
class Point1 extends Object{ 
private int _x, _y; 
 
void setX(int x){ _x=x; } 
int getX() { return _x; } 
 
void setY(int y){ _y=y; } 
int getY() { return _y; } 
... 

} 
 
class Subject{ 

private Vector observers; 
 
public Subject() { /* … */} 
 
public void attach(Observer o) 

{ observers.add(o); } 
 
public void Notify() 

{ /* foreach observer.update() */} 
... 

} 
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ABSTRACT 
Aspect-oriented languages offer new modularization concepts and 
composition approaches to provide more flexible solutions for the 
separation and integration of concerns. There are significant 
differences among aspect-oriented languages, due to the specific 
language constructs that they adopt. In this paper, we propose a 
common model, called Composition Graph, to represent different 
aspect-oriented approaches in a uniform way that can serve as a 
basis for the comparison of aspect-oriented languages. We also 
present a transformation language which can be used to model 
different weaving operations in our model. 

1. INTRODUCTION 
During the last several years, a considerable number of Aspect-
Oriented Languages (AOLs) has been introduced. Some AOLs 
may be particularly suitable to program certain application 
categories. We think that in order to compare and evaluate AOLs, 
it is important to understand their underlying concepts.  

An important characteristic of an AOL is its aspect composition 
mechanism. This is the mechanism to incorporate aspects with 
other aspects and/or with traditional programming abstractions. 

In this paper, we focus on the aspect composition mechanisms of 
languages. To this aim, we introduce a generic model, called 
Composition Graph (CG), in which different aspect-oriented 
composition mechanisms can be expressed uniformly and can be 
compared with each other. 

The structure of the paper is as follows. Section 2 presents a 
simple composition problem through an illustrative example. In 
section 3 we provide solutions to the problem in two different 
models, namely in AspectJ[1] and HyperJ[2]. Section 4 describes 
the approach. Section 5 outlines the notion of Composition 
Graphs exemplified by the solutions explained in the previous 
section. Section 6 demonstrates how the composition mechanisms 
can be represented by graph transformation rules. In section 7 we 
discuss some important related work. Finally, section 8 gives a 
conclusion and presents future work. 

2. An Example Problem 
AOLs use several composition techniques, such as method 
composition, introductions, merging of different program 
elements, etc. combined with new modularization concepts to 
cope with the phenomena of tangled code and crosscutting.  

In this section, we introduce a method composition problem that 
we will use as an instructive example in the subsequent sections. 
This example is based on the Observer design pattern [3].  

In Figure 1, class Point1 implements a geometrical point with x 
and y coordinates as instance variables and get/set as methods. 
Class Subject is the part of the Observer pattern that maintains the 
list of observers for each subject, using the vector observers. This 
class is responsible for the notification of the observers by the 
method Notify. 

Figure 2 displays a possible enhancement of class Point1, labeled 
Point2, to incorporate the subject role using inheritance. This class 
has the following responsibilities: a) After the execution of each 
method that changes the state of the object, the notification of the 
registered observers must take place. This is shown by the lines 
(2) and (3). b) This class inherits from class Subject to make the 
method Notify accessible for class Point1. As the source shows, 
                                                                 
1 Obviously, this is only one possible implementation of the 

Observer pattern. 

Figure 1. Definition of classes Point and Subject



Figure 2. Adaptation of Point1 to support the Observer 
pattern 

the adaptation of the subject role results in crosscutting code. To 
avoid this problem, other modularization and composition 
techniques should be used. 

3.  Aspect-Oriented Implementation of the 
Problem 
In this section, we provide a simple aspect-oriented solution to the 
previous example both in AspectJ and HyperJ.  

3.1 Composition in AspectJ 
Figure 3 displays a possible implementation of the composition of 
class Point1 with class Subject in AspectJ. 
Line (1) implements the language construct introduction. Here, 
the superclass of class Point1 is changed from the root class 
Object to the pattern defined class Subject. The pointcut 
specification shown in line (2) designates the methods setX and 
setY. In line (3) an after advice is bound to this pointcut 
specification. This means that the code “s.Notify()” specified in 
the advice will be performed after the execution of the designated 
methods. 

 
Figure 3. Definition of the aspect Notification 

This problem could be solved using more sophisticated features of 
AspectJ, such as abstract pointcuts [4]. For the sake of simplicity, 
however, we consider this solution adequate to explain the 
problem.  

