
Diagnosis of Harmful Aspects Using Regression Verification

Shmuel Katz

Computer Science

The Technion

Haifa Israel
katz@cs.technion.ac.il

ABSTRACT
Aspects are intended to add needed functionality to a
system or to treat concerns of the system by augmenting or
changing the existing code in a manner that cross-cuts the
usual class or process hierarchy. However, sometimes
aspects can invalidate some of the already existing desirable
properties of the system. This paper shows how to
automatically identify such situations. The importance of
specifications of the underlying system is emphasized, and
shown to clarify the degree of obliviousness appropriate for
aspects. The use of regression testing is considered, and
regression verification is recommended instead, with
possible division into static analysis, deductive proofs, and
aspect validation using model checking.

Static analysis of only the aspect code is effective when
strongly typed and clearly parameterized aspect languages
are used. Spectative aspects can then be identified, and
imply absence of harm for all safety and liveness properties
involving only the variables and fields of the original
system. Deductive proofs can be extended to show
inductive invariants are not harmed by an aspect, also by
treating only the aspect code. Aspect validation to establish
lack of harm is defined and suggested as an optimal
approach when the entire augmented system with the aspect
woven in must be considered.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features –, control structures.

General Terms
 Languages, Verification.

Keywords
Aspects, desired specification properties, noninterference,
preventing harm, regression verification, aspect validation.

1. INTRODUCTION
Like all modularity and language concepts, aspects are
intended to improve the development of complex systems.
On the code level, Aspect-Oriented Programming (AOP)
languages provide notations to separately declare and
repeatedly apply aspects that cross-cut the usual class
structure of object-oriented systems. Using AOP has
already been shown in numerous case studies to isolate the
treatment of concerns that otherwise are scattered
throughout the system, and tangled with code treating a
variety of application issues. However, it is clear that
sometimes such augmentations of systems can make
properties that previously held for the system become
untrue in the combination of the system with the aspect.

 Such changes in the properties of the system could be a
proper outcome of applying the aspect if the property is
considered undesirable, such as that the system deadlocked
in certain situations, or that messages were visible to any
other observer in the computer. On the other hand, in
general there is no way to linguistically prevent aspects
from invalidating some properties that are desirable. This
could occur either inadvertently, or maliciously. An
example of the former could be when an aspect intended to
treat overflow of variables, by mistake also causes the
system to deadlock. An example of the latter could be when
a system with private fields that guarantee some level of
privacy is augmented by an aspect that provides public
methods for reading the values of those very fields, in order
to expose their contents, thereby violating the desired level
of privacy.

In order to identify and treat such situations, the systems to
which aspects are woven need to be augmented with
specifications. These are descriptions of the desirable
properties of the system. Note that they do not describe all
properties of the system, only those seen as important and
positive. Such properties should be maintained even if the
system is augmented with aspects, or even if an aspect is
combined with other aspects. What can change are the

properties of the system not seen in the specification. The
form of such specifications is described in Section 2.

Treatment of harmful aspects also requires a rethinking of
the degree of obliviousness needed by an aspect-oriented
notation. Obliviousness has traditionally [2][3] been seen as
a desirable feature of Aspect-oriented notations. Although
several definitions are possible, all imply that the
underlying system does not have to prepare any hooks, or in
any way depend on the intention to apply an aspect over it.
The application of an aspect adds new features to a system,
but the system without the aspect has its own specification
and is correct relative to that specification, without needing
any aspects.

 Obliviousness is clearly important in dynamically evolving
systems, where the aspects may not even have been thought
of when the original system was created. It also is
appropriate when a system can have many variants, some
with one collection of aspects, and some with another, each
configured for a user’s particular needs. This is one of the
potential uses of aspects to allow more flexible
components, configurable on demand.

 However, a total obliviousness to aspects prevents treating
such malicious aspects as the one that reveals values
intended to be kept private. Who prevents the application of
such an aspect, on the language/system level (as opposed to
locking the source in a safe, and physically preventing
access to it)?

If specifications are available, a middle ground is possible,
where a system is oblivious to the particular aspects to be
applied to it, but still can restrict new aspects to those that
do not violate its specification (or at least some parts of its
specification). An aspect will be considered harmful if it
invalidates any desired properties of the system to which it
is applied. This will be more precisely defined and justified
in Section 2.

