
FOAL 2002 Proceedings
Foundations of Aspect-Oriented Languages

Workshop at AOSD 2002
Gary T. Leavens and Ron Cytron (editors)

TR #02-06
April 2002

Keywords: Aspect-oriented programming languages, formal semantics, formal methods, specification,
verification, theory of testing, theory of aspect composition, aspect translation and rewriting,
compilation, advice, join points, member-group relations, superposition, observers, assistants,
modularity, events, source-code instrumentation.

2000 CR Categories: D.1.m [Programming Techniques] Miscellaneous � aspect-oriented programming,
reflection; D.2.1 [Software Engineering] Requirements/Specifications � languages, methodology, theory,
tools; D.2.4 [Software Engineering] Software/Program Verification � class invariants, correctness proofs,
formal methods, programming by contract, reliability, validation; D.3.1 [Programming Languages] Formal
Definitions and Theory � semantics; D.3.3 [Programming Languages] Language Constructs and Features
� control, data types and structures; F.3.1 [Logics and Meaning of Programs] Specifying and verifying
and reasoning about programs � assertions, logics of programs, pre- and post-conditions, specification
techniques; F.3.m [Logics and Meaning of Programs] Miscellaneous � reasoning about performance.

Each paper�s copyright is held by its author.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA

i

Table of Contents
Preface ... i

A Semantics for Advice and Dynamic Join Points in Aspect-Oriented Programming 1
Mitchell Wand, Northeastern University
Gregor Kiczales, University of British Columbia
Chris Dutchyn, University of British Columbia

Member-Group Relationships Among Objects ... 9
William Harrison, IBM T.J. Watson Research
Harold Ossher, IBM T.J. Watson Research

Compilation Semantics of Aspect-Oriented Programs .. 17
Hidehiko Masuhara, University of Tokyo
Gregor Kiczales, University of British Columbia
Chris Dutchyn, University of British Columbia

A Formal Basis for Aspect-Oriented Specification with Superposition ... 27
Pertti Kellomäki, Tampere University of Technology

Observers and Assistants: A Proposal for Modular Aspect-Oriented Reasoning33
Curtis Clifton, Iowa State University
Gary T. Leavens, Iowa State University

Source-Code Instrumentation and Quantification of Events.. 45
Robert E. Filman, NASA Ames Research Center
Klaus Havelund, NASA Ames Research Center

ii

Preface
Aspect-oriented programming is a new area in software engineering and programming languages that
promises better support for separation of concerns. The first Foundations of Aspect-Oriented Languages
(FOAL) workshop was held at the 1st International Conference on Aspect-Oriented Software Development
in Enschede, The Netherlands, on April 22, 2002. This workshop was designed to be a forum for research
in formal foundations of aspect-oriented programming languages. The call for papers announced the areas
of interest for FOAL as including, but not limited to: formal semantics, formal specification, verification,
theory of testing, aspect management, theory of aspect composition, and aspect translation and rewriting.
The call for papers welcomed all theoretical and foundational studies of this topic.

The goals of this FOAL workshop were to:

� Explore the formal foundations of aspect-oriented programming.
� Exchange ideas about semantics and formal methods for aspect-oriented programming languages.
� Foster interest in the programming language theory communities concerning aspects and aspect-

oriented programming languages.
� Foster interest in the formal methods community concerning aspects and aspect-oriented programming.

In addition, we hoped that the workshop would produce an outline of collaborative research topics and a list
of areas for further exploration.

The papers at the workshop, which are included in the proceedings, were selected from papers submitted by
researchers worldwide. Due to time limitations at the workshop, not all of the submitted papers were
selected for presentation.

The workshop was organized by Ron Cytron (Washington University, St. Louis) and Gary T. Leavens (Iowa
State University). The program committee that selected papers consisted of the organizers and James H.
Andrews (U. Western Ontario), William Harrison (IBM T. J. Watson Research Center), K. Rustan M. Leino
(Microsoft Research), Oscar Nierstrasz (U. of Berne), Wolfgang De Meuter (Vrije Universiteit Brussels),
Jens Palsberg (Purdue Univ.), Kris De Volder (U. of British Columbia), and Mitch Wand (Northeastern
University). We thank the organizers of AOSD 2002 for hosting the workshop.

A Semantics for Advice and Dynamic Join Points in
Aspect-Oriented Programming

Mitchell Wand∗
College of Computer Science

Northeastern University
360 Huntington Avenue, 161CN

Boston, MA 02115, USA
wand@ccs.neu.edu

Gregor Kiczales and Christopher Dutchyn
Department of Computer Science

University of British Columbia
201-2366 Main Mall

Vancouver, BC V6T 1Z4, Canada
{gregor,cdutchyn}@cs.ubc.ca

ABSTRACT
A characteristic of aspect-oriented programming, as embodied in
AspectJ, is the use ofadviceto incrementally modify the behav-
ior of a program. An advice declaration specifies an action to be
taken whenever some condition arises during the execution of the
program. The condition is specified by a formula called apointcut
designatoror pcd. The events during execution at which advice
may be triggered are calledjoin points. In this model of aspect-
oriented programming, join points are dynamic in that they refer to
events during the execution of the program.

We give a denotational semantics for a minilanguage that embodies
the key features of dynamic join points, pointcut designators, and
advice. This is the first semantics for aspect-oriented programming
that handles dynamic join points and recursive procedures. It is
intended as a baseline semantics against which future correctness
results may be measured.

1. INTRODUCTION
A characteristic of aspect-oriented programming, as embodied in
AspectJ [11], is the use ofadviceto incrementally modify the be-
havior of a program. An advice declaration specifies an action to be
taken whenever some condition arises during the execution of the
program. The events at which advice may be triggered are called
join points. In this model of aspect-oriented programming (AOP),
join points aredynamicin that they refer to events during execu-
tion. The process of executing the relevant advice at each join point
is calledweaving.

The condition is specified by a formula called apointcut designator
or pcd. A typical pcd might look like

∗Work supported by the National Science Foundation under grant
number CCR-9804115. An earlier version of this paper was pre-
sented at the 9th International Workshop on Foundations of Object-
Oriented Languages, January 19, 2002.

(and (pcalls f) (pwithin g) (cflow (pcalls h)))

This indicates that the piece of advice to which this pcd is attached
is to be executed at every call to proceduref from within the text
of procedureg, but only when that call occurs dynamically within
a call to procedureh.

This paper presents a model of dynamic join points, pointcut desig-
nators, and advice. It introduces a tractable minilanguage embody-
ing these features and gives it a denotational semantics.

This is the first semantics for aspect-oriented programming that
handles dynamic join points and recursive procedures. It is in-
tended as a baseline against which future correctness results may
be measured.

This work is part of the Aspect Sandbox (ASB) project. The goal is
of ASB to produce an experimental workbench for aspect-oriented
programming of various flavors. ASB includes a small base lan-
guage and is intended to include a set of exemplars of different
approaches to AOP. The work reported here is a model of one of
those exemplars, namely dynamic join points and advice with dy-
namic weaving. We hope to extend this work to other AOP models,
including static join points, Demeter [14], and Hyper/J [16], and to
both interpreter-like and compiler-like implementation models.

For more motivation for AOP, see [12] or the articles in [4]. For
more on AspectJ, see [11].

2. A MODEL
We begin by presenting a conceptual model of aspect-oriented pro-
gramming with dynamic join points as found in AspectJ.

