
Interference Analysis for AspectJ

Maximilian Sẗorzer, Jens Krinke
Universiẗat Passau
Passau, Germany

{stoerzer, krinke}@fmi.uni-passau.de

March 1, 2003

Abstract

AspectJ is a language implementing aspect-oriented pro-
gramming on top of Java. Besides modification of pro-
gram flow and state usingadvice, AspectJ offers language
elements to statically modify existing classes by changing
their position in the inheritance hierarchy or introducing
new members. This can lead to binding interference, i.e.
the dynamic lookup of method calls not affected directly
by the aspect might change.

This paper presents methods allowing programmers to
automatically check the impact of introductions and hier-
archy modifications on existing programs.

1 Motivation

Aspect oriented programming (AOP) is a new paradigm
in programming, extending traditional programming tech-
niques, first introduced in [5]. Its basic idea is to encap-
sulate concerns which influence many modules of a given
software system, so calledcrosscutting concerns, in a new
module calledaspect.

This encapsulation improves separation of concerns
and can avoid invasive changes of a program if crosscut-
ting concerns are affected by system evolution. The func-
tionality defined in the aspect iswoveninto the base sys-
tem with a so calledaspect weaver, at compile time, load
time, or even run time of the program. HereAspectJ—an
aspect-oriented language extending Java—is considered.
Main features of AspectJ are introduction, modification
of class hierarchies and advice. This paper will concen-
trate on the first two points which are designed to stati-
cally change a given system by introducing new members
in classes or modifying the structure of an inheritance hi-
erarchy.

AOP is a very powerful technique but includes new

risks, too. Changes introduced with AspectJ are not visi-
bledirectly in the source code of the base system. Aspects
are a new modularization unit usually stored in separate
files. The effect of this code can influence semantics of
the whole system. Tool support is necessary to reveal the
impact of aspect application. To motivate this necessity,
this paper presents problems related to AspectJ language
constructs which might be avoided by modifying the As-
pectJ language itself. However, impact on language de-
sign is not in the scope of this paper.

To achieve this support, methods to determine the im-
pact of aspect application have to be developed. As a first
step, a method to decideif an aspect modifies base sys-
tem behavior is presented. This analysis will be extended
to perform an impact analysis to showwheresystem be-
havior is influenced by an aspect.

Throughout this paper, the simple class hierarchy de-
fined by program 1.1 will be used as an example to
demonstrate aspect influence. This hierarchy will be mod-
ified using introduction and hierarchy modification and
some of the classes will be declared to implement inter-
faceI .

This paper describes the problem emerging from these
transformations, presents an algorithm to detect their ef-
fects and suggests how this information can be used to
reduce flaws in a software system. Organization is as fol-
lows: Each section takes a look at a AspectJ language
construct, starting with interface introduction in section
2. Section 3 presents an algorithm to detect binding in-
terference for class introduction, section 4 for hierarchy
modification. Section 5 shows how these results can be
used for impact analysis. Section 6 presents an example
application of this analysis for a given hierarchy. Section
7 briefly summarizes the preliminary implementation and
outlines future work. Sections 8 concludes and gives an
overview of related work.



Program 1.1Example Hierarchy
class A { void n() {

print("A.n()"); }}
class B extends A {

void m() { print("B.m()"); }}
class C extends B {

public void x() { print("C.x()"); }}
class D extends B {

public void y() { print("D.y()"); }
public void x() { print("D.x()"); }}

class E extends C {}
class F extends D {

void n() { print("F.n()"); }}
class G extends B {

void n() { print("G.n()"); }}
interface I {

void x(); void y();
}

2 Interface Introduction

Introduction is an AspectJ language construct to add new
members to existing classes or interfaces. The purpose
of interface introduction is to providedefault implemen-
tationsof interface methods which can be used to reduce
necessary work for implementation. However, if no mul-
tiple inheritance is needed an abstract superclass can often
be used instead .

Usage of this feature can result in ‘forgotten’ imple-
mentations which may introduce flaws into a program.
The compiler no longer issues an error message if a class
implements an interface but does not (re)define all default
implementations. To avoid flaws by ‘forgotten’ redefini-
tions a compiler warning should be given when a class
uses a default method implementation provided by the in-
terface.