3.2 Composition in HyperJ 
Figure 4 displays a HyperJ control file that implements an 
extension of class Point1 to integrate the subject role of the 
Observer pattern. 
In line (1) we list the classes to be incorporated. The lines 
between (2) and (3) represent the concern mapping, where 

program entities are assigned to different hyperslices2. Here, class 
Point is assigned to the hyperslice Feature.Kernel, while class 
Subject is assigned to the hyperslice Feature.Observing. The 
hypermodule specification in line (3) consists of two important 
parts: identification of the hyperslices (4) that are to be integrated, 
and integration relationships (5). These specify the details of the 
desired composition. The line marked by (6) shows the general 
integration strategy that has to be specified. Finally, the operation 
bracket selects the methods to be composed from class Point (7) 
and specifies that the method Notify has to be performed after the 
execution of these methods (8). 

 
Figure 4. HyperJ control file 

4. Our Approach 
We explain our approach using the figure at the top of the next 
page. In this figure we can distinguish the lower base level and 
the meta level; the models at the base level are expressed in terms 
of the metamodels. We will discuss the picture from left to right, 
roughly corresponding to the general process of creating and 
transforming CGs.  
On the left side, at the base level a number of boxes is shown 
which represent actual programs. Typically these programs can be 
represented by source code, byte code or an exchange format such 
as XML. Each individual program follows the rule of its 
programming language metamodel. The figure shows two 
example programming language metamodels: AspectJ and 
HyperJ. Our goal is to reason about the semantics of the 
programming languages, in particular their composition 
mechanisms. However, we choose to do so by considering the 
semantics and compositions of actual programs as well, rather 
than staying at the meta-level only. 
Our approach is based on the application of a single metamodel 
which is capable of representing programs from a wide range of 
programming languages and paradigms: this is the Composition 

                                                                 
2 A more detailed specification of HyperJ can be found in [2]. 
 

-hyperspace 
hyperspace DemoHyperspace 
composable class test.*; (1) 

-concerns (2) 
class Point1 : Feature.Kernel 
class Subject : Feature.Observing 

-hypermodules (3) 
  hypermodule ObserverDemo 

hyperslices: (4) 
Feature.Kernel,  
Feature.Observing; 

 
relationships: (5) 

mergeByName; (6) 
           

bracket "Point1"."set*"  (7) 
after (8) 

       Feature.Observing.Subject.Notify();
 

  end hypermodule; 
 

aspect Notification{ 
declare parents:  

Point1 extends Subject; (1)
 

pointcut stateChange(Subject s): 
this(s) &&  
execution(void Point.set*(..)); (2)
 

after(Subject s): stateChange(s){ (3)
s.Notify(); 

} 
} 

class Point2 extends Subject{  (1) 
public void setX(int x) 

{ _x=x; Notify();}      (2) 
public void setY(int y) 

{ _y=y; Notify();}  (3) 
...  

}  
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Graph metamodel (the box appears repeatedly at the top right of 
the picture). 
For example, imagine two versions of the same program A, each 
written in a different programming language (such as AspectJ and 
HyperJ): by translating these two programs into Composition 
Graph representations (these are the boxes in the middle of the 
bottom row of the figure), we can start to compare the structure of 
these programs, since they are represented in the same universal 
format. The differences between the programming languages are 
further visible through the different types of edges and nodes in 
each CG. 
We expect a number of benefits from these representations of 
programs using CGs: 

• Since CGs emphasize the (composition) structure and 
dependencies of programs, we may use them to reason about 
properties such as degrees of coupling and cohesion, e.g. by 
defining metrics. 

• Since programs in different programming languages can be 
easily compared, we may be able to infer properties of the 
programming languages (in the form of “programming 
language 1 can express problem/program A with less coupling 
than programming language 2”). Note that making general 
assumptions based on one or a few concrete examples must be 
done with great care. 

• We believe that the process of representing programs in the 
universal format, requiring one to define the composition 
structure of the programming language as types of nodes and 
edges, will yield increased insight in the workings and 
essence of aspect-oriented approaches, perhaps leading to new 
or generalized composition mechanisms. 

A further step in defining and understanding the semantics of the 
composition mechanisms can be made by translating the program 
representations into CGs for a generic model: this could be a 
‘traditional’ model such as the OO model, or alternatives such as 
a generic AOP model. Specifying the translation has several 
advantages: 
1. It provides us insight into the ability to actually express a 

particular functionality, and how composition mechanisms 
really work. 