In this model, a program consists of a base program and some
pieces ofadvice. The program is executed by an interpreter. When
the interpreter reaches certain points, calledjoin points, in its ex-
ecution, it invokes aweaver, passing to it an abstraction of its in-
ternal state (thecurrent join point). Each advice contains a predi-
cate, called apointcut designator(pcd), describing the join points
in which it is interested, and a body representing the action to take
at those points. It is the job of the weaver to demultiplex the join
points from the interpreter, invoking each piece of advice that is
interested in the current join point and executing its body with the
same interpreter.

Gary T. Leavens

Gary T. Leavens
1

So far, this sounds like an instance of the Observer pattern [8]. But
there are several differences:

1. First, when a piece of advice is run, its body may be evalu-
ated before, after or instead of the expression that triggered
it; this specification is part of the advice. In the last case,
called anaroundadvice, the advice body may call the prim-
itive proceed to invoke the running of any other applicable
pieces of advice and the base expression.

2. Second, the language of predicates is a temporal logic, with
temporal operators such ascflow illustrated above. Hence
the current join point may in general be an abstraction of the
control stack.

3. Each advice body is also interpreted by the same interpreter,
so its execution may give rise to additional events and advice
executions.

4. Last, in the language of this paper, as in the current imple-
mentation of AspectJ, the set of advice in each program is
a global constant. This is in contrast with the Observer pat-
tern, in which listeners register and de-register themselves
dynamically.

This is of course a conceptual model and is intended only to moti-
vate the semantics, not the implementation. However, this analysis
highlights the major design decisions in any such language:

1. The join-point model: when does the interpreter call the weaver,
and what data does it expose?

2. The pcd language: what is the language of predicates over
join points? How is data from the join point communicated
to the advice?

3. The advice model: how does advice modify the execution of
the program?

In this paper, we explore one set of answers to these questions.
Section 3 gives brief description of the language and some exam-
ples. Section 4 presents the semantics. In section 5 we describe
some related work, and in section 6 we discuss our current research
directions.

3. EXAMPLES
Our base language consists of a set of mutually-recursive first-order
procedures with a call-by-value interpretation. The language is
first-order: procedures are not expressed values. The language in-
cludes assignment in the usual call-by-value fashion: new storage
is allocated for every binding of a formal parameter, and identifiers
in expressions are automatically dereferenced.

Figure 1 shows a simple program in this language, using the syntax
of ASB. We have two pieces ofaround advice that are triggered
by a call tofact.1 At each advice execution,x will be bound to
the argument offact. The program begins by callingmain, which

1As shown in these examples, the executable version of ASB in-
cludes types for arguments and results. The portion of ASB cap-
tured by our semantics is untyped.

(run
’((procedure void main ()

(write (fact 3)))
(procedure int fact ((int n))

(if (< n 1) 1
(* n (fact (- n 1)))))

(around
(and

(pcalls int fact (int))
(args (int x)))

(let (((int y) 0))
(write ’before1:)
(write x) (newline)
(set! y (proceed x))
(write ’after1:)
(write x) (write y) (newline)
y))

(around
(and

(pcalls int fact (int))
(args (int x)))

(let (((int y) 0))
(write ’before2:) (write x)
(newline)
(set! y (proceed x))
(write ’after2:)
(write x) (write y) (newline)
y))))

prints:

before1: 3
before2: 3
before1: 2
before2: 2
before1: 1
before2: 1
before1: 0
before2: 0
after2: 0 1
after1: 0 1
after2: 1 1
after1: 1 1
after2: 2 2
after1: 2 2
after2: 3 6
after1: 3 6
6

Figure 1: Example of around advice

in turn callsfact. The first advice body is triggered. Its body
prints thebefore1 message and then evaluates theproceed ex-
pression, which proceeds with the rest of the execution. The execu-
tion continues by invoking the second advice, which behaves simi-
larly, printing thebefore2 message; its evaluation of theproceed
expression executes the actual procedurefact, which callsfact
recursively, which invokes the advice again. Eventuallyfact re-
turns 1, which is returned as the value of theproceed expression.
As eachproceed expression returns, the remainder of each advice
body is evaluated, printing the variousafter messages.

Eacharound advice has complete control of the computation; fur-
ther computation, including any other applicable advice, is under-
taken only if the advice body callsproceed. For example, if the

Gary T. Leavens
2

(run
’((procedure void main ()

(write (+ (fact 6) (foo 4))))
(procedure int fact ((int n))

(if (= n 0) 1
(* n (fact (- n 1)))))

(procedure int foo ((int n))
(fact n))

(before (and
(pcalls int fact (int))
(args (int y))
(cflow

(and
(pcalls int foo (int))
(args (int x)))))

(write x) (write y) (newline))))
prints:

4 4
4 3
4 2
4 1
4 0
744

Figure 2: Binding variables with cflow

proceed in the first advice were omitted, the output would be just

before1: 3

after1: 3 0

0

The value ofx must be passed to theproceed. If the call to
proceed in the second advice were changed to(proceed (- x

1)), thenfact would be called with “wrong” recursive argument.
This design choice is intentional: changing the argument toproceed

is a standard idiom in AspectJ.

Our language also includesbefore andafter advice, which are
evaluated on entry to and on exit from the join point that trig-
gers them; these forms of advice do not require an explicit call
to proceed and are always executed for effect, not value.

The language of pointcut designators includes temporal operators
as well. Figure 2 shows an advice that is triggered by a call offact

that occurs within the dynamic scope of a call tofoo. This program
prints 720+24 = 744, but only the last four calls tofact (the ones
during the call offoo) cause the advice to execute. The pointcut
argument tocflow bindsx to the argument offoo. Our language of
pcd’s includes several temporal operators. For example,cflowtop

finds the oldest contained join point that satisfies its argument. Our
semantics includes a formal model that explains this behavior.

The examples shown here are from the Aspect Sandbox (ASB).
ASB consists of a base language, called BASE, and a separate lan-
guage of advice and weaving, called AJD. The language BASE is
a simple language of procedures, classes, and objects. Our inten-
tion is that the same base language be used with different weavers,
representing different models of AOP; AJD is intended to capture

the AspectJ dynamic join point style of AOP. The relation between
AJD and BASE is intended to model the relationship between As-
pectJ and Java. We implemented the base language and AJD using
an interpreter in Scheme in the style of [7].

For the semantics, we have simplified BASE and AJD still further
by removing types, classes, and objects from the language and by
slightly simplifying the join point model; the details are listed in
the appendix. While much has been left out, the language of the
semantics still models essential characteristics of AspectJ, includ-
ing dynamic join points; pointcut designators; andbefore, after,
andaround advice.

4. SEMANTICS
We use a monadic semantics, using partial-function semantics when-
ever possible. In general, we use lower-case Roman letters to range
over sets, and Greek letters to range over elements of partial orders.

Typical sets:

Sets

v ∈ Val Expressed Values
l ∈ Loc Locations
s ∈ Sto Stores

id ∈ Id Identifiers (program variables)
pname, wname ∈ Pname procedure names

4.1 Join Points
We begin with the definition of join points. We use the termjoin
point to refer both to the events during the execution of the program
at which advice may run and to the portion of the program state that
may be visible to the advice. The portion of the program state made
visible to the advice consists of the following data:

Join points

jp ∈ JP Join Points
jp ::= 〈〉 | 〈k, pname, wname, v∗, jp〉
k ::= pcall | pexecution | aexecution

Join Point Kinds

A join point is an abstraction of the control stack. It is either empty
or consists of a kind, some data, and a previous join point. The join
point 〈pcall, f , g, v∗, jp〉 represents a call to proceduref from
procedureg, with argumentsv∗, and with previous join pointjp.
pexecution andaexecution join points represent execution of a
procedure or advice body; in these join points the three data fields
contain empty values.