A simple analysis of interface introductions can pro-
vide the necessary information. Given a class hierarchy
and an aspectA, an analysis could be performed in three
steps:

1. The set of interfaces for which aspectA provides de-
fault implementations has to be determined by scan-
ning A’s introductions. LetIde f be the set of these
interfaces. ForI ∈ Ide f let methods(I) be the set
of methods for which default implementations are
given.

2. The set of classes implementing an interfaceI∈ Ide f

has to be identified. LetCIde f be the set of these
classes.

A

B

C

F

D

E

G

aspect M

A

B

C

F

D

E

I
I.y

D.x
D.y

G

D.x
D.y

C.x
I.y

C.x
I.y

D.x
D.y

D.x
D.y

C.x

C.x

Figure 1: Using default implementations.

3. The set of classesCdi which do not provide an im-
plementation of all interface methods (i.e. which use
the default implementations) has to be determined.
Let methods(C) be the set of all methods defined in
ClassC. Then

Cdi = {C ∈ CIde f | ∃I ∈ Ide f : C implementsI
∧methods(I)−methods(C) 6= /0}

It is sufficient to check weather all methods in
methods(I) are implemented as other missing meth-
ods are detected by the java compiler. Note that any
subclass of an affected class is influenced as well,
unless it implements the necessary method and thus
overrides the default implementation.

The programmer must examine affected classes to check
whether the default implementation given by the interface
is appropriate.

As an example consider aspectMgiven by program 2.1,
which declares that classesC andD implement interface
I and introduces a default implementation of methody to
the interface.

Program 2.1Adding interface implementation.
aspect M {

declare parents: C implements I;
declare parents: D implements I;

public void I.y() { print("I.y()"); }
}

Figure 1 presents the effects of this modifications. Note
that classesC andE—maybe unexpectedly—use the im-



A

B

C

F

D

E

A.n

B.m

F.n

B.m B.m

B.mB.m

B.n

B.n B.n

B.n

G.n
B.m

G

Figure 2: Example hierarchy, effects of introduction.

plementation given byI.y . This fact is reported by the
proposed analysis.

3 Noninterference Criterion
for AspectJ Introduction

In contrast to interface introduction, class introduction is
more complex as program semantics may change without
modifying any class directly. These effects are described
in the following.

3.1 Impact of Class Introduction

Introducing members to classes can result in changes
of dynamic lookup if the introduced method redefines a
method of a superclass, calleddynamic interferencein
[10]. However, as the term dynamic is misleading, the
term binding interferenceis preferred. Consider the ex-
ample hierarchy defined by program 1.1 and aspectN to
be applied:

aspect N {
void B.n() { print("B.n()"); }

}

This aspect introduces a methodn to classB, which is
already defined in superclassA of B. Any (virtual) call
e.g. from classC now results in call ofB.n() and not
in A.n() as before. So, the semantics of a call ton has
possibly changed for any object of classB or any subclass
thereof without direct modification of these classes. Fig-
ure 2 indicates the changed lookups in bold.

The presented considerations abstract from Java access
specifiers: All methods are consideredpublic . Addi-
tion of access specifiers reduces the set of inherited meth-

ods (some might not be visible in the subclass), thus re-
ducing binding interference.

If the introduced methodB.n() redefinesA.n() with
respect to behavioral sub-typing [6], a (unknown) client of
a subclass ofB may still work as expected. However, nei-
ther Java nor AspectJ guarantees this kind of method re-
definition. The described problem is a special case of the
fragile base class problem[7]—subclasses change behav-
ior because of changes in the superclass. Although track-
ing down bugs introduced by changing a base class is dif-
ficult, the problem is even worse with aspect languages as
modifications of the base class are not visible if the code
is viewed in isolation (i.e. without the applied aspect). To
track bugs emerging from dynamic interference, impact
analysis of aspect application should reveal method calls
whosedynamic lookup has changed.

3.2 Detecting Semantical Changes

To detect semantical changes in the hierarchy, the inter-
ference criterion of [10]—informally stating that all vir-
tual calls evaluate to the same target as before—is applied
to aspects by reducing introduction to hierarchy composi-
tion. As a result, the correctness proof of the criterion can
be applied to aspect introduction as well.