2. If the resulting CGs are different, it will be fairly 
straightforward to see whether they are equivalent 
‘refactorings’ of the same program, or in fact programs with 
(slightly) different semantics. 

3. Defining general transformation rules, which can transform 
any CG in language A towards a CG in language B, is a way 
to define the precise semantics of the programming language3. 

4. Hence, the essential differences in composition mechanisms 
can be observed by looking at the differences between the 
transformation rules. 

The remainder of this paper will focus on the concept and 
representation of composition graphs and transformation rules, 
exemplified by the example that we introduced in section 2 and 3. 

5. Composition Graphs 
Composition Graphs (CGs) are used to represent certain aspects 
of programs. They are especially useful to represent the structure 
of programs and reason about composition mechanisms.  
CGs, like abstract syntax trees (ASTs), denote structural 
dependencies between different program units represented in the 
program.  However, CGs are different from ASTs in several 
ways; they do not necessarily represent the full syntax of 
languages: certain parts of programs can be compressed into one 
node of the graph. CGs can also be used to explicitly represent 
certain composition relationships between various program units, 
such as classes, methods, advices, hyperslices, etc.  

5.1 Structure of Composition Graphs 
A Composition Graph consists of a set of nodes, labeled edges 
and attributes. Nodes represent the program units, which may be 
affected or used by the aspect weaving mechanism of the 
language considered. A node can refer to other nodes or attributes 
through labeled edges. An attribute refers only to its parent node 
and contains information about it. 
Figure 5 depicts a part of the CG of class Point1 which was shown 
in figure 1. Nodes are illustrated by small circles. The left 
uppermost node (1) denotes the whole class. Three attributes – 
illustrated by ovals - are connected to this node through the edges 
                                                                 
3 Note that the precision of this semantic specification depends on 

the level of abstraction of the target language. 



name, visibility and meta. In corresponding order the first two 
attributes are the name and visibility of the class, while the third 
one is a meta-attribute. Each node can have a special edge called 
meta that holds meta-information about the type of the node.  
 

 
Figure 5. Part of class Point represented as a Composition 

Graph 
The node marked by (1) has two edges that are connected to two 
other nodes. The edge with the label member refers to the node 
(2), which represents the method setX of class Point. This node 
has also some attributes (meta, name, visibility, type of return 
value) and relations with the two other nodes: the upper one (4) 
corresponds to the argument of the method, while the node 
marked by (5) denotes the implementation (body) of the method. 
This latter node has a meta attribute and an edge, which is 
connected to an assignment statement. This is the only statement 
of the method. The edge called superclass refers to a node (3) that 
denotes class Object, the superclass of class Point. Due to lack of 
space, we have not unfolded this node completely; This node is in 
fact a subgraph that has similar structure to the subgraph denoted 
by (1).  
Note that figure 5 shows only the part of the Composition Graph 
of class Point. Other methods are represented like the method 
setX, but are not shown. 
The same type of representation can be applied for aspect-
oriented languages. Figure 6 illustrates a part of the aspect 
Notification as a CG. The node marked by (1) corresponds to the 
introduction statement in figure 3. Here, the introduction 
statement is represented as a literal. This is a way to hide the 
details if necessary. In fact, this node could have been expanded 
to several nodes as it is illustrated by the node marked by (4). The 
node at (2) illustrates the pointcut specification and also shown in 
a compressed form. The node marked by (3) illustrates the advice, 
which was shown in line (3) of figure 3.  

 
Figure 6. Part of the aspect Notification shown as a CG 

5.2 Setting up Composition Graphs  
Composition Graphs can be derived from various software 
artifacts, such as programs expressed in different languages (Java, 
AspectJ, HyperJ), XML documents and UML models. 
As a first step, the files that contain the source code have to be 
parsed to build up their syntax tree.  
In the next step, the syntax-tree is transformed into an initial CG 
by adding the cross-reference relationships as edges where 
necessary. For instance, in figure 5 the edge superclass is a 
typical cross-reference relationship. In a syntax-tree, the name of 
the superclass is an identifier, whereas in the CG, the relation 
superclass denotes to the actual representation of that class (see 
figure 5). In other words, in CGs every program unit which is 
relevant from the point of view of weaving is uniquely 
represented.  
The third important step is the resolution of the nodes that contain 
composition (weaving) specifications. These are represented in 
CGs through additional edges and/or nodes. Figure 7 illustrates 
the aspect Notification in this way. Three new edges – illustrated 
by the broken arrows - are shown in figure 7. Edges marked by 
(1) and (2) represent the combination of the after advice with the 
methods setX and setY. The edge marked by (3) represents the 
introduction, which was shown in figure 3. 
 