4.2 Pointcut Designators
A pointcut designator is a formula that specifies the set of join
points to which a piece of advice is applicable. When applied to a

Gary T. Leavens
3

join point, a pointcut designator either succeeds with a set of bind-
ings, or fails.

The grammar of pcd’s is given by:

Pointcut designators

pcd::= (pcalls pname) | (pwithin pname)
::= (args id1 . . . idn)

::= (and pcd pcd) | (or pcd pcd) | (not pcd)
::= (cflow pcd)
::= (cflowbelow pcd) | (cflowtop pcd)

The semantics of pcd’s is given by a functionmatch-pcdthat takes
a pcd and a join point and produces either a set of bindings (a finite
partial map from identifiers to expressed values), or the singleton
Fail.

Before definingmatch-pcd, we must define the operations on bind-
ings and pcd results. We write[] for the empty set of bindings and
+ for concatenation of bindings. The behavior of repeated bindings
under+ is unspecified. The operations∨, ∧, and¬ on the result of
match-pcdare defined by

Algebra of pcd results

b ∈ Bnd= [Id→ Val] Bindings
r ∈ Optional (Bnd)= Bnd+{Fail}

b∨ r = b
Fail∨r = r

Fail∧r = Fail
b∧Fail = Fail

b∧b′ = b+b′

¬Fail = []
¬b = Fail

Note that both∧ and∨ are short-cutting, so that∨ prefers its first
argument.

We can now give the definition ofmatch-pcd. match-pcdproceeds
by structural induction on its first argument. The pcd’s fall into
three groups. The first group does pattern matching on the top por-
tion of the join point:(pcalls pname) and(pwithin pname)
check the target and within fields of the join point.(args id1 . . . idn)

succeeds if the argument list in the join point contains exactlyn el-
ements, and bindsid1, . . . , idn to those values. In full AJD, the
args pcd includes dynamic type checks as well.

match-pcd: basic operations

match-pcd(pcalls pname)〈k, pname′, wname, v∗, jp〉

=
{

[] if k = pcall ∧ pname= pname′

Fail otherwise

match-pcd(pwithin wname)〈k, pname, wname′, v∗, jp〉

=
{

[] if k = pcall ∧ wname= wname′

Fail otherwise

match-pcd(args id1 . . . idn)〈k, pname, wname
(v1, . . . ,vm), jp〉

=
{

[id1 = v1, . . . , idn = vn] if k = pcall andn = m
Fail otherwise

The second group,(and pcd pcd), (or pcd pcd), and(not pcd),
perform boolean combinations on the results of their arguments,
using the functions∧, ∨, and¬ defined above.

match-pcd: boolean operators

match-pcd(and pcd1 pcd2) jp = match-pcd pcd1 jp
∧match-pcd pcd2 jp

match-pcd(or pcd1 pcd2) jp = match-pcd pcd1 jp
∨match-pcd pcd2 jp

match-pcd(not pcd) jp = ¬(match-pcd pcd jp)

Last, we have the temporal operators(cflow pcd), (cflowbelow pcd),
and(cflowtop pcd). The pcd(cflow pcd) finds the latest (most
recent) join point that satisfiespcd. (cflowbelow pcd) is just
like (cflow pcd), but it skips the current join point, beginning its
search at the first preceding join point;(cflowtop pcd) is like
(cflow pcd), but it finds the earliest matching join point. These
searches can be thought of local loops within the overall structural
induction.

match-pcd: temporal operators

match-pcd(cflow pcd)〈〉= Fail
match-pcd(cflow pcd)〈k, pname, wname, v∗, jp〉

= match-pcd pcd〈k, pname, wname, v∗, jp〉
∨match-pcd(cflow pcd) jp

match-pcd(cflowbelow pcd)〈〉= Fail
match-pcd(cflowbelow pcd)〈k, pname, wname, v∗, jp〉

= match-pcd(cflow pcd) jp

match-pcd(cflowtop pcd)〈〉= Fail
match-pcd(cflowtop pcd)〈k, pname, wname, v∗, jp〉

= match-pcd(cflowtop pcd) jp
∨match-pcd pcd〈k, pname, wname, v∗, jp〉

Gary T. Leavens
4

4.3 The Execution Monad
To package the execution, we introduce a monad:

T(A) = JP→ Sto→ (A×Sto)⊥

This is a monad with three effects: a dynamically-scoped quantity
of typeJP, a store of typeSto, and non-termination. It says that a
computation runs given a join point and a store, and either produces
a value and a store, or else fails to terminate. The monad operations
ensure thatJPhas dynamic scope and thatStois global:

Monad operations

return v = λ jp s. lift (v,s)
let v⇐ E1 in E2

= λ jp s.case(E1 jp s) of
⊥⇒⊥
lift (v,s′)⇒ ((λv.E2) v jp s′)

We write

let v1⇐ µ1; . . . ;vn⇐ µn in E

for the evident nestedlet.

We will have the usual monadic operations on the store; for join
points we will have a single monadic operatorsetjp. setjp takes
a function f from join points to join points and a mapg from join
points to computations. It returns a computation that appliesf to
the current join point, passes the new join point tog, and runs the
resulting computation in the new join point and current store:

setjp

setjp : (JP→ JP)→ (JP→ T(A))→ T(A)
= λ f g.λ jp s.(g (f jp)) (f jp) s

The lift operation induces an order onT(A) for anyA. We will use
the following domains based on this order:

Domains

χ ∈ T(Val) Computations
π ∈ Proc= Val∗→ T(Val) Procedures
α ∈ Adv= JP→ Proc→ Proc Advice
φ ∈ PE= Pname→ Proc Procedure Environments
γ ∈ AE= Adv∗ Advice Environments
ρ ∈ Env= [Id→ Loc]×WName×Proceed

Environments
WName= Optional(Pname) Within Info
Proceed= Optional(Proc) proceed Info

A procedure takes a sequence of arguments and produces a compu-
tation. An advice takes a join point and a procedure, and produces
a new procedure that is either the original procedure wrapped in
the advice (if the advice is applicable at this join point) or else is
the original procedure unchanged (if the advice is inapplicable).
Procedures and advice do not require any environment arguments
because they are always defined globally and are closed (mutually
recursively) in the global procedure- and advice- environments.

The distinguishedWNamecomponent of the environment will be
used for tracking the name of the procedure (if any) in which the
current program text resides. Similarly, the distinguishedProceed
component will be used for theproceed operation, if it is de-
fined. We writeρ(%within), ρ[%within= . . .], ρ(%proceed), and
ρ[%proceed = . . .] to manipulate these components.

4.4 Expressions
We can now give the semantics of expressions. We give here only
a fragment:

Semantics of expressions

E [[e]] ∈ Env→ PE→ AE→ T(Val)

E [[(pname e1 . . . en)]]ρφγ
= let v1⇐ E [[e1]]ρφγ ; . . . ; vn⇐ E [[en]]ρφγ

in (enter-join-pointγ
(new-pcall-jp pname(ρ %within) (v1, . . . ,vn))
(φ(pname))
(v1, . . . ,vn))

E [[(proceed e1 . . . en)]]ρφγ
= let v1⇐ E [[e1]]ρφγ ; . . . ; vn⇐ E [[en]]ρφγ

in ρ(%proceed)(v1, . . . ,vn)

In a procedure call, first the arguments are evaluated in the usual
call-by-value monadic way. Then, instead of directly calling the
procedure, we useenter-join-pointto create a new join point and
enter it, invoking the weaver to apply any relevant advice. Contrast
this with theproceed expression, which is like a procedure call,
except that the special procedure%proceed is called, and no addi-
tional weaving takes place. The functionnew-pcall-jp: Pname→
WName→ Val∗→ JP→ JPbuilds a new procedure-call join point
following the grammar in section 4.1.

