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Preface

Aspect-oriented programming is a paradigm in software engineering and

FOAL logos courtesy of Luca Cardelli

programming languages that promises better support for separation of concerns.
The third Foundations of Aspect-Oriented Languages (FOAL) workshop was
held at the Third International Conference on Aspect-Oriented Software Devel-
opment in Lancaster, UK, on March 23, 2004. This workshop was designed to
be a forum for research in formal foundations of aspect-oriented programming
languages. The call for papers announced the areas of interest for FOAL as
including, but not limited to: semantics of aspect-oriented languages, specifi-
cation and verification for such languages, type systems, static analysis, the-
ory of testing, theory of aspect composition, and theory of aspect translation
(compilation) and rewriting. The call for papers welcomed all theoretical and
foundational studies of foundations of aspect-oriented languages.

The goals of this FOAL workshop were to:

• Make progress on the foundations of aspect-oriented programming lan-
guages.

• Exchange ideas about semantics and formal methods for aspect-oriented
programming languages.

• Foster interest within the programming language theory and types com-
munities in aspect-oriented programming languages.

• Foster interest within the formal methods community in aspect-oriented
programming and the problems of reasoning about aspect-oriented pro-
grams.

The papers at the workshop, which are included in the proceedings, were selected from papers submitted by researchers
worldwide. Due to time limitations at the workshop, not all of the submitted papers were selected for presentation.
FOAL also welcomed an invited talk by James Riely (DePaul University), the abstract of which is included below.

The workshop was organized by Gary T. Leavens (Iowa State University), Ralf Lämmel (CWI and Vrije Univer-
siteit, Amsterdam), and Curtis Clifton (Iowa State University). The program committee was chaired by Lämmel and
included L̈ammel, Leavens, Clifton, Lodewijk Bergmans (University of Twente), John Tang Boyland (University of
Wisconsin, Milwaukee), William R. Cook (University of Texas at Austin), Tzilla Elrad (Illinois Institute of Technol-
ogy), Kathleen Fisher (AT&T Labs–Research), Radha Jagadeesan (DePaul University), Shmuel Katz (Technion–Israel
Institute of Technology), Shriram Krishnamurthi (Brown University), Mira Mezini (Darmstadt University of Technol-
ogy), Todd Millstein (University of California, Los Angeles), Benjamin C. Pierce (University of Pennsylvania), Henny
Sipma (Stanford University), Mario S̈udholt (École des Mines de Nantes), and David Walker (Princeton University).
We thank the organizers of AOSD 2004 for hosting the workshop.

Invited Talk—Formal AOP: Opportunities Abound

James Riely (DePaul University)

Aspect-oriented programming (AOP) is a polarizing paradigm—attractive to some and repulsive to others. On
the up side, AOP allows for new forms of encapsulation: each concern (e.g., functionality, security) can be coded
separately rather than interleaved in the same code base. On the down side, AOP destroys old forms of encapsulation:
straight-line code no longer runs in a straight line. Static weaving has proven eminently practical, but many potential
applications depend upon dynamic properties which do not lend themselves to this implementation technique. To
realize its full potential, AOP must become both more controlled and more expressive. In each case, the issues are
complex and difficult to arbitrate without formal models.
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ABSTRACT 
Aspects are intended to add needed functionality to a 
system or to treat concerns of the system by augmenting or 
changing the existing code in a manner that cross-cuts the 
usual class or process hierarchy. However, sometimes 
aspects can invalidate some of the already existing desirable 
properties of the system. This paper shows how to 
automatically identify such situations. The importance of 
specifications of the underlying system is emphasized, and 
shown to clarify the degree of obliviousness appropriate for 
aspects. The use of regression testing is considered, and 
regression verification is recommended instead, with 
possible division into static analysis, deductive proofs, and 
aspect validation using model checking.  

Static analysis of only the aspect code is effective when 
strongly typed and clearly parameterized aspect languages 
are used. Spectative aspects can then be identified, and 
imply absence of harm for all safety and liveness properties 
involving only the variables and fields of the original 
system. Deductive proofs can be extended to show 
inductive invariants are not harmed by an aspect, also by 
treating only the aspect code. Aspect validation to establish 
lack of harm is defined and suggested as an optimal 
approach when the entire augmented system with the aspect 
woven in  must be considered. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features –, control structures. 

General Terms 
 Languages, Verification. 

Keywords 
Aspects, desired specification properties, noninterference, 
preventing harm, regression verification, aspect validation. 

1.  INTRODUCTION 
Like all modularity and language concepts, aspects are 
intended to improve the development of complex systems. 
On the code level, Aspect-Oriented Programming (AOP) 
languages provide notations to separately declare and 
repeatedly apply aspects that cross-cut the usual class 
structure of object-oriented systems. Using AOP has 
already been shown in numerous case studies to isolate the 
treatment of concerns that otherwise are scattered 
throughout the system, and tangled with  code treating a 
variety of application issues. However, it is clear that 
sometimes such augmentations of systems can make 
properties that previously held for the system become 
untrue in the combination of the system with the aspect. 

 Such changes in the properties of the system could be a 
proper outcome of applying the aspect if the property is 
considered undesirable, such as that the system deadlocked 
in certain situations, or that messages were visible to any 
other observer in the computer. On the other hand, in 
general there is no way to linguistically prevent aspects 
from invalidating some properties that are desirable. This 
could occur either inadvertently, or maliciously. An 
example of the former could be when an aspect intended to 
treat overflow of variables, by mistake also causes the 
system to deadlock. An example of the latter could be when 
a system with private fields that guarantee some level of 
privacy is augmented by an aspect that provides public 
methods for reading the values of those very fields, in order 
to expose their contents, thereby violating the desired level 
of privacy.  

 

In order to identify and treat such situations, the systems to 
which aspects are woven need to be augmented with 
specifications. These are descriptions of the desirable 
properties of the system. Note that they do not describe all 
properties of the system, only those seen as important and 
positive. Such properties should be maintained even if the 
system is augmented with aspects, or even if an aspect is 
combined with other aspects. What can change are the 
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properties of the system not seen in the specification. The 
form of such specifications is described in Section 2. 

 

Treatment of harmful aspects also requires a rethinking of 
the degree of obliviousness needed by an aspect-oriented 
notation. Obliviousness has traditionally [2][3] been seen as 
a desirable feature of Aspect-oriented notations. Although 
several definitions are possible, all imply that the 
underlying system does not have to prepare any hooks, or in 
any way depend on the intention to apply an aspect over it. 
The application of an aspect adds new features to a system, 
but the system without the aspect has its own specification 
and is correct relative to that specification, without needing 
any aspects. 

 

 Obliviousness is clearly important in dynamically evolving 
systems, where the aspects may not even have been thought 
of when the original system was created. It also is 
appropriate when a system can have many variants, some 
with one collection of aspects, and some with another, each 
configured for a user’s particular needs. This is one of the 
potential uses of aspects to allow more flexible 
components, configurable on demand. 

 However, a total obliviousness to aspects prevents treating 
such malicious aspects as the one that reveals values 
intended to be kept private. Who prevents the application of 
such an aspect, on the language/system level (as opposed to 
locking the source in a safe, and physically preventing 
access to it)? 

If specifications are available, a middle ground is possible, 
where a system is oblivious to the particular aspects to be 
applied to it, but still can restrict new aspects to those that 
do not violate its specification (or at least some parts of its 
specification). An aspect will be considered harmful if it 
invalidates any desired properties of the system to which it 
is applied. This will be more precisely defined and justified 
in Section 2. 

The paths open to diagnosis of harmful aspects are usual 
testing, static code analysis similar to that done by type-
checkers, and use of formal methods, both deductive 
verification and model checking. We shall consider all  
possibilities. The type of augmentation or change made by 
an aspect is another dimension that can determine the best 
way of preventing harm. The three basic divisions [6] are to 
spectative aspects that only gather information about the 
system to which they are woven, usually by adding fields 
and methods, but do not influence the possible underlying 
computations otherwise, regulatory aspects that change the 
flow of control (e.g., which methods are activated in which 
conditions) but do not change the computation done to 
existing fields, and invasive aspects that do change values 

of existing fields (but still should not invalidate desirable 
properties). 

 

Yet another question is whether only the aspect module 
itself must be analyzed, independently of any system to 
which it may be woven, or whether an entire system 
augmented by an instance of the woven aspect is the object 
of analysis. In the continuation, the former is called aspect 
code analysis, and the latter augmented system analysis. 
The system before an aspect is woven into it is termed the 
original system. 

The focus on preventing  harmful effects of aspects is 
unusual, but as will be shown, does allow a uniform 
treatment. Such a treatment is more difficult when  the new 
properties to be established by the aspect also need to be 
taken into consideration. Taking a medical analogy, the 
basic principle should first be, as in the doctor’s 
Hippocratic oath: “Do no Harm.”  

 

2.   SPECIFICATIONS OF ASPECTS AND SYSTEMS 
A full treatment of aspects and their compositions clearly 
does deal with the specifications of the aspects themselves, 
and not just of the underlying system. In a HyperJ view, the 
entire system is composed of such aspects, or concerns. 
However, such specifications are often difficult to 
construct. Aspects on a code level are typically described 
by defining joinpoints where changes are to be made, and 
advice, with code to augment or replace what is done at the 
original joinpoint. Note that joinpoints may be defined as 
dynamically determinable events, and not merely locations 
in code or method calls. 

As already defined in earlier works[6], specifications of 
aspects need to describe both what is assumed about any 
object or method in the basic system to which the aspect 
may be applied (and in general, what must be true at each 
joinpoint identified by the aspect), and, on the other hand, 
what is required to be true after the advice is applied, if the 
needed assumption indeed holds at the joinpoint. For each 
joinpoint and advice segment of code, the advice assumes 
some property of the system, and guarantees some property 
when it finishes. Such an assume-guarantee structure for 
aspects has already been recognized in [1], and [7], and is 
essential for describing the added value of an aspect. The 
overall properties added by the aspect can also be globally 
described. Since many aspects deal with so-called non-
functional concerns like availability, fault-tolerance, 
security, or persistence, providing their specifications is that 
much more difficult. 

  Here, however, we concentrate on simply avoiding harm, 
and thus are not interested in what new properties are 
promised by the aspect. Only the specification of the system 
to which the aspect is woven is needed to prove the absence 

2



of harm. Since that specification usually deals with basic 
functional properties, it is more amenable to a description 
in standard temporal logic, and/or using 
precondition/postcondition pairs around methods or 
functions. 

The obliviousness of systems to aspects is reflected in that 
usually the underlying system does not make assumptions 
of any kind about the possible aspects that may  be applied. 
The existence of a specification of the desired properties 
that hold for the basic system provide a way to weaken 
obliviousness while maintaining the desired characteristics 
of extensibility and flexibility to add new unanticipated 
aspects. The specification of the basic system, in addition to 
restricting the implementation of the system, also can 
restrict future aspects, either by default —guaranteeing that 
all the desired properties in the basic specification will be 
maintained after weaving an aspect--- or in a more 
restricted version, where only some of the original desired 
properties are designated as unchangeable. Thus, for 
purposes of avoiding harm, the only requirement of the 
aspect is that the  desired properties of the basic system 
expressed in its specification remain true when the aspect 
code is woven into the basic system and the augmented 
system is then executed. 

Although not essential to the arguments in this paper, 
temporal logic provides a convenient formal notation for 
describing properties of execution sequences. In the 
simplest version G stands for ‘globally’ meaning from now 
on in the sequence of states, and F stands for ‘in the future’, 
meaning that eventually there is a state. Thus an assertion 
G(p => Fq) means that in every state, if p is true then 
eventually there will be another state with q. If p represents 
“a request has been made”, while q is “a response is given”, 
this corresponds to a specification that every request has a 
later response. Note that a counterexample to such an 
assertion would involve showing a computation with a state 
where p is true, but which never has a later state with q true. 
Whatever specification notation is used, it should not allow 
expressing assertions about immediately following states 
(using, for example, the “next-state” temporal modality X), 
since such assertions are known to be sensitive to any 
refinements or additions, and will be violated by any aspect 
that adds computation at problematic points. Thus we 
require a “stutter-free” version of temporal logic [5]. 

 

3.  REGRESSION TESTING AND ITS LIMITATIONS 
A straightforward approach to detecting harmful aspects 
would seemingly be the use of regression testing. The idea 
is simply to retest a system every time a new aspect is 
woven into it, to ensure that the test suite which previously 
was passed (and presumably captures the desirable 
outcomes that should be maintained) is still passed. Then 
the new properties to be added by the aspect could later be 

validated with new additional tests to be added to the test 
suite. This is the technique used by Extreme Programming 
(XP) [8] in place of having specifications, and is intended 
in XP to be applied to any significant change (e.g., a new 
version) in the system. However, there are several serious 
drawbacks to this approach when applied to aspects and 
their weaving:  

First, regression testing is most easily applied to systems to 
which spectative aspects have been woven, where the 
aspects do not influence the computations of the underlying 
system at all. A regression test then could reasonably expect 
that the fields of the underlying system are unaffected by 
the augmentation of the aspect, so the results of the tests are 
unchanged. A violation is then trivially determined by 
comparing the results of the test, and can be inspected 
automatically. Yet when spectative aspects are used, it is 
more efficient to determine such situations using static 
analysis, as described in the next subsection. When the 
aspect is regulative or invasive, and thus does affect the 
computation, the results of the test will differ from the same 
test applied to the original system. They thus are often 
difficult to evaluate, and any violation cannot be 
determined automatically simply by detecting changes.  
 Second, this approach obviously relates to the entire 
augmented system, and retesting the entire system every 
time an aspect is applied is often unfeasible due to time or 
resource constraints. For a complex system, it seems 
overkill to activate the entire test suite even if an aspect 
with presumably small changes to only some of the objects 
and methods is added. Also, when aspects are taken from a 
library and bound to new systems, such a small investment 
in coding (binding the aspect to a system) hardly justifies an 
entire activation of the test suite. Moreover, if aspects are 
applied and removed dynamically, during run time, 
retesting is not realistic. 
 Third, and most significantly, the original tests obviously 
did not take into account the structure of the aspect or the 
influence it may have on the basic computation paths. Thus, 
for example when conditionals appear in aspect code, the 
original tests may be completely irrelevant, since new paths 
are generated and followed, and the tests  may miss many 
computation paths. Precisely because of their cross-cutting 
nature, it is difficult to isolate parts of the test suite that still 
might be relevant, since many regular modules (e.g., 
classes) are affected by each aspect.  
Therefore, simply using regression testing does not 
adequately treat harmful aspects. We thus turn to regression 
verification, which can be based on static type analysis, 
deductive verification, or model checking using aspect 
validation. 
 

4.  STATIC ANALYSIS  
As noted above, when the aspect to be applied is spectative 
relative to the underlying system, it should often be possible 
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to establish this fact using static analysis of code. As will be 
discussed, in some languages the aspect can be analyzed in 
isolation, while in others the augmented system must be 
considered. A spectative aspect does not change either the 
value of any field or the flow of method calls of the 
underlying system. New fields, methods, and even classes 
can be added, but the new model of computation has a very 
particular relation to the underlying one without the aspect.  
Each computation path has sections of original computation 
interleaved with sections of new computation. The result is 
always equivalent to temporarily suspending the underlying 
system, recording some information about it, computing 
new values not influencing the underlying system in any 
way, and then continuing as before. 

Such a situation might be difficult to detect directly on the 
execution graph of the computation, but it is amenable to 
detection on the code level in some aspect languages, using 
standard type checking and data-flow techniques. The idea 
is that the locally defined fields of the aspect are the only 
ones computed by that aspect, and no assignments are made 
by aspect code to fields or to parameters that can be bound 
to fields, variables, or parameters of the basic system. The 
aspect code also cannot “redirect” the flow of execution, 
and simply adds to the previous system without skipping 
any of its computation. 

This situation is amenable to syntactic detection by 
analyzing only the aspect if all bindings between fields or 
variables of the aspect and the basic system are made 
through parameters of the aspect. On the other hand, when 
arbitrary binding is possible, for example by using the same 
name in both code segments, then only when a specific 
binding has been made can the augmented system be 
analyzed to determine which elements are bound, and 
whether the aspect is spectative. In either case, dataflow 
techniques, such as the uses and the defined-use pairs of 
standard  code optimization,  can be employed to determine 
whether there is any influence of fields in an aspect on 
those of the basic system (the other direction is, of course, 
not a problem). The possibility of analyzing just the aspect 
is one argument in favor of clearly identifying parameters 
for weaving, rather than allowing free bindings that force 
analysis of the entire augmented system. 

Showing that an aspect is spectative is one way to guarantee 
that all safety and liveness properties involving assertions 
only about variables, fields, and methods of the underlying 
system will not be influenced by the aspect (as already 
explained, without assertions about “next” states). 
However, it should be noted that properties such as “the 
value of a field is not visible outside the class” can be 
violated by spectative aspects, even when they were 
previously true. The problem is that the assertion of “not 
visible” involves both the original fields and methods and 
new fields or methods added by the aspect. As already 
noted in the Introduction, a (hidden) field X could be 

“made visible” by examining another field Y (added by the 
aspect) linked to X by an invariant, or by adding new public 
methods. 

 

Such data-flow and type-safety techniques are always 
conservative, in that if successful, the spectative nature of 
the aspect is guaranteed, and the aspect can cause no harm 
for specification properties as described above. If the 
analysis does not establish that the aspect is spectative,  it 
remains to be seen whether the aspect is actually harmful. 

 

5. DEDUCTIVE PROOFS OF CLASSES OF 
TEMPORAL PROPERTIES 

 

 It is also possible to establish a lack of harm for either 
specific properties or entire classes of properties using 
deductive proofs only over the aspect code. For example, 
an invariant of the original system can often be shown to 
also be an invariant of the augmented system, even without 
analyzing in what situations the aspect code will be applied. 
This is true when the invariant I is what is known as 
“inductive,” meaning that {I} s {I} can be shown for each 
individual step s. Note that it is sufficient to show that if the 
invariant is assumed before a step, it will again be true at 
the end of the step. In this situation, to establish that I is 
also an invariant of the augmented system, it is sufficient to 
check that each aspect action t also satisfies the same 
assertion {I} t {I}. Since I is already known to be an 
invariant of the original system, it actually is true of the 
augmented system whenever the aspect is first applied, even 
without analyzing the joinpoints. By induction, it is easy to 
see that I will hold whenever some t action is taken, so will 
be an invariant of the augmented system, even without 
rechecking the original code. 

 

For example, consider a situation where x>y>0 is an 
invariant of a system, and an aspect has changes of the form 

 <complex> � double (x,y), 

where <complex> is a complex condition for applicability, 
and double(x,y) doubles the values of x and of y. Then we 
easily have {x>y>0} double(x,y) {x>y>0}, extending the 
invariant to the augmented system, even though only the 
aspect code was newly analyzed, and when it is applied was 
ignored.  

 

It is also possible to prove that an aspect is “almost 
spectative” in that it might only abort an underlying system, 
but would not otherwise affect the computation of the 
original statespace. In such a situation, liveness properties 
of the underlying system might be harmed, but all safety 
properties are maintained. 
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Consider an aspect that treats overflow for variables in one 
part of a system with limited memory. An invariant of the 
underlying system that is also in its specification could be 
that x = y. However, this will no longer hold in the 
augmented system if x is treated for overflow, resulting in 
new assignments to x, while y is not. In this case the aspect 
has harmed the  system by violating a safety assertion of its 
specification. On the other hand, if the aspect stops the 
system when overflow is detected, rather than continuing as 
above, then safety properties are maintained, as long as the 
system continues. 

  

6. REGRESSION ASPECT VALIDATION  FOR 
INVASIVE ASPECTS 
 

The approach of aspect validation, first suggested in [4], 
can be specialized to detecting harmful aspects. The idea of 
validation is to prove that each individual weaving is 
acceptable, rather than having a single generic proof that 
the aspect always does no harm. It is effective when each 
weaving of an aspect triggers automatic generation of 
verification tasks that themselves are automatically 
checked, e.g., using a model checking tool. Note that the 
initial organization and set-up of the validation framework 
for each application aspect can be non-algorithmic and 
require human effort and invention. However, the validation 
associated with each weaving of the aspect does not require 
such intervention, and must be automatic. 

 Aspect validation is appropriate when we cannot 
successfully identify absence of harm syntactically or 
statically by analyzing the aspect code, and yet concluding 
about lack of harm for classes of properties and for every 
possible weaving of the aspect. Thus we are forced to turn 
to techniques that analyze the augmented system, rather 
than just the aspect code. Indeed, in general we need to 
know the binding of the aspect to the basic system, and the 
properties which are the desired ones of that system, before 
the absence of harm can be established. Then we need to 
verify that those properties hold of the augmented system. 
The automatic verification for each weaving is essential to 
make this approach feasible. 

In many cases a software model checker can be used to 
generate a model checking task to be executed using a well-
known tool such as SMV, Spin, or Java Pathfinder. One 
practical tool design and implementation for aspect 
validation was suggested in [4], where Bandera is used to 
generate input for standard model checkers directly from 
heavily annotated Java code. The annotations that express 
the specification of the original system are themselves given 
as aspects. These so-called specification aspects include 
parametric temporal properties, labels, predicates, and 
functions intended to annotate a system with its desired 

properties, as preparation of input for Bandera.  The 
parameterization, and the fact that the annotation is kept as 
a separate module rather than being built into the original 
system allows the specification aspect to be applied both to 
the original system, and to one augmented with application 
aspects. Since annotating a system in preparation for a 
Bandera verification is a nontrivial task, using specialized 
notation and requiring human ingenuity, the reuse of the 
specification aspect is the key to making the approach 
practical. 