The paths open to diagnosis of harmful aspects are usual
testing, static code analysis similar to that done by type-
checkers, and use of formal methods, both deductive
verification and model checking. We shall consider all
possibilities. The type of augmentation or change made by
an aspect is another dimension that can determine the best
way of preventing harm. The three basic divisions [6] are to
spectative aspects that only gather information about the
system to which they are woven, usually by adding fields
and methods, but do not influence the possible underlying
computations otherwise, regulatory aspects that change the
flow of control (e.g., which methods are activated in which
conditions) but do not change the computation done to
existing fields, and invasive aspects that do change values

of existing fields (but still should not invalidate desirable
properties).

Yet another question is whether only the aspect module
itself must be analyzed, independently of any system to
which it may be woven, or whether an entire system
augmented by an instance of the woven aspect is the object
of analysis. In the continuation, the former is called aspect
code analysis, and the latter augmented system analysis.
The system before an aspect is woven into it is termed the
original system.

The focus on preventing harmful effects of aspects is
unusual, but as will be shown, does allow a uniform
treatment. Such a treatment is more difficult when the new
properties to be established by the aspect also need to be
taken into consideration. Taking a medical analogy, the
basic principle should first be, as in the doctor’s
Hippocratic oath: “Do no Harm.”

2. SPECIFICATIONS OF ASPECTS AND SYSTEMS
A full treatment of aspects and their compositions clearly
does deal with the specifications of the aspects themselves,
and not just of the underlying system. In a HyperJ view, the
entire system is composed of such aspects, or concerns.
However, such specifications are often difficult to
construct. Aspects on a code level are typically described
by defining joinpoints where changes are to be made, and
advice, with code to augment or replace what is done at the
original joinpoint. Note that joinpoints may be defined as
dynamically determinable events, and not merely locations
in code or method calls.

As already defined in earlier works[6], specifications of
aspects need to describe both what is assumed about any
object or method in the basic system to which the aspect
may be applied (and in general, what must be true at each
joinpoint identified by the aspect), and, on the other hand,
what is required to be true after the advice is applied, if the
needed assumption indeed holds at the joinpoint. For each
joinpoint and advice segment of code, the advice assumes
some property of the system, and guarantees some property
when it finishes. Such an assume-guarantee structure for
aspects has already been recognized in [1], and [7], and is
essential for describing the added value of an aspect. The
overall properties added by the aspect can also be globally
described. Since many aspects deal with so-called non-
functional concerns like availability, fault-tolerance,
security, or persistence, providing their specifications is that
much more difficult.

 Here, however, we concentrate on simply avoiding harm,
and thus are not interested in what new properties are
promised by the aspect. Only the specification of the system
to which the aspect is woven is needed to prove the absence

of harm. Since that specification usually deals with basic
functional properties, it is more amenable to a description
in standard temporal logic, and/or using
precondition/postcondition pairs around methods or
functions.

The obliviousness of systems to aspects is reflected in that
usually the underlying system does not make assumptions
of any kind about the possible aspects that may be applied.
The existence of a specification of the desired properties
that hold for the basic system provide a way to weaken
obliviousness while maintaining the desired characteristics
of extensibility and flexibility to add new unanticipated
aspects. The specification of the basic system, in addition to
restricting the implementation of the system, also can
restrict future aspects, either by default —guaranteeing that
all the desired properties in the basic specification will be
maintained after weaving an aspect--- or in a more
restricted version, where only some of the original desired
properties are designated as unchangeable. Thus, for
purposes of avoiding harm, the only requirement of the
aspect is that the desired properties of the basic system
expressed in its specification remain true when the aspect
code is woven into the basic system and the augmented
system is then executed.

Although not essential to the arguments in this paper,
temporal logic provides a convenient formal notation for
describing properties of execution sequences. In the
simplest version G stands for ‘globally’ meaning from now
on in the sequence of states, and F stands for ‘in the future’,
meaning that eventually there is a state. Thus an assertion
G(p => Fq) means that in every state, if p is true then
eventually there will be another state with q. If p represents
“a request has been made”, while q is “a response is given”,
this corresponds to a specification that every request has a
later response. Note that a counterexample to such an
assertion would involve showing a computation with a state
where p is true, but which never has a later state with q true.
Whatever specification notation is used, it should not allow
expressing assertions about immediately following states
(using, for example, the “next-state” temporal modality X),
since such assertions are known to be sensitive to any
refinements or additions, and will be violated by any aspect
that adds computation at problematic points. Thus we
require a “stutter-free” version of temporal logic [5].

