
Call and Execution Semantics in AspectJ

Ohad Barzilay
School of Computer Science

Tel Aviv University

ohadbr@cs.tau.ac.il

Shmuel Tyszberowicz
Department of Computer Science

The Academic College of Tel Aviv Yaffo

tyshbe@mta.ac.il

Yishai A. Feldman
Efi Arazi School of Computer Science
The Interdisciplinary Center, Herzliya

yishai@idc.ac.il

Amiram Yehudai
School of Computer Science

Tel Aviv University

amiramy@post.tau.ac.il

ABSTRACT
The Aspect-Oriented Programming methodology provides a
means of encapsulation of crosscuting concerns in software.
AspectJ is a general-purpose aspect-oriented programming
language that extends Java. This paper investigates the
semantics of call and execution pointcuts in AspectJ, and
their interaction with inheritance. We present a semantic
model manifested by the current (1.1.1) release of AspectJ,
point out its shortcomings, and present alternative models.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classi-
fications—Object-oriented languages; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages—Operational semantics

General Terms
Languages

Keywords
Aspect-oriented programming, AspectJ

1. INTRODUCTION
Many papers and books have been written about Aspect-
Oriented Programming (AOP) in general, and about As-
pectJ in particular (e.g., [1, 2, 4]), as well as several papers
giving formal semantics of simple aspect-oriented languages
(e.g., [3, 5, 6, 8–10]), but none of them provides a precise
(even if not completely formal) semantics of AspectJ. Such
a semantics is necessary for language users to express their
intent, and is crucial for tools that compile into AspectJ. For
example, we are developing a design-by-contract [7] tool for
Java. The main purpose of such a tool is to instrument the

c© 2004, Ohad Barzilay, Yishai A. Feldman, Shmuel Tyszberowicz, and
Amiram Yehudai. All rights reserved.

code to check assertions (method pre- and postconditions
and class invariants) at run time. Existing tools we have
examined perform this instrumentation in various ways, all
of which have subtle errors. Our tool uses AspectJ instead
of ad-hoc methods. While working on the tool, we discov-
ered that some pointcuts we wrote did not yield the sets of
join points that we expected. This has led us to conduct the
study that we report on here.

We believe that a close examination of the semantics of As-
pectJ as manifested by the current implementation, and a
discussion of the desired or “correct” semantics, is important
to the AOP community. We hope that studies of the seman-
tics of other parts of the language will follow. This paper
investigates one of the subtle parts of AspectJ, namely, call
and execution pointcuts and their interaction with inheri-
tance. We present a semantic model manifested by the cur-
rent (1.1.1) release of AspectJ, point out its shortcomings,
and present alternative models. We note that Jagadeesan
et al. [3] mention a few of these shortcomings, but do not
discuss their deficiencies.

We follow the approach taken by authors of the AspectJ
documentation and books by ignoring implementation is-
sues. For the purpose of this paper, we are not interested
in how code instrumentation is carried out, and in the prac-
tical constraints on which classes may or may not be in-
strumented. We similarly ignore the implementation of the
matching between pointcuts and join points in AspectJ. In-
stead, we treat AspectJ as a black box, and examine its
performance on carefully-chosen test cases.

2. CURRENT SEMANTICS OF ASPECTJ
The semantics of the wildcard operators (“*” and “..”) in-
side call and execution pointcuts are easily specified by con-
sidering them to be an abbreviation for the (infinite) union
of all possible expansions. We will therefore ignore wildcards
in the sequel. Also, in order to simplify the presentation, we
will deal only with void functions of no arguments. This
will entail no loss of generality. Since static methods are
not inherited, we will also ignore those in the sequel.

2.1 Call Semantics



Consider the pointcut specified by call(void A1.f()). This
should capture all calls to the method f defined in class A1.
Indeed it does, but that is due to the careful wording of
the previous sentence. What happens if f is inherited from
another class? In order to answer this question, we will
consider the following hierarchy of classes:

public class A1

{

public void f() {}

public void g() {}

}

public class A2 extends A1

{

public void h() {}

}

public class A3 extends A2

{

public void f() {}

}

We then consider the following three variable definitions, in
which the name of the variable indicates its static type and,
if different, also its dynamic type:

A1 s1 = new A1();

A3 s3 = new A3();

A1 s1d3 = new A3();

It turns out that the pointcut call(void A1.f()) captures
the calls s1.f(), s3.f(), and s1d3.f(). Similarly, the point-
cut call(void A1.g()) captures the calls s1.g(), s3.g(),
and s1d3.g(). It seems that even without the + subtype
pattern modifier, which specifies subclasses, these pointcuts
capture calls to the same method in subclasses, whether in-
herited or overridden. This may be a little surprising—what
is the + modifier for, then?—but is consistent with the dy-
namic binding mechanism of Java. (We shall have more to
say about the + modifier later.)