 Such an approach of aspect validation is possible when the 
original and the version augmented with aspects are 
ultimately given in the same notation.  In practice, it has 
been used with AspectJ in the mode that generates source 
Java code for the system with its aspects, and could also be 
done when a Java bytecode verifier is available. 

In essence, this is an incremental model checking task, if we 
assume that the properties in the specification of the orginal 
system were already verified using model checking. The 
task to be shown in order to verify that the new aspect 
causes no harm is simply to reprove the specification of the 
original system, but this time for the augmented system 
combining the original one with the aspect code bound to 
various joint points (including dynamic ones). We can and 
should reuse elements from the model checking of the 
original system in the model checking of the augmented 
one. 

In particular, any  model checking of the original system 
usually requires abstraction of the statespace to create a 
smaller model, in order to avoid the state-explosion 
problem that often prevents a successful verification, even 
though the model checking itself is algorithmic. Like the 
specification aspect, these abstractions, used to make the 
proof  feasible in the available space and time, can be 
reused for the augmented version. If this should prove 
insufficient because an extensive new statespace is 
generated, of course new abstractions might  be necessary.  
However, this would violate our goal of fully automatic 
validation. In case studies we have carried out, the 
abstractions needed for the original still lead to sufficient 
reductions in the augmented system, but further research is 
needed to determine whether this is generally the case. 

 As opposed to simple regression testing, this is a full 
verification, and thus will check the desired properties for 
whatever new paths might be introduced by the weaving of 
the aspect. However, using aspect validation for regression 
verification, and thus model-checking the entire augmented 
system, is clearly less desirable than proving once and for 
all (by only analyzing the aspect code) that an aspect cannot 
harm large classes of easily identifiable systems and 
specification properties. 
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7. SUMMARY 

The goal of full specification and verification of aspect-
oriented systems is still important. But even when 
specifications of aspects are difficult to express for non-
functional concerns, and a full verification may be difficult, 
showing the absence of harm through regression 
verification is a valuable first step. A significant 
improvement in code reliability and quality can be obtained 
at a relatively low cost, especially when a specification of 
the underlying system is already available. A combined 
approach of static dataflow analysis, one-time deductive 
proofs, and aspect validation shows particular promise. 
Proper language design for aspects, with local variables and 
parameterization, can help extend the static analysis of  
only the aspect code to determine harmfulness or its 
absence, either for classes of properties and for every 
possible weaving, or reanalyzing only the aspect for each 
weaving. When analysis of the full augmented system is 
required, aspect validation is suggested. 

 This focus on harmful aspects also allows a weakening of 
obliviousness in a way that maintains extensibility, but does 
not allow (or at least diagnoses) malicious or inadvertent 
corruption of the desired properties of the underlying 
system. 
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ABSTRACT
This paper makes two contributions to a formal under-
standing of aspect-oriented programming. First, we de-
fine TinyAspect, a formal model capturing core AOP con-
cepts. Compared to previous formalizations of AOP con-
structs, TinyAspectis extremely small, models aspects at
the source level, and is defined using structured operational
semantics and syntax-directed typing rules. In combination,
these properties make it easy to investigate aspect-oriented
language extensions and prove theorems about them.

Second, we propose Open Modules, a module system for
TinyAspectthat guarantees modular reasoning in the pres-
ence of aspects. Modular reasoning can be challenging in
AOP systems because advice can change the semantics of
a module from the outside. Open Modules are “open” in
that external aspects can advise functions and pointcuts in
their interface, providing significant aspect-oriented expres-
siveness that is missing in non-AOP systems. In order to
guarantee modular reasoning, however, our system places
limits on advice: external aspects may not advise function
calls internal to a module, except for calls explicitly exposed
through pointcuts in the module’s interface.

We use a notion of bisimulation to show that Open Mod-
ules enforce Reynolds’ abstraction theorem, a strong encap-
sulation property. This theorem guarantees that clients are
unaffected by changes to a module, as long as those changes
preserve the semantics of the functions and pointcuts in the
module’s interface.

1. Outline
This paper makes two contributions: the definition of a

new formal model for aspect-oriented programming, and a
proposed module system for aspects. In order to cleanly
separate these contributions, we motivate each in its own
section. We begin in Section 2 with the presentation of
TinyAspect, a minimal core language for aspect-oriented
programming.

Section 3 motivates the need for better module systems in
aspect-oriented programming, and provides an overview of
Open Modules, our proposed design. Section 4 formalizes
the Open Modules proposal as an extension to TinyAspect.
In Section 5 we use a notion of bisimulation to show that
Open Modules enforce Reynolds’ abstraction theorem, a
strong encapsulation property. Section 6 discusses related
work, Section 7 outlines future work, and Section 8 con-
cludes.

Names n ::= x

Expressions e ::= n | fn x:τ => e | e1 e2 | ()

Declarations d ::= •
| val x = e d
| pointcut x = p d
| around p(x:τ ) = e d

Pointcuts p ::= n | call(n)

Types τ, σ ::= unit | τ1 → τ2 | pc(τ1 → τ2)

Figure 1: TinyAspect Source Syntax

2. The TinyAspect Language
We would like to use a formal model of aspect-oriented

programming in order to study language extensions like the
module system discussed in the next section. While other
researchers have used denotational semantics [22], big-step
operational semantics [12], and translation systems [14, 20] to
study the semantics of aspect-oriented programming, small-
step operational semantics have the advantage of providing
a simple and direct semantics that is amenable to syntactic
proof techniques.

Jagadeesan et al. have proposed an operational semantics
for the core of AspectJ, incorporating several different kinds
of pointcuts and advice in an object-oriented setting [10].
These features are ideal for modeling AspectJ, but the com-
plexity of the model makes it tedious to prove properties
about the system.

Walker et al. propose a much simpler formal model incor-
porating just the lambda calculus, labeled join points, and
advice [21]. However, their system is not intended to model
the source-level constructs of langauges like AspectJ directly;
instead, it is a foundational calculus into which source-level
AOP constructs can be translated. It is considerably more
general than existing languages like AspectJ, and so proper-
ties that might be true at the source level of a language may
not hold in the foundational calculus. Thus, a source-level
formal model would be a more effective way to investigate
many source-level properties.

We have developed a new functional core language for
aspect-oriented programming called TinyAspect that is in-
tended to make proofs of source-level properties as straight-
forward as possible. As the name suggests, TinyAspect is
tiny, containing only the lambda calculus with units, declara-
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tions, pointcuts, and around advice. TinyAspect directly
models AOP constructs similar to those found in AspectJ,
making source-level properties easy to specify and prove us-
ing small-step operational semantics and standard syntactic
techniques. Although we are working in an aspect-oriented,
functional setting, our system’s design is inspired by that of
Featherweight Java [9], which has been successfully used to
study a number of object-oriented language features.

Figure 1 shows the syntax of TinyAspect. Our syntax is
modeled after ML [15], so that TinyAspect programs are
easy to read and understand. Names in TinyAspect are
simple identifiers; we will extend this to paths when we add
module constructs to the language. Expressions include the
monomorphic lambda calculus – names, functions, and func-
tion application. To this core, we add a primitive unit ex-
pression, so that we have a base case for types. We could
add primitive booleans and integers in a completely stan-
dard way. Since these constructs are orthogonal to aspects,
we omit them.

In most aspect-oriented programming languages, includ-
ing AspectJ, the pointcut and advice constructs are second-
class and declarative. So as to be an accurate source-level
model, a TinyAspect program is made up of a sequence of
declarations. Each declaration defines a scope that includes
the following declarations. A declaration is either the empty
declaration, or a value binding, a pointcut binding, or advice.
The val declaration gives a static name to a value so that it
may be used or advised in other declarations.

The pointcut declaration names a pointcut in the pro-
gram text. A pointcut of the form call(n) refers to any call
to the function value defined at declaration n, while a point-
cut of the form n is just an alias for a previous pointcut decla-
ration n. A real language would have more pointcut forms;
we include only the most basic possible form in order to keep
the language minimal.

The arounddeclaration names some pointcut p describing
calls to some function, binds the variable x to the argument of
the function, and specifies that the advice e should be run in
place of the original function. Inside the body of the advice e,
the special variable proceed is bound to the original value
of the function, so that e can choose to invoke the original
function if desired.
TinyAspect types τ include the unit type, function

types of the form τ1 → τ2, and pointcut types representing
calls to a function of type τ1 → τ2.

2.1 Fibonacci Caching Example
We illustrate the language by writing the Fibonacci func-

tion in it, and writing a simple aspect that caches calls to the
function to increase performance. While this is not a com-
pelling example of aspects, it is standard in the literature and
simple enough for an introduction to the language.

Figure 2 shows the TinyAspect code for the Fibonacci
function. We assume integers and booleans have been added
to illustrate the example.
TinyAspect does not have recursion as a primitive in the

language, so the fib function includes just the base case of
the Fibonacci function definition, returning 1.

We use around advice on calls to fib to handle the re-
cursive cases. The advice is invoked first whenever a client
calls fib. The advice is invoked first whenever a client calls
fib. The body of the advice checks to see if the argument
is greater than 2; if so, it returns the sum of fib(x-1) and

val fib = fn x:int => 1
around call(fib) (x:int) =

if (x > 2)
then fib(x-1) + fib(x-2)
else proceed x

(* advice to cache calls to fib *)
val inCache = fn ...
val lookupCache = fn ...
val updateCache = fn ...

pointcut cacheFunction = call(fib)
around cacheFunction(x:int) =

if (inCache x)
then lookupCache x
else let v = proceed x

in updateCache x v; v

Figure 2: The Fibonacci function written in TinyAspect,
along with an aspect that caches calls to fib.

fib(x-2). These recursive calls are intercepted by the ad-
vice, rather than the original function, allowing recursion to
work properly. In the case when the argument is less than
3, the advice invokes proceed with the original number x.
Within the scope of an advice declaration, the special vari-
able proceed refers to the advised definition of the function.
Thus, the call to proceed is forwarded to the original defi-
nition of fib, which returns 1.

In the lower half of the figure is an aspect that caches calls
to fib, thereby allowing the normally exponential function
to run in linear time. We assume there is a cache data struc-
ture and three functions for checking if a result is in the cache
for a given value, looking up an argument in the cache, and
storing a new argument-result pair in the cache.

So that we can make the caching code more reusable, we
declare a cacheFunction pointcut that names the func-
tion calls to be cached–in this case, all calls to fib. Then
we declare around advice on the cacheFunction pointcut
which checks to see if the argument x is in the cache. If it is,
the advice gets the result from the cache and returns it. If the
value is not in the cache, the advice calls proceed to calcu-
late the result of the call to fib, stores the result in the cache,
and then returns the result.

In the semantics of TinyAspect, the last advice to be de-
clared on a declaration is invoked first. Thus, if a client
calls fib, the caching advice will be invoked first. If the
caching advice calls proceed, then the first advice (which
recursively defines fib) will be invoked. If that advice in
turn calls proceed, the original function definition will be
invoked. However, if the advice makes a recursive call to
fib, the call will be intercepted by the caching advice. Thus,
the cache works exactly as we would expect–it is invoked
on all recursive calls to fib, and thus it is able to effectively
avoid the exponential cost of executing fib in the naı̈ve way.

2.2 Operational Semantics
We define the semantics of TinyAspect more precisely

as a set of small-step reduction rules. These rules translate
a series of source-level declarations into the values shown in
Figure 3.

Expression-level values include the unit value and func-
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Expression values v ::= () | fn x:τ => e | `

Pointcut values pv ::= call(`)

Declaration values dv ::= •
| val x ≡ v dv

| pointcut x ≡ pv dv

Evaluation contexts C ::= � e2 | v1 � | val x = � d
| val x ≡ v �

| pointcut x ≡ pv �

Figure 3: TinyAspect Values and Contexts

tions. In TinyAspect, advice applies to declarations, not to
functions. We therefore need to keep track of declaration us-
age in the program text, and so a reference to a declaration is
represented by a label `. In the operational semantics, below,
an auxiliary environment keeps track of the advice that has
been applied to each declaration.

A pointcut value can only take one form: calls to a partic-
ular declaration `. In our formal system we model execution
of declarations by replacing source-level declarations with
“declaration values,” which we distinguish by using the ≡
symbol for binding.

Figure 3 also shows the contexts in which reduction may
occur. Reduction proceeds first on the left-hand side of an
application, then on the right-hand side. Reduction occurs
within a value declaration before proceeding to the following
declarations. Pointcut declarations are atomic, and so they
only define an evaluation context for the declarations that
follow.

Figure 4 describes the operational semantics of
TinyAspect. A machine state is a pair (η, e) of an ad-
vice environment η (mapping labels to values) and an
expression e. Advice environments are similar to stores,
but are used to keep track of a mapping from declaration
labels to declaration values, and are modified by advice
declarations. We use the η[`] notation in order to look up the
value of a label in η, and we denote the functional update of
an environment as η′ = [` 7→v] η. The reduction judgment is
of the form (η, e) 7→ (η′, e′), read, “In advice environment
η, expression e reduces to expression e′ with a new advice
environment η′.”

The rule for function application is standard, replacing the
application with the body of the function and substituting
the argument value v for the formal x. We normally treat
labels ` as values, because we want to avoid “looking them
up” before they are advised. However, when we are in a
position to invoke the function represented by a label, we
use the rule r-lookup to look up the label’s value in the current
environment.

The next three rules reduce declarations to “declaration
values.” The val declaration binds the value to a fresh la-
bel and adds the binding to the current environment. It also
substitutes the label for the variable x in the subsequent dec-
laration(s) d. We leave the binding in the reduced expression
both to make type preservation easier to prove, and also to
make it easy to extend TinyAspect with a module system
which will need to retain the bindings. The pointcut decla-
ration simply substitutes the pointcut value for the variable
x in subsequent declaration(s).

The around declaration looks up the advised declaration

(η, (fn x:τ => e) v) 7→ (η, {v/x}e)
r-app

η[`] = v1

(η, ` v2) 7→ (η, v1 v2)
r-lookup

` 6∈ domain(η) η′ = [` 7→v] η

(η, val x = v d) 7→ (η′, val x ≡ ` {`/x}d)
r-val

(η, pointcut x = call(`) d) 7→
(η, pointcut x ≡ call(`) {call(`)/x}d)

r-pointcut

v′ = (fn x:τ => {`′/proceed}e)
`′ 6∈ domain(η) η′ = [` 7→v′, `′ 7→η[`]] η

(η, around call(`)(x:τ ) = e d) 7→ (η′, d)
r-around

(η, e) 7→ (η′, e′)

(η, C[e]) 7→ η′, C[e′])
r-context

Figure 4: TinyAspect Operational Semantics

` in the current environment. It places the old value for the
binding in a fresh label `′, and then re-binds the original `
to the body of the advice. Inside the advice body, any refer-
ences to the special variable proceed are replaced with `′,
which refers to the original value of the advised declaration.
Thus, all references to the original declaration will now be
redirected to the advice, while the advice can still invoke the
original function by calling proceed.

The last rule shows that reduction can proceed under any
context as defined in Figure 3.

2.3 Typechecking
Figure 5 describes the typechecking rules for

TinyAspect. Our typing judgment for expressions is
of the form Γ;Σ ` e : τ , read, “In variable context Γ and
declaration context Σ expression e has type τ .” Here Γ
maps variable names to types, while Σ maps labels to types
(similar to a store type).

The rules for expressions are standard. We look up the
types for variables and labels in Γ and Σ, respectively. Other
standard rules give types to the () expression, as well as to
functions and applications.

The interesting rules are those for declarations. We give
declaration signatures β to declarations, where β is a se-
quence of variable to type bindings. The base case of an
empty declaration has an empty signature. For val bind-
ings, we ensure that the expression is well-typed at some
type τ , and then typecheck subsequent declarations assum-
ing that the bound variable has that type. Pointcuts are sim-
ilar, but the rule ensures that the expression p is well-typed
as a pointcut denoting calls to a function of type τ1 → τ2.
The around advice rule checks that the declared type of x
matches the argument type in the pointcut, and checks that
the body is well-typed assuming proper types for the vari-
ables x and proceed.

Finally, the judgment Σ ` η states that η is a well-formed
environment with typing Σ whenever all the values in η have
the types given in Σ. This judgment is analogous to store
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x:τ ∈ Γ
Γ;Σ ` x : τ

t-var

Γ;Σ ` n : τ1 → τ2

Γ;Σ ` call(n) : pc(τ1 → τ2)
t-pctype

`:τ ∈ Σ
Γ;Σ ` ` : τ

t-label

Γ; Σ ` () : unit
t-unit

Γ, x:τ1; Σ ` e : τ2

Γ;Σ ` fn x:τ1 => e : τ1 → τ2

t-fn

Γ;Σ ` e1 : τ2 → τ1 Γ;Σ ` e2 : τ2

Γ;Σ ` e1 e2 : τ1

t-app

Γ;Σ ` • : •
t-empty

Γ;Σ ` e : τ Γ, x:τ ; Σ ` d : β

Γ;Σ ` val x = e d : (x:τ, β)
t-val

Γ;Σ ` p : pc(τ1 → τ2) Γ, x:pc(τ1 → τ2); Σ ` d : β

Γ;Σ ` pointcut x = p d : (x:pc(τ1 → τ2), β)
t-pc

Γ;Σ ` p : pc(τ1 → τ2) Γ;Σ ` d : β
Γ, x:τ1,proceed:τ1 → τ2; Σ ` e : τ2

Γ;Σ ` around p(x:τ1) = e d : β
t-around

∀`.(Σ[`] = τ ∧ η[`] = v =⇒ •; Σ ` v : τ )

Σ ` η
t-env

Figure 5: TinyAspect Typechecking

typings in languages with references.

2.4 Type Soundness
We now state progress and preservation theorems for

TinyAspect. The theorems quantify over both expressions
and declarations using the metavariable E, and quantify
over types and declaration signatures using the metavariable
T . The progress property states that if an expression is well-
typed, then either it is already a value or it will take a step to
some new expression.

Theorem 1 (Progress)
If •; Σ ` E : T and Σ ` η, then either E is a value
or there exists η′ such that (η, E) 7→ (η′, E′).

Proof: By induction on the derivation of •; Σ ` E : T . �

The type preservation property states that if an expression
is well-typed and it reduces to another expression in a new
environment, then the new expression and environment are
also well-typed.

Theorem 2 (Type Preservation)
If •; Σ ` E : T , Σ ` η, and (η, E) 7→ (η′, E′), then there exists

some Σ′ ⊇ Σ such that •; Σ′ ` E′ : T and Σ′ ` η′.

Proof: By induction on the derivation of (η, E) 7→ (η′, E′).
The proof relies on a standard substitution and weakening
lemmas. �

Together, progress and type preservation imply type
soundness. Soundness means that there is no way that
a well-typed TinyAspect program can get stuck or “go
wrong” because it gets into some bad state.

3. Open Modules
In this section, we explore one possible way to define a

module system for aspects. The following section models
our proposed module system in TinyAspect, providing an
initial evaluation of the core language design, and gaining
insight into the potential benefits of our module system.

3.1 Motivation
In his seminal paper, Parnas laid out the classic theory

of information hiding: developers should break a system
into modules in order to hide information that is likely to
change [17]. Thus if change is anticipated with reasonable
accuracy, the system can be evolved with local rather than
global system modifications, easing many software mainte-
nance tasks. Furthermore, the correctness of each module
can be verified in isolation from other modules, allowing de-
velopers to work independently on different sub-problems.

Unfortunately, developers do not always respect the in-
formation hiding boundaries of modules–it is often tempt-
ing to reach across the boundary for temporary convenience,
while causing more serious long-term evolution problems.
Thus, encapsulation mechanisms such as Java’s packages
and public/private data members were developed to give
programmers compiler support for enforcing information
hiding boundaries.

The central insight behind aspect-oriented programming
is that conventional modularity and encapsulation mecha-
nisms are not flexible enough to capture many concerns that
are likely to change. These concerns cannot be effectively
hidden behind information-hiding boundaries, because they
are scattered in many placed throughout the system and
tangled together with unrelated code. Aspect-oriented pro-
gramming systems provide mechanisms for modularizing a
more diverse set of concerns. However, few aspect-oriented
programming projects have addressed the problem of pro-
viding an encapsulation facility for aspect-oriented program-
ming.

3.2 Existing Encapsulation Approaches
The most widely-used AOP system, AspectJ, leaves Java’s

existing encapsulation mechanisms largely unchanged [11].
AspectJ provides new programming mechanisms that cap-
ture concerns which crosscut Java’s class and package struc-
ture. Because these mechanisms can reach across encapsula-
tion boundaries, AspectJ does not enforce information hiding
between aspects and other code.

For example, Figure 6 shows how an aspect can depend
on the implementation details of another module. The fig-
ure shows two different Shape subclasses, one represent-
ing points and another representing rectangles. Both classes
have a method moveBy, which moves the rectangles on the
screen. An assurance aspect checks certain invariants of
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package shape;

public class Point extends Shape {
public void moveBy(int dx, int dy) {

x += dx; y += dy;
...

