR.ps.gz.

[5] Daniel S. Dantas and David Walker. Harmless advice. In
The 12th International Workshop on Foundations of Object-
Oriented Languages (FOOL 12), Long Beach, California,
2005. ACM.

[6] R. Douence, O. Motelet, and M. Südholt. A formal defini-
tion of crosscuts. In Reflection 2001, number 2192 in LNCS.
Spring-Verlag, November 2001.

[7] Matthias Felleisen and Robert Hieb. The revised report on the
syntactic theories of sequential control and state. Theoretical
Computer Science, 103:235–271, 1992.

[8] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. A programmer’s reduction semantics for classes
and mixins. In Formal Syntax and Semantics of Java, chap-
ter 7, pages 241–269. Springer-Verlag, 1999. URL http:

//citeseer.ist.psu.edu/flatt99programmers.html.

[9] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Feath-
erweight Java: A minimal core calculus for Java and GJ.
In Loren Meissner, editor, Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA‘99), volume
34(10), pages 132–146, N. Y., 1999.

[10] Radha Jagadeesan, Alan Jeffrey, and James Riely. A calculus
of untyped aspect-oriented programs. In Luca Cardelli, editor,
ECOOP 2003, European Conference on Object-Oriented Pro-
gramming, Darmstadt, Germany, volume 2743, pages 54–73.
Springer-Verlag, 2003.

[11] Radha Jagadeesan, Alan Jeffrey, and James Riely. A typed
calculus for aspect oriented programs. Available from ftp://

fpl.cs.depaul.edu/pub/rjagadeesan/typedABL.pdf,
Feb 2004.

[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of
AspectJ. In J. Lindskov Knudsen, editor, ECOOP 2001
— Object-Oriented Programming 15th European Conference,
Budapest Hungary, volume 2072, pages 327–353. Springer-
Verlag, Berlin, 2001.

[13] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In Mehmet Akşit and Satoshi
Matsuoka, editors, ECOOP ’97 — Object-Oriented Program-
ming 11th European Conference, Jyväskylä, Finland, volume
1241, pages 220–242. Springer-Verlag, 1997.

[14] Hidehiko Masuhara and Gregar Kiczales. Modeling cross-
cutting in aspect-oriented mechanisms. In ECOOP 2003 -
Object-Oriented Programming European Conference, pages
2–28. Springer-Verlag, 2003.

[15] Gordon Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Aarhus University,
1981.

[16] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of
aspects. In Proceedings of the eighth ACM SIGPLAN inter-
national conference on Functional programming, pages 127–
139, Uppsala, Sweden, 2003. ACM Press.

[17] Mitchell Wand, Gregor Kiczales, and Chris Dutchyn. A se-
mantics for advice and dynamic join points in aspect-oriented
programming. Trans. on Prog. Lang. and Sys., 26(5):890–910,
2004.

[18] Andrew K. Wright and Matthias Felleisen. A syntactic ap-
proach to type soundness. Information and Computation, 115
(1):38–94, 1994.

