Diagnosis of Har mful Aspects Using Regression Verification

Shmuel Katz
Computer Science
The Technion

Haifa Israel
katz@cs.technion.ac.il

ABSTRACT

Aspects are intended to add needed functionalityato
system or to treat concerns of the system by autingear
changing the existing code in a manner that crassihe

1. INTRODUCTION

Like all modularity and language concepts, aspects
intended to improve the development of complexesyst
On the code level, Aspect-Oriented Programming (AOP

usual class or process hierarchy. However, somstime |anguages provide notations to Separate|y declar@ a

aspects can invalidate some of the already exisl@siyable

repeatedly apply aspects that cross-cut the uslaals c

properties of the system. This paper shows how tostructure of object-oriented systems. Using AOP has

automatically identify such situations. The impada of
specifications of the underlying system is empleasiand
shown to clarify the degree of obliviousness appate for
aspects. The use of regression testing is considenad
regression verification is recommended instead,h wit
possible division into static analysis, deductiveqgfs, and
aspect validation using model checking.

Static analysis of only the aspect code is effectivhen
strongly typed and clearly parameterized aspeguages
are used. Spectative aspects can then be identied
imply absence of harm for all safety and livenesgpprties
involving only the variables and fields of the onigl

already been shown in numerous case studies tatastile
treatment of concerns that otherwise are scattered
throughout the system, and tangled with code ihga
variety of application issues. However, it is cletat
sometimes such augmentations of systems can make
properties that previously held for the system bszo
untrue in the combination of the system with theeas.

Such changes in the properties of the system cbela
proper outcome of applying the aspect if the prypées
considered undesirable, such as that the systediod&ad
in certain situations, or that messages were edgiblany
other observer in the computer. On the other hand,

system. Deductive proofs can be extended to showgeneral there is no way to linguistically prevespects

inductive invariants are not harmed by an aspdst hy
treating only the aspect code. Aspect validatioagtablish

from invalidating some properties thate desirable. This
could occur either inadvertently, or maliciously.n A

lack of harm is defined and suggested as an optimalexample of the former could be when an aspect deterio

approach when the entire augmented system withdpect
woven in must be considered.

Categoriesand Subject Descriptors
D.3.3 [Programming Languages|: Language Constructs and
Features control structures.

General Terms
Languages, Verification.

Keywords
Aspects, desired specification properties, nonietence,
preventing harm, regression verification, aspetitiation.

treat overflow of variables, by mistake also cautfes
system to deadlock. An example of the latter cinddvhen

a system with private fields that guarantee sorwel lef
privacy is augmented by an aspect that providedigub
methods for reading the values of those very figlusrder
to expose their contents, thereby violating theérdddevel
of privacy.

In order to identify and treat such situations, sgetems to
which aspects are woven need to be augmented with
specifications. These are descriptions of the desirable
properties of the system. Note that they do notrilesall
properties of the system, only those seen as i@apbend
positive. Such properties should be maintained éfvére
system is augmented with aspects, or even if apcasp
combined with other aspects. Whedn change are the

properties of the system not seen in the spedificail he
form of such specifications is described in Sec#on

Treatment of harmful aspects also requires a retignof
the degree obbliviousness needed by an aspect-oriented
notation. Obliviousness has traditionally [2][3]emeseen as
a desirable feature of Aspect-oriented notatiorithotigh
several definitions are possible, all imply thate th
underlying system does not have to prepare anyshawkn
any way depend on the intention to apply an aspeet it.
The application of an aspect adds new featuressisiam,
but the system without the aspect has its own fpation
and is correct relative to that specification, withneeding
any aspects.

Obliviousness is clearly important in dynamicadlolving
systems, where the aspects may not even have haeght

of when the original system was created. It also is
appropriate when a system can have many variaoise s
with one collection of aspects, and some with aggthach
configured for a user’s particular needs. Thisng of the
potential uses of aspects to allow more flexible
components, configurable on demand.

However, a total obliviousness to aspects previeetting
such malicious aspects as the one that revealsesalu
intended to be kept private. Who prevents the apfitin of
such an aspect, on the language/system level (assegd to
locking the source in a safe, and physically prémgn
access to it)?

If specifications are available, a middle groungbdssible,
where a system is oblivious to the particular atpéx be
applied to it, but still can restrict new aspectghtose that
do not violate its specification (or at least sqpaets of its
specification). An aspect will be considered hatnifuit
invalidates any desired properties of the systemtizh it
is applied. This will be more precisely defined gnstified
in Section 2.

The paths open to diagnosis of harmful aspectsuanal
testing, static code analysis similar to that dbgetype-

of existing fields (but still should not invalidatiesirable
properties).

