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ABSTRACT
In order to provide better alignment between conceptual
requirements and aspect-oriented implementations, formal
specification methods should enable the encapsulation of
logical abstractions of systems. In this paper we argue that
horizontal architectures, consisting of such logical abstrac-
tions, can provide better separation of concerns over con-
ventional ones while supporting incremental development for
more common units of modularity such as classes. We base
our arguments on our experiences with the DisCo method,
where logical abstractions are composed using the superpo-
sition principle.

1. INTRODUCTION
Post-object programming (POP) mechanisms, like those de-
veloped in aspect-oriented programming [6], provide means
to modularize crosscutting concerns, which are in some sense
orthogonal to conventional modularity. The background of
this paper is in the observation that the same goal has been
pursued also at the level of formal specifications of reactive
systems, and that the results of this research are relevant for
the theoretical understanding of POP-related architectures
and of the associated specification and design methods.

Unlike conventional software modules, units of modularity
that are suited for a structured description of the intended
logical meaning of a system can be understood as aspects
in the sense of aspect-oriented programming. We call such
units horizontal in contrast to conventional vertical units of
modularity, such as classes and processes. While the vertical
dimension remains dominant because of the available imple-
mentation techniques, the horizontal dimension can provide
better separation of concerns over the vertical one improv-
ing, for example, traceability of requirements.

In this paper, our experiences with the DisCo method are
used as the basis for discussion. The rest of the paper is
structured as follows. First, in Section 2, we present the idea
of structuring specifications using horizontal units capturing
logical rather than structural abstractions of the system.
In Section 3 the DisCo method is presented which utilizes
such components as primary units of modularity. Section 4
concludes the paper by discussing the approach in the light
of related work.

2. TWO DIMENSIONS OF SOFTWARE AR-
CHITECTURE

Describing an architecture means construction of an ab-
stract model that exhibits certain kinds of intended proper-
ties. In the following we consider operational models, which
formalize executions as state sequences, as illustrated in Fig-
ure 1, where all variables in the model have unique values in
each state si. In algorithmic models these state sequences
are finite, whereas in reactive models they are nonterminat-
ing, in general. Message sequence charts are a well-known
operational formalism for describing state sequences where
states si consist only of the control points of the communi-
cating processes.

2.1 Vertical Units
The algorithmic meaning of software, as formalized by Dijk-
stra [4], has the desirable property that it can be composed
in a natural manner from the meanings of the components
in a conventional architecture. To see what this means in
terms of executions in operational models, consider state
sequences that implement a required predicate transforma-
tion. Independently of the design principles applied, a con-
ventional architecture imposes a “vertical” slicing on these
sequences, so that each unit is responsible for certain subse-
quences of states. This is illustrated in Figure 2, where the
satisfaction of the precondition-postcondition pair (P, Q) for
the whole sequence relies on the assumption that a subse-
quence V , generated by an architectural unit, satisfies its
precondition-postcondition pair (PV , QV ).

More generally, an architecture that consists of conventional
units imposes a nested structure of such vertical slices on
each state sequence. In the generation of these sequences,
the two basic operations between architectural units can
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Figure 1: Execution as a state sequence.

s0

P

· · · si

PV

· · · sj

QV

· · · sn

Q

V

Figure 2: A vertical slice V in an execution.

be characterized as sequential composition and invocation.
The former concatenates state sequences generated by com-
ponent units; the latter embeds in longer sequences some
state sequences that are generated by a component unit. In
both cases, the resulting state sequences have subsequences
for which the components are responsible. In current soft-
ware engineering approaches, this view has been adopted as
the basis for designing behaviors of object-oriented systems,
leading the focus to interface operations that are to be in-
voked, and to the associated local precondition-postcondition
pairs.

The architectural dimension represented by this kind of mod-
ularity will be called vertical in the following.

2.2 Horizontal Units
The meaning of a system can also be modeled by how the
values of its variables, denoted by set X, behave in non-
terminating state sequences. In order to have modularity
that is natural for such a reactive meaning, the meanings of
the components must be of the same form. In other words,
each component must also generate nonterminating state se-
quences, but the associated set of variables can be a subset
of X. An architecture of reactive units therefore imposes a
“horizontal” slicing of state sequences, so that each unit is
responsible for some subset XH of variables in all states si,
as illustrated in Figure 3.