In contrast to Hyper/J, AspectJ is much more restrictive
in the possible static modifications of the class hierarchy.
Modification of system behavior is mainly achieved by
using advice. However, introduction can be viewed as a
hierarchy composition. Let a hierarchyH be defined as
in [10]:

Definition 3.1 (Class Hierarchy) A class hierarchyH is
a set of classes and an inheritance relation:H = (C ,≤).
A classC ∈H has a name and contains a set of members.
According to this definition, members(C) does not contain
inherited members that are declared in super-classes ofC.

To indicate the members of classCdefined in hierarchy
H we write membersH (C); CH references definition of
classC in hierarchyH .

Any AspectJ introduction can be viewed as a hierarchy
composition by defining a new hierarchy induced by an
aspectA.

Definition 3.2 (Hierarchy induced by Introduction)
Let H = (C ,≤) be a hierarchy an aspectA is applied to.
Let I be the set of introduction statements of this aspect.
Elements of I have the form(C,m). C ∈ C indicates the
class where the new membermshould be introduced to.
Then:



1. ∀C ∈ H create a new empty
class namedC, add it toC ′

2. ∀(C,m) ∈ I add membermto the
corresponding classC ∈ C ′ created in (1)

3. (≤′) = (≤) (same inheritance relations as inH )

The hierarchy induced by I isH ′ = (C ′,≤′).

Informally, the resulting hierarchy contains no mem-
bers from the base hierarchy but any introduced member
and mirrors the inheritance relations. Empty classes are
possible.

As name clashes orstatic interferenceare considered
an error by the AspectJ compilerajc

∀C ∈ C ′ : ∀m ∈membersH ′(C) :
C ∈ C ∧m /∈membersH (C)

always holds for syntactically correct AspectJ programs.
AspectJ1 does not allow overriding introductions. So
only basic compositions, i.e. compositions without prior-
ity rules to choose from a set of possible method imple-
mentations, have to be considered.

The hierarchy induced by an aspect needs not to be
syntactically correct as methods introduced by the aspect
might reference methods not present inH ′ but only in
H . All these dangling references are bound after combi-
nation of the resulting hierarchies if the original AspectJ-
program was correct.

The hierarchyH ′ induced by the introductions of an
aspectA will now be composed with the hierarchy of the
base systemH by using a hierarchy composition operator
⊕s. When working with arbitrary hierarchies, the inher-
itance relations of both hierarchies can be contradictory,
e.g. if (B,C) ∈ ≤1 and(C,B) ∈ ≤2.

This is immpossible if a hierarchy induced by an as-
pect should be combined with the base hierarchy, as the
resulting inheritance relation is always conflict free (here,
they are identical), no collapsing of cycles is necessary
and the general combination operator of [10] can simpli-
fied as follows:

Definition 3.3 (Simplified Hierarchy Composition)
Let H1 = (C1,≤1), H2 = (C2,≤2) be two class hierar-
chies with conflict free inheritance relations≤1, ≤2 and
no static interference. ThenH1⊕sH2 = (C ,≤) is defined
as follows2:

1Referenced Version is 1.0.6.
2In this paper⊕ will refer to⊕s.

1. C = C1∪C2

2. (≤) = (≤1 ∪ ≤2)

3.
∀C ∈ CH : members(CH ) =
members(CH1

)∪members(CH2
)

3

It is easy to see that the effect of composingH andH ′

using operator⊕s has the same effects as the introduc-
tions of AspectJ: Both operations simply add the intro-
duced members to the respective classes of the resulting
hierarchy.

Following the analysis of [10], it is now possible to ap-
ply the stated noninterference criterion for AspectJ intro-
duction as well, which informally states that all used vir-
tual calls must evaluate to the same method as before.

3.3 Finding Changed Lookups

To test the interference criterion it has to be checked,
whether the dynamic lookup for any possible call has
changed. The analysis described below only needs the hi-
erarchy and signature information as input; method bod-
ies arenot analyzed. This approach guarantees that the
hierarchy preserves its behavior ifnobinding interference
occurs at all.

For impact analysis, this information is insufficient as
the set of changed lookups calculated by the subsequent
analysis demands that behavior ofany affected class to-
gether with its subclasses has to be considered as beeing
changed. The reason is that methods defined in a class in
H might transitively use a call with a changed lookup in
their implementation.

To reduce the set of affected classes, a simple code
scanning of an affected method for calls with changed
lookup might be enough—methods only using unchanged
calls in their implementation as well as calls evaluating to
unaffected classes are guaranteed to work as before if only
these methods are called. The call graph is an appropriate
data structure to calculate all this information.