Yet another question is whether only the aspectuteod
itself must be analyzed, independently of any syste
which it may be woven, or whether an entire system
augmented by an instance of the woven aspect ishjezt

of analysis. In the continuation, the former islexdbspect
code analysis, and the latteaugmented system analysis.
The system before an aspect is woven into it imeerthe
original system.

The focus on preventing harmful effects of aspasts
unusual, but as will be shown, does allow a uniform
treatment. Such a treatment is more difficult whise new
properties to be established by the aspect alsd tebe
taken into consideration. Taking a medical analoipg
basic principle should first be, as in the doctor's
Hippocratic oath: “Do no Harm.”

2. SPECIFICATIONSOF ASPECTSAND SYSTEMS

A full treatment of aspects and their compositictearly
does deal with the specifications of the aspeamselves,
and not just of the underlying system. In a Hypaedv, the
entire system is composed of such aspects, or owice
However, such specifications are often difficult to
construct. Aspects on a code level are typicallgcdbed
by definingjoinpoints where changes are to be made, and
advice, with code to augment or replace what is donéet t
original joinpoint. Note that joinpoints may be ithefd as
dynamically determinable events, and not merelations

in code or method calls.

As already defined in earlier works[6], specificat$ of
aspects need to describe both what is assumed ahgut
object or method in the basic system to which theeat
may be applied (and in general, what must be ttuEaeh
joinpoint identified by the aspect), and, on thkenthand,
what is required to be true after the advice idiagpif the
needed assumption indeed holds at the joinpoint.eBoh
joinpoint and advice segment of code, the adviceirass

checkers, and use of formal methods, both deductivesome property of the system, and guarantees saopeny

verification and model checking. We shall considdir
possibilities. The type of augmentation or changelenby
an aspect is another dimension that can deterrhmédést
way of preventing harm. The three basic divisidi]safe to
spectative aspects that only gather information about the
system to which they are woven, usually by addietd$
and methods, but do not influence the possible nlyidg
computations otherwiseegulatory aspects that change the
flow of control (e.g., which methods are activabedvhich
conditions) but do not change the computation dtme
existing fields, andnvasive aspects that do change values

when it finishes. Such an assume-guarantee steudtur
aspects has already been recognized in [1], andafid is
essential for describing the added value of ancisfde
overall properties added by the aspect can alsgidisally
described. Since many aspects deal with so-calad n
functional concerns like availability, fault-tolerwze,
security, or persistence, providing their specifaras is that
much more difficult.

Here, however, we concentrate on simply avoidiagnm,
and thus are not interested in what new propeidies
promised by the aspect. Only the specificatiorhefgystem
to which the aspect is woven is needed to proveltisence

of harm. Since that specification usually dealshwigsic
functional properties, it is more amenable to acdpson

in standard temporal logic, and/or using
precondition/postcondition pairs around methods or
functions.

The obliviousness of systems to aspects is refleictehat
usually the underlying system does not make assanpt
of any kind about the possible aspects that mayppéied.
The existence of a specification of the desiredppriies
that hold for the basic system provide a way to keea
obliviousness while maintaining the desired chandstics
of extensibility and flexibility to add new unarpated
aspects. The specification of the basic systemaddition to
restricting the implementation of the system, atsan
restrict future aspects, either by default —guamintethat
all the desired properties in the basic specificatvill be

validated with new additional tests to be addedhto test
suite. This is the technique used by Extreme Prograg
(XP) [8] in place of having specifications, andingended
in XP to be applied to any significant change (eagnew
version) in the system. However, there are sevagdabus
drawbacks to this approach when applied to aspmuts
their weaving:

First, regression testing is most easily appliedystems to
which spectative aspects have been woven, where
aspects do not influence the computations of tlerying
system at all. A regression test then could reddgrexpect
that the fields of the underlying system are urcaéfé by
the augmentation of the aspect, so the resultseofeists are
unchanged. A violation is then trivially determindxy
comparing the results of the test, and can be atsde
automatically. Yet when spectative aspects are,usdd

the

maintained after weaving an aspect--- or in a more more efficient to determine such situations usintatics

restricted version, where only some of the origiesired

analysis, as described in the next subsection. When

properties are designated as unchangeable. Thus, foaspect is regulative or invasive, and tldegs affect the

purposes of avoiding harm, the only requirementthef
aspect is that the desired properties of the bagtem
expressed in its specification remain true whenatgect
code is woven into the basic system and the augmdent
system is then executed.

