
Using Program Slicing to Analyze Aspect Oriented
Composition

Davide Balzarotti
Dip. ElettronicaI e Informatica

Politecnico di Milano
Piazza Leonardo da Vinci 32

20133 Milano, Italy

balzarot@elet.polimi.it

Mattia Monga
Dip. Informatica e Comunicazione

Università degli Studi di Milano
Via Comelico 39/41
20135 Milano, Italy

mattia.monga@unimi.it

ABSTRACT
AspectJ language was proposed to make cross-cutting con-
cerns clearly identifiable with special linguistic constructs
called aspects. In order to analyze the properties of an as-
pect one should consider the aspect itself and the part of
the system it affects. This part is just a slice of the entire
system and can be extracted by exploiting program slicing
algorithms. However, the expressive power of AspectJ con-
structs forces slicers to take into account big portions of
programs. We suggest that AspectJ should regulate more
formally the interaction among code units, by defining some
stricter boundaries around aspect influence, otherwise the
separation turns out to be just syntactic sugar.

1. INTRODUCTION
Aspect oriented languages claim to be able to provide lin-
guistic support to make cross-cutting concerns isolated in
proper code units. Currently the most successful aspect-
oriented language is probably AspectJ [17]. Designed and
implemented at Xerox PARC, it is aimed at managing tan-
gled concerns in Java programs.

AspectJ provides first-class entities called aspects that, in
a strong analogy to regular Java classes, can define frag-
ments of code called advices that will be woven at run time
before, after, or around interesting points (join points) in
the whole program. AspectJ showed up to be very conve-
nient to express cross-cutting concerns. A typical AspectJ
advice can be something like “before any call to the division
function, check if the divisor is not zero”; in a very econom-
ical way it is possible to affect all the divisions in the code,
even without knowing where these divisions will occur.

The problem we want to discuss in this paper is if the as-
pect oriented computation is actually separated from the
rest of the program by using the linguistic construct pro-

vided by AspectJ. In fact, on the one hand a “no division
by zero” aspect would be a isolated code unit. However, on
the other hand it might be difficult to figure out the behav-
ior of the whole system: every time the division function
is called, one has to consider that also the aspect oriented
code is executed. In order to asses the resulting complex-
ity of an aspect oriented program, we tried to apply well
known techniques of program comprehension, namely static
analysis and program slicing, to AspectJ.

In the rest of the paper we describe the results of our prelim-
inary experiments. The discussion is organized as follows:
in Section 2 we briefly introduce program slicing techniques,
in Section 3 we propose our approach to slice aspect oriented
programs, in Section 4 we examine the problems we found,
and finally in Section 5 we draw some conclusions.

2. ASPECT ORIENTED PROGRAM SLIC-
ING

Program slicing was proposed by Weiser [16] in the early
80’s. It is a technique aimed at extracting program ele-
ments related to a particular computation. A slice of a pro-
gram is the set of statements which affect a given point in
a executable program (slicing criterion). One can compute
statically the set of statements that potentially affect the
slicing criterion for every possible program execution (static
slicing), or one can consider the information about a partic-
ular execution of the program and derive a dynamic slice [3]
of a program.

Different slicing algorithms and different type of slice have
been proposed by many authors [14, 5]. Nowadays a widely
adopted approach to compute static program slicing consists
in re-formulating the problem as a reachability problem on
a particular graph representation of the program, which, for
inter-procedural slicing, is the so called system dependen-

cies graph (SDG) [7]. It is worth noting that, while pro-
ducing the minimal slice is known to be uncomputable, it is
possible to compute non-minimal slices with fairly efficient
algorithms.

Program slicing was initially studied for procedural pro-
gramming language but has then be extended to cope with
the object oriented paradigm by Larsen and Harrold [9, 10]
(specific solutions for Java language are proposed in [11, 8,
18]). Notwithstanding the rich theoretical work done in the

field, the only publicly available tool we are aware of which
is able to compute a program slice of a Java program is
Bandera [4].

The application of program slicing techniques to aspect ori-
ented software is a novel research topic.

A preliminary work in this area has been done by Zhao [19].
He proposed an aspect-oriented SDG that is a further exten-
sion of the object-oriented SDG. The aspect-oriented system
dependence graph (ASDG) consists of an SDG for the tra-
ditional code enriched with a set of dependence graphs that
represent the aspect code. Graphs are connected through
special edges that model introductions and advice execu-
tion. He focused on AspectJ, however he did not consider
that aspect advices might apply to the aspect oriented code
itself.