4.5 The Weaver and Advice
enter-join-pointis the standard entry to a new join point. It takes
a list of adviceγ, a join-point builderf , a procedureπ, and a list
of argumentsv∗. It produces a computation that builds a new join
point using functionf , calls the weaver to wrap all the advice inγ
around procedureπ, and then applies the resulting procedure tov∗.

Gary T. Leavens
5

enter-join-point

enter-join-point: AE→ (JP→ JP)→ Proc→ Proc
= λγ f π.λ v∗ . setjp f (λ jp′ . weaveγ jp′ π v∗)

The weaver is the heart of the system. It takes a list of advice, a
join point, and a procedure. It returns a new procedure that con-
sists of the original procedure wrapped in all of the advice that is
applicable at the join point. To do this, the weaver attempts to ap-
ply each piece of advice in turn. If there is no advice left, then the
effective procedure is just the original procedureπ. Otherwise, it
calls the first advice in the list, asking it to wrap its advice (if ap-
plicable) around the procedure that results from weaving the rest of
the advice around the original procedure.

So we want

(weave〈α1, . . . ,αn〉 jp π) = (α1 jp (α2 jp . . . (αn jp π) . . .))

This becomes a straightforward bit of functional programming:

The weaver

weave: AE→ JP→ Proc→ Proc
= λ γ jp π .caseγ of

〈〉 ⇒ π
α :: γ′⇒ α jp(weaveγ′ jp π)

This brings us to the semantics of advice. A piece of advice, like an
expression, should take a procedure environment and an advice en-
vironment, and its meaning should be a procedure transformer. Our
fundamental model isaround advice. If the advice does not apply
in the current join point, then the procedure should be unchanged.
If the advice does apply, then the advice body should be executed
with the bindings derived from the pcd, and with%proceed set to
the original procedure (which may be either the starting procedure
or a procedure containing the rest of the woven advice). However,
there are two subtleties: first, the body of the advice is to be exe-
cuted in a newaexecution join point, so we useenter-join-point
to build the new join point and invoke the weaver. This is poten-
tially an infinite regress, so most advice pcd’s will include an ex-
plicit pcalls conjunct to avoid this problem. Second, in this case,
the innerv∗ is not used; the advice body can retrieve it using an
args pcd.

before andafter advice are similar;%proceed is not bound, and
we use the monad operations to perform the sequencing.

Semantics of advice

A [[(around pcd e)]]φγ : JP→ Proc→ Proc
= λ jp π v∗ .

P CD[[pcd]] jp
(λρ.enter-join-pointγ

new-aexecution-jp
(λv∗ .E [[e]](ρ[%within = None,

%proceed = π]φγ))
〈〉)

(π v∗)

A [[((before pcd) e)]]φγ : JP→ Proc→ Proc
= λ jp π v∗ .

P CD[[pcd]] jp
(λρ.enter-join-pointγ

new-aexecution-jp
(λv∗ . let

v1⇐ E [[e]](ρ[%within = None,
%proceed = None])φγ;

v2⇐ (π v∗)
in v2)

〈〉)
(π v∗)

A [[((after pcd) e)]]φγ : JP→ Proc→ Proc
= λ jp π v∗ .

P CD[[pcd]] jp
(λρ.enter-join-pointγ

new-aexecution-jp
(λv∗ . let

v1⇐ (π v∗);
v2⇐ E [[e]](ρ[%within = None,

%proceed = None])φγ
in v1)

〈〉)
(π v∗)

The functionP CD[[−]] takes four arguments: a pcd, a join point,
a functionk from environments to computations (the “success con-
tinuation”), and a computationχ (the “failure computation”), and
it produces a computation. It callsmatch-pcdto match the pcd
against the join point. Ifmatch-pcdsucceeds with a set of bind-
ings,P CD creates an environment containing a fresh location for
each binding, and invokes the success continuation on this envi-
ronment, producing a new computation. Otherwise, it returns the
failure computation.

Gary T. Leavens
6

Semantics of pcd’s

P CD[[pcd]] : JP→ (Env→ T(Val))→ T(Val)→ T(Val)
= λ jp kχ.case(match-pcd pcd jp)of

Fail⇒ χ
[x1 = v1, . . . ,xn = vn]⇒

let l1⇐ alloc(v1); . . . ; ln⇐ alloc(vn)
in k([x1 = l1, . . . ,xn = ln])

4.6 Procedures and Programs
Finally, we give the semantics of procedures and whole programs.
The meaning of a procedure in a procedure and advice environ-
ment is a small procedure environment. In this environment, the
name of the procedure is bound to a procedure that accepts some
arguments and enters apexecution join point, possibly weaving
some advice. When the advice is accounted for, the arguments are
stored in new locations, and the procedure body is executed in an
environment in which the formal parameters are bound to the new
locations.

Semantics of procedure declarations

P [[(procedure pname(x1 ... xn) e)]] : PE→ AE→ PE
= λφγ .[pname=

λv∗ .(enter-join-pointγ
(new-pexecution-jp pname)
(λw. let l1⇐ alloc(w↓1) ;

...
ln⇐ alloc(w↓n)

in (E [[e]][x1 = l1, . . . , xn = ln,
%within = pname,
%proceed = None] φ γ))

v∗)]

We have formulated the semantics of procedures and advice as be-
ing closed in a given procedure environment and advice environ-
ment. A program is a mutually recursive set of procedures and
advice, so its semantics is given by the fixed point over these func-
tions. We take the fixed point and then apply the proceduremain

to no arguments.

Semantics of programs

P GM [[(proc1 . . . procn adv1 . . . advm)]] : T(Val)
= run(fix(λ(φ,γ).(∑n

i=1(P [[proci]]φγ),〈A [[advj]]φγ〉mj=1)))

run(φ,γ) = E [[(main)]][]φγ

Here the notation〈. . .〉mj=1 denotes a sequence of lengthm, and
the notation∑n

i=1 denotes the concatenation operator on bindings,

discussed on page .

This completes the semantics of the core language.

5. RELATED WORK
Aspect-oriented programming is presented in [12], which shows
how several elements of prior work, including reflection [17], metaob-
ject protocols [10], subject-oriented programming [9], adaptive pro-
gramming [14], and composition filters [1] all enable better control
over modularization of crosscutting concerns. A variety of models
of AOP are presented in [4]. AspectJ [11] is an effort to develop a
Java-based language explicitly driven by the principles of AOP.

Flavors [19, 5], New Flavors [15], CommonLoops [3] and CLOS
[18] all supportbefore, after, andaround methods.

Andrews [2] presents a semantics for AOP programs based on a
CSP formalism, using CSP synchronization sets as join points. His
language is an imperative language with first-order procedures, like
ours, but it does not allow procedures to be recursive. His language
includesbefore, after, andaround advice, but his pcd’s contain
neither boolean nor temporal operators.

Lämmel [13] presents static and dynamic operational semantics for
a small OO language with a method-call interception facility some-
what different from ours. His system allows dynamic registration
of advice, but does not treataround advice.