In the generation of state sequences, only one basic opera-
tion is needed. Superposition uses state sequences that are
generated by a horizontal slice embedding them in sequences
that involve a larger set of variables. The state sequences of
the resulting vertical architecture have projections for which
the horizontal components are responsible. Properties of
horizontal slices then emphasize collaboration between dif-
ferent vertical units, and the relationships between their in-
ternal states.

The two dimensions of architecture are in some sense dual
to each other. On the one hand, from the viewpoint of
vertical architecture, the behaviors generated by horizontal
units represent crosscutting concerns. From the horizontal
viewpoint, on the other hand, vertical units emerge incre-
mentally.

2.3 Architecting Horizontal Abstractions
To illustrate the nature of horizontal units, consider a sim-
ple modeling example of an idealized doctors’ office, where
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Figure 3: A horizontal slice H in an execution.

ill patients are healed by doctors.1 The natural vertical
units in such a model would include patients, doctors and
receptionists. Horizontal units, on the other hand, would
model their cooperation as specific projections of the total
system, and the whole specification could be built incremen-
tally from these.

The specification process can start with a trivial model of
the simple aspect that people get ill, and ill patients even-
tually get well. The “illness bits” of the patients are the
only variables that are needed in this horizontal unit. Next,
this unit can be embedded in a larger model where a pa-
tient gets well only when healed by a doctor. This extended
model has events where a doctor starts inspecting a patient,
and participation of a doctor is also added to the events
where a patient gets well. Finally, a further superposition
step can add the aspect that also receptionists are needed
in the model, to organize patients to meet doctors, and to
make sure that they pay their bills. This aspect is truly
crosscutting in the sense that it affects all the vertical units,
i.e., patients, doctors and receptionists.

Each unit in this kind of a horizontal architecture is an
abstraction of the meaning of the total system. The first
horizontal unit in this example is an abstraction where all
other behavioral properties have been abstracted away ex-
cept those that concern the “illness bits” of patients. In
terms of Temporal Logic of Actions (TLA) [18], (the mean-
ing of) the total system always implies (the meaning of) each
horizontal unit in it. As for variables, each component in the
horizontal structure focuses on some variables that will be-
come “secrets” encapsulated in the vertical components in
an eventual implementation. This can be related with the
observation of [19], where such secrets are considered more
important than the interfaces associated with them in early
phases of design.

This gives a formal basis for specifying a reactive system
– i.e., for expressing its intended meaning – incrementally
in terms of operational abstractions that can be formally
reasoned about. Since it is unrealistic to formulate any
complex specification in one piece, this is a major advan-
tage for using horizontal architectures in the specification
process. A classical example of using horizontal slices is the
separation of correctness and termination detection in a dis-
tributed computation [5]. This is also the earliest known use
of superposition in the literature – its close relationship with
aspect-orientation was first reported in [13].

For comparison, consider how stepwise refinement proceeds

1This is an outline of a simplified version of an example that

was used to illustrate the ideas of DisCo in [16].



with vertical architectural units. In terms of executions,
each operational abstraction generates state sequences that
lead from an initial state to a final state, so that the required
precondition-postcondition pairs are satisfied. At the high-
est level of abstraction there may be only one state change,
and each refinement step replaces some state changes by
state sequences that are generated by more refined architec-
tural units. This leads to a design where the early focus is
on interfaces and their use, whereas the “secrets” inside the
vertical components may become available only towards the
end of the design, when the level of implementable interface
operations is achieved.

Due to the above, the abstractions that a vertical archi-
tecture provides are not abstractions of the meaning: the
complete meaning is assumed to be available already at the
highest level, and it remains the same throughout the de-
sign process. Instead, at each level of refinement, a vertical
architecture gives an abstraction of the structure of an im-
plementable operational model.

3. EXPERIENCES WITH DISCO
The above views have been stimulated by the experiences
gained with the DisCo2 method [10, 23]. DisCo is a formal
specification method for reactive system, whose semantics
are in TLA [18].