 
Figure 7. CG of the AspectJ program after the third step 

Figure 8 shows the CG representation of the hypermodule 
ObserverDemo, which was described in figure 4. The edge 
marked by (1) is for the mergeByName relationship between the 
two hyperslices. The bracket relationship is represented by three 
new edges. The first two edges marked by (2) and (3) represent 
the combination of the methods setX and setY with the call 
Notify(). The third edge marked by (4) denotes the change4 of the 
superclass of class Point from the root class Object to the class 
Subject of the Observer pattern.  
                                                                 
4 Looking at the AST description of the woven classes in HyperJ, 

we realized that the bracket relationship also changes the 
superclass of the class that contains the bracketed methods to 
the class of the ‘bracketer’ method if the two classes have not 
been equated previously. The weaver has to enforce this 
inheritance so that the method Notify can be accessed from the 
class Point.  

For a given language specification, there is a closed set of types 
of edges and nodes. For example, in case of Java we define a fix 
set of edges and nodes, which represent the conventional object-
oriented relationships. In case of AspectJ or HyperJ, we define 
nodes and edges, which represent the modules and composition 
constructs of these languages. 

 
Figure 8. CG of the HyperJ program after the third step 

Although languages may require specific kinds of nodes and 
edges, they are all expressed using the same CG notation. This is 
the key property in evaluating and comparing different AOLs. 
We would like to uniformly interpret the CGs representing 
programs expressed in different languages.  For this purpose, we 
transform the CGs that represent the aspect-oriented programs, to 
the CGs that represent the object-oriented implementations of 
these programs. We therefore transform every AOL specific edge 
and node to the equivalent object-oriented edge and node.  
Figure 9 illustrates after the transformation a part of the CG that 
represented the introduction statement at (3) in figure 7. As a 
result of the transformation, a new edge named superclass has 



been created between the class Point and Subject, while the edge 
parent-extends and the original superclass edge have been 
deleted. 

 
Figure 9. Transformation of the introduction statement 

The result graph of the transformation of the after advice, 
illustrated at (1) and (2) in figure 7, is shown in figure 10. Only a 
new call statement has been attached to the body of the methods 
setX and setY. However, this method has no return value and we 
had to handle only one exit point inside the implementation of the 
methods. If an after advice is combined with an execution 
pointcut designator and the designated method has several return 
statements then we have to see after another solution that handles 
each exit point.  
 

 
Figure 10. Method setX after the transformation  

Note that the result graph of the transformation itself does not 
provide too much information for us. However, if we contrast the 
source graph of the transformation with the result graph in respect 
to the related edges and nodes we can see how the composition 
mechanisms of different languages differ from each other. For 
example, we can recognize that only one composition structure of 
an aspect-oriented language is able to implement a complex 
composition problem, which results in at least three or more 

standard object-oriented relationships, while another aspect-
oriented language needs at least two or more composition 
structure in order to achieve the same realization.  
We propose a transformation language to formulate the 
transformation processes that practically correspond to the 
weaving operations.  

6. TRANSFORMATION LANGUAGE 
In this section we outline a transformation language by which we 
can describe how the result graphs can be obtained from the 
source graphs. 

6.1 Selecting Graph Fragments 
To transform a set of edges and nodes of a graph into another set 
of edges and nodes first we have to be able to designate certain 
nodes and edges in the graph that serve as an input of the 
transformation. We experienced that aspect-oriented language 
abstractions are typically represented by multiple nodes and edges 
in Composition Graphs. Therefore, we initiate a query-based 
technique to select multiple nodes from CGs based on their 
relationships. 

The queries employ formulas of predicate logic with free 
variables. We used set notation to highlight the free variables. The 
general form of a query expression, similarly to the tuple 
relational calculus, is 

{t | P(t)} 

where t is a free variable and P is a predicate. The variables can 
be quantified: ∃(there exist), ∀(for all). In our model predicates 
are parameterized propositions that formulate statements whether 
an edge between a node and an attribute (or between two nodes) 
exists or not in the CG. The skeletons of the propositions look like 
these: node.edge=value and node.edge→node. Predicates can be 
composed of other predicates by using logical connectives. The 
result of the query is a set of references to the nodes that satisfies 
the predicate if they are substituted with the free variables.  