}

public class Rectangle extends Shape {
public void moveBy(int dx, int dy) {

p1x += dx; p1y += dy;
p2x += dx; p2y += dy;

...
}

package assure;

aspect AssureShapeInvariants {
pointcut moves():

call(void shape.Shape+.moveBy(..));

after(): moves() {
scene.checkInvariants();

}
}

Figure 6: In this AspectJ code, the correctness of the
shape invariants aspect depends on the implementation
of the shapes. If the implementation is changed so that
Rectangle uses Point to hold its coordinates, then the
invariants will be checked in the middle of a moveBy oper-
ation, possibly leading to a spurious invariant failure.

the scene every time a shape moves. The aspect is trig-
gered by a pointcut made up of all calls to the moveBy func-
tion in shapes. We assume the assurance aspect is checking
application-level invariants, rather than invariants specific to
the shape package, and therefore it is defined in a package
of its own.

Unfortunately, this aspect is tightly coupled to the imple-
mentation details of the shape package, and will break if
these implementation details are changed. For example, con-
sider what happens if the rectangle is modified to store its
coordinates as a pair of points, rather than two pairs of in-
teger values. The body of Rectangle.moveBy would be
changed to read:

p1.moveBy(dx, dy);
p2.moveBy(dx, dy);

Now the moves pointcut will be invoked not only when
the Rectangle moves, but also when its constituent points
move. Thus, the scene invariants will be checked in the mid-
dle of the rectangle’s moveBy operation. Since the scene in-
variants need not be true in the intermediate state of motion,
this additional checking could lead to spurious invariant fail-
ures.

The aspect in Figure 6 violates the information hiding
boundary of the shape package by placing advice on
method calls within the package. This means that the imple-
mentor of shape cannot freely switch between semantically
equivalent implementations of Rectangle, because the ex-

ternal aspect may break if the implementation is changed.
Because the aspect violates information hiding, evolving the
shape package becomes more difficult and error prone.

AspectJ is not the only system in which aspects can violate
information hiding boundaries. Other aspect-oriented pro-
gramming systems that support method interception, such
as Hyper/J [19] and ComposeJ [23], share the issue. Even
recent proposals describing module systems for AOP allow
these kinds of violations [13, 6].

Clearly the programmer of the assurance aspect could
have written the aspect to be more robust to this kind of
change. However, the whole point of an encapsulation sys-
tem is to protect the programmer from violating information
hiding boundaries. In the rest of this paper, we explore a
proposed module system that is able to enforce information
hiding, while preserving much of the expressiveness of ex-
isting aspect-oriented programming systems.

3.3 Overview
We propose Open Modules, a new module system for

aspect-oriented programs that is intended to be open to
aspect-oriented extension but modular in that the implemen-
tation details of a module are hidden. The goals of openness
and modularity are in tension, and so we try to achieve a
compromise between them.

The principle behind the design of Open Modules is that
interfaces should mediate the interaction between the imple-
mentation of a module and its clients, even in the presence
of aspects. Our system can capture crosscutting concerns in
much the same way as previous aspect-oriented program-
ming systems; the only difference is that some pointcuts may
have to be moved from the aspect code to the interface of the
module being advised.

For example, the assurance aspect in Figure 6 would be
prohibited by our system as written, because the aspect’s
pointcut potentially includes calls that are within the private
implementation of the shape package. However, the aspect
could be re-written in one of two ways to be compatible with
Open Modules.

In the first solution, the pointcut in the aspect would ad-
ditionally specify that it captures only calls from outside the
shape package:

pointcut moves():
call(void shape.Shape+.moveBy(..))
&& !within(shape.*);

This solution fits with Open Modules because it advises
only incoming calls to the interface of the package; the as-
pect is decoupled from the implementation, permitting im-
plementation changes like the one discussed in the previous
subsection.

In the second solution, the pointcut in the aspect would
be moved to the shape module, and then referenced by the
aspect:

after(): shape.Shape.moves() { ... }

In this case, the pointcut becomes part of the interface of
the shape package, again decoupling the aspect from the
package’s implementation. If that implementation changes,
the maintainer of the module has the responsibility to main-
tain the semantics of the pointcut so that external aspects are
unaffected by the change.
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This second solution, called pointcut interfaces, was orig-
inally proposed by Gudmundson and Kiczales as an engi-
neering technique that can ease software evolution by de-
coupling an aspect from the code that it advises [8]. It is also
related to the Demeter project’s use of traversal strategies to
isolate an aspect from the code that it advises [16].

We now provide a more technical definition for Open
Modules, which can be used to distinguish our contribution
from previous work:

Definition [Open Modules]: A module system that:

• allows external aspects to advise external calls to functions
in the interface of a module

• allows external aspects to advise pointcuts in the interface of
a module

• does not allow external aspects to advise calls from within
a module to other functions within the module (including
exported functions).

3.4 Expressiveness
Like the Gudmundson and Kiczales proposal on which

they are based [8], Open Modules sacrifice some amount of
obliviousness [7] in order to support better information hid-
ing. Base code is not completely oblivious to aspects, because
the author of a module must expose relevant internal events

in pointcuts so that aspects can advise them1. However, our
design still preserves important cases of obliviousness:

• While a module can expose interesting implementa-
tion events in pointcuts, it is oblivious to which aspects
might be interested in those events.

• Pointcuts in the interface of a module can be defined
non-invasively with respect to the rest of the module’s
implementation, using the same pointcut operations
available in other AOP languages.

• A module is completely oblivious to aspects that only
advise external calls to its interface.

A possible concern is that the strategy of adding a point-
cut to the interface of a base module may be impossible
if the source code for that module cannot be changed. In
this case, the modularity benefits of Open Modules can be
achieved with environmental support for associating an ex-
ternal pointcut with the base module. If the base module is
updated, the maintainer of the pointcut is responsible for re-
checking the pointcut to ensure that its semantics have not
been invalidated by the changes to the base module.

Experiment. In a companion paper, we performed a micro-
experiment applying the ideas of Open Modules to Space-
War, a small demonstration application distributed with As-
pectJ. The experiment was far too small to provide defini-
tive results. However, we found that Open Modules support

1We note that many in the AOP community feel “oblivi-
ousness” is too strong a term, preferring a notion of “non-
invasiveness” that is compatible with our proposal. See
for example posts to the aosd-discuss mailing list by Dean
Wempler and Gregor Kiczales in August 2003, available at
aosd.net.

Names n ::= . . . | m.x

Declarations d ::= . . . | structure x = m d

Modules m ::= n
| struct d end
| m :> σ
| functor(x:σ) => m
| m1 m2

Types τ, σ ::= . . . | sig β end

Decl. values dv ::= . . . | structure x = � d

Module values mv ::= struct dv end
| functor(x:σ) => m

Contexts C ::= . . . | structure x = � d
| structure x ≡ mv �

| struct � end | � :> σ
| � m2 | mv �

Figure 7: Module System Syntax, Values, and Contexts

nearly all of the aspects in this program with no changes or
only minor changes to the code [2].

The only concern our system could not handle was an ex-
tremely invasive debugging aspect. Debugging is an inher-
ently non-modular activity, so we view it as a positive sign
that our module system does not support it. In a practical
system, debugging can be supported either through external
tools, or through a compiler flag that makes an exception to
the encapsulation rules during debugging activity.

Comparison to non-AOP techniques. One way to evaluate
the expressiveness of Open Modules is to compare them to
non-AOP alternatives. One alternative is using wrappers in-
stead of aspects to intercept the incoming calls to a module,
and using callbacks instead of pointcuts in the module’s in-
terface. The aspect-oriented nature of Open Modules pro-
vides several advantages over the wrapper and callback so-
lution:

• Open Modules are compatible with the quantification [7]
constructs of languages like AspectJ, so that many
functions can be advised with a single declaration.
Implementing similar functionality with conventional
wrappers–which do not support quantification–is far
more tedious because a wrapper must be explicitly ap-
plied to each function.

• In Open Modules, a single, locally-defined aspect can
implement a crosscutting concern by non-locally ex-
tending the interface of a number of modules. Wrap-
pers cannot capture these concerns in a modular
way, because each target module must be individually
wrapped.

• Callbacks are invasive with respect to the implemen-
tation of a module because the implementation must
explicitly invoke the callback at the appropriate points.
In contrast, pointcut interfaces are non-invasive in that
the pointcut is defined orthogonally to the rest of the
module’s implementation, thus providing better sup-
port for separation of concerns.
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structure Cache =
functor(X : sig f : pc(int->int) end) =>

struct
around X.f(x:int) = ...

(* same definition as before *)
end

structure Math = struct
val fib = fn x:int => 1
around call(fib) (x:int) =

if (x > 2)
then fib(x-1) + fib(x-2)
else proceed x

structure cacheFib =
Cache (struct

pointcut f = call(fib)
end)

end :> sig
fib : int->int

end

Figure 8: Fibonacci with Open Modules

These advantages illustrate how the quantification and
non-invasive extension provided by Open Modules distin-
guish our proposal from solutions that do not use aspects [7].

4. Formalization of Open Modules
We now extend TinyAspect to model Open Modules.

Our module system is modeled closely after that of ML, pro-
viding a familiar concrete syntax and benefiting from the de-
sign of an already advanced module system.

Figure 7 shows the new syntax for modules. Names in-
clude both simple variables x and qualified names m.x,
where m is a module expression. Declarations can include
structure bindings, and types are extended with module sig-
natures of the form sig β end, where β is the list of variable
to type bindings in the module signature.

First-order module expressions include a name, a struct
with a list of declarations, and an expression m :> σ that
seals a module with a signature, hiding elements not listed
in the signature. The expression functor(x:σ) => m de-
scribes a functor that takes a module x with signature σ as
an argument, and returns the module m which may depend
on x. Functor application is written like function application,
using the form m1 m2.

Our module system does not include abstract types, and
so the abstraction property we enforce is one of implemen-
tation independence, not representation independence. The
underlying problem is the same in both cases: external as-
pects should not be able to observe the internal behavior of
module functions. Thus, we conjecture that our solution to
the implementation independence problem will also enforce
representation independence once abstract types are added
in standard ways [15].

4.1 Fibonacci Revisited
Figure 8 shows how a more reusable caching aspect could

be defined using functors. The Cache functor accepts a mod-
ule that has a single element f that is a pointcut of calls to

structure shape = struct
val createShape = fn ...
val moveBy = fn ...
val animate = fn ...
...
pointcut moves = call(moveBy)

end :> sig
createShape : Description -> Shape
moveBy : (Shape,Location) -> unit
animate : (Shape,Path) -> unit
...
moves : pc((Shape,Location)->unit)

end

Figure 9: A shape library that exposes a position change
pointcut

some function with signature int->int. The around ad-
vice then advises the pointcut from the argument module X.

The fib function is now encapsulated inside the Math
module. The module implements caching by instantiating
the Cache module with a structure that binds the pointcut
f to calls to fib. Finally, the Math module is sealed with a
signature that exposes only the fib function to clients.

4.2 Sealing
Our module sealing operation has an effect both at the type

system level and at the operational level. At the type level, it
hides all members of a module that are not in the signature
σ–in this respect, it is similar to sealing in ML’s module sys-
tem. However, sealing also has an operational effect, hiding
internal calls within the module so that clients cannot advise
them unless the module explicitly exports the corresponding
pointcut.

For example, in Figure 8, clients of the Math module
would not be able to tell whether or not caching had been
applied, even if they placed advice on Math.fib. Because
Math has been sealed, external advice to Math.fib would
only be invoked on external calls to the function, not on in-
ternal, recursive calls. This ensures that clients cannot be af-
fected if the implementation of the module is changed, for
example, by adding or removing caching.

The strategy used to protect information hiding in our for-
mal system is slightly different from the informal strategy
presented in Section 3. There we were assuming the seman-
tics of AspectJ, and so in order to avoid capturing internal
calls we had to explicitly say !within(shape.*) in the
pointcut. In the formal system, we provide a cleaner solu-
tion, where once a module is sealed, externally defined point-
cuts automatically include the limitation to external calls.

4.3 Exposing Semantic Events with Pointcuts
Figure 9 shows how the shape example described above

could be modeled in TinyAspect. Clients of the shape li-
brary cannot advise internal functions, because the module is
sealed. To allow clients to observe internal but semantically
important events like the motion of animated shapes, the
module exposes these events in its signature as the moves
pointcut. Clients can advise this pointcut without depend-
ing on the internals of the shape module. If the module’s
implementation is later changed, the moves pointcut must
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bind x ≡ v ∈ dv

(η, struct dv end.x) 7→ (η, v)
r-path

(η, structure x = mv d) 7→
(η, structure x ≡ mv {mv/x}d)

r-structure

(η, (functor(x:σ) => m1) m2) 7→ (η, {m2/x}m1)
r-fapp

seal(η, dv, β) = (η′, dseal)

(η, struct dv end :> sig β end)
7→ (η′, struct dseal end)

r-seal

seal(η, •, •) = (η, •)
s-empty

seal(η, d, β) = (η′, d′)

seal(η, bind x ≡ v d, β) = (η′, d′)
s-omit

seal(η, d, β) = (η′, d′) η′′ = [` 7→v] η′ ` 6∈ domain(η′)

seal(η,val x ≡ v d, (x:τ, β)) = (η′′,val x ≡ ` d′)
s-v

seal(η, d, β) = (η′, d′)

seal(η,pointcut x ≡ call(`) d, (x:pc(τ ), β))
= (η′,pointcut x ≡ call(`) d′)

s-p

seal(η, ds, βs) = (η′, d′

s) seal(η′, d, β) = (η′′, d′)

seal(η,structure x ≡ struct ds end d,
(x:sig βs end, β))

= (η′′,structure x ≡ struct d′

s end d′)

s-s

seal(η, d, β) = (η′, d′)

seal(η,structure x ≡ functor(y:σy) => m d, (x:σ, β))
= (η′,structure x ≡ functor(y:σy) => m d′)

s-f

Figure 10: Module System Operational Semantics

also be changed to ensure that client aspects are not affected.
Thus, sealing enforces the abstraction boundary between

a module and its clients, allowing programmers to reason
about and change them independently. However, our system
still allows a module to export semantically important inter-
nal events, allowing clients to extend or observe the mod-
ule’s behavior in a principled way.

4.4 Open Modules Operational Semantics
Figure 10 shows the operational semantics for Open Mod-

ules. In the rules, module values mv mean either a struct
with declaration values dv or a functor. The path lookup rule
finds the selected binding within the declarations of the mod-
ule. We assume that bound names are distinct in this rule; it
is easy to ensure this by renaming variables appropriately.
Because modules cannot be advised, there is no need to cre-
ate labels for structure declarations; we can just substitute the
structure value for the variable in subsequent declarations.
The rule for functor application also uses substitution.

The rule for sealing uses an auxiliary judgment, seal, to
generate a fresh set of labels for the bindings exposed in the
signature. This fresh set of labels insures that clients can af-

Γ;Σ ` m : sig β end x:τ ∈ β

Γ;Σ ` m.x : τ
t-name

Γ;Σ ` m : σ Γ, x:σ; Σ ` d : β

Γ; Σ ` structure x = m d : (x:σ, β)
t-structure

Γ;Σ ` d : β

Γ;Σ ` struct d end : sig β end
t-struct

Γ;Σ ` m : σm σm <: σ

Γ;Σ ` m :> σ : σ
t-seal

Γ, x:σ1; Σ ` m : σ2

Γ; Σ ` functor(x:σ1) => m : σ1 → σ2

t-functor

Γ;Σ ` m1 : σ1 → σ Γ; Σ ` m2 : σ2 σ2 <: σ1

Γ;Σ ` m1 m2 : σ
t-fapp

Figure 11: Open Modules Typechecking

fect external calls to module functions by advising the new
labels, but cannot advise calls that are internal to the sealed
module.

At the bottom of the diagram are the rules defining the
sealing operation. The operation accepts an old environment
η, a list of declarations d, and the sealing declaration signa-
ture β. The operation computes a new environment η′ and
new list of declarations d′. The rules are structured accord-
ing to the first declaration in the list; each rule handles the
first declaration and appeals recursively to the definition of
sealing to handle the remaining declarations.

An empty list of declarations can be sealed with the empty
signature, resulting in another empty list of declarations and
an unchanged environment η. The second rule allows a
declaration bind x ≡ v (where bind represents one of val,
pointcut, or struct) to be omitted from the signature, so
that clients cannot see it at all. The rule for sealing a value
declaration generates a fresh label `, maps that to the old
value of the variable binding in η, and returns a declaration
mapping the variable to `. Client advice to the new label `
will affect only external calls, since internal references still
refer to the old label which clients cannot change. The rule
for pointcuts passes the pointcut value through to clients un-
changed, allowing clients to advise the label referred to in the
pointcut. Finally, the rules for structure declarations recur-
sively seal any internal struct declarations, but leave functors
unchanged.

4.5 Typechecking
The typechecking rules, shown in Figure 11, are largely

standard. Qualified names are typed based on the binding in
the signature of the module m. Structure bindings are given a
declaration signature based on the signature σ of the bound
module. The rule for struct simply puts a sig wrapper
around the declaration signature. The rules for sealing and
functor application allow a module to be passed into a con-
text where a supertype of its signature is expected.

Figure 12 shows the definition of signature subtyping.
Subtyping is reflexive and transitive. Subtype signatures
may have additional bindings, and the signatures of con-
stituent bindings are covariant. Finally, the subtyping rule
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σ <: σ sub-reflex

σ <: σ′ σ′ <: σ′′

σ <: σ′′
sub-trans

β <: β′

sig β end <: sig β′ end
sub-sig

β <: β′

x : τ, β <: β′
sub-omit

β <: β′ τ <: τ ′

x : τ, β <: x : τ ′, β′
sub-decl

σ′

1 <: σ1 σ2 <: σ′

2

σ1 → σ2 <: σ′

1 → σ′

2

sub-contra

Figure 12: Signature Subtyping

for functor types is contravariant.

4.6 Type Soundness
When extended with Open Modules, TinyAspect enjoys

the same type soundness property that the base system has.
The theorems and proofs are similar, and so we omit them.

5. Abstraction
The example programs in Section 3 are helpful for under-

standing the benefits of TinyAspect’s module system at an
intuitive level. However, we would like to be able to point
to a concrete property that enables separate reasoning about
the clients and implementation of a module.

Reynolds’ abstraction property [18] fits these requirements
in a natural way. Intuitively, the abstraction property states
that if two module implementations are semantically equiv-
alent, no client can tell the difference between the two. This
property has two important benefits for software engineer-
ing. First of all, it enables reasoning about the properties of
a module in isolation. For example, if one implementation
of a module is known to be correct, we can prove that a sec-
ond implementation is correct by showing that it is semanti-
cally equivalent to the first implementation. Second, the ab-
straction property ensures that the implementation of a mod-
ule can be changed to a semantically equivalent one without
affecting clients. Thus, the abstraction property helps pro-
grammers to more effectively hide information that is likely
to change, as suggested in Parnas’ classic paper [17].

In TinyAspect, we can state the abstraction property as
follows. If two modules m and m′ are observationally equiv-
alent and have module signature σ, then for all client decla-
rations d that are well-typed assuming that some variable x
has type σ, the client behaves identically when executed with
either module.

Intuitively, two modules are observationally equivalent if
all of the bound functions and values in the module are
equivalent. Two functions are equivalent if they always pro-
duce equivalent results given equivalent arguments, even if

Λ ` (η, V ) ' (η′, V ′) : T

Λ ` (η, V ) ∼= (η′, V ′) : T

(η1, E1)
Λ
7→

∗

(η′

1, E
′

1) (η2, E2)
Λ
7→

∗

(η′

2, E
′

2)
Λ′ ` (η′

1, E
′

1) ∼= (η′

2, E
′

2) : T
(Λ′ − Λ) ∩ domain(η1 ∪ η2) = ∅

Λ ` (η1, E1) ∼= (η2, E2) : T

Λ ` (η1, C1[η1[`] v1]) ∼= (η2, C2[η2[`] v2]) : T

Λ ` (η1, C1[` v1]) ∼= (η2, C2[` v2]) : T

(η, E) and (η′, E′) diverge following the rules above

Λ ` (η, E) ∼= (η′, E′) : T

Figure 14: TinyAspect Observational Equivalence for Ex-
pressions

a client advises other functions exported by the module. This il-
lustrates the importance of using sealing to limit the scope
of client advice. If two modules are sealed, then they can
be proved equivalent assuming that clients can only advise
the exported pointcuts. In this sense, module sealing enables
separate reasoning that would be impossible otherwise.

5.1 Formalizing Abstraction
We can define abstraction formally using judgments for

observational equivalence of values, written
Λ ` (η, V ) ' (η′, V ′) : T and read, “In the context of a set of
visible labels Λ, value V in environment η is observationally
equivalent to value V ′ in environment η′ at type T . A similar
judgment of the form Λ ` (η, E) ∼= (η′, E′) : T is used for
observationally equivalent expressions. The judgments de-
pend on the set of labels Λ that are visible and thus capable
of being advised; in order for two values to be observation-
ally equivalent, they must use these labels in the same way.

The main rules for observational equivalence of values are
defined in Figure 13. Most of the rules are straightforward–
for example, there is only one unit value, so all values of type
unit are equivalent.

The most interesting rule is the one for function values.
Two function values are equivalent if for any observationally
equivalent argument values v1 and v2, they produce equiva-
lent results. Note that the rule for observational equivalence
for function values includes both syntactic functions and la-
bels that denote functions. A similar rule is used for obser-
vational equivalence of functors.