Note that newly introduced methods may very well
change the state of objects, thus altering system behav-
ior. Anyhow, introduced methods are never called by the
original system as the system would not have been syn-
tactically correct otherwise—the method did not exist in
the original system4.

3Here,members(CH j
) indicates the set of members defined in class

C in hierarchyH j . If C /∈ H j , thenmembers(CH j
) = /0.

4Keep in mind, that advice is not considered here—advice code
might call newly introduced methods.



The information necessary to check the interference
criterion as well as for impact analysis is the set of
changed lookups. In [10], calculation of changed lookups
is more precise as only calls actually appearing in the
hierarchy are examined (using points-to analysis). The
method proposed here calculates any possible change in
lookup due to aspect application. The loss of preci-
sion might be negligible as the set of changed lookups
is much smaller (explicit introduction instead of arbitrary
hierarchy combination). As an additional advantage, our
algrithm is independent of a specific client, because all
statically possible calls are examined.

This set of method calls can easily be calculated by a
modified version of breadth first search, given by algo-
rithm 3.1. Recall that a class hierarchy in Java (as well as
in AspectJ) always defines a tree. Therefore, the inheri-
tance relation≤ always containsjava.lang.Object
as maximal element. For the algorithm letC ∈ C
be a class. ThenInts(C) is the set of all meth-
ods introduced in classC. For the root object, define
∆lookup(father(root)) = /0.

Algorithm 3.1 Calculation of Changed Lookups
algorithm get-binding-interference
input: hierarchyH = (C ,≤),∀C ∈ C : Ints(C)
output:∀C ∈ C : ∆lookup(C)

queue ={max(≤)}
while queue6= /0 do

C = remove(queue)
∆lookup(C) = (∆lookup(father(C))

−members(C))∪ Ints(C)
∀D : D≤ C do: addD to queue

The changes in lookup are used as input for a sub-
sequent impact analysis (refer to section 5). However,
changes in lookup are not only due to introduction but
can have a different reason: hierarchy modification. Its
effects are examined in the next section.

4 Noninterference Criterion
for Hierarchy Modification

Besides introduction, AspectJ allows structure modifica-
tion of inheritance hierarchies, with the intention to move
classes (together with all their subclasses) ‘down’ the in-
heritance hierarchy, so that original type relations still

hold5.

4.1 Impact of Changing the
Inheritance Hierarchy

The impact of changes in the inheritance relations is
demonstrated in figure 3. The changes presented in thie
example are due to application of the following simple
aspect:

aspect O {
declare parents: D extends G;

}

At first sight any client using classes with a modified in-
heritance hierarchy should still work as any type relation
is still correct. However, there are two problems. Letd be
an object of typeD:

instanceof: In example of figure 3, classD is moved
down the inheritance hierarchy by aspectO. Any
predicated instanceof G now changed value—
from false to true. More generally, thetype of
classDhas changed. This allows additional up-casts
((G)d ), which resulted in aClassCastExcep-
tion before. These exceptions might have been
caught and so control flow might have changed.

binding interference: Change of inheritance hierarchies
might possibly change the method actually executed
by a virtual call. Figure 3 gives an example of this
situation with method calld.n() : Without applica-
tion of the aspect,A.n() is called; withOapplied,
the virtual call evaluates toG.n() .

4.2 Hierarchy Modification as
Hierarchy Composition

Modification of the inheritance hierarchy can again be
viewed as a hierarchy combination. In this case, the hier-
archy induced bydeclare parents ...extends
statements contains an empty class for any class in the
base hierarchy and an inheritance relation≤′ modified by
the aspect statement as follows:

Definition 4.1 (Induced Hierarchy) Let H = (C ,≤) be
a hierarchy an aspectA is applied to. Let D be the set

5It is not possible to move classes ‘up’ in the inheritance hierarchy
(AspectJ accepts this declaration without effect).



A

B

C

F

D

E

G

A.n

B.m

G.n

F.n

A.n

B.m
A.n

B.m
A.n

B.m

B.mB.m
A.n

A

B

C

F

DE

A.n

B.m

G.n

F.n

B.m

B.m

B.m

B.m

B.m

G

G.n

A.n

A.n

A.n

aspect O

Figure 3: Effects of hierarchy modification.

of tuples derived fromdeclare parents ... ex-
tends statements of this aspect. Then≤′ is defined as
follows:

(≤′) = (≤ ∪D)

The hierarchy defined byA is H ′ = (C ′,≤′), whereC ′ =
C , ∀C ∈ C ′ : members(C) = /0.