Although not essential to the arguments in this epap
temporal logic provides a convenient formal notatfor
describing properties of execution sequences. la
simplest version G stands for ‘globally’ meaningnfr now
on in the sequence of states, and F stands fehneifuture’,
meaning that eventually there is a state. Thussaprdon
G(p => Fqg) means that in every state, if p is tthen
eventually there will be another state with g. ifgpresents
“a request has been made”, while q is “a respagéeven”,
this corresponds to a specification that every estjhas a
later response. Note that a counterexample to suth
assertion would involve showing a computation vaitktate
where p is true, but which never has a later stéteq true.
Whatever specification notation is used, it shawdl allow
expressing assertions about immediately followitates
(using, for example, the “next-state” temporal nigdax),
since such assertions are known to be sensitivanto
refinements or additions, and will be violated Imy aspect
that adds computation at problematic points. Thues w
require a “stutter-free” version of temporal logfg.

th

3. REGRESSION TESTING AND ITSLIMITATIONS

A straightforward approach to detecting harmful exsp

would seemingly be the use iEgression testing. The idea

is simply to retest a system every time a new dsf®ec
woven into it, to ensure that the test suite whpokviously

computation, the results of the test will diffeorin the same
test applied to the original system. They thus aften
difficult to evaluate, and any violation cannot
determined automatically simply by detecting change
Second, this approach obviously relates to thereent
augmented system, and retesting the entire systamy e
time an aspect is applied is often unfeasible duime or
resource constraints. For a complex system, it seem
overkill to activate the entire test suite everaif aspect
with presumably small changes to only some of thieas
and methods is added. Also, when aspects are fek@na
library and bound to new systems, such a smallsimvent

in coding (binding the aspect to a system) hanatifies an
entire activation of the test suite. Moreover, spacts are
applied and removed dynamically, during run time,
retesting is not realistic.

Third, and most significantly, the original testisviously

did not take into account the structure of the espe the
influence it may have on the basic computation gafhus,

for example when conditionals appear in aspect ctue
original tests may be completely irrelevant, sineg paths
are generated and followed, and the tests may mmésg/
computation paths. Precisely because of their ezogsg
nature, it is difficult to isolate parts of the ttesite that still
might be relevant, since many regular modules ,(e.qg.
classes) are affected by each aspect.

Therefore, simply using regression testing does not
adequately treat harmful aspects. We thus turedeession
verification, which can be based on static typelysis
deductive verification, or model checking using exxp
validation.

be

was passed (and presumably captures the desirablg sTaTIC ANALYSIS

outcomes that should be maintained) is still pas3éen
the new properties to be added by the aspect datdd be

As noted above, when the aspect to be appliedeistative
relative to the underlying system, it should oftenpossible

to establish this fact using static analysis ofecoiks will be “made visible” by examining another field Y (addeyl the
discussed, in some languages the aspect can beehah aspect) linked to X by an invariant, or by addimgvrpublic
isolation, while in others the augmented systemtnies methods.

considered. A spectative aspect does not chaniger dfie

value of any field or the flow of method calls diet i

underlying system. New fields, methods, and evessegls ~ SUch data-flow and type-safety techniques are away
can be added, but the new model of computatiorahasy conservatlvg, in that if successful, the spectatisture of
particular relation to the underlying one withoé taspect. € aspect is guaranteed, and the aspect can caus&m
Each computation path has sections of original egatipn ~ 10F Specification properties as described above.thé
interleaved with sections of new computation. Tesuft is ~ analysis does not establish that the aspect isaper it
always equivalent to temporarily suspending theeuying remains to be seen whether the aspect is actuadigfhl.
system, recording some information about it, conmgut

new values not influencing the underlying systemaity 5. DEDUCTIVE PROOES OF CLASSES OF
way, and then continuing as before. TEMPORAL PROPERTIES

Such a situation might be difficult to detect ditpon the

execution graph of the computation, but it is anwdo .) .)
detection on the code level in some aspect langyasing It |s_§1lso poss[ble to esta}bllsh a lack of harm é_aher
standard type checking and data-flow techniques. iiea ~ SPEcific properties or entire classes of propertistg
is that the locally defined fields of the aspeat tre only ~ deductive proofs only over the aspect code. Fompie,
ones computed by that aspect, and no assignmentsaste an mvarlan'F of t_he original system can often bey\zm to
by aspect code to fields or to parameters thatbeabound also be an invariant of the augmented system, extiiout
to fields, variables, or parameters of the basitesy. The analyzing in what situations the aspect code velbpplied.