We start analyzing the problem of slicing aspect oriented in
[2]. We initially proposed an approach based on the concept
of conjugated class of an aspect to allow the application
of existing object oriented algorithms. A conjugated class
contains all members and methods of the originating aspect
and it has a method for each advice. We did not propose a
complete solution of the problem, since we did not describe
how conjugated class should be connected to the rest of the
program and we were not able to cope with introductions
and other subtilties of AspectJ syntax. In the next Section,
we describe the new approach we think is most suitable to
implement a real tool able to slice a larger family of AspectJ
programs.

3. SLICING JAVA BYTE-CODE
Since AspectJ programs are eventually woven in Java byte-
code binaries, which are executed by a Java Virtual Machine,
in order to slice them two different approaches are possible:
(1) one can consider methods and advices as first-class en-
tities and try to extend SDGs to take them into account [2,
19, 13]; otherwise, (2) one can try to analyze the woven pro-
gram by applying existing techniques and map the results
on the original structure of the program.

The high-level approach is conceptually more appealing, since
it does not depend on the actual implementation of the As-
pectJ weaver, and, more fundamentally, it enables the use
of aspects as first-class entities in the resulting model. How-
ever, building a working tool is far from trivial, because it
needs to be able to manage a several AspectJ syntax details.
In particular, the AspectJ pointcut definition language al-
lows programmers to characterize pointcuts on a wide range
of abstraction levels:

• Lexical (withincode, regular expression on identifiers,
etc.)

• Statically known interfaces (void ∗.func(int), etc.)

• Run time events (call, execution, set, if , etc.)

In order to build as quick as possible a tool for experimenting
with and slicing real world programs, we adopted a more
pragmatic strategy:

1. Compile classes and aspects using the AspectJ com-
piler.

2. Weave aspects into an executable program.

3. Apply existing slicing algorithms (we built upon the
Soot static analysis framework [15]) to the resulting
byte-code.

4. Obtain a slice, as a set of byte-code statements.

5. Map the results onto the original aspect oriented source
code.

Working at the level of Java byte-code could appear not ap-
propriate because any distinction among classes and aspects
may seem to be lost. The AspectJ weaver translates aspects
in classes, advices in methods, and join points in methods in-
vocation. Thanks to this approach, it is not difficult to map
every statements to its original aspect (or class). However,
a tool based on byte-code slicing has to be changed when
the AspectJ weaver modifies its implementation strategy.

Figure 1 shows an example that contains only a trivial class
C and an aspect A. The aspect introduces a public field into
the class and it defines an advice that print a value when
method2() is called. The resulting woven classes are shown on
the right hand side. The aspect has been translated in a class
and the advice in an equivalent method. A decompilation
of C.method() produces:

...

3 invokevirtual #17 <Method void method2()>

6 invokestatic #31 <Method A aspectOf()>

9 aload_1

10 invokevirtual #34

<Method void ajc$afterReturning$A$21(C)>

...

It is easy to identify the call to after-returning advice after
the invocation of method2().

Thus, by using dedicated libraries it is fairly easy to build
a tool for inspecting the Java byte-code, obtaining the call
graph, and performing the def-use analysis. It is then possi-
ble to implement existing algorithms to construct the system
dependence graph and to calculate static or dynamic slices.

4. ANALYSIS OF ASPECT INTERACTION
The final goal of our work is to be able to analysis interac-
tions among aspects. An aspect oriented program is com-
posed by weaving aspect and classes together. An aspect
is conceptually a posteriori with respect to the rest of a
system. When a programmer writes a new aspect, s/he as-
sumes that the rest of the system is working correctly and
s/he hopes to add the new cross-cutting functionality with-

out breaking the system. How one can check that the new
aspect does not interfere with existing aspects and classes?

Let a code unit be an aspect or a class of a system. We say
that an aspect A does not interfere with a code unit C if and
only if every interesting predicate on the state manipulated

class C{
void method() {

method2();
}
void method2(){}
}

aspect A {
public int C.x = 10;
after(C c) returning:

target(c) &&
call(void C.method2())

{
System.out.println(c.x);

}
}

Compiled from C.java
public class C extends java.lang.Object {

public int x;
C();
void method();
void method2();

}

Compiled from A.java
public class A extends java.lang.Object {

public static final A ajc$perSingletonInstance ;
static {};
A();
public static void ajc$interFieldInit$ACx(C);
public static int ajc$interFieldGetDispatch$ACx(C);
public static void ajc$interFieldSetDispatch$ACx(C, int);
public void ajc$afterReturning$A$21(C);
public static A aspectOf();
public static boolean hasAspect();

}

Figure 1: A simple class before and after the weaving of an aspect

by C is not changed by the application of A. For example, if
an object x manipulated by C exists such that the predicate
x ≤ 0 must hold for the correctness of the system, A does
not interfere with C only if C woven with A preserves x ≤ 0.