As hierarchy modifications in AspectJ are restricted—it
is only allowed to declare that a class now is a subclass of
a sibling (or a subclass thereof)6in the inheritance tree—
the following always holds:

• (≤)⊆ (≤′)

• (D,C) ∈ (≤′)⇒ (C,D) /∈ (≤′) (no conflicts in≤′)

With this properties, the simplified hierarchy combination
operator can be applied as no collapsing of equivalence
classes due to conflicts is necessary. The resulting hierar-
chy is given byH = (C ,≤′).

4.3 Impact of Type Changes

To prove that any client still works as before, the interfer-
ence criterion of [10] is a necessary butnot sufficientcon-
dition. If a language contains statements for run time type
identification (RTTI), control flow might change although
the above noninterference criterion is met. Java contains
such statements with the predicateinstanceof , which

6If u, vare siblings⇒ (u,v) /∈ (≤∗)∧(v,u) /∈ (≤∗)∧∃w∈C : (u,w)∈
(≤∗)∧ (v,w) ∈ (≤∗), (≤∗) indicates the transitive closure of(≤).

allows to make control flow dependent of the type of an
object.

To guarantee that behavior of a client is preserved, all
instanceof statements have to evaluate to the same
value. To calculate the value of such expressions, the type
of each reference involved in aninstanceof predicate
has to be known. Approximations with points-to analysis
are possible but precise points-to analysis is undecidable.
Thus in general only a superset of the type of an object a
reference points to can be calculated.

Preservation of behavior can only be guaranteed iff
points-to sets of references involved in an instanceof-
statement before and after the hierarchy modification
evaluate to thesame single type—a very rigid require-
ment. In general, when using static analysis, many pred-
icates will evaluate to type-sets with a cardinality big-
ger than one. In this case, conservative approximation
requires to assume that the behavior of the client has
changed.

To check the impact of changes to any client of the
modified hierarchy the noninterference criterion can be
applied if RTTI is excluded. Finding the method calls
with changed lookup is easy: Only calls to methods
(re)defined in a class between (and including) the new and
the former superclass can be influenced, if those methods
are not redefined by the affected class itself.

4.4 Detection of Binding Interference
due to Hierarchy Modifications

Detection of changes in lookup due to hierarchy modifi-
cation can be achieved by a simple algorithm. The idea
is that any method call has a changed target iff now the
virtual call evaluates to a newly assigned superclass. This
change in lookup again has to be propagated to any sub-
class not redefining the affected method.

Calculation of the necessary data can be performed in
three steps:

1. Get the set of classesD affected by hierarchy modi-
fication.

2. ∀d∈D calculate the intermediate classesIC between
this class and the newly assigned superclass.

3. For any methodmknown in d, check if a call now
actually evaluates to a classC ∈ IC. If this is the
case, the behavior of the call tompossibly changed
andmhas to be added to∆lookup(d).

Again, any (transitive) subclass ofd which does not rede-
finemis affected by the change as well.



5 Impact Analysis of Changes

In [9], a method to compute impact of system modifica-
tions on a set of given test drivers has been suggested. It
breaks modifications down into atomic changes likeadd
method(AM) and add field(AF). These atomic changes
can be easily derived from the aspects; dependent changes
like change lookupare calculated by the analysis pre-
sented in sections 3 and 4.

With the set of changed lookups at hand, impact anal-
ysis can be used to choose a set of test drivers which has
to be rerun to check whether the system still works as in-
tended. Only a short summary is presented here, for de-
tails refer to [9].

The classes of the hierarchyH under consideration are
now associated with a set of test driversT = {t1, . . . , tn},
where eacht ∈ T calls a subset of methods defined by
classes inH . For each test driverti , impact analysis is
performed using the call graph ofti to determine if the
test driver (or client) is affected. This is done by checking
if ti calls (maybe transitively) any method with changed
lookup.

This check uses calculated information about changed
lookups when traversing an edge in the call graph. If
the call matches a call in the set of changed lookups
∆lookup(C) the test driver has to be rerun.