aspect code also cannot “redirect’ the flow of exien This is true when the invariant | is what is knows
and simply adds to the previous system without pikip “inductive,” meaning that {I} s {I} can be shown feeach
any of its computation. individual step s. Note that it is sufficient tooshthat if the

invariant is assumed before a step, it will agaéntiue at
the end of the step. In this situation, to estabtlsat | is
also an invariant of the augmented system, it fiicgnt to
check that each aspect action t also satisfiesstrae
assertion {I} t {I}. Since | is already known to ban

This situation is amenable to syntactic detection b
analyzing only the aspect if all bindings betwersdé or
variables of the aspect and the basic system ame ma
through parameters of the aspect. On the other, valmeh

arbitrary binding is possible, for example by using same inyariant of the original system, it actually true of the

name in both code segments, then only when a $pecif 5,gmented system whenever the aspect is firsteahiven
binding has been made can the augmented system bgjihout analyzing the joinpoints. By induction,isteasy to

analyzed to determine which elements are bound, andsee that | will hold whenever some t action is take will
whether the aspect is spectative. In either cas&fldw be an invariant of the augmented system, even uitho
techniques, such as thses and thedefined-use pairs of rechecking the original code.

standard code optimization, can be employed terdene

whether there is any influence of fields in an aspen

those of the basic system (the other directiomfigourse, For example, consider a situation where x>y>0 is an
not a problem). The possibility of analyzing jusétaspect invariant of a system, and an aspect has changbs érm

is one argument in favor of clearly identifying aareters <complex>> double (x,y),

for weaving, rather than allowing free bindingsttfarce

analysis of the entire augmented system. where <complex> is a complex condition for appligh
and double(x,y) doubles the values of x and of e mwe

easily have {x>y>0} double(x,y) {x>y>0}, extendinthe
invariant to the augmented system, even though tdy
aspect code was newly analyzed, and when it iSexpplas
ignored.

Showing that an aspect is spectative is one waydnantee
that all safety and liveness properties involvirsgeations
only about variables, fields, and methods of thdeulying
system will not be influenced by the aspect (agaaly
explained, without assertions about “next” states).
However, it should be noted that properties suclittzes
value of a field is not visible outside the clagsin be It is also possible to prove that an aspect is atm
violated by spectative aspects, even when they werespectative” in that it might only abort an undemtyisystem,
previously true. The problem is that the assertibrinot but would not otherwise affect the computation bé t
visible” involves both the original fields and mets and original statespace. In such a situation, liven@sperties
new fields or methods added by the aspect. As @&rea of the underlying system might be harmed, but afety
noted in the Introduction, a (hidden) field X couts properties are maintained.

Consider an aspect that treats overflow for vaesii one
part of a system with limited memory. An invariaftthe
underlying system that is also in its specificattmuld be
that x = y. However, this will no longer hold ineth
augmented system if x is treated for overflow, Hasy in
new assignments to x, while y is not. In this céeeaspect
has harmed the system by violating a safety aseesf its
specification. On the other hand, if the aspecpstthe
system when overflow is detected, rather than nantg as
above, then safety propertiase maintained, as long as the
system continues.

6. REGRESSION ASPECT VALIDATION FOR
INVASIVE ASPECTS

The approach of aspect validation, first suggestef#l],
can be specialized to detecting harmful aspects.idéa of
validation is to prove that each individual weavirgy
acceptable, rather than having a single generiofptitat
the aspect always does no harm. It is effectivermémch
weaving of an aspect triggers automatic generatibn
verification tasks that themselves are automaticall
checked, e.g., using a model checking tool. No& the
initial organization and set-up of the validatiaarmhework
for each application aspect can be non-algorithemd
require human effort and invention. However, thidagion
associated with each weaving of the aspect doeseqaire
such intervention, and must be automatic.

Aspect validation is appropriate when we cannot
successfully identify absence of harm syntacticadly
statically by analyzing the aspect code, and yetlealing
about lack of harm for classes of properties andefery
possible weaving of the aspect. Thus we are fotogdrn
to techniques that analyze the augmented systetimerra
than just the aspect code. Indeed, in general e ne
know the binding of the aspect to the basic systamd,the
properties which are the desired ones of that sydhefore
the absence of harm can be established. Then wktoee
verify that those properties hold of the augmersgstem.
The automatic verification for each weaving is esis¢to
make this approach feasible.

In many cases a software model checker can be tased
generate a model checking task to be executed asiveljl-
known tool such as SMV, Spin, or Java Pathfindare O

properties, as preparation of input for Bandera.he T
parameterization, and the fact that the annotasidept as
a separate module rather than being built intoottiginal
system allows the specification aspect to be aggiwth to
the original system, and to one augmented withiegiibn
aspects. Since annotating a system in preparatioraf
Bandera verification is a nontrivial task, usingesiplized
notation and requiring human ingenuity, the reutehe
specification aspect is the key to making the aagino
practical.