In [2] we proposed the following sufficient condition to check
non-interference between aspects:

Let A1 and A2 be two aspects and S1 and S2

the corresponding backward and forward slices
obtained by using the pointcuts declarations de-
fined in A1 and A2 as slicing criteria. A1 does
not interfere with A2 if

S1 ∩ S2 = ∅

This condition may be too strong: in fact, two aspects may
not interfere also if their slices share some statements.

A weaker and more practical condition is

Let A1 and A2 be two aspects and S1 and S2

the corresponding backward slices obtained by
using all the statements defined in A1 and A2 as
slicing criteria. A1 does not interfere with A2 if

A1 ∩ S2 = ∅

S2 contains all statements that affect the slicing criterion
(which contain all the statements of A2). It is worth noting
that the interference relation is not symmetric. In fact, it is
possible that A1 interferes with A2 but A2 does not interfere
with A1. For example, if A2 is a tracing aspect and A1 is an
aspect that change the order in which procedures are called,
the application of A2 does not change an existing A1, but
the application of A1 onto A2 change its behavior.

Moreover, modifications in the type hierarchy can be diffi-
cult to deal with. Consider the following program:

class ClassA{
void method() {}
public static void main(String[] args) {
ClassA a = new ClassA();
a.method();
}

}

class ClassB {}

aspect A1 {
declare parents: ClassA extends ClassB;

}

aspect A2 {
before(): call(∗ ClassB+.∗()) {
//
}

}

If we apply the aspect A2 but not the aspect A1 the ad-
vice is never executed. When we add to the program the
aspect A1 the advice is executed before the invocation of
ClassA.method(). By using declare parents: we forced the
members of ClassB to become part of ClassA also.

4.1 On the Precision of Slicing
A well-known result asserts that, in general, the problem of
finding the minimum static slice is incomputable [16]. This
means that when we compute a slice, the result may contains
some unnecessary nodes. This is not a problem in most cases
but sometime can lead to an incorrect result.

For interference analysis, Figure 2(a) shows how a non-
minimum slice might cause a decision error when we analyze
the interference between aspects. The result is always cor-
rect if the algorithm does not find any intersection between
the two sets, but could be wrong if an intersection occurs.

Another problem that could have a significant effect on slice
precision is the resolution of aliases. An alias occurs when
two or more different variables refer to the same memory
location. The computation of slices relays on the construc-
tion of the SDG, that in turn requires to calculate control

Minimum Slice

Aspect B

Slice (with unnecessary nodes)

(a)

Aspect A

Aspect B

Minimum Slice

Wrong Slice

(b)

Figure 2: Incorrect results in presence of non-correct slice

and data dependencies among every program statement. In
presence of aliasing the exact computation of data depen-
dency becomes a very difficult task [12]. In order to mitigate
the impact of aliases it is necessary to adopt a generalization
of the notion of data dependence [1]. If the algorithm does
not correctly take into consideration all may-alias variables
(note that this is possible only assuming a closed world hy-
pothesis), the resulting slice may omit some required state-
ment. Thus, in general we might find a slice that contains
statements that are unnecessary (since we cannot compute
the minimum slice) and omits others (since pragmatic issues
could force us to use approximate algorithms). Figure 2(b)
shows an example in which the slice identifies an incorrect
interference with the aspect A and does not identify the cor-
rect interference with the aspect B. Therefore, in order to
keep significant our non-interference criterion, we have to
adopt a conservative approach that guarantees that every
possible may-alias are take in consideration. This resolve
the problem of false negative (when the algorithm does not
find an existing interference) but it tends to make the slice
bigger, increasing the number of false positive (when the
algorithm finds a false interference).

Moreover, some AspectJ join points are not statically deter-
minable. AspectJ provides some primitives to declare point-
cuts that discriminates based on the dynamic context (i.e.
cflow, cflowbelow, if , this, . . .). A conservative approach
requires to consider every possible execution trace, but this
may further increase the number of false-positive response.

Adding together all the previous considerations, the final
precision of a hypothetic tool that analyze aspect interac-
tion using static slicing techniques may become quite low. In
general, program slicing can be used to automatically build
an abstraction (i.e., a simplified model) of a program. Often
the goal is to reduce the dimension of a program in order
to reduce the complexity of algorithms that are exponential
in the number of program statements, for example in order
to be able to apply a model checking tool [4]. In this case,
the size of slice is a minor issue, because every discarded
statement is a benefit anyway. However, when one is inter-

ested in deciding if a given statement belongs to a slice, the
dimension of the slice becomes a major issue, because the
accuracy of the decision depends on it.