3.1 Horizontal Architectures in DisCo
In DisCo, the horizontal dimension, as discussed above, is
used as the primary dimension for modularity. The internal
structure of horizontal units consists of partial classes that
reflect the vertical dimension. For instance, each of the at-
tributes of a class can be introduced in different horizontal
units.

Behavioral modeling is DisCo’s bread and butter. The de-
sign usually advances so that first the high-level behaviors
are included in the model. Based on this abstract behav-
ioral model it is then possible to include more details, even
to the level where direct mapping to available implementa-
tion techniques becomes an option [17].

In more detail, horizontal components correspond to super-
position steps referred to as layers. Formally, each layer is
a mapping from a more abstract vertical architecture to a
more detailed one. As the design decisions are encapsulated
inside the layers, they become first-class design elements.
Because layers represent logical, rather than structural as-
pects of the system, they serve in capturing concepts of the
problem domain.

Ideally, each layer contains only those details that pertain to
a particular logical aspect. Thus, better alignment between
the requirements and design can be achieved. In cases where
a layered structure is aligned with an aspect-oriented imple-
mentation [1], this results in improved traceability concern-
ing the entire design flow.

Dependencies between layers arise if, for instance, a class is
defined in one layer and its attribute in another layer. In
this case the latter is said to depend on the former. These

2Acronym for Distributed Co-operation.

horizontal

dependency

dependency

refines

Receptionists coordinate patients and doctors 

Patients get ill and get well

<<Layer>>

<<Layer>>

No healing without seeing a doctor

<<Layer>>

architecture

refines

refines

vertical architecture

vertical architecture

vertical architecture

Figure 4: Horizontal architecture consisting of lay-

ers.

dependencies impose a partial order between the layers of
the specification.

In Figure 4 the situation is illustrated in the simple case
of the example outlined above. The horizontal architecture
consists of three layers. Each layer refines a vertical archi-
tecture to a more detailed one by adding a new piece of
“meaning” to the system. The layer introducing doctors
depends on the one introducing patients, and the one intro-
ducing receptionists depends on the one introducing doctors
(and transitively on the patients layer).

Different concerns can be partially treated in common lay-
ers. A situation of this kind arises when a common design
decision is made to cater for two different features, for in-
stance. This means that, generally, concerns are treated in
one or more layers. Moreover, there can be overlap between
the sets of layers treating different concerns.

3.2 Example: Mobile Robot
As a more concrete example, a simplified DisCo specification
of a mobile robot (toy car) control software specification
is presented. We have omitted the parts dealing with real
time (and fairness) which can be found in [11] in a slightly
different form.

The mobile robot is a small microcontroller-based car. The
objective is to keep the car on a track marked by optical
tape. From the viewpoint of the control software the sys-
tem has two inputs and two outputs. The inputs are read-
ings from an A/D converter connected to infra-red censors,
and from an odometer. The outputs are two servo motors
controlling the steering and the movement. The servos are
driven by PWM (Pulse Width Modulation) signals. There



is also a switch, which is used to start the car and to stop
it.

There are two concern that need to be addressed: the basic
functionality of the car including starting and stopping and
the control part including the control algorithms. These
concerns are treated in three separate layers, one of which is
common to both concerns, i.e. the concerns are overlapping.
The details of the layers are described next.

3.2.1 Basic Actions
Layer Basic Actions contains the basic functionality of the
system. It introduces two classes and three multi-object ac-
tions. Actions are symmetric with respect to participants;
there are no callers nor callees. Class Data holds internal
variables and class Output variables that model the outputs.
The variables r dist and r tape of type real represent the dis-
tance covered between the last two readings of the odometer
and the location of the car relative to the tape, respectively.
Variables c engine and c steer model the current lengths of
the servo pulses. If both equal zero, the car is stationary
with its wheels straight. In a class definition, the number of
instances is indicated by placing the number in parentheses
after a class name. The classes are shown below:

class Data (1) is

r dist: real := 0.0; r tape: real := 0.0;

end Data;

class Output (1) is

c engine: real := 0.0; c steer: real := 0.0;

end Output;