3. REGRESSION TESTING AND ITS LIMITATIONS
A straightforward approach to detecting harmful aspects
would seemingly be the use of regression testing. The idea
is simply to retest a system every time a new aspect is
woven into it, to ensure that the test suite which previously
was passed (and presumably captures the desirable
outcomes that should be maintained) is still passed. Then
the new properties to be added by the aspect could later be

validated with new additional tests to be added to the test
suite. This is the technique used by Extreme Programming
(XP) [8] in place of having specifications, and is intended
in XP to be applied to any significant change (e.g., a new
version) in the system. However, there are several serious
drawbacks to this approach when applied to aspects and
their weaving:

First, regression testing is most easily applied to systems to
which spectative aspects have been woven, where the
aspects do not influence the computations of the underlying
system at all. A regression test then could reasonably expect
that the fields of the underlying system are unaffected by
the augmentation of the aspect, so the results of the tests are
unchanged. A violation is then trivially determined by
comparing the results of the test, and can be inspected
automatically. Yet when spectative aspects are used, it is
more efficient to determine such situations using static
analysis, as described in the next subsection. When the
aspect is regulative or invasive, and thus does affect the
computation, the results of the test will differ from the same
test applied to the original system. They thus are often
difficult to evaluate, and any violation cannot be
determined automatically simply by detecting changes.
 Second, this approach obviously relates to the entire
augmented system, and retesting the entire system every
time an aspect is applied is often unfeasible due to time or
resource constraints. For a complex system, it seems
overkill to activate the entire test suite even if an aspect
with presumably small changes to only some of the objects
and methods is added. Also, when aspects are taken from a
library and bound to new systems, such a small investment
in coding (binding the aspect to a system) hardly justifies an
entire activation of the test suite. Moreover, if aspects are
applied and removed dynamically, during run time,
retesting is not realistic.
 Third, and most significantly, the original tests obviously
did not take into account the structure of the aspect or the
influence it may have on the basic computation paths. Thus,
for example when conditionals appear in aspect code, the
original tests may be completely irrelevant, since new paths
are generated and followed, and the tests may miss many
computation paths. Precisely because of their cross-cutting
nature, it is difficult to isolate parts of the test suite that still
might be relevant, since many regular modules (e.g.,
classes) are affected by each aspect.
Therefore, simply using regression testing does not
adequately treat harmful aspects. We thus turn to regression
verification, which can be based on static type analysis,
deductive verification, or model checking using aspect
validation.

4. STATIC ANALYSIS
As noted above, when the aspect to be applied is spectative
relative to the underlying system, it should often be possible

to establish this fact using static analysis of code. As will be
discussed, in some languages the aspect can be analyzed in
isolation, while in others the augmented system must be
considered. A spectative aspect does not change either the
value of any field or the flow of method calls of the
underlying system. New fields, methods, and even classes
can be added, but the new model of computation has a very
particular relation to the underlying one without the aspect.
Each computation path has sections of original computation
interleaved with sections of new computation. The result is
always equivalent to temporarily suspending the underlying
system, recording some information about it, computing
new values not influencing the underlying system in any
way, and then continuing as before.

Such a situation might be difficult to detect directly on the
execution graph of the computation, but it is amenable to
detection on the code level in some aspect languages, using
standard type checking and data-flow techniques. The idea
is that the locally defined fields of the aspect are the only
ones computed by that aspect, and no assignments are made
by aspect code to fields or to parameters that can be bound
to fields, variables, or parameters of the basic system. The
aspect code also cannot “redirect” the flow of execution,
and simply adds to the previous system without skipping
any of its computation.

This situation is amenable to syntactic detection by
analyzing only the aspect if all bindings between fields or
variables of the aspect and the basic system are made
through parameters of the aspect. On the other hand, when
arbitrary binding is possible, for example by using the same
name in both code segments, then only when a specific
binding has been made can the augmented system be
analyzed to determine which elements are bound, and
whether the aspect is spectative. In either case, dataflow
techniques, such as the uses and the defined-use pairs of
standard code optimization, can be employed to determine
whether there is any influence of fields in an aspect on
those of the basic system (the other direction is, of course,
not a problem). The possibility of analyzing just the aspect
is one argument in favor of clearly identifying parameters
for weaving, rather than allowing free bindings that force
analysis of the entire augmented system.