To create the call graph, the type of the calling object
at runtime has to be determined for each method call to
decide whether the call changed its behavior. This is the
case if the object reference may have a type with changed
behavior as indicated by the analysis presented above.

Unfortunately, calculation of the exact type at runtime
is undecidable. However, points-to analysis can be used to
calculate an approximation: the set of possible types for
an object reference in the test driver. If a call of any type
in this set is contained in the set of methods with changed
semantics, conservative approximation demands that the
semantics of this call have to be considered as changed.
In this case, the test driver containing this method call has
to be rerun. The results of this regression tests show if the
program still works as intended.

So, the analysis proposed here can provide different re-
sults:

• A set of introductions and hierarchy modifications
with no effecton a given setof test-drivers can be de-
termined. These changes can be incorporated safely
into the system as the semantics of the system are not
changed.

• For atomic changes modifying system behavior, the

subset of test cases which must be rerun can be de-
termined. Impact of these changes can be checked
by the results of these regression tests only.

• For the given hierarchyH , impact of static features
of aspect application on the semantics of the hierar-
chy can be determined.

This information can be used by the programmer to avoid
unexpected changes and specifically examine results of
intended changes.

6 An Example Analysis

To see how the proposed algorithms work, the analysis
is applied to an example using all static modification fea-
tures of AspectJ.

Program 6.1Combined Aspect Applied to Hierarchy.
class Main {

public static void main(String[] args) {
print("A: "); A a = new A(); a.n();
print("B: "); B b = new B(); b.n(); b.m();
print("C: "); C c = new C(); c.n(); c.m();
print("D: "); D d = new D(); d.n(); d.m();
print("E: "); E e = new E(); e.n(); e.m();
print("F: "); F f = new F(); f.n(); f.m();
print("G: "); G g = new G(); g.n(); g.m();
println();

}
}

aspect MNO {
// declare parent extends / implements
declare parents: D extends G;
declare parents: C implements I;
declare parents: D implements I;

// introductions
public void I.y() { print("I.y()"); }
void B.n() { print("B.n()"); }

public static void main(String[] args) {
print("A: "); A a = new A(); a.n();
print("B: "); B b = new B(); b.n(); b.m();
print("C: "); C c = new C(); c.n();

c.m(); c.x(); c.y();
print("D: "); D d = new D(); d.n();

d.m(); d.x(); d.y();
print("E: "); E e = new E(); e.n();

e.m(); e.x(); e.y();
print("F: "); F f = new F(); f.n();

f.m(); f.x(); f.y();
print("G: "); G g = new G(); g.n(); g.m();
println();

}
}

6.1 The System to Analyze

As a starting point, the class hierarchy defined by program
1.1 is given, together with aspectMNO, which combines



the effects of former aspects. It introduces a new method
n to classB, changes the inheritance relation (declare
parents:D extends G ) and declares that classesC
and D implement interfaceI . Methods are inserted to
class interfaceI . Additionally, the aspect defines an own
main -method which is necessary to test the results of
interface declaration. Effects of aspect application are a
changed structure as well as a changed lookup for some
methods.

The classes of this example are quite simple: All meth-
ods only print their name and the class they are defined
in, but this setting is already sufficient to show how the
aspect affects the existing system. Figure 4 presents the
output of the system. The figure contains three sections.
The output of the original system without application of
the aspect is marked with ‘(a)’. The effects of binding
interference are visible in section ‘(b)’, which shows the
output of the original main method with aspectMNOap-
plied to the system. The set of known methods is identi-
cal, but the dispatch has changed for classesB, C, E, and
D. The first three classes are affected by the introduction
of n to B, classDby the change of the hierarchy.

All effects of the aspect are visible in section
‘(c)’, where the effects of thedeclare parents:
...implements I statements become visible. No
‘old’ base system code uses this effects as in the origi-
nal hierarchyC andD did not implementI . So, forC, D
and all their subclasses, methodsx andy can be called.
For classC only an implementation ofx is provided, for
y the default implementation ofI is used—as is visible in
the output.

6.2 Applying the Proposed Analysis

The analysis revealing classes only using the default im-
plementation of an interface, like e.g.E does, is quite
simple and not considered. The example concentrates on
changes in lookup. Changes due to introduction can be
found by applying algorithm 3.1. For the example hier-
archy, table 5 summarizes the gathered information. The
example application of the algorithm traverses all classes
of a given hierarchy according to a bfs-order determined
by the structure of the class hierarchyafter applying hier-
archy modifications of the aspect.