As a simple example, let us see the following query expression: 

{ X | X.meta = class AND X.name = Point }   

This query will select each node that has a meta edge referring to 
the attribute class and a name edge referring to the attribute Point 
In other words, the result of this query is a set of references to 
such nodes that denote classes with the name Point (e.g. two 
classes with the same name can be placed in different packages or 
hyperslices).  

A more complex example is the following: 

 {Y | Y.name=setx AND ∃X∃Z(X.member→Y AND  
  X.superclass→Z AND Z.name = Subject)}   

This query will designate each method with the name setX placed 
in a class that inherits from the class Subject. 

By default, the query is executed against the whole graph. There 
are situations, however, where the scope of the query should be 
narrowed to only one or more subgraphs of the complete graph. 
For this purpose, we use scoping expressions that determine a set 
of subgraphs in order to narrow the scope of the query.  

Point 
Object

name 

superclass <deleted> 

name 

class meta 

meta class

member 

Subjectname 

class

member 

meta 

parent-extends <deleted> 
superclass <new> 



The general form of a scoping expression is 

 <N1, E1> [on <N2, E2> on … on <Nn, En> ] 

where N is a query expression and E is a set of labels of edges 
from the original graph. Nodes selected by N denote the root 
nodes of the subgraphs, while labels in E indicate those edges 
only which are allowed to connect the nodes in the subgraphs. 
Scoping expressions can be defined recursively on other scoping 
expressions.  

As a simple example, let us see the following scoping expression: 

 <{ N | N.meta = method AND N.name = foo }, {statement}> 

In this example the node that corresponds to the method foo will 
be the root node of the subgraph and the nodes in this subgraph 
can be connected through only one type of edge that has the label 
statement. 

An application of this scoping expression is shown by the 
following example: 

 {RS | RS.meta = return-statement} on  

 <{ N | N.meta = method AND N.name = foo }, {statement}> 

In this example a query expression is combined with the previous 
scoping expression that selects every return statement from each 
method called foo in the whole CG. 

Based on the structure of CGs not only different types of program 
units but also program statements, such as calls, field 
reading/writing, etc. can be designated in an elegant manner. 

6.2 Transformation Rules 
The general form of a transformation rule is 
 {Identifying pattern} 
 {Context pattern} > Transformation Statement 
where the identifying pattern and context pattern are query 
expressions, and the transformation statement is the application of 
a modification type on the nodes selected by the identifying and 
context pattern. Typical modification types are adding a node or 
edge to a graph, removing a node or edge from a graph, changing 
an edge to another one, etc. The identifying pattern identifies 
those edges that should be eliminated from the CG by the 
transformation. Sometimes, in the context of the identifying 
pattern, additional nodes and edges have to be used as input of the 
transformation. The context pattern designates these ones. The 
identifying pattern therefore can be regarded as a part of the 
context pattern. 
The following example shows a simple transformation rule: 

 {X,Y | X.parent-extends→Y}  (1) 

{} > Change(Y.superclass→X)  (2) 
The query expression (1) designates a set of pairs of nodes which 
are connected via a parent-extends edge with each other. The 
transformation statement (2) changes the edge parent-extends 
between each pair of nodes to the edge superclass. Figure 9 
illustrates the application of this transformation rule. We did not 
have to select additional nodes and edges for the transformation, 
thus, the place of the context pattern left empty. 

The transformation rule which is intended to eliminate the after 
edges in figure 7, at (1) and (2) looks like this (the woven 
methods have only one exit point, no return value): 

(1)  {X,Y | X.after→Y}  

(2)  { MB, S | Y.body→MB AND ∃A∃B(X.member→A AND  

A.meta=advice AND A.body→B AND B.statement→S 
)} 

(3) > AppendAfter(MB.statement→S)  
The identifying pattern (1) selects pairs of nodes connected 
through the edge after.  The context pattern (2) selects the node 
that denotes the body of the method (MB), and the nodes that 
denote the statements in the advice (S). The transformation 
statement (3) appends these latter nodes to the former one.  

Naturally, there may be nodes and edges that cannot be directly 
transformed into the desired form of graph in only one step. In 
this case a sequence of transformation rules has to be applied in 
order to achieve the CG with the proper characteristics. For 
example, merging two hyperslices typically requires the 
application of more than one transformation rule. On the top level 
the merge relationship is denoted by only one edge between the 
two hyperslices. In the first transformation step this edge is 
processed and a new merge edge is created between each pair of 
nodes that denote the units of these hyperslices. If some of these 
units are classes than the merge edge between those classes has to 
be processed again; in this way, the merge relationships are 
pushed down to the level of methods of those classes. This 
process ends up with the merging of methods. 