Showing that an aspect is spectative is one way to guarantee
that all safety and liveness properties involving assertions
only about variables, fields, and methods of the underlying
system will not be influenced by the aspect (as already
explained, without assertions about “next” states).
However, it should be noted that properties such as “the
value of a field is not visible outside the class” can be
violated by spectative aspects, even when they were
previously true. The problem is that the assertion of “not
visible” involves both the original fields and methods and
new fields or methods added by the aspect. As already
noted in the Introduction, a (hidden) field X could be

“made visible” by examining another field Y (added by the
aspect) linked to X by an invariant, or by adding new public
methods.

Such data-flow and type-safety techniques are always
conservative, in that if successful, the spectative nature of
the aspect is guaranteed, and the aspect can cause no harm
for specification properties as described above. If the
analysis does not establish that the aspect is spectative, it
remains to be seen whether the aspect is actually harmful.

5. DEDUCTIVE PROOFS OF CLASSES OF
TEMPORAL PROPERTIES

 It is also possible to establish a lack of harm for either
specific properties or entire classes of properties using
deductive proofs only over the aspect code. For example,
an invariant of the original system can often be shown to
also be an invariant of the augmented system, even without
analyzing in what situations the aspect code will be applied.
This is true when the invariant I is what is known as
“inductive,” meaning that {I} s {I} can be shown for each
individual step s. Note that it is sufficient to show that if the
invariant is assumed before a step, it will again be true at
the end of the step. In this situation, to establish that I is
also an invariant of the augmented system, it is sufficient to
check that each aspect action t also satisfies the same
assertion {I} t {I}. Since I is already known to be an
invariant of the original system, it actually is true of the
augmented system whenever the aspect is first applied, even
without analyzing the joinpoints. By induction, it is easy to
see that I will hold whenever some t action is taken, so will
be an invariant of the augmented system, even without
rechecking the original code.

For example, consider a situation where x>y>0 is an
invariant of a system, and an aspect has changes of the form

 <complex> � double (x,y),

where <complex> is a complex condition for applicability,
and double(x,y) doubles the values of x and of y. Then we
easily have {x>y>0} double(x,y) {x>y>0}, extending the
invariant to the augmented system, even though only the
aspect code was newly analyzed, and when it is applied was
ignored.

It is also possible to prove that an aspect is “almost
spectative” in that it might only abort an underlying system,
but would not otherwise affect the computation of the
original statespace. In such a situation, liveness properties
of the underlying system might be harmed, but all safety
properties are maintained.

Consider an aspect that treats overflow for variables in one
part of a system with limited memory. An invariant of the
underlying system that is also in its specification could be
that x = y. However, this will no longer hold in the
augmented system if x is treated for overflow, resulting in
new assignments to x, while y is not. In this case the aspect
has harmed the system by violating a safety assertion of its
specification. On the other hand, if the aspect stops the
system when overflow is detected, rather than continuing as
above, then safety properties are maintained, as long as the
system continues.

6. REGRESSION ASPECT VALIDATION FOR
INVASIVE ASPECTS

The approach of aspect validation, first suggested in [4],
can be specialized to detecting harmful aspects. The idea of
validation is to prove that each individual weaving is
acceptable, rather than having a single generic proof that
the aspect always does no harm. It is effective when each
weaving of an aspect triggers automatic generation of
verification tasks that themselves are automatically
checked, e.g., using a model checking tool. Note that the
initial organization and set-up of the validation framework
for each application aspect can be non-algorithmic and
require human effort and invention. However, the validation
associated with each weaving of the aspect does not require
such intervention, and must be automatic.

 Aspect validation is appropriate when we cannot
successfully identify absence of harm syntactically or
statically by analyzing the aspect code, and yet concluding
about lack of harm for classes of properties and for every
possible weaving of the aspect. Thus we are forced to turn
to techniques that analyze the augmented system, rather
than just the aspect code. Indeed, in general we need to
know the binding of the aspect to the basic system, and the
properties which are the desired ones of that system, before
the absence of harm can be established. Then we need to
verify that those properties hold of the augmented system.
The automatic verification for each weaving is essential to
make this approach feasible.

In many cases a software model checker can be used to
generate a model checking task to be executed using a well-
known tool such as SMV, Spin, or Java Pathfinder. One
practical tool design and implementation for aspect
validation was suggested in [4], where Bandera is used to
generate input for standard model checkers directly from
heavily annotated Java code. The annotations that express
the specification of the original system are themselves given
as aspects. These so-called specification aspects include
parametric temporal properties, labels, predicates, and
functions intended to annotate a system with its desired

properties, as preparation of input for Bandera. The
parameterization, and the fact that the annotation is kept as
a separate module rather than being built into the original
system allows the specification aspect to be applied both to
the original system, and to one augmented with application
aspects. Since annotating a system in preparation for a
Bandera verification is a nontrivial task, using specialized
notation and requiring human ingenuity, the reuse of the
specification aspect is the key to making the approach
practical.