Step 7 is interesting as at this position the changed
lookup results from the change of hierarchy structure,not
from introduction (the father ofD now isG, which has an
own definition of methodm; so introduction ofmto B has
no longer any effect onD). When calculating changes in
lookup, these effects must be considered. The algorithm

reproduces the results visible when comparing sections
(a) and (b) of figure 4.

6.3 Using these Results—Impact Analysis

The calculated information about changed lookups can be
used for impact analysis to determine whether a given test
driver has to be rerun. For illustration consider the set
of (quite simple) test drivers associated with the example
hierarchy presented in program 6.3.

To decide if control flow has been changed by intro-
ductions, the call graph has to be constructed. Note that
points-to analysis is necessary as the types of caller and
callee of a virtual call has to be identified or at least re-

a) : original system
javac demo.java
java Main
A: A.n()
B: A.n() B.m()
C: A.n() B.m()
D: A.n() B.m()
E: A.n() B.m()
F: F.n() B.m()
G: G.n() B.m()

b) : changes due to dynamic
interference

ajc demo.java demo.aj
java Main
A: A.n()
B: B.n() B.m()
C: B.n() B.m()
D: G.n() B.m()
E: B.n() B.m()
F: F.n() B.m()
G: G.n() B.m()

c) : including introduction
to interface

ajc demo.java demo.aj
java M
A: A.n()
B: B.n() B.m()
C: B.n() B.m() C.x() I.y()
D: G.n() B.m() D.x() D.y()
E: B.n() B.m() C.x() I.y()
F: F.n() B.m() D.x() D.y()
G: G.n() B.m()

Figure 4: Example: Produced output.



Step v declared methods members(v) Intr(v)∆lookup(v) queue
1 - - - - - {A}
2 A n n - - {B}
3 B n, m m n B.n {C, G}
4 C n, m - - B.n {G, E}
5 G n, m n - - {E, D}
6 E n, m - - B.n {D}
7 D n, m - - G.n {F}
8 F n, m n - - /0

Figure 5: Results produced by the algorithm (x , y omitted).

Program 6.2Test Drivers for the Example Hierarchy.
class T1 {

public static void main(String[] args) {
F f = new F();
f.m(); // calls B.m()
f.n(); // calls F.n()

}
}
class T2 {

public static void main(String[] args) {
B b = new B();
b.n(); // calls B.n(), changed lookup

}
}
class T3 {

public static void main(String[] args) {
G d;
if (args.length != 0) d = new D();
else d = new G();
d.n(); // calls G.n(), caller: D or G

}
}

stricted to a as-small-as-possible type set.

T1.main

B.m

F.n

T2.main B.n

T3.main G.n

F

B

D or G

F

Figure 6: Call Graph of Simple Test drivers

To get a first impression how impact analysis works,
consider test driversT1 to T3 and their call graph. The
edge labels of figure 6.3 indicate the type of the calling
object. To evaluate the impact of an aspect using the call
graph, we need the results of table 5.

Test driver T1 is obviously unaffected by changes

due to aspect application as no lookup for anF-object
changed. Test driverT2 calls n from a B-object. This
lookup has changed fromA.n() to B.n() due to intro-
duction of methodB.n . This test driver has to be rerun.

Test driverT3 is a little more complex as here the
type of the calling object is statically unknown. Possi-
ble types areDandG. For aG-object, semantics would be
preserved, but for aD-object, the call would evaluate to
G.n() and not toA.n as in the original hierarchy. Con-
servative approximation demands to rerun test driverT3.
Certainly this is a simple example, but there is no restric-
tion to apply this analysis to real-world call graphs as it
can be done by performing this simple check for every
edge.

7 Preliminary Implementation
and Future Work

A prototype of the analysis presented in sections 2 to 4
has been implemented and produces reasonable results for
programs written in a subset of AspectJ, including the ex-
ample of section 6 presented in this paper.

However, implementation of the impact analysis and
extension of the set of analyzable programs still has to be
done. A point of interest is the handling of Javaimport -
statements as imported classes are necessary information
to built up the hierarchyH . For these classes, source code
might not be available. To solve this problem, it is planned
to reconstruct class information out of Java byte code us-
ing the BCEL API.