Douence, Motelet, and Sudholt [6] present an event-based theory of
AOP. They present a domain-specific language for defining “cross-
cuts” (equivalent to our pointcuts). Their language is very pow-
erful, but its semantics is given by a rewriting semantics, which
makes the meaning of its programs obscure. We believe that our
definition ofmatch-pcdrepresents a significant improvement.

6. FUTURE WORK
We are currently developing a translator from AJD(BASE) to BASE
that removes all advice by internalizing the weaving process. We
hope to do this in a way that will facilitate a correctness proof.

We plan to extend the ASB suite by adding implementations of the
core concepts of other models of AOP and weaving, including static
join points, Demeter [14], and Hyper/J [16]. We hope to develop a
theory of AOP that accounts for all of these.

7. REFERENCES

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and
A. Yonezawa. Abstracting Object Interactions Using
Composition Filters. In R. Guerraoui, O. Nierstrasz, and
M. Riveill, editors,Proceedings of the ECOOP’93 Workshop
on Object-Based Distributed Programming, LNCS 791,
pages 152–184. Springer-Verlag, 1994.

[2] J. H. Andrews. Process-algebraic foundations of
aspect-oriented programming. InProceedings of the Third
International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns (Reflection 2001),
volume 2192 ofLecture Notes in Computer Science, pages
187–209, Berlin, Heidelberg, and New York, Sept. 2001.
Springer-Verlag.

Gary T. Leavens
7

[3] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik,
and F. Zdybel. CommonLoops: merging Common Lisp and
object-oriented programming. InProceedings ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 17–29, Oct. 1986.

[4] Communications of the ACM, volume 44:10. ACM, Oct.
2001. special issue on Aspect-Oriented Programming.

[5] H. I. Cannon.Flavors: A non-hierarchical approach to
object-oriented programming. Symbolics, Inc., 1982.

[6] R. Douence, O. Motelet, and M. Sudholt. A formal definition
of crosscuts. InProceedings of the Third International
Conference on Metalevel Architectures and Separation of
Crosscutting Concerns (Reflection 2001), volume 2192 of
Lecture Notes in Computer Science, pages 170–186, Berlin,
Heidelberg, and New York, Sept. 2001. Springer-Verlag.

[7] D. P. Friedman, M. Wand, and C. T. Haynes.Essentials of
Programming Languages. MIT Press, Cambridge, MA,
second edition, 2001.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Massachusetts, 1995.

[9] W. Harrison and H. Ossher. Subject-oriented programming
(A critique of pure objects). In A. Paepcke, editor,
Proceedings ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
411–428. ACM Press, Oct. 1993.

[10] G. Kiczales and J. des Rivieres.The art of the metaobject
protocol. MIT Press, Cambridge, MA, USA, 1991.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and
W. G. Griswold. An overview of AspectJ. InProceedings
European Conference on Object-Oriented Programming,
volume 2072 ofLecture Notes in Computer Science, pages
327–353, Berlin, Heidelberg, and New York, 2001.
Springer-Verlag.

[12] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Akşit and S. Matsuoka, editors,
Proceedings European Conference on Object-Oriented
Programming, volume 1241, pages 220–242.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[13] R. Lämmel. A semantical approach to method-call
interception. In G. Kiczales, editor,1st International
Conference on Aspect-Oriented Software Development, Apr.
2002.

[14] K. J. Lieberherr.Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS
Publishing Company, 1996.

[15] D. A. Moon. Object-oriented programming with Flavors. In
N. Meyrowitz, editor,Proceedings ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 1–8, New York, NY, Nov. 1986. ACM
Press.

[16] H. Ossher and P. Tarr. Hyper/J: multi-dimensional separation
of concerns for Java. InProceedings of the 22nd
International Conference on Software Engineering, June
4-11, 2000, Limerick, Ireland, pages 734–737, 2000.

[17] B. C. Smith. Reflection and semantics in Lisp. InConf. Rec.
11th ACM Symposium on Principles of Programming
Languages, pages 23–35, 1984.

[18] G. L. Steele.Common Lisp: the Language. Digital Press,
Burlington MA, second edition, 1990.

[19] D. Weinreb and D. A. Moon. Flavors: Message passing in
the LISP machine. A. I. Memo 602, Massachusetts Institute
of Technology, A.I. Lab., Cambridge, Massachusetts, 1981.

APPENDIX A. LANGUAGE COMPARISON
Full AJD contains the following features not in the core language
captured by the semantics of this paper. None represent difficult
extensions for the semantics.

• classes, methods, and objects.

• declared types for bound variables (as illustrated in the exam-
ples of section 3).

• static type checking (anargs pcd includes types for its argu-
ments, as in our examples; at present these must be checked
dynamically).

• additional join points at: method calls, method executions,
object constructions, field references and field assignments.

• The pcd operatorsand andor take an arbitrary number of
arguments.

AspectJ provides a sophisticated advice ordering mechanism, where
advice is first ordered from most general to most specific, and within
classes with equal specificity, orders the advice by qualifier (before,
after, or around). AJD is working toward this capability, but
the current stable implementation only provides the qualifier-based
ordering, wherearound advice is executed around any relevant
before andafter advice. In the semantics, advice is ordered by
its appearance in the program text.

The examples of section 3 were in written and executed in full AJD
except for the following:

• the output was edited to improve formatting

• in the implementation of ASB at the time this work was done,
eligiblearound advice was executed in reverse order from its
appearance in the program text. The example in figure 1 was
edited, reversing the order of advice declarations, to be con-
sistent with the left-to-right semantics of the core language.

Gary T. Leavens
8

Copyright © 2002, IBM Corporation. All rights reserved.

Member-Group Relationships Among Objects
William Harrison, Harold Ossher

IBM T. J. Watson Research
P.O. Box 704

Yorktown Heights, NY 10598
{harrisn, ossher}@watson.ibm.com

ABSTRACT

Aspect-Oriented Software is a broad term, encompassing several
different views on the nature of the aspects and the relationships
between aspects and objects. Attaching aspects to objects is one
way of forming a group. While there are many useful patterns of
interaction, e.g. strategies [2], decorators, and the like, we focus on
groups in which the group delegates to members to obtain behav-
ior and the members may either perform their own behavior or
delegate to the group. Using issues of behavior, this paper ex-
plores and classifies the relationships between objects and groups
of objects in which they may participate as a first step in laying a
foundation for unifying these different views as special cases of a
common framework.

Keywords
Aspect-oriented software development, delegation, composition,
method combination.

1. INTRODUCTION
Different mechanisms in the AOSD space emphasize different
means of separating and integrating concerns. For example, Hy-
per/J [9] focuses on composing class hierarchies, which in turn
involves synthesizing composed classes and their methods from
input classes. AspectJ [5] focuses attaching advice and aspects to
join points and objects. The composition filters approach [1] fo-
cuses on attaching filters to objects to filter method calls and re-
turns. These approaches all allow attachment of additional behav-
ior to objects and/or combination of objects to form single objects
with combined behavior.

C1
f()

C2
f()
g()

C
f()
g()
f_C1()
f_C2()

f_C1(); f_C2()

Copy of C1.f()

Copy of C2.f()

o
f()
g()
f_C1()
f_C2()

Figure 1. Hyper/J Class Composition and Example Instance

A simple example of class composition is shown in Figure 1.
Input classes C1 and C2 are composed to form class C. All instan-
tiations of classes C1 and C2 are changed to instantiations of C, so
that, at runtime, only C instances exist, like o in the figure.