 Such an approach of aspect validation is possible when the
original and the version augmented with aspects are
ultimately given in the same notation. In practice, it has
been used with AspectJ in the mode that generates source
Java code for the system with its aspects, and could also be
done when a Java bytecode verifier is available.

In essence, this is an incremental model checking task, if we
assume that the properties in the specification of the orginal
system were already verified using model checking. The
task to be shown in order to verify that the new aspect
causes no harm is simply to reprove the specification of the
original system, but this time for the augmented system
combining the original one with the aspect code bound to
various joint points (including dynamic ones). We can and
should reuse elements from the model checking of the
original system in the model checking of the augmented
one.

In particular, any model checking of the original system
usually requires abstraction of the statespace to create a
smaller model, in order to avoid the state-explosion
problem that often prevents a successful verification, even
though the model checking itself is algorithmic. Like the
specification aspect, these abstractions, used to make the
proof feasible in the available space and time, can be
reused for the augmented version. If this should prove
insufficient because an extensive new statespace is
generated, of course new abstractions might be necessary.
However, this would violate our goal of fully automatic
validation. In case studies we have carried out, the
abstractions needed for the original still lead to sufficient
reductions in the augmented system, but further research is
needed to determine whether this is generally the case.

 As opposed to simple regression testing, this is a full
verification, and thus will check the desired properties for
whatever new paths might be introduced by the weaving of
the aspect. However, using aspect validation for regression
verification, and thus model-checking the entire augmented
system, is clearly less desirable than proving once and for
all (by only analyzing the aspect code) that an aspect cannot
harm large classes of easily identifiable systems and
specification properties.

7. SUMMARY

The goal of full specification and verification of aspect-
oriented systems is still important. But even when
specifications of aspects are difficult to express for non-
functional concerns, and a full verification may be difficult,
showing the absence of harm through regression
verification is a valuable first step. A significant
improvement in code reliability and quality can be obtained
at a relatively low cost, especially when a specification of
the underlying system is already available. A combined
approach of static dataflow analysis, one-time deductive
proofs, and aspect validation shows particular promise.
Proper language design for aspects, with local variables and
parameterization, can help extend the static analysis of
only the aspect code to determine harmfulness or its
absence, either for classes of properties and for every
possible weaving, or reanalyzing only the aspect for each
weaving. When analysis of the full augmented system is
required, aspect validation is suggested.

 This focus on harmful aspects also allows a weakening of
obliviousness in a way that maintains extensibility, but does
not allow (or at least diagnoses) malicious or inadvertent
corruption of the desired properties of the underlying
system.

ACKNOWLEDGMENTS

This work was done while the author was visiting at
Lancaster University in the PROBE project, and is
supported by UK Engineering and Physical Sciences
Research Council (EPSRC) Grant GR/S70159/01. Valuable

discussions with Awais Rashid are gratefully
acknowledged.

8. REFERENCES
[1] Devereux, B., Compositional Reasoning about Aspects

using Alternating-time Logic, FOAL 2003.

[2] Filman, R.E., and Friedman, D.P., Aspect-Oriented
Programming is Quantification and Obliviousness,
Workshop on Advanced separation of Concerns,
OOPSLA 2000, October 2000.

[3] Filman, R.E., What is AOP, Revisited, Workshop on
Advanced Separation of Concerns, 15th ECOOP, June,
2001.

 [4] Katz, S., and Sihman, M., Aspect Validation Using
Model Checking , Intl. Symposium on Verification
in honor of Zohar Manna, Springer-Verlag, LNCS
2772, pp. 389-411. Also, early version in FOAL2003.

[5] Lamport, L., What Good is Temporal Logic?, IFIP 9th
World Congress, 1983, pp. 657-668.

[6] Sihman, M. and Katz, S. Superimposition and Aspect-
Oriented Programming, The Computer Journal, 46 (5),
2003, pp. 529-541.

[7] Sipma, H. B., A Formal Model for Cross-cutting
Modular Transition Systems, FOAL 2003.

[8] eXtreme Programming homepage,
http://www.extremeprogramming.org