The pointcut call(void A3.f()) captures the call s3.f()
but not s1d3.f(). This implies that matching of call point-
cuts is based on the static type of the variable, which is not
consistent with the dynamic binding principle, but may per-
haps be justified based on the information available at the
calling point. However, the real surprise is that the pointcut
call(void A3.g()) does not capture any join points in our
example, not even s3.g()! The only difference between f

and g in A3 is that f is overridden whereas g is only inherited.
Thus, it seems that for matching to succeed, it is necessary
for the method to be lexically defined within the specified
class—inheritance is not enough. We use the term “lexically
defined” to indicate that a definition (first or overriding) of
the method appears inside the definition of the class.

Thus we are led to the following model. The semantics of a
pointcut will be given as a set of join points, formalized as
a predicate specifying which join points are captured by the
pointcut. Consider the following definitions:

• a pointcut pcc = call(void C.f()),

• a variable defined as S x = new D(), and

• a join point jp = x.f().

That is, the pointcut specifies a class C, and the target of
the join point has the static type S and the dynamic type D.
(Obviously, D must be a descendant of S for this to compile
correctly. We will denote this relationship by S ⊆ D.) Then:

jp ∈ pcc ⇐⇒ S ⊆ C ∧ f is lexically defined in C.

2.2 Execution Semantics
Continuing with our example, we find that call and execu-
tion pointcuts capture exactly the same join points for s1

and s3 (we are ignoring other features of pointcuts, such as
this and target). The only difference is in the treatment
of s1d3.f(), which is captured by execution(A1.f()) and
execution(A3.f()) but not by call(A3.f()). However,
execution(void A3.g()), like the corresponding call point-
cut, captures none of our join points. Thus, the rule for an
execution pointcut

pce = execution(void C.f())

seems to be:

jp ∈ pce ⇐⇒ D ⊆ C ∧ f is lexically defined in C.

That is, the static type is replaced by the dynamic type.
Again, this can be justified by the different type informa-
tion available at execution join points, but is nevertheless
an inconsistency in the semantics.

2.3 Subtype Pattern Semantics
The semantics of a subtype pattern such as call(A1+.f())

should naturally be equivalent to the union of all possible
expansions where A1 is replaced by any of its descendants.
This is indeed the case in AspectJ. However, because of
the surprising semantics described above, this has a subtle
interpretation. If

pc+
c = call(void C+.f())

is a call pointcut using subtypes, the matching rule is:

jp ∈ pc+
c ⇐⇒ S ⊆ C ∧
f is lexically defined in some F s.t. S ⊆ F ⊆ C.

In particular, the pointcut call(A1+.h()) captures s3.h(),
because h is defined in A2, but the same join point is not cap-
tured by call(A3+.h()), even though A3 has this method.
This violates our expectation that call(A3+.h()) should be
a subset of call(A1+.h()) that is identical for all join points
in classes under A3.

Similarly, for

pc+
e = execution(void C+.f()),

the matching rule is:

jp ∈ pc+
e ⇐⇒ D ⊆ C ∧
f is lexically defined in some F s.t. D ⊆ F ⊆ C.



Variable definition: S x = new D()

Join point: jp = x.f()

Pointcuts: pcc = call(void C.f())

pce = execution(void C.f())

pc+
c = call(void C+.f())

pc+
e = execution(void C+.f())

jp ∈ pcc ⇐⇒ S ⊆ C ∧ f is lexically defined in C

jp ∈ pce ⇐⇒ D ⊆ C ∧ f is lexically defined in C

jp ∈ pc+
c ⇐⇒ S ⊆ C ∧ f is lexically defined in some F s.t. S ⊆ F ⊆ C

jp ∈ pc+
e ⇐⇒ D ⊆ C ∧ f is lexically defined in some F s.t. D ⊆ F ⊆ C

Figure 1: Semantics of current (1.1.1) AspectJ implementation.

2.4 Summary
The current semantics of AspectJ is summarized in Figure 1.
It satisfies some of our intuitive expectations but violates
others. The points on which AspectJ is consistent with the
intuitive semantics are:

• Pointcuts with wildcards are equivalent to the union
of all possible expansions.

• Pointcuts with subtype patterns are equivalent to the
union of all pointcuts with subtypes substituted for
the given type.

• The semantics of execution pointcuts is based on the
dynamic type of the target.