Evaluation of occurence of binding interference in ‘real
life’ AspectJ programs is necessary to determine if this
problem is actually relevant for AspectJ programmers.
However, even if binding interference is not very frequent,
the AspectJ compiler should issue a warning.



8 Conclusion and Related Work

This paper pointed out the problem of binding interfer-
ence emerging from usage of the AspectJ features intro-
duction and hierarchy modification. Definitions are given
how AspectJ introduction and hierarchy modification can
be interpreted as hierarchy combinations. With this defi-
nitions at hand, the noninterference criterion of [10] and
the impact analysis of [9] can be applied to check if clients
of the hierarchy under consideration possibly changed
behavior. This analysis can help AspectJ programmers
to examine the impact of aspects before application and
avoids subtle flaws in their programs.

To improve separation of concerns, several different ap-
proaches besides aspect oriented programming have been
suggested. Aksit et al. proposed composition filters [2, 1]
to route incoing and outgoing messages through a filter
queue, thus enabling similar functionality. Batory et al.
proposed layered designs [4, 3].

Especially relevant for the approach presented here is
[8]. Ossher and Tarr proposed multi-dimensional sepa-
ration of concerns, leading to a separate implementation
of different features and a composition of the resulting
hierarchies according to user defined composition rules.
Semantics of these compositions are a research topic ad-
dressed in [10].

Besides [10], very little work of program analysis for
AOSD approaches is known, although impact analysis of
[9] could be used for AOSD software as well.

Acknowledgements

Thanks to Silvia Breu for her valuable feedback.

References

[1] M. Aksit and B. Tekinerdogan. Solving the model-
ing problems of object-oriented languages by com-
posing multiple aspects using composition filters,
1998.

[2] Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk
Bergmans, and Akinori Yonezawa. Abstracting
Object Interactions Using Composition Filters. In
Rachid Guerraoui, Oscar Nierstrasz, and Michel
Riveill, editors, Proceedings of the ECOOP’93
Workshop on Object-Based Distributed Program-
ming, volume 791, pages 152–184. Springer-Verlag,
1994.

[3] D. Batory and Y. Smaragdakis. Building product-
lines with mixin layers, 1999.

[4] Don Batory and Sean O’Malley. The design and im-
plementation of hierarchical software systems with
reusable components.ACM Transactions on Soft-
ware Engineering and Methodology, 1(4):355–398,
1992.

[5] Gregor Kiczales, John Lamping, Anurag Menhd-
hekar, Chris Maeda, Cristina Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented program-
ming. In Mehmet Akşit and Satoshi Matsuoka, ed-
itors,Proceedings European Conference on Object-
Oriented Programming, volume 1241, pages 220–
242. Springer-Verlag, Berlin, Heidelberg, and New
York, 1997.

[6] Barbara H. Liskov and Jeannette M. Wing. A behav-
ioral notion of subtyping. 1994.

[7] Leonid Mikhajlov and Emil Sekerinski. A study
of the fragile base class problem.Lecture Notes in
Computer Science, 1445:355–382, 1998.

[8] H. Ossher and P. Tarr. Multi-dimensional separa-
tion of concerns and the hyperspace approach, 2000.
Proc. Symposium on Software Architectures and
Component Technology: The State of the Art in
Software Development.

[9] Barbara G. Ryder and Frank Tip. Change impact
analysis for object-oriented programs.Proceedings
of the Workshop on Program Analysis for Software
Tools and Engineering (PASTE 2001), pages 46–53,
2001.

[10] Gregor Snelting and Frank Tip. Semantics-based
composition of class hierarchies. InECOOP, page
562ff, 2002.


	Motivation
	Interface Introduction
	Noninterference Criterion for AspectJ Introduction
	Impact of Class Introduction
	Detecting Semantical Changes
	Finding Changed Lookups

	Noninterference Criterionfor Hierarchy Modification
	Impact of Changing the Inheritance Hierarchy
	Hierarchy Modification as Hierarchy Composition
	Impact of Type Changes
	Detection of Binding Interference due to Hierarchy Modifications

	Impact Analysis of Changes
	An Example Analysis
	The System to Analyze
	Applying the Proposed Analysis
	Using these Results---Impact Analysis

	Preliminary Implementation and Future Work
	Conclusion and Related Work