5. CONCLUSIONS AND FUTURE WORK
In object oriented programs one can define composition in-

variants which are properties of classes that are preserved
in every possible composition of objects. Software engineers
leverage on this in order to reason on the properties of whole
object oriented systems without considering all the details.

Unfortunately, in general no composition invariants are guar-
anteed to hold anymore, when AspectJ is in use. We tried
to derive the slice of a system affected by an aspect, but
the loosely regulated expressiveness of AspectJ constructs
causes a turbulent ripple effect that in general forces to take
into account most of the statements of a system. More-
over, a whole system analysis is needed, because arbitrary
introductions and modifications of type hierarchy require a
closed world assumption to be resolvable. This is in part
due to the obliviousness that Filman identifies as an intrin-
sic characteristic of aspect orientation [6], but it is amplified
by the undisciplined power of AspectJ constructs. The ulti-
mate goal of aspect-oriented programming is the separation
of otherwise cross-cutting concerns. However, these benefits
are lost if the comprehension of aspect properties entails the
analysis of the whole program. Instead, if we would be able
to define some boundaries around aspect influence, the sep-
aration turns out to be not just syntactic sugar but a true
aid in dealing with program complexity.

Currently we are improving our tool for slicing Java byte-
code that we want to apply to AspectJ code. We are inter-
ested in evaluating the actual impact of AspectJ constructs
in real world aspect oriented system. Our final goal is to
define patterns of use and/or new AspectJ constructs to im-
prove the comprehensibility and maintainability of AspectJ
programs.

6. REFERENCES
[1] D. W. Binkley and K. B. Gallagher. Program slicing.

Advances of Computing, 43:1–50, 1996.

[2] L. Blair and M. Monga. Reasoning on AspectJ
programmes. In Proceedings of Workshop on

Aspect-Oriented Software Development, pages 45–50,
Essen, Germany, Mar. 2003. German Informatics
Society.

[3] J. W. L. Bogdan Korel. Dynamic program slicing.
Information Processing Letters, 29(3):155–163, 1988.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Păsăreanu, Robby, and H. Zheng. Bandera:
extracting finite-state models from Java source code.
In International Conference on Software Engineering,
pages 439–448, 2000.

[5] M. B. Dwyer and J. Hatcliff. Slicing software for
model construction. In Partial Evaluation and

Semantic-Based Program Manipulation, pages
105–118, 1999.

[6] R. Filman and D. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
Proceedings of OOPSLA 2000 workshop on Advanced

Separation of Concerns, 2000.

[7] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. In Proceedings of the

ACM SIGPLAN ’88 Conference on Programming

Language Design and Implementation, volume 23,
pages 35–46, Atlanta, GA, June 1988.

[8] G. Kovcs, F. Magyar, and T. Gyimthy. Static slicing
of Java programs.

[9] L. Larsen and M. Harrold. Slicing object-oriented
software. In In Proceedings of the 18th International

Conference on Software Engineering, pages 45–50.
Association for Computer Machinery, Mar. 1996.

[10] D. Liang and M. J. Harrold. Slicing objects using
system dependence graphs. In ICSM, pages 358–367,
1998.

[11] M. W. Neil Walkinshaw, Marc Roper. The Java
system dependence graph. In Third IEEE

International Workshop on Source Code Analysis and

Manipulation, page 55, Sept. 2003.

[12] A. Orso, S. Sinha, and M. J. Harrold. Effects of
pointers on data dependences. Technical Report
GIT-CC-00-33, College of Computing, Georgia
Institute of Technology, Dec. 2000.

[13] M. Stoerzer. Analysis of AspectJ programs. In
Proceedings of 3rd German Workshop on

Aspect-Oriented Software Development, Mar. 2003.

[14] F. Tip. A survey of program slicing techniques.
Journal of programming languages, 3:121–189, 1995.

[15] R. Vall, e Phong, C. Etienne, G. Laurie, H. Patrick,
and L. Vijay. Soot - a Java bytecode optimization
framework. 1999.

[16] M. Weiser. Program slicing. In Proceedings of the

5th International Conference on Software

Engineering, pages 439–449. IEEE Computer Society
Press, Mar. 1981.

[17] XEROX Palo Alto Research Center. AspectJ: User’s

Guide and Primer, 1999.

[18] J. Zhao. Applying program dependence analysis to
Java software. In Proceedings of Workshop on Software

Engineering and Database Systems, 1998 International

Computer Symposium, pages 162–169, December 1998.

[19] J. Zhao. Slicing aspect-oriented software. In
Proceedings of the 10th IEEE International Workshop

on Programming Comprehension, pages 251–260, June
2002.