Two val declarations are equivalent if they bind the same
variable to the same label (since labels are generated fresh
for each declaration we can always choose them to be equal
when we are proving equivalence), and the label is equiva-
lent in the two environments η and η′. Since the label ex-
posed by the val declaration is visible, it must be in Λ. Point-
cut and structure declarations just check the equality of their
components. All three declaration forms ensure that subse-
quent declarations are also equivalent; we assume that the
empty declaration • is equivalent to itself. Finally, two first-
order modules are equivalent if the declarations inside them
are also equivalent.

Figure 14 shows the rules for observational equivalence
of expressions. Two expressions are equivalent if they are
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Λ ` (η1, v) ' (η2, v) : unit

Λ ` (η1, v1) ' (η2, v2) : τ ′ → τ iff for all v′

1, v
′

2

such that Λ ` (η1, v
′

1) ' (η2, v
′

2) : τ ′

we have Λ ` (η1, v1 v′

1) ∼= (η2, v2 v′

2) : τ

Λ ` (η,val x ≡ ` dv) ' (η′,val x ≡ ` d′

v) : (x:τ, β) iff ` ∈ Λ, Λ ` (η, `) ' (η′, `) : τ ,
and Λ ` (η, dv) ' (η′, d′

v) : β

Λ ` (η,pointcut x ≡ call(`) dv) '
(η′,pointcut x ≡ call(`) d′

v) : (x:pc(τ ), β) iff ` ∈ Λ and Λ ` (η, dv) ' (η′, d′

v) : β

Λ ` (η,structure x ≡ mv dv) ' iff Λ ` (η, mv) ' (η′, m′

v) : σ,
(η′,structure x ≡ m′

v d′

v) : (x:σ, β) and Λ ` (η, dv) ' (η′, d′

v) : β

Λ ` (η,struct dv end) ' (η′,struct d′

v end) : sig β end iff Λ ` (η, dv) ' (η′, d′

v) : β

Λ ` (η, mv) ' (η′, m′

v) : σ1 → σ2 iff for all m1

v, m2

v such that Λ ` (η, m1

v) ' (η′, m2

v) : σ1

we have Λ ` (η1, mv m1

v) ∼= (η2, m
′

v m2

v) : σ2

Figure 13: TinyAspect Observational Equivalence for Values

equivalent values. Otherwise, the expressions must be bisim-
ilar with respect to the set of labels in Λ. That is, they must
look up the same sequence of labels in Λ while either diverg-
ing or reducing to observationally equivalent values (since
client aspects can use advice to observe lookups to labels in
Λ).

We formalize this with three rules. The first allows two ex-
pressions to take any number of steps that does not include

looking up a label in Λ (using the evaluation relation
Λ
7→

∗

which is identical to 7→∗ except that the rule r-lookup may not
be applied to any label in Λ). The second allows two expres-
sions to lookup the same label in Λ. The third allows compu-
tation to diverge according to the first two rules, rather than
terminating with a value.

Now that we have defined observational equivalence, we
can state the abstraction theorem:

Theorem 3 (Abstraction)
If Λ ` (•, mv) ∼= (•, m′

v) : σ, then for all d such that
x:σ; • ` d : β we have Λ ` (•,structure x = mv d) ∼=
(•, structure x = m′

v d) : (x:σ, β)

For space reasons, we give only a brief sketch of the proof
of abstraction. More details are available in a companion
technical report [1]. The proof uses a structural congruence
property: the expressions are structurally equal except for
closed values, which are observationally equivalent. A key
lemma states that structural congruence is preserved by re-
duction.

We then observe that the two programs being compared
are initially structurally congruent. By the lemma, they ei-
ther remain structurally congruent indefinitely, correspond-
ing to the divergence case of observational equivalence, or
else they eventually reduce to values which are observation-
ally equivalent.

5.2 Applying Abstraction
The abstraction theorem can be used to show that two dif-

ferent implementations of a module are equivalent and thus
interchangeable. For example, Figure 15 shows two defini-
tions of the Fibonacci function. The first one uses recursion

structure Fib1 = struct
val fib = fn x:int => 1
around call(fib) (x:int) =

if (x > 2)
then fib(x-1) + fib(x-2)
else proceed x

end :> sig
fib : int->int

end

structure Fib2 = struct
val helper = fn x:int => 1
around call(helper) (x:int) =

if (x > 2)
then helper(x-1) + helper(x-2)
else proceed x

val fib = fn x:int => helper x
end :> sig

fib : int->int
end

Figure 15: Two equivalent modules that define the Fi-
bonacci function

directly to compute the result, while the second one invokes
a helper function. Since we have sealed both modules, it is
easy to prove that they are equivalent. Clients can only ad-
vise the fresh label exported by the sealed modules, which
doesn’t affect the internal semantics of the module at all.
Therefore, we can prove that the modules are equivalent by
showing that the fib functions always return the same value
when passed the same argument. A simple proof by induc-
tion on the argument value will suffice.

However, if we did not use TinyAspect’s sealing opera-
tion on these modules but instead used a more conventional
module system to hide the helper function in Fib2, we
would be unable to prove the modules equivalent. In this
case, a client could advice fib, which would capture the re-
cursive calls in module Fib1 but not in module Fib2. Thus,
the client’s behavior would depend on the module’s imple-
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mentation.
This example shows that the properties of the module seal-

ing operation are crucial for formal reasoning about aspect-
oriented systems. Sealing is also important for more infor-
mal kinds of reasoning, for example allowing engineers to
change the internals of a module with some assurance that
clients will not be affected.

The Fibonacci example is simplistic in that it does not ex-
port any pointcuts to clients. However, similar equivalence
properties can be proven in the presence of pointcuts, if it
can be shown that two modules always treat their exported
pointcut labels in an identical way, as defined by the obser-
vational equivalence relation.

6. Related Work
Formal Models. Walker et al. model aspects using an
expression-oriented functional language that includes the
lambda calculus, labeled join points, and advice [21]. They
show that their model is type-safe, but they model around
advice using a low-level exception construct and so their
soundness theorem includes the possibility that the pro-
gram could terminate with an uncaught exception error.
TinyAspect guarantees both type safety and a lack of run-
time errors because it models advice with high-level con-
structs similar to those in existing aspect-oriented program-
ming languages. In addition, the declarative, source-level
nature of TinyAspect allows us to easily explore modular-
ity and prove an abstraction result.

Jagadeesan et al. describe an object-oriented aspect cal-
culus modeling many of the features of AspectJ [10]. Their
formal model is much richer than ours, capturing complex
pointcuts and different forms of advice in a rich subset of
Java. TinyAspect is intentionally much more minimal than
their aspect calculus, so that it is easy to investigate language
extensions such as a module system and prove properties
such as abstraction.

In other work on formal systems for aspect-oriented pro-
gramming, Lämmel provides a big-step semantics for a
method-call interception extension to object-oriented lan-
guages [12]. Wand et al. give an untyped, denotational se-
mantics for advice advice and dynamic join points [22]. Ma-
suhara and Kiczales describe a general model of crosscutting
structure, using implementations in Scheme to give seman-
tics to the model [14]. Tucker and Krishnamurthi show how
scoped continuation marks can be used in untyped higher-
order functional languages to provide static and dynamic as-
pects [20].

Aspects and Modules. Dantas and Walker are currently
extending the calculus of Walker et al. to support a mod-
ule system [6]. Their type system includes a novel feature
for controlling whether advice can read or change the ar-
guments and results of advised functions. In their design,
pointcuts are first-class, providing more flexibility compared
to the second-class pointcuts in TinyAspect. This design
choice breaks abstraction and thus separate reasoning, how-
ever, because it means that a pointcut can escape from a mod-
ule even if it is not explicitly exported in the module’s inter-
face. In their system, functions can only be advised if this is
planned in advance; in contrast, TinyAspect allows advice
on all function declarations, providing unplanned extensibil-
ity without compromising abstraction.

Lieberherr et al. describe Aspectual Collaborations, a con-

struct that allows programmers to write aspects and code
in separate modules and then compose them together into a
third module [13]. Since they propose a full aspect-oriented
language, their system is much richer and more flexible than
ours, but its semantics are not formally defined. Their mod-
ule system does not encapsulate internal calls to exported
functions, and thus does not enforce the abstraction property.

Other researchers have studies ways of achieving modu-
lar reasoning without the use of explicit module systems.
For example, the Eclipse plugin for AspectJ includes a
view showing which aspects affect each line of source code.
Clifton and Leavens propose engineering techniques that
reduce dependencies between concerns in aspect-oriented
code [4].

Our module system is based on that of standard ML [15].
TinyAspect’s sealing construct is similar to the freeze op-
erator in the module calculus of Ancona and Zucca, which
closes a module to extension [3].

The name Open Modules indicates that modules are open
to advice on functions and pointcuts exposed in their inter-
face. Open Classes is a related term indicating that classes
are open to the addition of new methods [5].

7. Future Work
In future work, we plan to extend the module system pre-

sented here to support recursive modules and abstract data
types, as well as supporting modules that can be loaded and
instantiated at run time. We would like to extend the base
language with polymorphism, references, and objects; en-
forcing abstraction in the context of these features is an open
problem. Based on this foundation, we intend to design and
implement a user-level language with aspect-oriented fea-
tures, including richer mechanisms for pointcuts and advice.

8. Conclusion
This paper described TinyAspect, a minimal core lan-

guage for reasoning about aspect-oriented programming
systems. TinyAspect is a source-level language that sup-
ports declarative aspects. We have given a small-step opera-
tional semantics to the language and proven that its type sys-
tem is sound. We have described a proposed module system
for aspects, formalized the module system as an extension to
TinyAspect, and proved that the module system enforces
abstraction. Abstraction ensures that clients cannot affect or
depend on the internal implementation details of a module.
As a result, programmers can both separate concerns in their
code and reason about those concerns separately.
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ABSTRACT
The Aspect-Oriented Programming methodology provides a
means of encapsulation of crosscuting concerns in software.
AspectJ is a general-purpose aspect-oriented programming
language that extends Java. This paper investigates the
semantics of call and execution pointcuts in AspectJ, and
their interaction with inheritance. We present a semantic
model manifested by the current (1.1.1) release of AspectJ,
point out its shortcomings, and present alternative models.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classi-
fications—Object-oriented languages; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages—Operational semantics

General Terms
Languages

Keywords
Aspect-oriented programming, AspectJ

1. INTRODUCTION
Many papers and books have been written about Aspect-
Oriented Programming (AOP) in general, and about As-
pectJ in particular (e.g., [1, 2, 4]), as well as several papers
giving formal semantics of simple aspect-oriented languages
(e.g., [3, 5, 6, 8–10]), but none of them provides a precise
(even if not completely formal) semantics of AspectJ. Such
a semantics is necessary for language users to express their
intent, and is crucial for tools that compile into AspectJ. For
example, we are developing a design-by-contract [7] tool for
Java. The main purpose of such a tool is to instrument the

c© 2004, Ohad Barzilay, Yishai A. Feldman, Shmuel Tyszberowicz, and
Amiram Yehudai. All rights reserved.

code to check assertions (method pre- and postconditions
and class invariants) at run time. Existing tools we have
examined perform this instrumentation in various ways, all
of which have subtle errors. Our tool uses AspectJ instead
of ad-hoc methods. While working on the tool, we discov-
ered that some pointcuts we wrote did not yield the sets of
join points that we expected. This has led us to conduct the
study that we report on here.

We believe that a close examination of the semantics of As-
pectJ as manifested by the current implementation, and a
discussion of the desired or “correct” semantics, is important
to the AOP community. We hope that studies of the seman-
tics of other parts of the language will follow. This paper
investigates one of the subtle parts of AspectJ, namely, call
and execution pointcuts and their interaction with inheri-
tance. We present a semantic model manifested by the cur-
rent (1.1.1) release of AspectJ, point out its shortcomings,
and present alternative models. We note that Jagadeesan
et al. [3] mention a few of these shortcomings, but do not
discuss their deficiencies.

We follow the approach taken by authors of the AspectJ
documentation and books by ignoring implementation is-
sues. For the purpose of this paper, we are not interested
in how code instrumentation is carried out, and in the prac-
tical constraints on which classes may or may not be in-
strumented. We similarly ignore the implementation of the
matching between pointcuts and join points in AspectJ. In-
stead, we treat AspectJ as a black box, and examine its
performance on carefully-chosen test cases.

2. CURRENT SEMANTICS OF ASPECTJ
The semantics of the wildcard operators (“*” and “..”) in-
side call and execution pointcuts are easily specified by con-
sidering them to be an abbreviation for the (infinite) union
of all possible expansions. We will therefore ignore wildcards
in the sequel. Also, in order to simplify the presentation, we
will deal only with void functions of no arguments. This
will entail no loss of generality. Since static methods are
not inherited, we will also ignore those in the sequel.

2.1 Call Semantics
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Consider the pointcut specified by call(void A1.f()). This
should capture all calls to the method f defined in class A1.
Indeed it does, but that is due to the careful wording of
the previous sentence. What happens if f is inherited from
another class? In order to answer this question, we will
consider the following hierarchy of classes:

public class A1

{

public void f() {}

public void g() {}

}

public class A2 extends A1

{

public void h() {}

}

public class A3 extends A2

{

public void f() {}

}

We then consider the following three variable definitions, in
which the name of the variable indicates its static type and,
if different, also its dynamic type:

A1 s1 = new A1();

A3 s3 = new A3();

A1 s1d3 = new A3();

It turns out that the pointcut call(void A1.f()) captures
the calls s1.f(), s3.f(), and s1d3.f(). Similarly, the point-
cut call(void A1.g()) captures the calls s1.g(), s3.g(),
and s1d3.g(). It seems that even without the + subtype
pattern modifier, which specifies subclasses, these pointcuts
capture calls to the same method in subclasses, whether in-
herited or overridden. This may be a little surprising—what
is the + modifier for, then?—but is consistent with the dy-
namic binding mechanism of Java. (We shall have more to
say about the + modifier later.)

The pointcut call(void A3.f()) captures the call s3.f()
but not s1d3.f(). This implies that matching of call point-
cuts is based on the static type of the variable, which is not
consistent with the dynamic binding principle, but may per-
haps be justified based on the information available at the
calling point. However, the real surprise is that the pointcut
call(void A3.g()) does not capture any join points in our
example, not even s3.g()! The only difference between f

and g in A3 is that f is overridden whereas g is only inherited.
Thus, it seems that for matching to succeed, it is necessary
for the method to be lexically defined within the specified
class—inheritance is not enough. We use the term “lexically
defined” to indicate that a definition (first or overriding) of
the method appears inside the definition of the class.

Thus we are led to the following model. The semantics of a
pointcut will be given as a set of join points, formalized as
a predicate specifying which join points are captured by the
pointcut. Consider the following definitions:

• a pointcut pcc = call(void C.f()),

• a variable defined as S x = new D(), and

• a join point jp = x.f().

That is, the pointcut specifies a class C, and the target of
the join point has the static type S and the dynamic type D.
(Obviously, D must be a descendant of S for this to compile
correctly. We will denote this relationship by S ⊆ D.) Then:

jp ∈ pcc ⇐⇒ S ⊆ C ∧ f is lexically defined in C.

2.2 Execution Semantics
Continuing with our example, we find that call and execu-
tion pointcuts capture exactly the same join points for s1

and s3 (we are ignoring other features of pointcuts, such as
this and target). The only difference is in the treatment
of s1d3.f(), which is captured by execution(A1.f()) and
execution(A3.f()) but not by call(A3.f()). However,
execution(void A3.g()), like the corresponding call point-
cut, captures none of our join points. Thus, the rule for an
execution pointcut

pce = execution(void C.f())

seems to be:

jp ∈ pce ⇐⇒ D ⊆ C ∧ f is lexically defined in C.

That is, the static type is replaced by the dynamic type.
Again, this can be justified by the different type informa-
tion available at execution join points, but is nevertheless
an inconsistency in the semantics.

2.3 Subtype Pattern Semantics
The semantics of a subtype pattern such as call(A1+.f())

should naturally be equivalent to the union of all possible
expansions where A1 is replaced by any of its descendants.
This is indeed the case in AspectJ. However, because of
the surprising semantics described above, this has a subtle
interpretation. If

pc+
c = call(void C+.f())

is a call pointcut using subtypes, the matching rule is:

jp ∈ pc+
c ⇐⇒ S ⊆ C ∧
f is lexically defined in some F s.t. S ⊆ F ⊆ C.

In particular, the pointcut call(A1+.h()) captures s3.h(),
because h is defined in A2, but the same join point is not cap-
tured by call(A3+.h()), even though A3 has this method.
This violates our expectation that call(A3+.h()) should be
a subset of call(A1+.h()) that is identical for all join points
in classes under A3.

Similarly, for

pc+
e = execution(void C+.f()),

the matching rule is:

jp ∈ pc+
e ⇐⇒ D ⊆ C ∧
f is lexically defined in some F s.t. D ⊆ F ⊆ C.
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Variable definition: S x = new D()

Join point: jp = x.f()

Pointcuts: pcc = call(void C.f())

pce = execution(void C.f())

pc+
c = call(void C+.f())

pc+
e = execution(void C+.f())

jp ∈ pcc ⇐⇒ S ⊆ C ∧ f is lexically defined in C

jp ∈ pce ⇐⇒ D ⊆ C ∧ f is lexically defined in C

jp ∈ pc+
c ⇐⇒ S ⊆ C ∧ f is lexically defined in some F s.t. S ⊆ F ⊆ C

jp ∈ pc+
e ⇐⇒ D ⊆ C ∧ f is lexically defined in some F s.t. D ⊆ F ⊆ C

Figure 1: Semantics of current (1.1.1) AspectJ implementation.

2.4 Summary
The current semantics of AspectJ is summarized in Figure 1.
It satisfies some of our intuitive expectations but violates
others. The points on which AspectJ is consistent with the
intuitive semantics are:

• Pointcuts with wildcards are equivalent to the union
of all possible expansions.

• Pointcuts with subtype patterns are equivalent to the
union of all pointcuts with subtypes substituted for
the given type.

• The semantics of execution pointcuts is based on the
dynamic type of the target.

On the following points the semantics of AspectJ deviates
from our intuition:

• The semantics of call pointcuts is different from that
of execution pointcuts, and depends on the static type
of the target.

• Call and execution pointcuts only capture join points
for classes where the given method is lexically defined.

• As a result of this, the difference between pointcuts
with or without subtype patterns is subtle and unin-
tuitive.

It is arguable whether pointcuts without subtype patterns
should capture join points in subclasses at all. On the one
hand, an instance of a class is ipso facto considered to be-
long to all its superclasses; this is reflected in the syntactic
restrictions on assignment and parameter passing, and in
the semantics of the instanceof operator. On the other
hand, the existence of the subtype pattern modifier seems
to imply the intention that a pointcut that does not use it
refer only to instances of the specified class.

We believe that the lexical restrictions shown in these se-
mantic definitions were unintended; their removal would
greatly simplify the semantics. Some evidence that this is
not the intended semantics comes from the following quote

from one of the AspectJ gurus [4, p. 79]: “The [call(*
Account.* (..)) pointcut] will pick up all the instance and
static methods defined in the Account class and all the par-
ent classes in the inheritance hierarchy” (emphasis added).
This is not true in AspectJ, but is intuitively appealing.

Another interesting clue is the fact (pointed out to us by
one of the anonymous reviewers) is that when the AspectJ
compiler is invoked with the -1.4 switch, the set of join-
points defined by call pointcuts changes, and the restriction
on the lexical definition of the method in the designated class
is removed. Curiosly, the behavior of execution pointcuts
does not change even with this switch.

3. ALTERNATIVE SEMANTICS
If the current AspectJ semantics is inappropriate, we should
propose one or more alternatives. As mentioned above, such
alternatives should not restrict methods to be lexically de-
fined in the designated class. Two questions remain:

1. should subclasses be included when the subtype pat-
tern modifier does not appear in the pointcut; and

2. should call and execution pointcuts capture different
join points.

These issues lead to four possible definitions of the seman-
tics (see Figure 2). In these definitions we use the term “f
exists in C” to denote the fact that the method f exists in
class C, whether or not it is lexically defined (or overridden)
in it. We use the term “broad” for those semantics that in-
clude subclasses even when subtypes are not indicated, and
“narrow” for those that do not. The term “static” denotes
semantics that use the static type for call pointcuts, and
“dynamic” denotes those that use the dynamic type. It is
important to note that although the join points captured by
call and execution pointcuts are the same in the dynamic
semantics, their properties (e.g., this and target) are dif-
ferent.

Each of the four semantics is consistent and reasonable.
Perhaps the broad–dynamic semantics best reflects object-
oriented principles, in that a reference to a class includes
its subclasses, and the type that determines matching is the
dynamic rather than static type of the variable. However,
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Narrow Broad

jp ∈ pcc ⇐⇒ S = C ∧ f exists in C jp ∈ pcc ⇐⇒ S ⊆ C ∧ f exists in C

jp ∈ pce ⇐⇒ D = C ∧ f exists in C jp ∈ pce ⇐⇒ D ⊆ C ∧ f exists in C
Static

jp ∈ pc+
c ⇐⇒ S ⊆ C ∧ f exists in S jp ∈ pc+

c ⇐⇒ S ⊆ C ∧ f exists in S

jp ∈ pc+
e ⇐⇒ D ⊆ C ∧ f exists in D jp ∈ pc+

e ⇐⇒ D ⊆ C ∧ f exists in D

(a) (b)

jp ∈ pcc ⇐⇒ D = C ∧ f exists in C jp ∈ pcc ⇐⇒ D ⊆ C ∧ f exists in C

jp ∈ pce ⇐⇒ D = C ∧ f exists in C jp ∈ pce ⇐⇒ D ⊆ C ∧ f exists in C
Dynamic

jp ∈ pc+
c ⇐⇒ D ⊆ C ∧ f exists in D jp ∈ pc+

c ⇐⇒ D ⊆ C ∧ f exists in D

jp ∈ pc+
e ⇐⇒ D ⊆ C ∧ f exists in D jp ∈ pc+

e ⇐⇒ D ⊆ C ∧ f exists in D

(c) (d)

Figure 2: Four possible semantics: (a) narrow–static; (b) broad–static; (c) narrow–dynamic; (d) broad–
dynamic.

other semantics may be easier to use if they more closely
reflect the intent of AspectJ programmers.