Earlier work on tool integration, including event broadcasting [11],
cooperative call [8], and mediators [12], on the other hand, was

concerned with tying together sets of separate objects (or other
modules, but we confine ourselves to objects in this paper). Me-
diators, for example, provide for implicit invocation, so that events
in an object can trigger a mediator, which can then trigger actions in
other objects. AOSD approaches like those mentioned above do
provide implicit invocation but do not address the implicit binding
together of behaviors of several base objects performed by tool
integration mechanisms.

Object-oriented programmers often split the implementation of
functionality across several objects, relying on them to cooperate
in carefully-designed ways to achieve the desired objective [4]. A
common approach is delegation, in which part of the behavior of
an object is specified in and delegated to other objects (or classes),
such as strategy objects [2]. In conversations about Hyper/J, sev-
eral developers have told us that they would prefer a model where
composition produced object collaborations rather than single,
composed objects.

Separating functionality into separate objects also provides more
dynamic flexibility. Provided great care is exercised to coordinate
the activity among all affected objects, it is possible to dynami-
cally add objects to or remove them from a group, thereby adding
or removing functionality, or replacing implementations. This kind
of dynamism has always been important in some contexts, such as
long-running telephone switches, and is becoming ever more im-
portant in the context of web-based applications.

Serious problems can arise, however, when the functionality that
conceptually belongs in a single object is split across multiple
objects in a group. These include object schizophrenia and broken
delegation [14], and are due to the fact that the separate objects
making up the group have their own, separate identities; even if
they cooperate, they don’t truly behave like a single object unless
great care is taken, and the breakages are subtle. This paper ana-
lyzes these issues, and discusses various ways of handling iden-
tity and the relationships between objects and their groups, and
their implications.

The first section analyzes a number of the major factors that char-
acterize the ways in which an object’s behavior can be related to a
group of which it is part and then applies these factors to enumer-
ating the potential kinds of relationships between objects and their
groups. We winnow the enumeration by analyzing conflicts and
usages that can lead to difficulties. The section concludes with a
discussion of synergy and conflict in the relationships a single
object may bear to multiple groups. The second section builds on
and re-applies the factor analysis and winnowing process to

Gary T. Leavens
9

Copyright © 2002, IBM Corporation. All rights reserved.

classes instead of instances of objects. The third section discusses
the behavior of composition operations, responsible for aggregat-
ing objects into groups in order to realize composed behavior,
when dealing with potential conflicts in multiple relationships.
The fourth section discusses some options for implementing
groups of objects and the composition operations that perform
them, and analyzes the implications of some implementation deci-
sions.

2. INSTANCE RELATIONSHIPS
2.1 Groups of Primitive Objects
Assume that, in concept, Java™ objects are either primitive ob-
jects, with fields and method bodies written by developers, or
group objects, representing collections of objects that have been
composed together. Group objects are created by composition
operations, and do nothing but call methods of primitive objects
(or, perhaps, of other groups) as determined by the compositions.
Assume also that the group exposes the interfaces of all its mem-
ber objects, so that methods of the primitive objects in a group can
also be called on the group object itself. The group will generally
delegate such operations to the appropriate primitive object(s),
including other objects providing advice, filters, or additional im-
plementations. The group thus serves as a kind of method combi-
nation dispatcher, determining how the composed behavior of each
method call is to be realized in terms of the primitive methods
supplied by the group members.

o1
f()

o2
f()
g()

o
f()
g()

1
2

group object

primitive
objects

Figure 2. A Simple Group

Figure 2 shows a group of objects that realizes the same composi-
tion as illustrated in Figure 1. The entire group corresponds to
the single, combined instance, o, in Figure 1. In this case, how-
ever, separate instances o1 and o2 of the original, uncomposed
classes C1 and C2 do exist at runtime, as well as the group object,
o, that ties them together.

Within the bodies of primitive object methods, either of two identi-
ties might be used, called this and self.1 Many factors enter the

1 These terms are not ideal, because they are typically used to

mean the same concept (object self-reference), though in differ-
ent languages. Here we are using them to denote different con-
cepts within the same model. We are in the process of trying to
come up with better terms.

analysis, but when they are different, this refers to the primitive
and self to the group. Calls directed to this are thus directed to the
primitive object itself, and do not invoke composed behavior,
whereas calls to self are directed to the caller’s group, and do in-
voke composed behavior.

2.2 Factors in Describing Relationships
Trying to remain independent of the way the behaviors are actu-
ally implemented, we now explore and categorize the kinds of
relationships among primitive and group objects to lay the
groundwork for systematic support.

Leaving aside, until Section 2.4, situations in which groups act as
members of larger groups, each kind of relationship between a
primitive object and a group can be operationally characterized by
several effects. The following table lists the relationships along
with the effects ascribed to each. Explanation of columns:

Identity Assuming that Java’s reference equality semantics
are appropriately extended, comparison of the
identity of a primitive object and the identity of
its group object can yield “equal” or “not equal”.

Primitive-to-
group

When a primitive object calls a method on a
primitive object, the primitive object can cause
group behavior rather than use its own method
implementation. Three alternatives can be listed
(see Figure 3):

 no The primitive does not cause group
behavior, but performs its primitive
behavior instead.

 identical The primitive yields to common
group behavior (that which results
when the method is called on the
group object)

 variant The primitive causes group behavior
different from the common group
behavior (such as including its own
behavior in addition to the common
group behavior).

Group-to-
primitive

When a method is called on a group, the
group uses behavior defined by various primi-
tive objects of the group. Three alternatives

can be listed for how the group uses the
primitive’s behavi or (see

Figure 4):

 no The primitive’s behavior is not in-
cluded in the group behavior.

 self=
primitive

Group behavior includes the primi-
tive’s behavior, but in interpreting the
primitive’s behavior, references to
itself as self, are not to be interpreted

Gary T. Leavens
10

Copyright © 2002, IBM Corporation. All rights reserved.

as if referring to the group, but as
references to the primitive.

 self=
group

Group behavior includes the primi-
tive’s behavior and in interpreting the
primitive’s behavior, references to
itself as self are to be interpreted as
references to the group rather than as
references to the primitive. (But see
the automanipulation alternatives,
next).

Auto-
manipulation

When self=group, there are a number of ways in
which the behavior in a Java method may refer to
the group by using self. The developer might ex-
plicitly refer to self, if this is permitted. (It would
be, in effect, a Java language extension whose
normal Java semantics might be innocuous.)
Without a language extension, reference to the
group can arise by reinterpreting the Java “this”.
Three cases can be listed (see Figure 5):

 this=
primitive

Explicit and implicit uses of this refer
to the primitive.

 this=
group

Explicit and implicit uses of this use
the value of self, and in this case,
self=group.

 mixed Although there are hundreds of differ-
ent mixed variations, corresponding to
the different ways in which this ap-
pears in Java the most frequent sug-
gestion is to make manifest uses of
this refer to the primitive while other
uses use the value of self. The only
reason that this variation is particu-
larly interesting is that, accomplished
in-spite-of any general policy, it can
be forced by a developer who copies
the bodies of final methods into
places where they are manifestly
invoked on this.

o1
f()

o2
f()
g()

o
f()
g()

1
2

group object

primitive
objects

o1.f() no

identical

Figure 3. Primitive -to-Group Options “no” and “identical”

o1
f()

o2
f()
g()

o
f()
g()

1
2

group object

primitive
objects

o.g()

… self.f() …

self =
group

self =
primitive

Figure 4. Group-to-Primitive Options “self = primitive ” and

“self = group”

o1
f()

o2
f()
g()

o
f()
g()

1
2

group object

primitive
objects

o.g()

… this.f() …

this =
group

this =
primitive

 Figure 5. Automanipulation Options “this = primitive” and
“this = group”

Gary T. Leavens
11

Copyright © 2002, IBM Corporation. All rights reserved.