This latter process is known as derivation sequence in the 
terminology of graph transformation systems. We actually found 
that this graph transformation language falls into the category of 
algebraic graph transformation approaches [5]. 

7. RELATED WORK 
In [6], the authors propose a framework by which the core 
semantics of five aspect-oriented tools, namely AspectJ, 
DemeterJ, HyperJ, Open Classes, QJBrowser, can be modeled in 
terms of nine properties. These properties cover, among others, 
the language the input programs are written in, how the input 
languages indentify join points and how the input languages 
contribute to the semantics at the join points. The authors also 
provide a definition for the term crosscutting in terms of the 
model. However, they had difficulties to achieve a common 
weaver structure for all five models. Without a common 
representation the evaluation of AOP languages is difficult. In our 
approach we will try to provide a more generic model that can 
help to understand the composition mechanism of these 
languages.  
Assman in [7] presents a GRS-based (Graph Rewrite System) 
aspect-oriented programming approach, in which aspects, 
joinpoints and weaving have well-defined and precise semantics 
in terms of graph-rewriting. In GRS-based aspect-oriented 
programming aspect composition operators correspond to graph 
rewrite rules, weavings are direct derivations, and weaved 
programs are normal forms of the rewrite systems. In accordance 
with this approach we use a common graph transformation system 
to model the different types of composition mechanisms of the 



existing aspect-oriented languages in a uniform way. However, in 
our work we focus on the evaluation of the aspect-oriented 
languages and we regard the graph notation only as a means that 
helps to reason on the composition mechanisms.  
QJBrowser [8] is a code exploration tool by which various 
program elements can be extracted from a source model and 
presented in a hierarchical view.  A selection criterion determines 
what elements should be extracted from the program. This 
criterion is defined as a query in terms of first order predicates. 
The query is executed against the source model and results in the 
tuples of the selected properties. In our approach we use a similar 
technique to select certain nodes of the CGs. 
Mens in [9] presents conditional graph rewriting as a domain-
independent, formal approach for managing unanticipated 
software evolution. He proposes labeled typed nested graphs to 
represent complex software artifacts and graph rewriting to 
control the evolution of these artifacts. Similarly, we would like 
to use CGs as a domain independent formalism to model different 
program units and graph transformation as a formalism to 
describe weaving operations. 

8. CONCLUSION & FUTURE WORK 
In this paper, we have introduced the concept of Composition 
Graphs as a means for reasoning about (aspect-oriented) 
composition. We have illustrated how CGs can be used to 
represent a simple example program, expressed in Java, AspectJ 
and HyperJ, respectively. Subsequently, we demonstrated how 
composition (or weaving) mechanisms can be represented by 
transformation rules upon CGs.  

This paper aims at laying the foundation for further work in 
reasoning about composition mechanisms. 

• We may use CGs to reason about properties such as degrees 
of coupling and cohesion, e.g. by defining metrics. 

• We believe that we can define the semantics of composition 
mechanisms effectively by specifying general transformation 
rules, which can transform any CG in language A towards a 
CG in language B. Hence, the essential differences in 
composition mechanisms can be observed by looking at the 
differences between the transformation rules. 

• We expect that the application of CGs to represent a variety 
of programs in different AOLs will yield increased insight in 
the workings and essence of aspect-oriented approaches, 
perhaps leading to new or generalized composition 
mechanisms. 

Although we have already gained some experience in modeling 
programs in different AOP languages as CGs, there are still 
several issues left to be addressed as future work. First of all, we 

have to refine the structure of the graphs in case of each language. 
In other words, we want to enrich the set of types of nodes and 
edges that represent AO composition structures. Besides, the 
transformation rules also have to be specified in order to reason 
about the corresponding composition mechanism.  
Further issues that we plan to address shortly: 

• Improving the representation/visualization of the CGs 

• Address the ability to model both static composition and 
runtime composition. 

• Define metrics to judge certain characteristics and quality 
attributes of programs represented as CGs. 

• Analysis and comparison of existing composition mechanisms 
and identification of new composition mechanisms 

We intend to explore the application of transformation rules to 
create code generators. 
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