4. EXPRESSIVE POWER
The five semantic models presented above (current AspectJ
semantics and four alternatives) are able to describe dif-
ferent sets of join points. However, AspectJ has additional
pointcut designators, which may be used to modify the mean-
ing of a pointcut. The question now is, what is the expressive
power of each of the given semantics definitions? Are there
meaningful sets of join points that can only be expressed by
some of them?

The answer is, of course, positive. For example, a narrow
semantics is easily expressed in the corresponding broad se-
mantics. The pointcut call(void C.f()), whose meaning
in the narrow–static semantics is “S = C ∧ f exists in C”
can be expressed in the broad–static semantics by the fol-
lowing pointcut:

call(void C.f()) && target(x) &&

if(x.getClass() == C.class)

However, the reverse is not true: in order to get a subset
relation in the narrow semantics, we must use the subtype
pattern modifier, but then there is no way to enforce the
requirement that the method already exists in class C. So
each broad semantics is strictly more expressive than the
corresponding narrow semantics.

The static and dynamic semantics are incomparable. The
dynamic semantics have no way of referring to the static
type (S), and the static semantics have no way of referring
to the dynamic type (D) in call pointcuts.

The semantics of execution(void C+.f()) in either of the
dynamic semantics is easily expressed in the current AspectJ
semantics by the expression

execution(void f()) && this(C).

The corresponding expression for call(void C+.f()) is

call(void f()) && target(C).

(Note that target in call pointcuts corresponds to this in
execution pointcuts.) In order to understand the semantics
of this expression under AspectJ, note that the call point-
cut call(void f()) without a class designator is equivalent
to call(Object+.f()), so when applying the semantics of
Figure 1, the class inclusion condition is trivial, and we ob-
tain simply that f exists in S. Together with the additional
requirement, target(C), we get that the semantics of the
above expression in AspectJ is

D ⊆ C ∧ f exists in S,

which is a little different from the dynamic semantics.

Under the current semantics, AspectJ has no way of requir-
ing that f exist in C without being lexically defined in it.
The alternative, going to the top of the inheritance hierar-
chy, then prevents the possibility of referring to the static
type. On the other hand, the new proposed semantics have
no way of requiring the lexical definition of a method in some
class. (Note that the within and withincode constructs are
too restrictive, because they do not capture overriding defi-
nitions. Also, these do not help with call pointcuts, because
they refer to the caller code rather than the method imple-
mentation.)

Of course, the fact that one semantics is more expressive
than another does not mean it is better. The question is
what programmers (and automatic tools) really need to say.
Furthermore, the cost of a complex semantics should be
weighed against the convenience of the language. Common
patterns of usage should be expressed concisely. It might
be better to adopt a simpler semantics for call and execu-
tion pointcuts, and add another construct to capture lexical
definitions, if this is indeed necessary.

5. CONCLUSIONS
The current semantics of AspectJ has some unintuitive as-
pects. We have presented a number of alternative semantics,
and compared their expressive power. The “right” semantics
for AspectJ needs to be worked out with the user commu-
nity, since it ultimately depends on how AspectJ is used in
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practice. We hope that this paper will start a fruitful and
constructive discussion on this question.
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ABSTRACT
AspectJ language was proposed to make cross-cutting con-
cerns clearly identifiable with special linguistic constructs
called aspects. In order to analyze the properties of an as-
pect one should consider the aspect itself and the part of
the system it affects. This part is just a slice of the entire
system and can be extracted by exploiting program slicing
algorithms. However, the expressive power of AspectJ con-
structs forces slicers to take into account big portions of
programs. We suggest that AspectJ should regulate more
formally the interaction among code units, by defining some
stricter boundaries around aspect influence, otherwise the
separation turns out to be just syntactic sugar.

1. INTRODUCTION
Aspect oriented languages claim to be able to provide lin-
guistic support to make cross-cutting concerns isolated in
proper code units. Currently the most successful aspect-
oriented language is probably AspectJ [17]. Designed and
implemented at Xerox PARC, it is aimed at managing tan-
gled concerns in Java programs.

AspectJ provides first-class entities called aspects that, in
a strong analogy to regular Java classes, can define frag-
ments of code called advices that will be woven at run time
before, after, or around interesting points (join points) in
the whole program. AspectJ showed up to be very conve-
nient to express cross-cutting concerns. A typical AspectJ
advice can be something like “before any call to the division
function, check if the divisor is not zero”; in a very econom-
ical way it is possible to affect all the divisions in the code,
even without knowing where these divisions will occur.

The problem we want to discuss in this paper is if the as-
pect oriented computation is actually separated from the
rest of the program by using the linguistic construct pro-

vided by AspectJ. In fact, on the one hand a “no division
by zero” aspect would be a isolated code unit. However, on
the other hand it might be difficult to figure out the behav-
ior of the whole system: every time the division function
is called, one has to consider that also the aspect oriented
code is executed. In order to asses the resulting complex-
ity of an aspect oriented program, we tried to apply well
known techniques of program comprehension, namely static
analysis and program slicing, to AspectJ.

In the rest of the paper we describe the results of our prelim-
inary experiments. The discussion is organized as follows:
in Section 2 we briefly introduce program slicing techniques,
in Section 3 we propose our approach to slice aspect oriented
programs, in Section 4 we examine the problems we found,
and finally in Section 5 we draw some conclusions.

2. ASPECT ORIENTED PROGRAM SLIC-
ING

Program slicing was proposed by Weiser [16] in the early
80’s. It is a technique aimed at extracting program ele-
ments related to a particular computation. A slice of a pro-
gram is the set of statements which affect a given point in
a executable program (slicing criterion). One can compute
statically the set of statements that potentially affect the
slicing criterion for every possible program execution (static
slicing), or one can consider the information about a partic-
ular execution of the program and derive a dynamic slice [3]
of a program.

Different slicing algorithms and different type of slice have
been proposed by many authors [14, 5]. Nowadays a widely
adopted approach to compute static program slicing consists
in re-formulating the problem as a reachability problem on
a particular graph representation of the program, which, for
inter-procedural slicing, is the so called system dependen-

cies graph (SDG) [7]. It is worth noting that, while pro-
ducing the minimal slice is known to be uncomputable, it is
possible to compute non-minimal slices with fairly efficient
algorithms.

Program slicing was initially studied for procedural pro-
gramming language but has then be extended to cope with
the object oriented paradigm by Larsen and Harrold [9, 10]
(specific solutions for Java language are proposed in [11, 8,
18]). Notwithstanding the rich theoretical work done in the
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field, the only publicly available tool we are aware of which
is able to compute a program slice of a Java program is
Bandera [4].

The application of program slicing techniques to aspect ori-
ented software is a novel research topic.

A preliminary work in this area has been done by Zhao [19].
He proposed an aspect-oriented SDG that is a further exten-
sion of the object-oriented SDG. The aspect-oriented system
dependence graph (ASDG) consists of an SDG for the tra-
ditional code enriched with a set of dependence graphs that
represent the aspect code. Graphs are connected through
special edges that model introductions and advice execu-
tion. He focused on AspectJ, however he did not consider
that aspect advices might apply to the aspect oriented code
itself.

We start analyzing the problem of slicing aspect oriented in
[2]. We initially proposed an approach based on the concept
of conjugated class of an aspect to allow the application
of existing object oriented algorithms. A conjugated class
contains all members and methods of the originating aspect
and it has a method for each advice. We did not propose a
complete solution of the problem, since we did not describe
how conjugated class should be connected to the rest of the
program and we were not able to cope with introductions
and other subtilties of AspectJ syntax. In the next Section,
we describe the new approach we think is most suitable to
implement a real tool able to slice a larger family of AspectJ
programs.

3. SLICING JAVA BYTE-CODE
Since AspectJ programs are eventually woven in Java byte-
code binaries, which are executed by a Java Virtual Machine,
in order to slice them two different approaches are possible:
(1) one can consider methods and advices as first-class en-
tities and try to extend SDGs to take them into account [2,
19, 13]; otherwise, (2) one can try to analyze the woven pro-
gram by applying existing techniques and map the results
on the original structure of the program.

The high-level approach is conceptually more appealing, since
it does not depend on the actual implementation of the As-
pectJ weaver, and, more fundamentally, it enables the use
of aspects as first-class entities in the resulting model. How-
ever, building a working tool is far from trivial, because it
needs to be able to manage a several AspectJ syntax details.
In particular, the AspectJ pointcut definition language al-
lows programmers to characterize pointcuts on a wide range
of abstraction levels:

• Lexical ( withincode, regular expression on identifiers,
etc. )

• Statically known interfaces ( void ∗.func(int), etc. )

• Run time events ( call, execution, set, if , etc. )

In order to build as quick as possible a tool for experimenting
with and slicing real world programs, we adopted a more
pragmatic strategy:

1. Compile classes and aspects using the AspectJ com-
piler.

2. Weave aspects into an executable program.

3. Apply existing slicing algorithms (we built upon the
Soot static analysis framework [15]) to the resulting
byte-code.

4. Obtain a slice, as a set of byte-code statements.

5. Map the results onto the original aspect oriented source
code.

Working at the level of Java byte-code could appear not ap-
propriate because any distinction among classes and aspects
may seem to be lost. The AspectJ weaver translates aspects
in classes, advices in methods, and join points in methods in-
vocation. Thanks to this approach, it is not difficult to map
every statements to its original aspect (or class). However,
a tool based on byte-code slicing has to be changed when
the AspectJ weaver modifies its implementation strategy.

Figure 1 shows an example that contains only a trivial class
C and an aspect A. The aspect introduces a public field into
the class and it defines an advice that print a value when
method2() is called. The resulting woven classes are shown on
the right hand side. The aspect has been translated in a class
and the advice in an equivalent method. A decompilation
of C.method() produces:

...

3 invokevirtual #17 <Method void method2()>

6 invokestatic #31 <Method A aspectOf()>

9 aload_1

10 invokevirtual #34

<Method void ajc$afterReturning$A$21(C)>

...

It is easy to identify the call to after-returning advice after
the invocation of method2().

Thus, by using dedicated libraries it is fairly easy to build
a tool for inspecting the Java byte-code, obtaining the call
graph, and performing the def-use analysis. It is then possi-
ble to implement existing algorithms to construct the system
dependence graph and to calculate static or dynamic slices.

4. ANALYSIS OF ASPECT INTERACTION
The final goal of our work is to be able to analysis interac-
tions among aspects. An aspect oriented program is com-
posed by weaving aspect and classes together. An aspect
is conceptually a posteriori with respect to the rest of a
system. When a programmer writes a new aspect, s/he as-
sumes that the rest of the system is working correctly and
s/he hopes to add the new cross-cutting functionality with-

out breaking the system. How one can check that the new
aspect does not interfere with existing aspects and classes?

Let a code unit be an aspect or a class of a system. We say
that an aspect A does not interfere with a code unit C if and
only if every interesting predicate on the state manipulated
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class C{
void method() {

method2();
}
void method2(){}
}

aspect A {
public int C.x = 10;
after(C c) returning:

target(c) &&
call(void C.method2())

{
System.out.println(c.x);

}
}

Compiled from C.java
public class C extends java.lang.Object {

public int x;
C();
void method();
void method2();

}

Compiled from A.java
public class A extends java.lang.Object {

public static final A ajc$perSingletonInstance ;
static {};
A();
public static void ajc$interFieldInit$A$C$x(C);
public static int ajc$interFieldGetDispatch$A$C$x(C);
public static void ajc$interFieldSetDispatch$A$C$x(C, int);
public void ajc$afterReturning$A$21(C);
public static A aspectOf();
public static boolean hasAspect();

}

Figure 1: A simple class before and after the weaving of an aspect

by C is not changed by the application of A. For example, if
an object x manipulated by C exists such that the predicate
x ≤ 0 must hold for the correctness of the system, A does
not interfere with C only if C woven with A preserves x ≤ 0.

In [2] we proposed the following sufficient condition to check
non-interference between aspects:

Let A1 and A2 be two aspects and S1 and S2

the corresponding backward and forward slices
obtained by using the pointcuts declarations de-
fined in A1 and A2 as slicing criteria. A1 does
not interfere with A2 if

S1 ∩ S2 = ∅

This condition may be too strong: in fact, two aspects may
not interfere also if their slices share some statements.

A weaker and more practical condition is

Let A1 and A2 be two aspects and S1 and S2

the corresponding backward slices obtained by
using all the statements defined in A1 and A2 as
slicing criteria. A1 does not interfere with A2 if

A1 ∩ S2 = ∅

S2 contains all statements that affect the slicing criterion
(which contain all the statements of A2). It is worth noting
that the interference relation is not symmetric. In fact, it is
possible that A1 interferes with A2 but A2 does not interfere
with A1. For example, if A2 is a tracing aspect and A1 is an
aspect that change the order in which procedures are called,
the application of A2 does not change an existing A1, but
the application of A1 onto A2 change its behavior.

Moreover, modifications in the type hierarchy can be diffi-
cult to deal with. Consider the following program:

class ClassA{
void method() {}
public static void main(String[] args) {
ClassA a = new ClassA();
a.method();
}

}

class ClassB {}

aspect A1 {
declare parents: ClassA extends ClassB;

}

aspect A2 {
before(): call(∗ ClassB+.∗()) {
// ....
}

}

If we apply the aspect A2 but not the aspect A1 the ad-
vice is never executed. When we add to the program the
aspect A1 the advice is executed before the invocation of
ClassA.method(). By using declare parents: we forced the
members of ClassB to become part of ClassA also.

4.1 On the Precision of Slicing
A well-known result asserts that, in general, the problem of
finding the minimum static slice is incomputable [16]. This
means that when we compute a slice, the result may contains
some unnecessary nodes. This is not a problem in most cases
but sometime can lead to an incorrect result.

For interference analysis, Figure 2(a) shows how a non-
minimum slice might cause a decision error when we analyze
the interference between aspects. The result is always cor-
rect if the algorithm does not find any intersection between
the two sets, but could be wrong if an intersection occurs.

Another problem that could have a significant effect on slice
precision is the resolution of aliases. An alias occurs when
two or more different variables refer to the same memory
location. The computation of slices relays on the construc-
tion of the SDG, that in turn requires to calculate control
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Minimum Slice

Aspect B
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(a)

Aspect A

Aspect B

Minimum Slice

Wrong Slice

(b)

Figure 2: Incorrect results in presence of non-correct slice

and data dependencies among every program statement. In
presence of aliasing the exact computation of data depen-
dency becomes a very difficult task [12]. In order to mitigate
the impact of aliases it is necessary to adopt a generalization
of the notion of data dependence [1]. If the algorithm does
not correctly take into consideration all may-alias variables
(note that this is possible only assuming a closed world hy-
pothesis), the resulting slice may omit some required state-
ment. Thus, in general we might find a slice that contains
statements that are unnecessary (since we cannot compute
the minimum slice) and omits others (since pragmatic issues
could force us to use approximate algorithms). Figure 2(b)
shows an example in which the slice identifies an incorrect
interference with the aspect A and does not identify the cor-
rect interference with the aspect B. Therefore, in order to
keep significant our non-interference criterion, we have to
adopt a conservative approach that guarantees that every
possible may-alias are take in consideration. This resolve
the problem of false negative (when the algorithm does not
find an existing interference) but it tends to make the slice
bigger, increasing the number of false positive (when the
algorithm finds a false interference).

Moreover, some AspectJ join points are not statically deter-
minable. AspectJ provides some primitives to declare point-
cuts that discriminates based on the dynamic context (i.e.
cflow, cflowbelow, if , this, . . . ). A conservative approach
requires to consider every possible execution trace, but this
may further increase the number of false-positive response.

Adding together all the previous considerations, the final
precision of a hypothetic tool that analyze aspect interac-
tion using static slicing techniques may become quite low. In
general, program slicing can be used to automatically build
an abstraction (i.e., a simplified model) of a program. Often
the goal is to reduce the dimension of a program in order
to reduce the complexity of algorithms that are exponential
in the number of program statements, for example in order
to be able to apply a model checking tool [4]. In this case,
the size of slice is a minor issue, because every discarded
statement is a benefit anyway. However, when one is inter-

ested in deciding if a given statement belongs to a slice, the
dimension of the slice becomes a major issue, because the
accuracy of the decision depends on it.

5. CONCLUSIONS AND FUTURE WORK
In object oriented programs one can define composition in-

variants which are properties of classes that are preserved
in every possible composition of objects. Software engineers
leverage on this in order to reason on the properties of whole
object oriented systems without considering all the details.

Unfortunately, in general no composition invariants are guar-
anteed to hold anymore, when AspectJ is in use. We tried
to derive the slice of a system affected by an aspect, but
the loosely regulated expressiveness of AspectJ constructs
causes a turbulent ripple effect that in general forces to take
into account most of the statements of a system. More-
over, a whole system analysis is needed, because arbitrary
introductions and modifications of type hierarchy require a
closed world assumption to be resolvable. This is in part
due to the obliviousness that Filman identifies as an intrin-
sic characteristic of aspect orientation [6], but it is amplified
by the undisciplined power of AspectJ constructs. The ulti-
mate goal of aspect-oriented programming is the separation
of otherwise cross-cutting concerns. However, these benefits
are lost if the comprehension of aspect properties entails the
analysis of the whole program. Instead, if we would be able
to define some boundaries around aspect influence, the sep-
aration turns out to be not just syntactic sugar but a true
aid in dealing with program complexity.

Currently we are improving our tool for slicing Java byte-
code that we want to apply to AspectJ code. We are inter-
ested in evaluating the actual impact of AspectJ constructs
in real world aspect oriented system. Our final goal is to
define patterns of use and/or new AspectJ constructs to im-
prove the comprehensibility and maintainability of AspectJ
programs.
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ABSTRACT 
Aspect-oriented programming constructs complicate reasoning 
about program behavior.  Our position is that we can reduce key 
elements of aspect programming to implicit invocation (II) and 
then use existing work on reasoning about II to reason formally 
about aspect programs.  We map aspect-oriented programs to 
equivalent programs with join points and advice replaced by event 
notifications and observers; use existing techniques for reasoning 
about programs that use implicit invocation; and then interpret the 
results in the context of the original aspect-oriented program.  

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features 

 

abstract data types, polymorphism, control structures.  

General Terms 
Measurement, Design, Experimentation, Languages, Verification. 

Keywords 
AOP, Implicit Invocation, Reasoning, Model Checking 

1. INTRODUCTION 
The ability of aspect-oriented [15][16] approaches to enable 
modular representation of crosscutting concern by implicit 
behavioral modifications at join points specified by predicates on 
program elements is a bane for reasoning. In the presence of 
aspects, the behavior of a module at runtime can not be 
determined by just looking at the module code. One is required to 
understand the possible effects of each aspect in the system. The 
actual behavior is determined by composing the base and aspect 
behaviors. It is widely understood that reasoning about AOP 
remains a challenge [5]. Our position is that a reduction from the 
space of aspect-oriented programs to the space of programs using 
implicit invocation has the potential to enable formal reasoning 
about properties of aspect-oriented programs using existing 
methods for reasoning about implicit invocation systems. 

The problem is well known. Several approaches have been 
proposed to enable automated reasoning about aspect-oriented 
programs. Some of these approaches try to apply model checking 
to verify properties of aspect-oriented programs [3][19][24], while 
others try to reduce aspect-oriented programming model to 
simpler models which can be easier to reason about [1][5][6][7].  

Our contribution is in seeing how to exploit the relationship 
between join points and events in implicit invocation systems 
[12]. In such systems, modules expose events, with which other 
modules register procedures.  Registered procedures are invoked 
when modules announce events, extending the modules

 

behaviors implicitly. Implicit invocation is widely used for 
complex system design.  Sullivan and Notkin [23] showed how 
implicit invocation enables separation of integration concerns to 
ease the design and evolution of integrated systems and how it 
poses AOP-like problems in reasoning about II systems. 

The problem of reasoning about implicit invocation (II) has 
generated significant interest over the last decade. In particular, 
Garlan et al. [11] proposed an event model to describe the 
behavior of the II systems. They then use model checker to check 
property assertions on this event model.  Bradbury et al [4] further 
refined Garlan et al. s approach and evaluated their approach in 
real world software systems, demonstrating the feasibility of 
applying formal reasoning techniques to real II systems. 

Our position is that reducing the join point and advice model of 
aspect programming to II is possible, as shown by Eos [18], and 
that this reduction permits formal reasoning techniques for II 
systems to be applied to aspect programs. We first map an aspect-
oriented program that uses join point and advice to a semantically 
equivalent implicit invocation program; we reason about it using 
existing techniques; we then map the results from the II space 
back to the AOP space. In our earlier work [18], we showed that 
the implicit invocation space can be mapped to the aspect space. 
(In particular, support for instance-level aspects and first class 
aspect instances enables a mapping of aspect programs to 
mediator-based design structures [21][23], which use implicit 
invocation extensively to separate integration concerns.) In this 
work, we make the reduction concrete and present preliminary 
evidence supporting our hypothesis.  