On the following points the semantics of AspectJ deviates
from our intuition:

• The semantics of call pointcuts is different from that
of execution pointcuts, and depends on the static type
of the target.

• Call and execution pointcuts only capture join points
for classes where the given method is lexically defined.

• As a result of this, the difference between pointcuts
with or without subtype patterns is subtle and unin-
tuitive.

It is arguable whether pointcuts without subtype patterns
should capture join points in subclasses at all. On the one
hand, an instance of a class is ipso facto considered to be-
long to all its superclasses; this is reflected in the syntactic
restrictions on assignment and parameter passing, and in
the semantics of the instanceof operator. On the other
hand, the existence of the subtype pattern modifier seems
to imply the intention that a pointcut that does not use it
refer only to instances of the specified class.

We believe that the lexical restrictions shown in these se-
mantic definitions were unintended; their removal would
greatly simplify the semantics. Some evidence that this is
not the intended semantics comes from the following quote

from one of the AspectJ gurus [4, p. 79]: “The [call(*
Account.* (..)) pointcut] will pick up all the instance and
static methods defined in the Account class and all the par-
ent classes in the inheritance hierarchy” (emphasis added).
This is not true in AspectJ, but is intuitively appealing.

Another interesting clue is the fact (pointed out to us by
one of the anonymous reviewers) is that when the AspectJ
compiler is invoked with the -1.4 switch, the set of join-
points defined by call pointcuts changes, and the restriction
on the lexical definition of the method in the designated class
is removed. Curiosly, the behavior of execution pointcuts
does not change even with this switch.

3. ALTERNATIVE SEMANTICS
If the current AspectJ semantics is inappropriate, we should
propose one or more alternatives. As mentioned above, such
alternatives should not restrict methods to be lexically de-
fined in the designated class. Two questions remain:

1. should subclasses be included when the subtype pat-
tern modifier does not appear in the pointcut; and

2. should call and execution pointcuts capture different
join points.

These issues lead to four possible definitions of the seman-
tics (see Figure 2). In these definitions we use the term “f
exists in C” to denote the fact that the method f exists in
class C, whether or not it is lexically defined (or overridden)
in it. We use the term “broad” for those semantics that in-
clude subclasses even when subtypes are not indicated, and
“narrow” for those that do not. The term “static” denotes
semantics that use the static type for call pointcuts, and
“dynamic” denotes those that use the dynamic type. It is
important to note that although the join points captured by
call and execution pointcuts are the same in the dynamic
semantics, their properties (e.g., this and target) are dif-
ferent.

Each of the four semantics is consistent and reasonable.
Perhaps the broad–dynamic semantics best reflects object-
oriented principles, in that a reference to a class includes
its subclasses, and the type that determines matching is the
dynamic rather than static type of the variable. However,



Narrow Broad

jp ∈ pcc ⇐⇒ S = C ∧ f exists in C jp ∈ pcc ⇐⇒ S ⊆ C ∧ f exists in C

jp ∈ pce ⇐⇒ D = C ∧ f exists in C jp ∈ pce ⇐⇒ D ⊆ C ∧ f exists in C
Static

jp ∈ pc+
c ⇐⇒ S ⊆ C ∧ f exists in S jp ∈ pc+

c ⇐⇒ S ⊆ C ∧ f exists in S

jp ∈ pc+
e ⇐⇒ D ⊆ C ∧ f exists in D jp ∈ pc+

e ⇐⇒ D ⊆ C ∧ f exists in D

(a) (b)

jp ∈ pcc ⇐⇒ D = C ∧ f exists in C jp ∈ pcc ⇐⇒ D ⊆ C ∧ f exists in C

jp ∈ pce ⇐⇒ D = C ∧ f exists in C jp ∈ pce ⇐⇒ D ⊆ C ∧ f exists in C
Dynamic

jp ∈ pc+
c ⇐⇒ D ⊆ C ∧ f exists in D jp ∈ pc+

c ⇐⇒ D ⊆ C ∧ f exists in D

jp ∈ pc+
e ⇐⇒ D ⊆ C ∧ f exists in D jp ∈ pc+

e ⇐⇒ D ⊆ C ∧ f exists in D

(c) (d)

Figure 2: Four possible semantics: (a) narrow–static; (b) broad–static; (c) narrow–dynamic; (d) broad–
dynamic.

other semantics may be easier to use if they more closely
reflect the intent of AspectJ programmers.

4. EXPRESSIVE POWER
The five semantic models presented above (current AspectJ
semantics and four alternatives) are able to describe dif-
ferent sets of join points. However, AspectJ has additional
pointcut designators, which may be used to modify the mean-
ing of a pointcut. The question now is, what is the expressive
power of each of the given semantics definitions? Are there
meaningful sets of join points that can only be expressed by
some of them?