2.3 Relationships Induced By the Factors
We can make some general observations that reduce the resulting
number of enumerable forms to 7, with what we believe to be less
controversial rules first:

• Group-to-primitive forms of “no” or “self=primitive” render
the automanipulation choice irrelevant, eliminating 24 of the
54 enumerable relationships.

• When the primitive-to-group behavior form is “identical”, the
automanipulation forms of “this=primitive” and “this=group”
are equivalent. This rules out one of the remaining enumerable
relationships.

• One of the most useful operational definitions of identity is
that two objects have the same identity iff performing an op-
eration on one of them always has the same result as per-
forming the operation on the other. Of the remaining 29 enu-
merable relationships, this “identity rule” rules out the 10 in
which “identity” disagrees with “primitive-to-group”.

• Mixed “automanipulation” can be made only with respect to
the coding of the body of an object’s methods. This is an in-
vasive, coding-dependent process that is probably better car-
ried out by a developer making explicit use of self and adopt-
ing the “this=primitive” form of automanipulation. On the
grounds of this fragility, we believe that manifest and other
mixed automanipulation forms should be avoided and that the
relationships should be deprecated. Of the 19 remaining enu-
merable relationships, “‘mixed’ deprecated” rules out 4.

• The variant form of primitive-to-group interaction can lead to
a rather confusing collection of behaviors in which each mem-
ber of the group has different behavior. We are left to wonder
why this construct should be regarded as a group at all. An
alternative would be to treat each varied behavior as a group
of its own, with which the members can be associated on an
“identical” footing. Of the 15 remaining enumerable relation-
ships, “‘variant’ deprecated” encompasses 8.

• We have reservations about relationship 6 (maverick). The
claim is that the object has the group’s identity and has group
behavior when called from primitive objects, but when called
from the group its self-calls are not given group behavior. But
we do not see a contradiction or a reasonable rule of meaning
that prohibits the relationship.

Name for ob-
ject’s relation-
ship to group

Iden-
tity

Primitive-
to-group

Group-
to-

primitive

Automanipula-
tion

1. Stand-alone
un-

equal
no no

(this=self=
primitive)

2. Associate
un-

equal
no

self=
primitive

(this=self=
primitive)

3. Aspect un-
equal

no self=
group

this=primitive

4. Affiliate this=group

(“mixed” dep-
recated)

equal group

mixed

(“variant”
deprecated)

un-
equal

variant — —

(Violates iden-
tity rule)

un-
equal

identical — —

equivalent to 5 this=primitive

5. Facet this=group

(“mixed” dep-
recated)

equal identical
self=
group

mixed

6. Maverick equal identical
self=

primitive
(this=self=
primitive)

7. Router equal identical no (not used)

(“variant”
deprecated)

equal variant — —

(Violates iden-
tity rule)

equal no — —

We could, of course, rule out any of these relationships for im-
plementation convenience.

2.4 Objects in Multiple Relationships
We can also examine the question of what relationships an object
can have simultaneously to two groups.

 1 2 3 4 5 6 7 Notes

1 Y Y Y N N N Stand-alone doesn’t pass control
to a group when called from out-
side

2 Y Y Y Y Y Y

3 Y Y Y Y Y

4 Y Y Y Y

Associate, Aspect, Affiliate can
coexist with being stand-alone or
with being in a group.

5 N N N

6 N N

7 N

Can delegate to at most one group
when called from outside

2.5 Higher-Order (Group-Group) Relationships
Allowing groups to be members of other groups introduces no
new situations. For the nonce, call the group with groups as mem-
bers a “supergroup”, although we intend to observe that it is no
different from any other group. Since all real method function lies
in primitives, a supergroup never need use a group as an interme-
diary. With appropriate group-group communication to facilitate
plan-sharing, a supergroup can directly employ the primitives.
And with respect to primitive-to-group delegation, only the su-
pergroup, with the complete plan, need be the delegation target.

Gary T. Leavens
12

Copyright © 2002, IBM Corporation. All rights reserved.

There are two basic circumstances. First, if the member has iden-
tity unequal to the group identity, there is no primitive-to-group
delegation to be accounted for. Second, if it has equal identity then
the identities of all the primitives and groups contained must also
be equal, since equality is transitive. A method call from the “out-
side” is delegated to the supergroup and from there to the primi-
tive objects. Intermediate groups become routers. There is, after
all, still only a single this and a single self.

3. CLASS RELATIONSHIPS
Not all fields and methods of a class belong to instances, and the
above classification can apply independently to the static behav-
ior, and their corresponding meaning must be phrased in terms of
classes rather than instances:

• We are fortunate that Java provides no way to compare
classes for identity2. Fortunate, because the fact that Java
does not support class equality3 of differently named classes,
which causes great trouble for some Java-generation tools,
means that we do not need to eliminate facets, mavericks, and
routers as class relationships. But eliminating the “identity”
column causes no coalescence of relationships because the
“group-to-primitive” column preserves its distinctions.

• The variation of forms for automanipulation refers to the
interpretation of this in method bodies. Static methods have
no this, but the analogous meaning for classes applies to how
calls on static methods defined by the class itself are handled.
The “this=primitive” form is interpreted easily as leaving the
calls to own class, which are always manifest, as calls to its
own class. Likewise, the “this=group” form is interpreted by
making them refer to the class appropriate to the self= form
in use. This can be done by rewriting a copy of the body ap-
propriate to each group from which the static method is
called.

• The group-to-primitive forms for “self=” must also be rein-
terpreted without reference to a particular instance. This can
be performed, as suggested above, by selecting the appropri-
ate rewriting.

An important case of static behavior is creation. The Java new
operation (not the constructors that become involved later, during
initialization) is equivalent to a static method in the class being
instantiated. Creation of an instance of a class may or may not be
delegated to a group, which may then call for creation of its parts,
including the original.

2 We are ignoring the library support for reflection. While reflec-

tion introduces objects that represent classes, methods, etc., the
object is not the class, but only a representative of the class in
the current execution. Two different class objects can represent
the same class at the same time on two different machines and
inequality of class objects is not the same as inequality of
classes.

3 A Java class is either a subclass of, a superclass of, or unrelated
to any differently named Java class. Though useful, cycles are
not permitted in inheritance graphs.

In general, the class composition form and the instance composi-
tion form can be independently selected, so there are actually
72=49 kinds of relationships. Of these, perhaps only 13 are of
importance, those in which the class composition relation and the
instance composition relationships are the same, and those in
which the class composition relationship is “stand-alone”. We will
distinguish these two by prefixing the relationship name with
“full-“ or “partial-”4. When omitted, “partial-” is assumed.

The same constraints on multiple relationships among classes
apply as those for instances, and for the same reason. But, for
both instances and classes, these constraints can be interpreted
either as prohibitions or as reinterpretations of composition op-
erations.

4. COMPOSITION OPERATORS
Groups are created and modified by composition operators. Com-
position can be described in terms of two operators: com-
pose(relationship,details,group-class-name,object-class-name) and
compose(relationship,details,group,object). Both of these opera-
tors can produce Java class definitions, and the latter may produce
objects and changes to objects as well.

In the discussion of “Objects in Multiple Relationships”, certain
relationship combinations were noted to be impermissible. That is,
however, a static statement. There are two possible ways in which
compose operators could respond to specifying an impermissible
combination: the combination could be rejected, or the object could
be cloned and the operation performed with respect to its clone.
We call these two variant operators: compose-two-way and com-
pose-one-way.