In the rest of this paper, we will be using an example system from 
our previous work [18], [22] to illustrate various approaches. The 
example is extremely simple, but it is known to capture essential 
issues in a way that scales up. Our example system consists of 
two objects b1 and b2, instances of the Bit type. A Bit can be Set 
and Cleared by Set and Clear and its current state can be read by 
the Get method. In our example system b1 and b2 are required to 
work together as follows: if any client Sets (respectively Clears) 
either Bit, the other must be Set (Cleared). In other words, the 
behaviors of the Bits have to be integrated by a behavioral 
relationship, which we will call Equality, which maintains a bit-
equality constraint. 
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Figure 1. A simple example: Bit 

The rest of this paper is organized as follows. Section 2 describes 
aspect oriented programming and the challenges in reasoning 
about it. Section 3 describes the effort in reasoning about implicit 
invocation space. Section 4 describes our approach. Section 5 
presents related work. Section 6 concludes. 

2. ASPECT-ORIENTED PROGRAMMING 
Aspect-oriented programming constructs are meant to enable the 
modular representation of otherwise scattered and tangled code. 
The key mechanisms of aspect-oriented programming in the 
tradition of AspectJ [2] are join points, pointcut expressions, 
advice code, and aspect modules. A join point is a point in the 
execution of a program (such as just before a method body 
executes) exposed by the language design for behavioral 
modification by aspect modules. The join points exposed by 
current AspectJ-like languages include method calls and 
execution, field get and set operations, exceptions, and object 
initialization. A pointcut is an expression a predicate that 
serves to select a subset of program join points.  Advice is code 
that is effectively to be executed at each join point selected by a 
pointcut.  An aspect is a module that aggregates pointcut 
expressions and associated advice code along with other 
information typically found in class definitions. Weaving is the 
process by which advice code is composed with the base program 
code at selected join points to yield an executable. 

Eos [13] [18] is an AspectJ-like extension of C# [17] that supports 
first-class aspect instances and instance-level advising. By first 
class aspect instance we mean that the aspects are class-like 
constructs that can be instantiated, passed as arguments, returned 
as value, etc. By instance-level advising we mean ability to select 
specific instances of a type that will be affected by aspect advice.  
(In AspectJ, aspects advise types and thus all instances.)  The 
code for the Bit example in Eos is as follows: 

1     public class Bit {  
2       bool value; 
3       public Bit() { value = false; } 
4       public void Set() { value = true; }  
5       public bool Get (){ return value; }  
6       public void Clear() {value= false; } 
7      } 

The following code implements Equality as an instance-level 
aspect: 

1  public instancelevel aspect Equality  {  
2    Bit b1, b2; 
3    bool busy; 
4    public Equality(Bit b1, Bit b2)   { 
5    addObject(b1);  addObject(b2); 
6    this.b1 = b1;    this.b2 = b2; 
7    busy = false; 
8   } 
9   after():execution(public void Bit.Set ())   { 
10       if(!busy) { 
11    busy = true; 
12    Bit m = (Bit) thisJoinPoint.getTarget(); 
13    if(b == m1)b2.Set(); else b1.Set(); 
14    busy = false; 
15    } 
16   } 
17   after():execution(public void Bit.Clear ())   { 
18       if(!busy) { 
19    busy = true; 

20    Bit b = (Bit) thisJoinPoint.getTarget(); 
21    if(b == b1)b2.Set(); else b1.Set(); 
22    busy = false; 
23    } 
24   } 
25  } 

Figure 2. Eos code for Bit example 

The purpose of the aspect is to ensure that b1 and b2 always have 
the same state at quiescent points (i.e., except during execution of 
a Set operation). We thus need to verify that the aspect module 
behaves in such a way. It is, however, generally difficult to reason 
about AOP for the following reasons: 

1. The primitive constructs in aspect-oriented languages need to 
be rigorously defined.  

2. It could be very hard to reason about an aspect program 
automatically. There has been a fair amount of research on 
the possibility of applying model checking on reasoning 
about AOP, although there is hardly a working example. 

3. Since the behavioral modifications by aspects can cut across 
the entire code base, it s very hard for us to understand an 
aspect-oriented program in a modular way. That is, we can 
no longer analyze modules separately then combine results. 
An aspect can influence the semantics of the whole system. 
This issue as the most difficult part of reasoning about AOP.  

3. IMPLICIT INVOCATION  
Implicit invocation [23] [12] is a mechanism for managing how 
invocation relations are represented as names relations. If 
component A needs to invoke component B at a certain point, A 
can do so either by explicitly calling B, in which case A names B,  
or B can register with A to be invoked implicitly by event 
announcement, which case, B names A.  Because the names 
relation is a key determinant of compile, link, and runtime 
dependencies, having means to structure it properly is important.  
Implicit invocation and join points and advice provide such 
means. 

II is also known as publish-subscribe system, since generally it is 
implemented in such a way. A component (the subscriber) 
registers interest in particular events that the other component (the 
publisher) announces. The II mechanism then guarantees the 
invocation of subscriber. The publisher is not aware of the 
existence of the subscribers. II has been used widely in system-
level development and message-passing applications. For 
example, a user can define and register a callback procedure that 
is invoked when a particular signal is raised by the OS kernel. 

Such systems make modular reasoning harder, since we need to 
decouple the verification of one component from the verification 
of the rest of system that communicate with the given component 
by event bindings. Dingel et al. [8] proposed a formal model for II 
systems and proposed a three-phase reasoning methodology: 
decomposition, local reasoning and global reasoning. By the 
decomposition process, we can formalize the event/handler 
semantics and model the system, the environment and the event 
dispatch mechanism in a modular way. Applying the three-phase 
reasoning then can be expected to achieve the effect of modular 
reasoning about the whole system. 

It is, however, often not easy to decompose the system into 
separate groups and prove their independence. An alternative 
approach proposed by Garlan et al. [11] uses model checking 
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instead of formal modular reasoning. Application of model 
checking to software encounters two problems. First, an 
appropriate state model for the system being checked needs to be 
created. This state model of a reasonable size system has a huge 
state space. To check this huge state space using a model checker 
is time consuming, if not infeasible. Second problem is thus to 
find the means to reduce this state space into manageable size so 
that it can be supplied as an input to the model checker.  

The architecture of an II system in [11] models the following 
features: 

- Components: functional objects with well-defined interfaces 

- Events: the primary communication method between 
components 

- Event-Method Bindings: the correspondence between 
announced events and the methods that are invoked in 
response as event handlers 

- Event Delivery Policy: rules about event announcement and 
delivery 

- Shared State: another communication method between 
elements of the II system 

- Concurrency Model: determines if the system has a single 
thread or multiple threads of control 

 

Figure 3. II system architecture 

The system structure is in Figure 3. Besides those functional 
components, the dispatcher and policy modules are another 
important part of the approach. They are responsible for event 
binding and dispatching. Also the environment represents external 
elements that could affect the system.  

The run time state model of an II system has to model the 
following in addition: 

- Event announcement by the system components 

- Storage of event announcements before dispatching 

- Event delivery to the system components 

- Invocation of methods bound to the delivered events 

- Invocation acknowledgement 

For the Bit example, b1 and b2 are considered separate 
components. Calling the state change methods Set/Clear on the 
component b1 results in the component announcing an event 
representing the change in its state, which is then captured by the 
dispatcher. The dispatcher will consult the policy module to 
determine what event will be delivered to which component 
without causing a propagation cycle. The state change in b2 will 
also result in announcement of an event representing its state 
change and the same actions as above. Figure 4 depicts the 
simplest II state model that models the Bit example, in which we 
omit the environment module and the details of b2 s event 
exchange since it s the same with b1. For each event of interest, a 
notify message is delivered from the component to the dispatcher, 
which results in the delivery of an invoke message from the 
dispatcher to the other component.  

 

Figure 4. II run time state model for the Bit example 

To reason about the system, we are interested in verifying some 
properties of the system. These properties are expressed as 
assertions. The Equality between b1 and b2 will be represented as 
the following assertion: 

Equality: 
assert(F (b1.state = b2.state)); 

F , a logical notation of LTL, represents eventually . The SMV 
model checker takes these assertions and the state machine 
constructed before as input and produces validity of these 
assertions as output.  

Bradbury et al. [4] extended Garlan et al. s model to support 
dynamic event model. They use XML to represent the event 
model which is later translated into SMV input. They have 
applied their method on real world implicit invocation systems 
such as Active Badge Location System (ABLS) [26] and 
Unmanned Vehicle Control System (UVCS) [20] demonstrating 
the capabilities of their approach.  

4. Reduction from AOP to II 
We would like to assure that the aspect performs its intended 
behavioral modifications without producing any undesirable side 
effect. Existing approaches can be used to reason about the plain 
object-oriented systems. Our approach therefore focuses on 
reasoning about aspects, the modular representation of 
crosscutting concerns, and its interaction with the component part. 
To enable this reasoning, we propose to reduce an element of 
aspect-oriented programming space (an aspect-oriented program) 

33



 
to an element in implicit invocation space (an implicit invocation 
based program). We can then reason about the element in the 
implicit invocation space using the II reasoning techniques 
described in the last section. The reasoning results will then be 
reduced back from II space to the AOP space thus effectively 
enabling reasoning about the aspect-oriented program.  

First, let us revisit the concepts of aspect-oriented programming 
as embodied in asymmetric languages such as AspectJ. A join 
point is a point in the execution of a program (such as just before 
a method body executes) exposed by the language design for 
behavioral modification by aspect modules. The join points 
exposed by current AspectJ-like languages include method calls 
and execution, field get and set operations, exceptions, and object 
initialization. A pointcut is an expression a predicate that 
serves to select a subset of program join points. A pointcut is then 
defined to be a predicate expression over a set of join points.  

We observe that every join point can be viewed as a set of 
semantic events. These events will be announced when the 
control hits the join point during program execution. AspectJ-like 
languages can advise a join point in three different ways: before, 
after and around. The before and after advice are semantically 
clean, however, the around advice is a bit more involved. To keep 
the model simple we will not be discussing around advices. To 
differentiate between these ways of advising we map each join 
point to a 2-tuple of events: <before the join point, after the join 
point>. We treat each of these elements differently in the 
corresponding event model. An advice before a join point is 
mapped to the event before a join point and similarly for after 
advice.  

A pointcut selects a subset of program join points. Each pointcut 
is mapped to an enumeration of a set of 2-tuple of events where 
each 2-tuple in the set corresponds to a join point in the subset of 
program join points selected by the pointcut. A named pointcut is 
mapped to a named set of 2-tuples. The subset of join points that 
are matched by the pointcut expressions that rely on run-time 
information cannot be obtained statically. The control flow 
(cflow) and control flow below (cflowbelow) are examples of 
some of these pointcuts. These pointcuts cannot be mapped 
statically to a simple event model like the one used by Garlan 
[11]. In summary, the mapping of join points and pointcuts to II 
concepts can be shown below: 

f: {Joinpoint} -> {Event} X {Event} 

g: {Pointcut} -> {Predicate} X {A set of events} 

A pointcut can be denoted by a pair <predicate, {joinpoint}>, 
which means a predicate expression over a set of joinpoints.  

For example, the mapping applied to a joinpoint a is: 

f(a) = <after_a, before_a> 

in which after_a and before_a are two events. 

The mapping applied to a pointcut <p, {a, b, c}> is: 

g(<p, {a, b, c}>) = <g(p), {f(a), f(b), f(c)}> 

in which p is a predicate over the set of joinpoints a, b, c, while 
g(p) denotes the mapped predicate over the set of events. 

Events picked out for our Bit example are shown below: 

Events exposed by the Bit component =  
{ [before_Bit.Bit, after_Bit.Bit], 

      [before_Bit.Set, after_Bit.Set],  
[before_Bit.Clear, after_Bit.Clear] } 

Events picked out by the pointcut expression execution(public 
void Bit.Set ())

 
= {[before_Bit.Set, after_Bit.Set]} 

Events picked out by the pointcut expression execution(public 
void Bit.Clear ())

 
= {[before_Bit.Clear, after_Bit.Clear]} 

The mapping of pointcut after(): execution(Bit.Set()) is: 

g(<after execution, {Bit.Set()}> = 

<only after_* events, {<before_Bit.Set, after_Bit.Set>}> 

The mapping of pointcut after(): execution(Bit.Clear()) is: 

g(<after execution, {Bit.Clear()}>) = 

<only after_* events, {<before_Bit.Clear, after_Bit.Clear>}> 

An advice is mapped to an event handler. The role of an advice, 
with respect to the advised pointcut, is the same as the event 
handler with respect to the captured event. In the Bit example, 
there are two event handlers in the Equality aspect, one 
corresponds to the after():execution(Bit.Set()) advice, the other 
corresponds to the after():execution(Bit.Clear()) advice. 

Third, there should be a dispatcher in the mapped system, as well 
as a dispatch policy module. The dispatcher is responsible for 
event storage, event binding, event delivery and interacting with 
the dispatch policy module. The policy module implements event 
delivery policy. In the context of mapping AOP, it should be able 
to choose event handlers according to a predicate expression over 
a set of events, just like the pointcut definition.  

As for the Bit example, the aspect Equality actually can be 
mapped to part of the policy module in Figure 3. When the 
dispatcher receives an event, it will inquire the policy module to 
decide the actions it will take. In this case, the Equality policy 
will determine which message (Set or Clear) to deliver to which 
component.  

The assertions we can check over this II system like assert(F 
(b1.state = b2.state)) is now mapped back to the behavior 
constraint between the two objects b1 and b2 in the Eos program 
(Figure 2). This constraint is therefore checked by the reduction 
process. Thus, we demonstrate a simple example of our approach 
to use II reasoning technique to reason about an aspect-oriented 
program s behavior. 

5. RELATED WORK 
Dingel et al. [8], Garlan et al. [11], and Bradbury et al. s [4] work  
on model checking implicit invocation systems is closely related 
to ours and is, in fact, used as a subroutine. They proposed an 
event model to describe the behavior of the II systems. Bradbury 
et al. s approach translates this model written in XML format to 
the SMV language and applies the SMV model checker. These 
approaches are applicable to II systems, but not directly to aspect-
oriented programs. Our approach supplements these approaches 
by providing a reduction from the AOP space to II space, thus 
enabling the use of these approaches in the AOP space.  
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Mapping AOP to event model is not a completely new idea. 
Filman and Havelund [10] briefly proposed an event language for 
aspects. The event language has primitive events and a set of 
relationships between events, which include abstracted temporal 
relationships, abstract temporal quantifiers, concrete temporal 
relationship referring to clock time, cardinality relationships and 
aggregation relationships for describing sets of events. Walker 
and Murphy [25] employed their implicit context concept to map 
join points to ordered events. By such mapping, they showed a 
close relationship between AOP and implicit context. Our work 
makes the reduction from AOP to II explicit.  

As for reasoning about AOP, there has been significant research 
on this topic. Ubayashi et al. [24] claimed to apply model 
checking using aspects. They write an aspect for every property to 
check, and then weave these aspects and the source program into 
a new program and then execute this weaved program. This 
approach works only for plain java programs. It can only check 
properties that can be represented by aspects. It also uses a 
dynamic approach, so presence of property violation can only be 
discovered if that execution path is taken. 

Blair and Monga [3] view every pointcut declaration as a slicing 
criterion that can be used to compute an associated slice. They 
then envision that this sliced program could be fed into Bandera 
model checker, but the expressiveness of aspects is difficult to be 
captured by any slicing technique.  

Instead of reasoning about the entire program, Clifton and 
Leavens [5][6] give two concepts for AspectJ: Observer 
(Spectator) and Assistant. Assistants are aspects that could change 
the behavior of other parts, while observers do not. They also 
propose an accept notation to be added into AspectJ, to make 
aspect invocation explicit, for facilitating modular reasoning. By 
categorizing aspects into observers and assistants, and explicitly 
exposing the join point, they expect to be able to reason AOP in a 
modular way, however, it remains unclear how can we 
differentiate assistants from observers in real programs. The 
accept notation compromises the obliviousness [9] properties of 
aspect-oriented programs. Our approach on the other hand, does 
not impose any restriction on the language model of aspect-
oriented programming languages. 

Devereux [7] tries to transfer aspect programs to alternating-time 
logic. Then program properties can be expressed by assertions in 
alternating-time logic. It supports two concepts, imposition and 
preservation similar to assistant and observer. The development of 
a reduction similar to ours from aspect-oriented space to 
alternative-time logic is possible; however, the lack of tool 
support for automated reasoning in alternating-time logic makes 
the reduction less attractive. 

Recently there has been increasing research interests on 
exploiting type systems to enable reasoning about aspect-oriented 
programs. Aldrich [1] presented a simple aspect language called 
TinyAspect. Module sealing and explicit declaration of exported 
join points is the core of TinyAspect.  The idea is to enforce 
abstraction by prohibiting clients, viz., aspects, from exploiting 
implementation details, such as calls from within a component to 
its own public methods. There is a set of type inference rules for 
TinyAspect by which one can reason about the behavior of 
aspects.  Type checking in the TinyAspect model, however, does 
not allow one to reason about the kinds of behavioral properties 
that we address.   

6. CONCLUSION 
Aspect-oriented programming imposes many new challenges on 
program understanding and reasoning. In fact, how to reason 
about AOP in a modular way has been an open question for years. 
In this paper, we reduce the join point and pointcut mechanisms 
of AOP to the events of implicit invocation systems, and we show 
that this reduction has the potential to improve our ability to 
reason formally about the aspect program behavior. Forthcoming 
work will formalize the reduction, develop and evaluate the 
approach, and investigate the possibility of automated tool 
support for such reductions and formal property verifications. 
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ABSTRACT
In order to provide better alignment between conceptual
requirements and aspect-oriented implementations, formal
specification methods should enable the encapsulation of
logical abstractions of systems. In this paper we argue that
horizontal architectures, consisting of such logical abstrac-
tions, can provide better separation of concerns over con-
ventional ones while supporting incremental development for
more common units of modularity such as classes. We base
our arguments on our experiences with the DisCo method,
where logical abstractions are composed using the superpo-
sition principle.

1. INTRODUCTION
Post-object programming (POP) mechanisms, like those de-
veloped in aspect-oriented programming [6], provide means
to modularize crosscutting concerns, which are in some sense
orthogonal to conventional modularity. The background of
this paper is in the observation that the same goal has been
pursued also at the level of formal specifications of reactive
systems, and that the results of this research are relevant for
the theoretical understanding of POP-related architectures
and of the associated specification and design methods.

Unlike conventional software modules, units of modularity
that are suited for a structured description of the intended
logical meaning of a system can be understood as aspects
in the sense of aspect-oriented programming. We call such
units horizontal in contrast to conventional vertical units of
modularity, such as classes and processes. While the vertical
dimension remains dominant because of the available imple-
mentation techniques, the horizontal dimension can provide
better separation of concerns over the vertical one improv-
ing, for example, traceability of requirements.

In this paper, our experiences with the DisCo method are
used as the basis for discussion. The rest of the paper is
structured as follows. First, in Section 2, we present the idea
of structuring specifications using horizontal units capturing
logical rather than structural abstractions of the system.
In Section 3 the DisCo method is presented which utilizes
such components as primary units of modularity. Section 4
concludes the paper by discussing the approach in the light
of related work.

2. TWO DIMENSIONS OF SOFTWARE AR-
CHITECTURE

Describing an architecture means construction of an ab-
stract model that exhibits certain kinds of intended proper-
ties. In the following we consider operational models, which
formalize executions as state sequences, as illustrated in Fig-
ure 1, where all variables in the model have unique values in
each state si. In algorithmic models these state sequences
are finite, whereas in reactive models they are nonterminat-
ing, in general. Message sequence charts are a well-known
operational formalism for describing state sequences where
states si consist only of the control points of the communi-
cating processes.

2.1 Vertical Units
The algorithmic meaning of software, as formalized by Dijk-
stra [4], has the desirable property that it can be composed
in a natural manner from the meanings of the components
in a conventional architecture. To see what this means in
terms of executions in operational models, consider state
sequences that implement a required predicate transforma-
tion. Independently of the design principles applied, a con-
ventional architecture imposes a “vertical” slicing on these
sequences, so that each unit is responsible for certain subse-
quences of states. This is illustrated in Figure 2, where the
satisfaction of the precondition-postcondition pair (P, Q) for
the whole sequence relies on the assumption that a subse-
quence V , generated by an architectural unit, satisfies its
precondition-postcondition pair (PV , QV ).

More generally, an architecture that consists of conventional
units imposes a nested structure of such vertical slices on
each state sequence. In the generation of these sequences,
the two basic operations between architectural units can
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s0 s1 s2 · · ·

Figure 1: Execution as a state sequence.
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Figure 2: A vertical slice V in an execution.

be characterized as sequential composition and invocation.
The former concatenates state sequences generated by com-
ponent units; the latter embeds in longer sequences some
state sequences that are generated by a component unit. In
both cases, the resulting state sequences have subsequences
for which the components are responsible. In current soft-
ware engineering approaches, this view has been adopted as
the basis for designing behaviors of object-oriented systems,
leading the focus to interface operations that are to be in-
voked, and to the associated local precondition-postcondition
pairs.

The architectural dimension represented by this kind of mod-
ularity will be called vertical in the following.