Such an approach of aspect validation is possibken the
original and the version augmented with aspects are
ultimately given in the same notation. In practitehas
been used with Aspect] in the mode that generatgses
Java code for the system with its aspects, anddcalab be
done when a Java bytecode verifier is available.

In essence, this is an incremental model checlaisk, if we
assume that the properties in the specificaticth@frginal
system were already verified using model checkifige
task to be shown in order to verify that the newea$
causes no harm is simply to reprove the specifinatif the
original system, but this time for the augmentedtey
combining the original one with the aspect codenlgbto
various joint points (including dynamic ones). Wanand
should reuse elements from the model checking ef th
original system in the model checking of the augeen
one.

In particular, any model checking of the origisgistem
usually requires abstraction of the statespacerdate a
smaller model, in order to avoid the state-explosio
problem that often prevents a successful verificateven
though the model checking itself is algorithmické.ithe
specification aspect, these abstractions, used ake nthe
proof feasible in the available space and timen ba
reused for the augmented version. If this shouldver
insufficient because an extensive new statespace
generated, of course new abstractions might besseacy.
However, this would violate our goal of fully autatit
validation. In case studies we have carried oug th
abstractions needed for the original still leadstdficient
reductions in the augmented system, but furthezame$ is
needed to determine whether this is generally éise.c

is

As opposed to simple regression testing, this ifulk
verification, and thus will check the desired pndigs for

practical tool design and implementation for aspect whatever new paths might be introduced by the wepof

validation was suggested in [4], where Banderasiduo
generate input for standard model checkers dirdotign
heavily annotated Java code. The annotations ttaess
the specification of the original system are thdwesegiven
as aspects. These so-callggecification aspects include
parametric temporal properties, labels, predicaimsd
functions intended to annotate a system with itsirdd

the aspect. However, using aspect validation fgression
verification, and thus model-checking the entirgraanted
system, is clearly less desirable than proving cavue for
all (by only analyzing the aspect code) that areespannot
harm large classes of easily identifiable systems a
specification properties.

7. SUMMARY

The goal of full specification and verification efpect-
oriented systems is still important. But even when
specifications of aspects are difficult to exprésis non-
functional concerns, and a full verification maydifficult,
showing the absence of harm through regression
verification is a valuable first step. A signifidan
improvement in code reliability and quality candigtained

at a relatively low cost, especially when a speation of
the underlying system is already available. A coradi
approach of static dataflow analysis, one-time déde
proofs, and aspect validation shows particular gem
Proper language design for aspects, with locabies and
parameterization, can help extend the static aisalg
only the aspect code to determine harmfulness ®r it
absence, either for classes of properties and ¥erye
possible weaving, or reanalyzing only the aspectefach
weaving. When analysis of the full augmented system
required, aspect validation is suggested.

This focus on harmful aspects also allows a weakeof

obliviousness in a way that maintains extensihiliyt does
not allow (or at least diagnoses) malicious or weatent
corruption of the desired properties of the undedy
system.

ACKNOWLEDGMENTS

This work was done while the author was visiting at
Lancaster University in the PROBE project, and is
supported by UK Engineering and Physical Sciences
Research Council (EPSRC) Grant GR/S70159/01. Viduab

discussions with Awais Rashid

acknowledged.

are gratefully

8. REFERENCES
[1] Devereux, B., Compositional Reasoning about Aspects
using Alternating-time Logic, FOAL 2003.

Filman, R.E., and Friedman, D.P., Aspect-Oriented
Programming is Quantification and Obliviousness,
Workshop on Advanced separation of Concerns,
OOPSLA 2000, October 2000.

Filman, R.E., What is AOP, Revisited, Workshop on
Advanced Separation of Concerns"EBCOOP, June,
2001.

Katz, S., and Sihman, M., Aspect Validatidsing
Model Checking , Intl. Symposium on Verificatio
in honor of Zohar Manna, Springer-Verlag, LNCS
2772, pp. 389-411. Also, early version in FOAL2003.

[5] Lamport, L., What Good is Temporal Logic?, IRP
World Congress, 1983, pp. 657-668.

[6] Sihman, M. and Katz, S. Superimposition angecs-
Oriented Programming, The Computer Journal, 46 (5),
2003, pp. 529-541.

[7] Sipma, H. B., A Formal Model for Cross-cutting
Modular Transition Systems, FOAL 2003.

[8] eXtreme Programming homepage,
http://www.extremeprogramming.org

(3]

[4]