Action Clear clears all the variables given in this layer. This
is implemented by a parallel assignment in its body. Action
Read, which has a participant of class Data, models the read-
ing of the odometer and the A/D converter. The actual new
readings are modeled by two parameters r x and r y, which
have nondeterministic values and do not refer to any objects.
In action Control, parameters c x and c y are used to model
the new values given by the control algorithm. They are
assigned to the variables c engine and c steer, respectively.
The actions are given below:

action Clear (D: Data; O: Output) is

when true do

D.r dist := 0.0 ‖ D.r tape := 0.0 ‖
O.c engine := 0.0 ‖ O.c steer := 0.0;

end Clear;

action Read (r x, r y: real; D: Data) is

when true do

D.r dist := r x ‖ D.r tape := r y;

end Read;

action Control (c x, c y: real; O: Output) is

when true do

O.c engine := c x ‖ O.c steer := c y:

end Control;

Because the guards of all three actions are identically true,
the actions are continually enabled. The behavior of the
system consists of clearing the variables, reading the inputs
and writing the outputs. The order in which these actions
are executed is nondeterministic.

3.2.2 Drive States
Layer Drive States introduces the start/stop switch and spec-
ifies the order in which the actions are executed. Class Data
is extended to hold a state machine d state, which indicates
the actions that are allowed to be executed. The state ma-
chine has states start, read and control, the first of which is
the default state.

The switch is modeled by variable switch, which has two
states, on and off. The state of the switch is changed in
action Toggle. When the switch is on in state start, action
Start is enabled. It changes the state to read.

The extensions of class Data and the new actions are shown
below:

extend Data by

d state: (start, read, control);

switch: (off, on);

end Data;

action Toggle (D: Data) is

when true do

if D.switch’off then

D.switch → on();

else

D.switch → off();

end if;

end Toggle;

action Start (D: Data) is

when D.switch’on and D.d state’start do

D.d state → read();

end Start;

The car is fully operational when the switch is on in states
read and control. Likewise, actions Read and Control are
refined so that they are enabled correspondingly. Further-
more, by addition of state transition statements D.d state
→ control() and D.d state → read() to Read and Control, re-
spectively, they are executed by turns. The refined action
Read is given below, where ellipses denote the guard and
the body of the original action:



refined Read (r x, r y : real; D: Data) is

when ... D.switch’on and D.d state’read do

...

D.d state → control();

end Read;

Furthermore, action Clear is refined to change the state back
to start when the switch is turned off. In this case it implic-
itly stops the engine and straightens the wheels by clearing
all the variables.

3.2.3 Control Algorithms
Layer Control Algorithms treats the controlling of the move-
ment and the steering. The layer defines ten constants, ex-
tends class Data, introduces two functions and refines all
three actions given in Basic Actions. The constants and the
variables are added due to the control algorithms. Variable
e state represents the state of the engine. The three states
power up, moves and normal are needed since, because of fric-
tion, it is necessary to power up until movement is sensed
and after that power down slightly to prevent slipping.

The P and PID algorithms are used to compute new values
for the engine and steering, respectively. Function PID is
shown below (s P, s I and s D are constants):

function PID(D: Data) : real is

return –s P*D.r tape + s I*D.r tape ma

+ s D*(D.r tape old – D.r tape);

end PID;

Action Read is refined to include the statements needed
by the control algorithm (comments begin with double hy-
phens):

refined Read (r x, r y: real; D: Data) is

when ... do - - the guard is unchanged

...

if (r x = 0.0) and (D.r dist = 0.0) then

D.e state → power up(); - - not moving yet

elsif (r x > 0.0) and (D.r dist = 0.0) then

D.e state → moves();

else

D.e state → normal();

end if ‖

- - moving average:

D.r tape ma := ((n – 1)*D.r tape ma – D.r tape)/n ‖
D.r tape old := D.r tape;

end Read;

In the guard of action Control, parameters c x and c y are
bound to the return values of functions P and PID, respec-
tively. If the car has lost the track, it should stop. This is

the situation if the absolute value of r tape is greater than
limit, which is treated as a special case in the guard of action
Control. The refined action Control is shown below:

refined Control (c x, c y: real; O: Output; D: Data)

of Control(c x,c y,O) is

when ... (c x = if((abs D.r tape) > limit)

then 0.0 else P(D,O) end if)

and c y = PID(D) do

...

end Control;

Furthermore, action Clear is refined to clear variables intro-
duced in this layer.