2.2 Horizontal Units
The meaning of a system can also be modeled by how the
values of its variables, denoted by set X, behave in non-
terminating state sequences. In order to have modularity
that is natural for such a reactive meaning, the meanings of
the components must be of the same form. In other words,
each component must also generate nonterminating state se-
quences, but the associated set of variables can be a subset
of X. An architecture of reactive units therefore imposes a
“horizontal” slicing of state sequences, so that each unit is
responsible for some subset XH of variables in all states si,
as illustrated in Figure 3.

In the generation of state sequences, only one basic opera-
tion is needed. Superposition uses state sequences that are
generated by a horizontal slice embedding them in sequences
that involve a larger set of variables. The state sequences of
the resulting vertical architecture have projections for which
the horizontal components are responsible. Properties of
horizontal slices then emphasize collaboration between dif-
ferent vertical units, and the relationships between their in-
ternal states.

The two dimensions of architecture are in some sense dual
to each other. On the one hand, from the viewpoint of
vertical architecture, the behaviors generated by horizontal
units represent crosscutting concerns. From the horizontal
viewpoint, on the other hand, vertical units emerge incre-
mentally.

2.3 Architecting Horizontal Abstractions
To illustrate the nature of horizontal units, consider a sim-
ple modeling example of an idealized doctors’ office, where

s0 s1 · · · si · · ·
XH XH XHH

Figure 3: A horizontal slice H in an execution.

ill patients are healed by doctors.1 The natural vertical
units in such a model would include patients, doctors and
receptionists. Horizontal units, on the other hand, would
model their cooperation as specific projections of the total
system, and the whole specification could be built incremen-
tally from these.

The specification process can start with a trivial model of
the simple aspect that people get ill, and ill patients even-
tually get well. The “illness bits” of the patients are the
only variables that are needed in this horizontal unit. Next,
this unit can be embedded in a larger model where a pa-
tient gets well only when healed by a doctor. This extended
model has events where a doctor starts inspecting a patient,
and participation of a doctor is also added to the events
where a patient gets well. Finally, a further superposition
step can add the aspect that also receptionists are needed
in the model, to organize patients to meet doctors, and to
make sure that they pay their bills. This aspect is truly
crosscutting in the sense that it affects all the vertical units,
i.e., patients, doctors and receptionists.

Each unit in this kind of a horizontal architecture is an
abstraction of the meaning of the total system. The first
horizontal unit in this example is an abstraction where all
other behavioral properties have been abstracted away ex-
cept those that concern the “illness bits” of patients. In
terms of Temporal Logic of Actions (TLA) [18], (the mean-
ing of) the total system always implies (the meaning of) each
horizontal unit in it. As for variables, each component in the
horizontal structure focuses on some variables that will be-
come “secrets” encapsulated in the vertical components in
an eventual implementation. This can be related with the
observation of [19], where such secrets are considered more
important than the interfaces associated with them in early
phases of design.

This gives a formal basis for specifying a reactive system
– i.e., for expressing its intended meaning – incrementally
in terms of operational abstractions that can be formally
reasoned about. Since it is unrealistic to formulate any
complex specification in one piece, this is a major advan-
tage for using horizontal architectures in the specification
process. A classical example of using horizontal slices is the
separation of correctness and termination detection in a dis-
tributed computation [5]. This is also the earliest known use
of superposition in the literature – its close relationship with
aspect-orientation was first reported in [13].

For comparison, consider how stepwise refinement proceeds

1This is an outline of a simplified version of an example that

was used to illustrate the ideas of DisCo in [16].
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with vertical architectural units. In terms of executions,
each operational abstraction generates state sequences that
lead from an initial state to a final state, so that the required
precondition-postcondition pairs are satisfied. At the high-
est level of abstraction there may be only one state change,
and each refinement step replaces some state changes by
state sequences that are generated by more refined architec-
tural units. This leads to a design where the early focus is
on interfaces and their use, whereas the “secrets” inside the
vertical components may become available only towards the
end of the design, when the level of implementable interface
operations is achieved.

Due to the above, the abstractions that a vertical archi-
tecture provides are not abstractions of the meaning: the
complete meaning is assumed to be available already at the
highest level, and it remains the same throughout the de-
sign process. Instead, at each level of refinement, a vertical
architecture gives an abstraction of the structure of an im-
plementable operational model.

3. EXPERIENCES WITH DISCO
The above views have been stimulated by the experiences
gained with the DisCo2 method [10, 23]. DisCo is a formal
specification method for reactive system, whose semantics
are in TLA [18].

3.1 Horizontal Architectures in DisCo
In DisCo, the horizontal dimension, as discussed above, is
used as the primary dimension for modularity. The internal
structure of horizontal units consists of partial classes that
reflect the vertical dimension. For instance, each of the at-
tributes of a class can be introduced in different horizontal
units.

Behavioral modeling is DisCo’s bread and butter. The de-
sign usually advances so that first the high-level behaviors
are included in the model. Based on this abstract behav-
ioral model it is then possible to include more details, even
to the level where direct mapping to available implementa-
tion techniques becomes an option [17].

In more detail, horizontal components correspond to super-
position steps referred to as layers. Formally, each layer is
a mapping from a more abstract vertical architecture to a
more detailed one. As the design decisions are encapsulated
inside the layers, they become first-class design elements.
Because layers represent logical, rather than structural as-
pects of the system, they serve in capturing concepts of the
problem domain.

Ideally, each layer contains only those details that pertain to
a particular logical aspect. Thus, better alignment between
the requirements and design can be achieved. In cases where
a layered structure is aligned with an aspect-oriented imple-
mentation [1], this results in improved traceability concern-
ing the entire design flow.

Dependencies between layers arise if, for instance, a class is
defined in one layer and its attribute in another layer. In
this case the latter is said to depend on the former. These

2Acronym for Distributed Co-operation.
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dependency
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Receptionists coordinate patients and doctors 

Patients get ill and get well
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<<Layer>>

No healing without seeing a doctor

<<Layer>>

architecture

refines

refines

vertical architecture

vertical architecture

vertical architecture

Figure 4: Horizontal architecture consisting of lay-

ers.

dependencies impose a partial order between the layers of
the specification.

In Figure 4 the situation is illustrated in the simple case
of the example outlined above. The horizontal architecture
consists of three layers. Each layer refines a vertical archi-
tecture to a more detailed one by adding a new piece of
“meaning” to the system. The layer introducing doctors
depends on the one introducing patients, and the one intro-
ducing receptionists depends on the one introducing doctors
(and transitively on the patients layer).

Different concerns can be partially treated in common lay-
ers. A situation of this kind arises when a common design
decision is made to cater for two different features, for in-
stance. This means that, generally, concerns are treated in
one or more layers. Moreover, there can be overlap between
the sets of layers treating different concerns.

3.2 Example: Mobile Robot
As a more concrete example, a simplified DisCo specification
of a mobile robot (toy car) control software specification
is presented. We have omitted the parts dealing with real
time (and fairness) which can be found in [11] in a slightly
different form.

The mobile robot is a small microcontroller-based car. The
objective is to keep the car on a track marked by optical
tape. From the viewpoint of the control software the sys-
tem has two inputs and two outputs. The inputs are read-
ings from an A/D converter connected to infra-red censors,
and from an odometer. The outputs are two servo motors
controlling the steering and the movement. The servos are
driven by PWM (Pulse Width Modulation) signals. There
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is also a switch, which is used to start the car and to stop
it.

There are two concern that need to be addressed: the basic
functionality of the car including starting and stopping and
the control part including the control algorithms. These
concerns are treated in three separate layers, one of which is
common to both concerns, i.e. the concerns are overlapping.
The details of the layers are described next.

3.2.1 Basic Actions
Layer Basic Actions contains the basic functionality of the
system. It introduces two classes and three multi-object ac-
tions. Actions are symmetric with respect to participants;
there are no callers nor callees. Class Data holds internal
variables and class Output variables that model the outputs.
The variables r dist and r tape of type real represent the dis-
tance covered between the last two readings of the odometer
and the location of the car relative to the tape, respectively.
Variables c engine and c steer model the current lengths of
the servo pulses. If both equal zero, the car is stationary
with its wheels straight. In a class definition, the number of
instances is indicated by placing the number in parentheses
after a class name. The classes are shown below:

class Data (1) is

r dist: real := 0.0; r tape: real := 0.0;

end Data;

class Output (1) is

c engine: real := 0.0; c steer: real := 0.0;

end Output;

Action Clear clears all the variables given in this layer. This
is implemented by a parallel assignment in its body. Action
Read, which has a participant of class Data, models the read-
ing of the odometer and the A/D converter. The actual new
readings are modeled by two parameters r x and r y, which
have nondeterministic values and do not refer to any objects.
In action Control, parameters c x and c y are used to model
the new values given by the control algorithm. They are
assigned to the variables c engine and c steer, respectively.
The actions are given below:

action Clear (D: Data; O: Output) is

when true do

D.r dist := 0.0 ‖ D.r tape := 0.0 ‖
O.c engine := 0.0 ‖ O.c steer := 0.0;

end Clear;

action Read (r x, r y: real; D: Data) is

when true do

D.r dist := r x ‖ D.r tape := r y;

end Read;

action Control (c x, c y: real; O: Output) is

when true do

O.c engine := c x ‖ O.c steer := c y:

end Control;

Because the guards of all three actions are identically true,
the actions are continually enabled. The behavior of the
system consists of clearing the variables, reading the inputs
and writing the outputs. The order in which these actions
are executed is nondeterministic.

3.2.2 Drive States
Layer Drive States introduces the start/stop switch and spec-
ifies the order in which the actions are executed. Class Data
is extended to hold a state machine d state, which indicates
the actions that are allowed to be executed. The state ma-
chine has states start, read and control, the first of which is
the default state.

The switch is modeled by variable switch, which has two
states, on and off. The state of the switch is changed in
action Toggle. When the switch is on in state start, action
Start is enabled. It changes the state to read.

The extensions of class Data and the new actions are shown
below:

extend Data by

d state: (start, read, control);

switch: (off, on);

end Data;

action Toggle (D: Data) is

when true do

if D.switch’off then

D.switch → on();

else

D.switch → off();

end if;

end Toggle;

action Start (D: Data) is

when D.switch’on and D.d state’start do

D.d state → read();

end Start;

The car is fully operational when the switch is on in states
read and control. Likewise, actions Read and Control are
refined so that they are enabled correspondingly. Further-
more, by addition of state transition statements D.d state
→ control() and D.d state → read() to Read and Control, re-
spectively, they are executed by turns. The refined action
Read is given below, where ellipses denote the guard and
the body of the original action:
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refined Read (r x, r y : real; D: Data) is

when ... D.switch’on and D.d state’read do

...

D.d state → control();

end Read;

Furthermore, action Clear is refined to change the state back
to start when the switch is turned off. In this case it implic-
itly stops the engine and straightens the wheels by clearing
all the variables.

3.2.3 Control Algorithms
Layer Control Algorithms treats the controlling of the move-
ment and the steering. The layer defines ten constants, ex-
tends class Data, introduces two functions and refines all
three actions given in Basic Actions. The constants and the
variables are added due to the control algorithms. Variable
e state represents the state of the engine. The three states
power up, moves and normal are needed since, because of fric-
tion, it is necessary to power up until movement is sensed
and after that power down slightly to prevent slipping.

The P and PID algorithms are used to compute new values
for the engine and steering, respectively. Function PID is
shown below (s P, s I and s D are constants):

function PID(D: Data) : real is

return –s P*D.r tape + s I*D.r tape ma

+ s D*(D.r tape old – D.r tape);

end PID;

Action Read is refined to include the statements needed
by the control algorithm (comments begin with double hy-
phens):

refined Read (r x, r y: real; D: Data) is

when ... do - - the guard is unchanged

...

if (r x = 0.0) and (D.r dist = 0.0) then

D.e state → power up(); - - not moving yet

elsif (r x > 0.0) and (D.r dist = 0.0) then

D.e state → moves();

else

D.e state → normal();

end if ‖

- - moving average:

D.r tape ma := ((n – 1)*D.r tape ma – D.r tape)/n ‖
D.r tape old := D.r tape;

end Read;

In the guard of action Control, parameters c x and c y are
bound to the return values of functions P and PID, respec-
tively. If the car has lost the track, it should stop. This is

the situation if the absolute value of r tape is greater than
limit, which is treated as a special case in the guard of action
Control. The refined action Control is shown below:

refined Control (c x, c y: real; O: Output; D: Data)

of Control(c x,c y,O) is

when ... (c x = if((abs D.r tape) > limit)

then 0.0 else P(D,O) end if)

and c y = PID(D) do

...

end Control;

Furthermore, action Clear is refined to clear variables intro-
duced in this layer.

As already mentioned, the vertical units emerge incremen-
tally while specifying the horizontal layers. In the composed
specification, class Data, for instance, consist of all variables
added in different layers:

class Data (1) is

- - Basic Actions:

r dist: real := 0.0;

r tape: real := 0.0;

- - Drive States:

d state: (start, read, control);

switch: (off, on);

- - Control Algorithms:

e state: (power up, moves, normal);

d.r tape ma: real := 0.0;

d.r tape old: real := 0.0;

end Data;

Obviously, it would have been difficult to come up with such
variables directly.

The horizontal architecture of the specification is illustrated
in Figure 5. Layer Basic Actions is common to both con-
cerns, and layers Drive States and Control Algorithms treat
the functional and control concerns, respectively. The lat-
ter layers can be applied in any order on top the former
when composing the specification as long as the dependen-
cies are respected, i.e. either Control Algorithms on top of
Drive States or the other way around.

3.3 Specifying with DisCo
As used in DisCo, superposition is strictly additive, i.e.
nothing is removed from the refined specification. This
means that all assignments to a variable must be given in the
layer introducing the variable. With this restriction, safety
properties can be preserved by construction.

Concerning support for specifying non-trivial systems, the
DisCo toolset [2] provides animated simulation of DisCo
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Figure 5: Architecture of the mobile robot specifi-

cation.

specifications for validation purposes at all levels of refine-
ment. Moreover, assembly of horizontal architectures can
be supported by reusable layers as described in [15]. These
layers can be seen as behavioral templates that should be
formally verified [14].

Related to common software engineering practices, the ad-
vantages of better alignment between requirements and spec-
ifications are emphasized in the maintenance phase [3]. It
should be also noted, that the ideas underlying the approach
are insensitive to the notation used, thus offering a founda-
tion for aspect-oriented specification languages. In [12] this
was shown using UML.

Model-Driven Architecture (MDA) [8, 7] by Object Man-
agement Group (OMG) also includes similar elements to the
DisCo approach. In MDA, however, only three pre-defined
levels are used, including computation independent, platform
independent, and platform specific models. By allowing in-
dividual levels of abstraction of MDA to consist of several
DisCo layers, one can create a development approach that
fits in the guidelines of MDA without compromising rigor-
ousness [20].

4. DISCUSSION
We have shown how two different dimensions of software ar-
chitecture, which we call vertical and horizontal, can be used
for constructing reactive systems. These dimensions are in
some sense dual, and they are also incompatible with each
other in the sense that it does not seem useful to combine
them in a single system of modules. Therefore, the horizon-
tal dimension, which is currently visible in design patterns
and aspect-oriented programming, for instance, remains as a
crosscutting dimension with respect to conventional vertical
units of implementation.

The two dimensions can be combined in different ways. As
already discussed, the DisCo approach uses the horizontal
dimension as the primary dimension, and provides an incre-
mental specification method for composing specifications.
A vertical implementation architecture is, however, antic-
ipated in terms of a high-level view of objects and their
cooperation. In contrast, most aspect-oriented approaches,
in particular those influenced by AspectJ [22], have taken
a more pragmatic approach. There, the primary architec-

tural dimension is based on conventional vertical modular-
ity, and crosscutting aspects are added to it by an auxiliary
mechanism for horizontal modularity [6]. Other approaches
include problem frames, where the horizontal dimension is
used for decomposing a problem into subproblems whose
sizes are more manageable [9].

Since layers provide abstractions of the total system, their
explicit use seems natural in a structured approach to spec-
ification, and also in incremental design of systems. At the
programming language level it is, however, difficult to de-
velop general-purpose support for horizontal architectures.
This means that a well-designed horizontal structure may
be lost in an implementation, or entangled in a basically
vertical architecture. However, newer implementation tech-
niques, including aspect-oriented ones in particular, have
enabled a wider range of options [1, 21].

We conclude that much work is still needed for making hor-
izontal architectures easier to use in practice. Besides issues
concerning implementation, commercial tools for utilizing
the horizontal dimension in software design are not avail-
able. Thus, it remains a topic of future study to build a tool
set where a commonly used notation, such as UML, is used
to support the approach in a rigorous way. Accomplishing
this may require the introduction of new concepts and ter-
minology, such as those proposed by OMG’s Model-Driven
Architecture initiative.
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ABSTRACT
We explore the semantics of aspect oriented programming
languages in the context of embedded reactive systems. For
reactive systems, there are a lot of simple and expressive
formal models that can be used, based on traces and au-
tomata. Moreover, the main construct in the programming
languages of the domain is parallel composition, and the
notion of transverse modification is quite natural. We pro-
pose: 1) a semantical definition of an aspect, allowing one
to study its impact on the original program; 2) some opera-
tional constructs that can constitute the basis of a weaving
mechanism.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Design, Languages, Theory, Verification

Keywords
reactive systems, aspect-oriented programming, formal se-
mantics, synchronous languages

1. INTRODUCTION
1.1 Generalities
Whatever be the structuring mechanisms offered by a pro-
gramming language, it is always possible to find a program
P and some functionality F that P should provide (or a
property P should ensure), in such a way that F cannot
be implemented only by some modifications of P that would
“respect” its existing structure. F is then called an aspect [6].
For instance, adding debugging facilities to a program is an
aspect because its implementation is likely to need small
modifications everywhere.

FOAL ’04 Lancaster, GB

Aspect programming studies how aspects can be specified,
and how the additional code needed to implement F can be
automatically woven into P, statically or dynamically. All
these definitions are quite informal and, for a given pro-
gramming language, it is not always clear whether a given
functionality is indeed an aspect. This shows that any for-
mal definition of aspects and weaving has to provide precise
definitions for, at least: 1) the structure of programs (this is
the simplest, but we have to choose between a concrete syn-
tax and a very abstract semantic structure); 2) the notion of
a functionality to be implemented in a given program; 3) an
aspect specification language; 4) a program transformation
(not necessarily static) for the weaving process.

There are very few attempts at defining the notion of aspect
formally, independently of any language. It is probably too
early, and we need to understand the notion of aspect better,
concentrating on specific application domains.

1.2 Objectives of the paper
We would like to question the notion of aspect a bit further,
in a formally defined context that allows one to give un-
ambiguous definitions for all the important notions related
to aspects. We choose reactive systems because they pro-
vide a very clear notion of the input/output interface of a
program, their design relies on a parallel composition and
a communication mechanism, and the definition of their se-
quential behavior is simple. Additionally, we will consider
static weaving mechanisms only, because reactive systems
are most of the time embedded: a monitoring system that
may stop the program when its behavior diverges from the
expected one is useless, because the system cannot be re-
paired on-line. See section 5 for more comments on the re-
lationship with so-called property-enforcing techniques that
can sometimes be considered as aspect-weaving.

Moreover, we choose a formalism made of synchronous com-
positions, because the synchronous broadcast and the com-
piled synchronous parallel composition are already very pow-
erful (for instance, rendez-vous can be implemented by the
so-called “instantaneous dialogue”). A a lot of things can be
implemented by adding components synchronized with an
existing program. Something that cannot be implemented
this way really deserves the name of aspect. There exist
several synchronous languages with very distinct constructs,
that all have a semantics in terms of communicating Mealy
machines. Considering aspects at the level of this model
guarantees that the definitions are not too particular to a

45



given language.

We try to formalize the following observations, questions
and requirements:

(α) What is the semantic impact of weaving? Can the be-
havior of the modified program be completely distinct from
the behavior of the original program? We would like the
new program to be somewhat comparable to the old one,
at least on a subset of its inputs, and/or on a subset of its
instants.

(β) An aspect specification language has to talk about P.
How detailed can it be? Can it talk about the interface
only, or about the internals of the program?

(γ) How can we be sure that F cannot be implemented in
P with simple modifications that do not require the aspect
point of view?

The contribution of the paper is a simple formal framework
in which aspects of reactive systems can be specified and
studied. It is a first approach to this question, and this
work can be continued in various ways.

Section 2 defines a formal model for reactive systems; Sec-
tion 3 is a non exhaustive list of functionalities that con-
stitute good candidates for the notion of aspect in reactive
systems; Section 4 is our proposal: a notion of aspects and
how to specify them, formal basis for the weaving process;
Section 5 is a (probably) non exhaustive list of related work;
Section 6 is the conclusion, mainly a list of perspectives.

2. THE MODEL
The formal model for reactive systems is given here in two
levels: 1) a trace semantics that is common to a wide variety
of languages, and 2) a set of operators on reactive and deter-
ministic Mealy machines that can be considered as an ideal
view of a synchronous language. All questions and problems
that can be formulated in the first level are therefore general
to a lot of languages; the second level will be used whenever
we need a structure in the programming language.

2.1 Traces and trace semantics
Definition 1 (Traces) Let I, O be sets of Boolean input
and output variables representing signals from and to the
environment. A trace on I ∪ O, t, is a function: t : N −→
[(I ∪ O) −→ {true, false}]. At each instant n ∈ N, the
given trace t provides the valuations of every input and out-
put.