The answer is, of course, positive. For example, a narrow
semantics is easily expressed in the corresponding broad se-
mantics. The pointcut call(void C.f()), whose meaning
in the narrow–static semantics is “S = C ∧ f exists in C”
can be expressed in the broad–static semantics by the fol-
lowing pointcut:

call(void C.f()) && target(x) &&

if(x.getClass() == C.class)

However, the reverse is not true: in order to get a subset
relation in the narrow semantics, we must use the subtype
pattern modifier, but then there is no way to enforce the
requirement that the method already exists in class C. So
each broad semantics is strictly more expressive than the
corresponding narrow semantics.

The static and dynamic semantics are incomparable. The
dynamic semantics have no way of referring to the static
type (S), and the static semantics have no way of referring
to the dynamic type (D) in call pointcuts.

The semantics of execution(void C+.f()) in either of the
dynamic semantics is easily expressed in the current AspectJ
semantics by the expression

execution(void f()) && this(C).

The corresponding expression for call(void C+.f()) is

call(void f()) && target(C).

(Note that target in call pointcuts corresponds to this in
execution pointcuts.) In order to understand the semantics
of this expression under AspectJ, note that the call point-
cut call(void f()) without a class designator is equivalent
to call(Object+.f()), so when applying the semantics of
Figure 1, the class inclusion condition is trivial, and we ob-
tain simply that f exists in S. Together with the additional
requirement, target(C), we get that the semantics of the
above expression in AspectJ is

D ⊆ C ∧ f exists in S,

which is a little different from the dynamic semantics.

Under the current semantics, AspectJ has no way of requir-
ing that f exist in C without being lexically defined in it.
The alternative, going to the top of the inheritance hierar-
chy, then prevents the possibility of referring to the static
type. On the other hand, the new proposed semantics have
no way of requiring the lexical definition of a method in some
class. (Note that the within and withincode constructs are
too restrictive, because they do not capture overriding defi-
nitions. Also, these do not help with call pointcuts, because
they refer to the caller code rather than the method imple-
mentation.)

Of course, the fact that one semantics is more expressive
than another does not mean it is better. The question is
what programmers (and automatic tools) really need to say.
Furthermore, the cost of a complex semantics should be
weighed against the convenience of the language. Common
patterns of usage should be expressed concisely. It might
be better to adopt a simpler semantics for call and execu-
tion pointcuts, and add another construct to capture lexical
definitions, if this is indeed necessary.

5. CONCLUSIONS
The current semantics of AspectJ has some unintuitive as-
pects. We have presented a number of alternative semantics,
and compared their expressive power. The “right” semantics
for AspectJ needs to be worked out with the user commu-
nity, since it ultimately depends on how AspectJ is used in



practice. We hope that this paper will start a fruitful and
constructive discussion on this question.

6. REFERENCES
[1] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented

programming: Introduction. Comm. ACM, 44(10):29–32,
2001.

[2] J. D. Gradecki and N. Lesiecki. Mastering AspectJ:
Aspect-Oriented Programming in Java. John Wiley &
Sons, 2003.

[3] R. Jagadeesan, A. Jeffrey, and J. Reily. A calculus of
untyped aspect-oriented programs. In Luca Cardelli,
editor, ECOOP 2003, European Conference on
Object-Oriented Programming, Darmstadt, Germany,
volume 2743 of Lecture Notes in Computer Science,
pages 54–73. Springer-Verlag, NY, 2003.

[4] R. Laddad. AspectJ in Action: Practical
Aspect-Oriented Programming. Manning, 2003.

[5] R. Lämmel. A semantical approach to method-call
interception. In Proc. First Int’l Conf. Aspect-Oriented

Software Development (AOSD 2002), pages 41–55, April
2002.

[6] H. Masuhara, G. Kiczales, and C. Dutchyn.
Compilation semantics of aspect-oriented programs. In
Ninth Int’l Workshop on Foundations of Object-Oriented
Languages, 2002.

[7] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, 2nd edition, 1997.

[8] D. B. Tucker and S. Krishnamurthi. A semantics for
pointcuts and advice in higher-order languages.
Technical Report CS-02-13, Brown University, 2003.

[9] David Walker, Steve Zdancewic, and Jay Ligatti. A
theory of aspects. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming
(ICFP ’03), pages 127–139. ACM Press, August 2003.

[10] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In Ninth Int’l Workshop on Foundations
of Object-Oriented Languages, 2002.