As already mentioned, the vertical units emerge incremen-
tally while specifying the horizontal layers. In the composed
specification, class Data, for instance, consist of all variables
added in different layers:

class Data (1) is

- - Basic Actions:

r dist: real := 0.0;

r tape: real := 0.0;

- - Drive States:

d state: (start, read, control);

switch: (off, on);

- - Control Algorithms:

e state: (power up, moves, normal);

d.r tape ma: real := 0.0;

d.r tape old: real := 0.0;

end Data;

Obviously, it would have been difficult to come up with such
variables directly.

The horizontal architecture of the specification is illustrated
in Figure 5. Layer Basic Actions is common to both con-
cerns, and layers Drive States and Control Algorithms treat
the functional and control concerns, respectively. The lat-
ter layers can be applied in any order on top the former
when composing the specification as long as the dependen-
cies are respected, i.e. either Control Algorithms on top of
Drive States or the other way around.

3.3 Specifying with DisCo
As used in DisCo, superposition is strictly additive, i.e.
nothing is removed from the refined specification. This
means that all assignments to a variable must be given in the
layer introducing the variable. With this restriction, safety
properties can be preserved by construction.

Concerning support for specifying non-trivial systems, the
DisCo toolset [2] provides animated simulation of DisCo
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specifications for validation purposes at all levels of refine-
ment. Moreover, assembly of horizontal architectures can
be supported by reusable layers as described in [15]. These
layers can be seen as behavioral templates that should be
formally verified [14].

Related to common software engineering practices, the ad-
vantages of better alignment between requirements and spec-
ifications are emphasized in the maintenance phase [3]. It
should be also noted, that the ideas underlying the approach
are insensitive to the notation used, thus offering a founda-
tion for aspect-oriented specification languages. In [12] this
was shown using UML.

Model-Driven Architecture (MDA) [8, 7] by Object Man-
agement Group (OMG) also includes similar elements to the
DisCo approach. In MDA, however, only three pre-defined
levels are used, including computation independent, platform
independent, and platform specific models. By allowing in-
dividual levels of abstraction of MDA to consist of several
DisCo layers, one can create a development approach that
fits in the guidelines of MDA without compromising rigor-
ousness [20].

4. DISCUSSION
We have shown how two different dimensions of software ar-
chitecture, which we call vertical and horizontal, can be used
for constructing reactive systems. These dimensions are in
some sense dual, and they are also incompatible with each
other in the sense that it does not seem useful to combine
them in a single system of modules. Therefore, the horizon-
tal dimension, which is currently visible in design patterns
and aspect-oriented programming, for instance, remains as a
crosscutting dimension with respect to conventional vertical
units of implementation.

The two dimensions can be combined in different ways. As
already discussed, the DisCo approach uses the horizontal
dimension as the primary dimension, and provides an incre-
mental specification method for composing specifications.
A vertical implementation architecture is, however, antic-
ipated in terms of a high-level view of objects and their
cooperation. In contrast, most aspect-oriented approaches,
in particular those influenced by AspectJ [22], have taken
a more pragmatic approach. There, the primary architec-

tural dimension is based on conventional vertical modular-
ity, and crosscutting aspects are added to it by an auxiliary
mechanism for horizontal modularity [6]. Other approaches
include problem frames, where the horizontal dimension is
used for decomposing a problem into subproblems whose
sizes are more manageable [9].

Since layers provide abstractions of the total system, their
explicit use seems natural in a structured approach to spec-
ification, and also in incremental design of systems. At the
programming language level it is, however, difficult to de-
velop general-purpose support for horizontal architectures.
This means that a well-designed horizontal structure may
be lost in an implementation, or entangled in a basically
vertical architecture. However, newer implementation tech-
niques, including aspect-oriented ones in particular, have
enabled a wider range of options [1, 21].

We conclude that much work is still needed for making hor-
izontal architectures easier to use in practice. Besides issues
concerning implementation, commercial tools for utilizing
the horizontal dimension in software design are not avail-
able. Thus, it remains a topic of future study to build a tool
set where a commonly used notation, such as UML, is used
to support the approach in a rigorous way. Accomplishing
this may require the introduction of new concepts and ter-
minology, such as those proposed by OMG’s Model-Driven
Architecture initiative.
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