A set of traces st = {t | t is a trace on I ∪ O} is determin-
istic iff

∀t, t′ ∈ st.
(
∀n ∈ N.∀i ∈ I.t(n)[i] = t′(n)[i]

)
=⇒

(
∀o ∈ O.t(n)[o] = t′(n)[o]

)
.

We write {i1, i2, ..., i‖I‖} for the set of inputs I. A set of

traces st = {t | t is a trace on I ∪ O} is reactive iff

(i) ∀(v1, v2, ..., v‖I‖) ∈ {true, false}‖I‖.
∃t ∈ st.∀k.t(0)[ik] = vk

(ii) ∀t ∈ st.∀n ∈ N.∀(v1, v2, ..., v‖I‖) ∈ {true, false}‖I‖.
∃t′ ∈ st.(∀m ≤ n.∀i ∈ I.t(m)[i] = t′(m)[i])

∧ (∀k.t′(n+ 1)[ik] = vk)

A set of traces is a way to define the semantics of a program
P , given its inputs and outputs. From the above definitions,
a program P is deterministic if from the same sequence of
inputs it always computes the same sequence of outputs.
It is reactive whenever it allows every sequences of every
eligible valuations of inputs to be computed. Determinism is
related to the fact that the program is indeed written with a
programming language (which has deterministic execution);
reactivity is an intrinsic property of the program that has to
react forever, to every possible inputs without any blocking.

Definitions 2 and 3 below define transformations on traces
that will be used to characterize the impact of weaving on
the semantics of a program.

Definition 2 (Masking traces) Given a trace t on I ∪O
and a subset S ⊆ (I ∪O) the masking of t by (I ∪O) \ S is
a trace t|S on S such that:

∀e ∈ S.∀n ∈ N.t|S(n)[e] = t(n)[e].

Definition 3 (Clocking traces) Given a trace t on I ∪O
and a subset M ∈ N the clocking of t by M is a trace t‖M

on I ∪ O such that:

∀e ∈ (I ∪ O).∀n ∈ N \M.t‖M (n)[e] = t(n)[e].

Notice that given a trace t and a subset M of natural, this
defines a set of clocking including t itself.

Those definitions are naturally extended to sets of traces
and programs.

2.2 Elements of language definition
The core of a synchronous language is made of input/output
automata, the synchronous product, and the encapsulation
operation.

Definition 4 (Automaton) An automaton A is a tuple
A = (Q, sinit, I,O, T ) where Q is the set of states, sinit ∈ Q
is the initial state, I and O are the sets of Boolean input and
output variables respectively, T ⊆ Q×Bool(I)×2O×Q is the
set of transitions. Bool(I) denotes the set of Boolean for-
mulas with variables in I. For t = (s, `, O, s′) ∈ T , s, s′ ∈ Q
are the source and target states, ` ∈ Bool(I) is the triggering
condition of the transition, and O ⊆ O is the set of outputs
emitted whenever the transition is triggered. Without loss
of generality, we consider that automata only have complete
monomials as input part of the transition labels.

The semantics of the automaton A = (Q, sinit, I,O, T ) is
given in terms of a set of traces on I ∪ O. A trace t of A is
inductively built as follows:
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• at time 0, the automaton is in state sinit;

• if at time n ∈ N, the automaton is in state s ∈ Q and
receives input valuations vi for i ∈ I, then at time
n+ 1 it reaches state s′, emitting O:(

∀i ∈ I.t(n)[i] = vi ∈ {true, false}∧
∀o ∈ O.t(n)[o] = wo ∈ {true, false}

)
=⇒(

∃(s, `, O, s′) ∈ T ∧O = {o ∈ O, wo = true}∧
` valuates to true w.r.t. the vi’s

)
.

We note Trace(A) the set of all traces built following this
scheme: Trace(A) defines the semantics of A. The automa-
ton A is said to be deterministic (resp. reactive) iff its set of
traces Trace(A) is deterministic (resp. reactive) (see def. 1).

Definition 5 (Synchronous Product) Let A1 = (Q1,
sinit1, I1,O1, T1) and A2 = (Q2, sinit2, I2,O2, T2) be automata.
The synchronous product of A1 and A2 is the automaton
A1||A2 = (Q1 ×Q2, (sinit1sinit2), I1 ∪ I2,O1 ∪O2, T ) where
T is defined by:

(s1, `1, O1, s
′
1) ∈ T1 ∧ (s2, `2, O2, s

′
2) ∈ T2 ⇐⇒

(s1s2, `1 ∧ `2, O1 ∪O2, s
′
1s
′2) ∈ T .

The synchronous product of automata is both commutative
and associative, and it is easy to show that it preserves both
determinism and reactivity.

Definition 6 (Encapsulation) Let A = (Q, sinit, I,O, T )
be an automaton and Γ ⊆ I∪O be a set of inputs and outputs
of A. The encapsulation of A w.r.t. Γ is the automaton
A \ Γ = (Q, sinit, I \ Γ,O \ Γ, T ′) where T ′ is defined by:

(s, `, O, s′) ∈ T ∧ `+ ∩ Γ ⊆ O ∧ `− ∩ Γ ∩O = ∅ ⇐⇒
(s,∃Γ.`, O \ Γ, s′) ∈ T ′

`+ is the set of variables that appear as positive elements in
the monomial ` (i.e. `+ = {x ∈ I | (x ∧ `) = `}). `− is
the set of variables that appear as negative elements in the
monomial l (i.e. `− = {x ∈ I | (¬x ∧ `) = `}).

Intuitively, a transition (s, `, O, s′) ∈ T is still present in the
result of the encapsulation operation if its label satisfies a
local criterion made of two parts: `+ ∩ Γ ⊆ O means that
a local variable which needs to be true has to be emitted
by the same transition; `− ∩ Γ ∩ O = ∅ means that a local
variable that needs to be false should not be emitted in the
transition.

If the label of a transition satisfies this criterion, then the
names of the encapsulated variables are hidden, both in the
input part and in the output part. This is expressed by ∃Γ.`
for the input part, and by O \ Γ for the output part.

In general, the encapsulation operation does not preserve
determinism nor reactivity. This is related to the so-called
“causality” problem intrinsic to synchronous languages (see,
for instance [2]).

An example
Figure 1-(i) shows a 3-bits counter. Dashed lines denote
parallel compositions and the overall box denotes the en-
capsulation of the three parallel components, hiding signals
b and c. The idea is the following: the first component on
the right receives a from the environment, and sends b to the
second one, every two a’s. Similarly, the second one sends
c to the third one, every two b’s. b and c are the carry
signals. The global system has a as input and d as output;
it counts a’s modulo 8, and emits d every 8 a’s. Apply-
ing the semantics of the operator (first the product of the
three automata, then the encapsulation) yields the simple
flat automaton with 8 states (Figure 1-(ii)).
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bb/c

0

1

cc/d

b,c

a
aa
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a

a a
a/d

(i) (ii)

Figure 1: A 3-bits counter. Notations: in each automa-
ton, the initial state is denoted with a little ar-
row; the label on transitions are expressed by
“triggering cond. / outputs emitted”, e.g.
the transition labelled by “a/b” is triggered when
a is true and emits b.

3. EXAMPLES OF ASPECTS FOR
REACTIVE SYSTEMS

Among the traditional programming examples in the do-
main of reactive systems, there are some typical cases in
which one could think of introducing aspect programming.
The candidate “aspects” for reactive systems sometimes de-
pend on the programming paradigm of the language used,
but not always. We give several examples below.

3.1 Conditional reinitialization
Being able to re-initialize a reactive system on the occur-
rence of a special signal is useful in several contexts. For
instance, if we program two different systems S1 and S2,
in isolation, and then want to design a more complex one
in which the two of them have to be used, it is likely that
one of the systems is active in a given period of time, then
the other one, then the first one again. When the first sys-
tem restarts, it should have the same behavior as if it were
started for the first time. Making a reactive program reini-
tialiazable means adding reactions to a special signal r, that
leads the system to its initial configuration, from any other
state it may have reached.

In some languages, there is a dedicated construct for this.
In Esterel [2], if S is the program of the original system,
and r the additional signal, an expression similar to “loop
S each r” is the reinitializable program. This is true for
a main program, and this is also true for a subprogram in
a complex context: S can be replaced by loop S each r

without changing the context.

In Lustre [1], which is not based upon the imperative paradigm,
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reiniatializing a program needs modifications everywhere in
the code. Indeed, there is a special conditional structure
whose meaning is: if (this is the beginning of time) then ...
else .... When a program has to be made reinitializable by
a signal r, all occurrences of this special construct have to
be modified to give: if ( (this is the beginning of time) OR
r is present) then ... else ....

In the language of parallel automata we presented in sec-
tion 2.2, making an automaton reinitializable means adding
transitions from any state to the initial one, with the con-
dition r, and no emitted signal; moreover, all the existing
transitions have their condition reinforced by not r. Notice
that, in a more sophisticated language based on explicit au-
tomata, one would introduce hierarchy of states à-la Stat-
echarts, and reinitialization would become trivial (see, for
instance [7]).

3.2 Conditional inhibition
Conditional inhibition means the following: when an addi-
tional signal ck is present, the new system behaves as the
old one. When this signal is not present, then the system
does not evolve, it keeps its current state, until ck is present
again.

In dataflow languages for reactive systems like Lustre or
Signal, this kind of behavior is a special case of a system with
multiple clocks. There are dedicated constructs that allow
to manipulate clocks. In Lustre, if S is the original program,
then something like “current (S when ck)” would do the
job.

In our language of automata, adding conditional inhibition
means (1) enforcing the triggering condition of each tran-
sition by ∧¬ck and (2) adding to each state s a self-loop
transition (s, ck, ∅, s) with triggering condition ck and emit-
ting nothing.

3.3 Adding a validity bit
This last example is very common in fault-tolerant systems.
Consider a reactive system with an input i and an output
o. i comes from an external physical device, that may “fail”
temporarily. Some physical properties make it possible to
produce the information: the value transmitted on input i,
in the current instant, is not valid.

The problem is to rewrite the program, adding a validity bit
v to the input i. The new program should behave as the
original one when its input is valid (i.e. when v is true).
When v is false, the value of i should not be “taken into
account”. This quite informal specification rises two ques-
tions.

First, forbidding the use of the input at a given instant in
time means that: a) we have to give a default value for the
outputs that depend on it; b) we also have to make sure
that the input does not serve for updating the memory.

Second, in all cases, one has to determine whether the value
computed for the outputs, or the way memory is updated,
really depends on the input i in the current instant. If it
is possible to write an additional parallel component that
observes i and each output o, and delivers a Boolean sig-

nal o depends on i, then the program can be modified quite
easily, with transformations similar to the ones we described
for reinitialization or inhibition (this is similar for memory
updates). But writing this additional component is difficult:
o depends on i means if we change i, then o changes, and
it cannot be computed by observing a single input/output
sequence, but the whole set of traces. So it cannot be im-
plemented by an additional parallel component.

All transformations that mention such a dependency notion
between inputs and outputs are good examples for point γ
in the introduction: we do not know how to program them
with the usual constructs of our languages, and it should
even be possible to prove that we cannot do so. See more
comments in section 6.

4. OUR PROPOSAL
Our proposal is made of two parts: first, we characterize the
notion of aspect in a very declarative setting. Second, we
propose a set of elementary transformations on automata
that may be the basis of a weaving mechanism.

4.1 Characterizing the semantical influence
of aspects
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Figure 2: The semantic scheme is a data flow block dia-
gram using the same notations as in the text; the
inputs of a box enter the box at its left and the
outputs goes out at its right; the box for the as-
pect Asp and the one for the predicate looks like
are given in terms of observers, i.e. they only have
an output ok (resp. ok′) that is expected to be al-
ways true. Õ (resp. O′̃) denotes a syntactic copy
of the set of outputs O (resp. O′): P emits O∪O′

while P’emits Õ∪O′̃ which may not have the same
values.

Figure 2 summarizes the semantic framework in which we
define aspects: P is a program (a set of traces on its inputs
and outputs). Asp is an aspect, allowed to deal with some
inputs I ′ ⊆ I and some outputs O′ ⊆ O of P ; it is also
allowed to add some inputs I ′′ and outputs O′′ to P . Asp is
given as a set of traces on I ′ ∪ I ′′ ∪ O′ ∪ O′′. Weaving Asp
into P yields a modified program P ′ = P �Asp such that:

• P ′ has I ∪ I ′′ as inputs and O ∪O′′ as outputs;
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• P ′ is consistent with Asp, i.e.,

P ′
|I′∪I′′∪O′∪O′′ ⊆ Asp;

the set I ′ ∪ I ′′ ∪ O′ ∪ O′′ on which P ′ and Asp are
compared is exactly the set of inputs/outputs of Asp;
this means that P ′ on this set must be some of the
traces defined by Asp.

The two items above define P ′ w.r.t. Asp but they do not at
all constrain P ′ to be related to P , in any sense: for example,
take for P ′ every traces in Asp, and extend them by adding
the inputs I and outputs O with arbitrary values (e.g. false
everywhere); it yields P ′ such that P ′

|I′∪I′′∪O′∪O′′ ⊆ Asp.
This is caricatural, but it illustrates a major semantic prob-
lem of aspects from our point of view: we implicitly want
P ′ to be related to P . This is the motivation for our third
point.

Third, we require that P and P ′ be comparable.
looks like (P, P ′) is a predicate that compares the traces of
P and P ′ for the inputs and outputs they have in common:
it compares P|I∪O with P ′

|I∪O. Different classes of programs
and aspects may require different definitions for looks like .
Here are some examples:

• We may require that P and P ′ have the same traces
on the inputs/outputs that are not involved in the def-

inition of the aspect: looks like
def
= P|I∪O = P ′

|I∪O;

• one might enforce this condition by imposing that P
and P ′ have the same behavior on I ′∪O′ at the instants
when Asp does not modify them. Suppose, for exam-
ple that Asp modifies the value of an output o ∈ O′ if
a new input i ∈ I ′′ is false, as in the validity bit ex-
ample. The definition of looks like may then impose
that o keeps its value whenever i is true; this condition
is expressed by comparing the clocking of the traces of
P ′ on the set of instants when i is true with the same
clocking applied to P ;

• another admissible comparison criterion is that the
traces (masked or clocked) of P ′ are shifted by n ∈ N
instants compared with those of P . This might be
useful in case the aspect itself introduces this kind of
shifting.

This list of comparison criteria is not exhaustive and a mix
of the three solutions mentioned above as well as different
ways of comparing traces of P and P ′ may be admissible.

4.2 Operational definition of aspects
This part describes an elementary transformation on au-
tomata proposed as a basic construct for a weaving process.
It was motivated by some of the aspects one may imagine
for reactive systems.

4.2.1 A Stateless Transformation
Consider an automaton A = (Q, sinit, I,O, T ). The idea is
to modify the transitions sourced in a given set of states, by
reinforcing their condition and adding some emitted events.

Whenever a transition condition is reinforced, it means that
the disjunction of conditions, for all transitions sourced in
the same state, may no longer be “true” (the automaton is
no longer reactive). To ensure that the result of the trans-
formation is indeed reactive, we also add a transition with
the missing condition. It could be a loop on the state, but
it seems more general to allow any existing state to be its
target state. The result is not always deterministic.

The parameters of the transformation are: a specification ψ
of a set of traces on I ∪ O; a condition C on I; a condition
m′ on additional inputs; a set o′ of additional outputs; a set
o′′ of additional outputs; a specification ψ′ of a set of traces
on I ∪ O.

For any state q reachable from the initial state by a trace

in ψ, for any of its outgoing transitions q
m/o−→ q′ whose

condition m satisfies C, we transform it into q
m∧m′/o∪o′
−→ q′,

and we add q
m∧¬m′/o′′
−→ q′′ for all q′′ reachable from the

initial state by a trace in ψ′.

4.2.2 Implementing the Examples
Reinitialization of a single automaton by r is obtained by ap-
plying this mechanism with the following parameters: ψ =
true (any sequence of inputs and outputs is accepted by
ψ, meaning: all the reachable states); C = true (for all
transitions); m′ = ¬r and o′ = ∅ (reinforcing the existing
transitions); m′′ = r and o′′ = ∅ (adding the “reset” transi-
tions); ψ′ = ε (specifies the initial state).

It is easy to show that any program made of automata, par-
allel compositions and encapsulations, can be made reinitial-
izable by r. It is sufficient to apply the above transformation
on each of the automata. r should be a fresh variable name,
not used in the original program.

The conditional inhibition can be implemented with a sim-
ilar transformation. Adding a validity bit is more complex,
because it involves the notion of “the transition really de-
pends on the input at the current instant” and this cannot be
expressed by reinforcing conditions on existing transitions.

4.3 The Global Picture
Putting together the informal examples of section 3, the
declarative point of view of section 4.1, and the operational
view of section 4.2, we obtain the following:

(A) A set of aspect candidates: i.e. program transformations
taken from classical examples of reactive programming. On
this set of aspects, we may wonder whether we really need
something new to implement them: do they deserve the
name of aspect, or were there already implementable with
traditional program constructs?

(B) A declarative characterization of the relationships be-
tween a program P, an aspect A, a new program P’ result-
ing from the weaving of P and A, and a comparison criterion
used to “control” how much P’ can differ from P. This se-
mantic scheme may be used to define a set of P ′ from P , A
and the comparison criterion, but not in an operational way;
moreover the set of P ′ that fit in the picture may be empty.
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Finally the comparison criterion should not be completely
ad-hoc for an aspect A. There could be several generic com-
parison criteria, depending on the type of applications. For
instance, some applications in reactive programming may
allow a modified program to be slightly shifted from the
original one (giving the same outputs, but later), while oth-
ers may not.

(C) A set of elementary program transformations (given on
explicit automata) that could constitute the basis of a weav-
ing mechanism.

This setting has some internal consistency requirements. For
instance, each elementary transformation proposed in (C)
should be such that the transformed program and the orig-
inal one are comparable in the sense defined by the “looks-
like” box in (B).

Once these internal consistency requirements have been ex-
pressed and verified on the general setting, the following
questions make sense:

– From an informal notion of aspect taken from (A), how to
derive the necessary transformations in (C)? We did this for
the examples, in a very informal way.

– How to use the framework of (B) to specify one of the
candidate aspects of (A)?

– From a formal specification of an aspect in the style of
(B), how to produce a sequence of (C) transformations to
be applied to P, in order to produce a program P’ that fits
in the (B) picture?

Finally, some of the general questions people ask about as-
pects can be expressed in the same semantical framework:

– If we take two trace-equivalent programs P1 and P2 and
an aspect A, is it true that P1 � A and P2 � A are still
trace-equivalent?

– How to compare P � A1 � A2 and P � A2 � A1? This is
related to the more general notion of aspect interference.

5. RELATED WORK
Related work can be found in several directions. First, pa-
pers from the AOP community, with emphasis on seman-
tics; the setting of [9] is very close to ours, since it considers
sets of parallel input/output automata; however, synchro-
nization is made by shared variables, and the author con-
siders transitions made of sequences of elementary actions,
on which the aspectJ-like “insert-before” or “insert-after”
transformations make sense. In the above paper, the no-
tions of “property inheritance” and “property superimpo-
sition” are defined. They seem to be particular cases of
the declarative scheme of section 4.1, relating properties of
P � A with properties of P (inheritance”), or A (super-
imposition”). Superimposition itself was introduced earlier
(see [4]), ranging from spectative techniques (mere observers)
to invasive techniques. Our work could also be called: static
invasive superimposition.

Second, papers on controller synthesis techniques [10] and

their application to interfaces [3] in component-based de-
signs, because the definition of P ′ from P , the aspect speci-
fication and the “looks-like” predicate (shown in section 4.1)
can be viewed as a controller-synthesis problem.

Third, there have been a number of papers on “property-
enforcing techniques” that can be expressed in a aspect-
oriented style. The idea is to express safety properties (e.g.
with explicit automata like in [8]) and to “run” them in
parallel with a program. When the safety property becomes
false, the program is stopped. Running them in parallel
means performing a product between the program and the
property, and can be viewed as dynamic weaving. In our
setting, performing the product between the program and
a safety property does not need the notion of aspect: the
safety property can be expressed as a subprogram in par-
allel with the original program P , and the whole can be
compiled. This yields a new program Q with an output ok
meaning: the property is true from the beginning of time.
However, for embedded systems, waiting execution-time to
know about a safety property is not a solution. Static veri-
fication techniques are used instead.

6. CONCLUSION
The semantic setting we presented is adequate for the ques-
tions α and β of the introduction, and their answers. We are
currently investigating the various notions presented here
on some simple examples similar to the reinitialization. The
idea is not to obtain an automatic method from the semantic
picture of figure 2: it is an instance of controller-synthesis,
known to be quite costly. Moreover, we presented Boolean
programs only, but the general interesting case uses integer
variables in reactive programs. The problem then becomes
undecidable. The semantic scheme is there only to give a
clear meaning to the operational mechanisms we may in-
vent in order to obtain automatic transformation techniques.
The examples will probably lead to other basic transforma-
tions on automata. A natural extension of the one we pre-
sented would allow the creation of new states.

Question γ of the introduction has already been discussed
about the validity bit example. We need to define precisely
the notion of dependency between inputs and outputs in a re-
active program, and to prove that it cannot be programmed
with the usual constructs, thus deserving the name of aspect.
Similar dependency notions (like the one of [5], developed for
studying security policies) seem worth investigating.
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