4.1 Instance Composition and Temporal Insta-
bility of Identity – Cloning
The impermissible relationship combinations all arise from incom-
patible handling of primitive-to-group. And if variant primitive-to-
group is forbidden, this is equivalent to the requirement on iden-
tity.

So performing a compose operation for an impermissible combina-
tion of instances runs afoul of the conventional idea that identity
is an unchanging characteristic5. What difficulties can arise from
permitting temporal instability in identity? A concrete example
occurs if a standalone becomes a facet, router, or maverick of a
group, or an object in one of those relationships becomes stand-
alone. Comparisons of its identity with that of the group yield
different values after the composition from what they yield be-
fore. But facts about the result of this identity test may be pre-
sumed externally, and already taken into account in a way that
becomes meaningless. This phenomenon is one instance of what
we have called “object schizophrenia”. A common example of

4 except in the case of “stand-alone”, where they are the same
5 In fact, there are languages, like Irish, that have two entirely

different verb forms for the “changeable is” and the “unchange-
able is”.

Gary T. Leavens
13

Copyright © 2002, IBM Corporation. All rights reserved.

object schizophrenia arises in forming data structures representing
sets of objects: no matter how many times an object is added to a
set, it is present only once. But what if two objects are added and
then they become facets of the same group? The presumed and
proven invariant governing the set becomes violated after-the-fact.

However, if it can be assured the group contains at most one facet,
maverick or router whose identity it takes, and that no prior re-
main to other of its facets, mavericks or routers, object-
schizophrenia will not arise. Defining compose-two-way to throw
an error after performing the composition is one way of permitting
the composition to go ahead but requiring programmers to think
about whether they can prove that the identity has not escaped in
writing the catch. Another, more convenient, solution is to use
compose-one-way. The clone it creates is a new object without
outstanding uses of its identity.

4.2 Class Composition and Cloning
The same conflicts, with the same potential solutions, arise for
class composition as for instance composition, although from
different grounds. Classes can always be referenced since their
names are available to past and future Java programs with the
proper access rights. This means that, except through careful pro-
gram analysis, developers cannot assure that the exception arising
from compose-two-way can be ignored. Note that this does not
mean an object can not be a facet of two groups, only that the two
groups must be merged into one larger group so that they are also
identical.

5. IMPLEMENTATION NOTES
5.1 Class Composition
Multiple rewriting of a static method has significant cost. The
cases in which additional rewritings are needed are noted by shad-
ing below in a collapsed version of the table above6. If unimple-
mented, only the 10 relationships: stand-alone, full-associate,
associate, aspect7, affiliate, facet8, full-maverick, maverick, full-
router, and router become available.

Object’s rela-
tionship to

group

Iden-
tity

Primitive-
to-group

Group-to-
primitive

Auto-
manipulation

1. Stand-alone
un-

equal
no no

(this=self=
primitive)

2. Associate
un-

equal
no self=

primitive
(this=self=
primitive)

3. Aspect un-
equal

no self=
group

this=primitive

6 “Aspect” with self=group, this=primitive is implementable

without additional rewritings, unless explicit uses of “selfClass”
occur in the body. But then, what’s the point; it is the same as
associate.

7 AspectJ’s “aspect” [4]
8 full-facet is implemented by Hyper/J [5]

4. Affiliate
equal

group

this=group

5. Facet equal identical
self=
group

this=group

6. Maverick equal identical
self=

primitive
(this=self=
primitive)

7. Router equal identical no (not used)

5.2 Instance Composition
Discussion of instance composition presumed that it is possible to
treat the call of a method (whether in a group or in a primitive
object) from a primitive instance from its call from a group. Dis-
cussion of instance composition also presumed that method calls
to the group can be distinguished from calls to the primitive ob-
jects that are members. The simplest ways of making these dis-
tinctions are use two objects, to use two methods, or both. With
two methods on two objects, all of the relationships presented can
be supported, but without them, some choices are lost.

5.2.1 Instance Composition with a Single Method
on Two Objects
The only way of distinguishing calls to an object from a group
from calls to the object from outside primitives without coining an
additional method is to prevent calls from the outside, managing to
substitute the group’s identity except in calls from the group.
Only in the case of a stand-alone object can the primitive’s iden-
tity be used outside, and that is because it is never invoked as a
group member at all. This voids the columns dealing with identity
and primitive-to-group forms, eliminates routers, and renders af-
filiates and mavericks redundant.

Object’s relationship to
group

Group-to-
primitive

Automanipula-
tion

1. Stand-alone no
(this=self=
primitive)

2. Associate h 6. Maver-
ick

self=
primitive

(this=self=
primitive)

3. Aspect this=primitive

4. Affiliate this=group

5. Facet h 4. Affiliate

self=
group

this=group

6. Maverick
self=

primitive
(this=self=
primitive)

7. Router no (not used)

Gary T. Leavens
14

Copyright © 2002, IBM Corporation. All rights reserved.

5.2.2 Instance Composition with Two Methods on
a Single Object
One way of distinguishing calls to objects from a group from calls
to the object from outside the group is to use two sets of methods.
Using a single object for both the group and its primitives rules
out cases in which the identity test should yield “unequal”, except
in the case of stand-alone objects, which are not part of a group in
any case. Despite the fact that coalescing the group object with
the member cannot always be employed, it can be used to reduce
overheads for facets, mavericks and routers.

Object’s rela-
tionship to

group

Iden-
tity

Primitive-
to-group

Group-to-
primitive

Automanipula-
tion

1. Stand-alone
un-

equal
no no

(this=self=
primitive)

2. Associate
un-

equal
no self=

primitive
(this=self=
primitive)

3. Aspect
this=

primitive

4. Affiliate

un-
equal

no self=group

this=group

5. Facet equal identical
self=
group

this=group

6. Maverick equal identical
self=

primitive
(this=self=
primitive)

7. Router equal identical no (not used)

6. RELATED WORK
6.1 Composition Filters
The concept of wrappers and, in particular, wrappers for objects,
has long application in software development. Composition filters
[1] extend the object-wrapper concept to a group-wrapper. The
group embodies dispatch strategies based on its state – a set of
predicates about the objects in the group. In the classification
given above, composition filters are groups. The filtered objects
are aspects or full aspects. With composition filters, group behav-
ior is obtained only by directing messages to the group. It has the
compose-two-way variant of the instance composition operator.

6.2 Subject-Oriented Programming
Subject-Oriented programming [3] introduced the notion that ob-
jects in a group can have the same identity and that creation of an
instance of one of the member classes causes creation of the group.
The member is a class facet, although the creation need not be
delegated to all members. As discussed above, this implies that the
group should handle the messages directed to its members. In
SOP, the subjects are all full facets.

6.3 Objects in Groups
Doug Lea has written a survey on objects in groups [7] recapping
prior work. He also presents an alternative delivery model relying
on channels rather than on object identity to describe the target for
the message. The introduction of channels does not change the
basic form for the analysis presented above, but does allow for
many more mixed or intermediate cases in the analysis.

6.4 Aspect-Oriented Programming
Aspect-Oriented Programming [6] retained the concept that crea-
tion of an instance of one of the member classes causes creation of
the group. But it does so for only one of the member classes,
called the base. Other member classes are treated like members of
composition filters. In AOP, the base and the aspects have differ-
ent relationships to the group. The base is a full facet but the as-
pects are full aspects. It has the compose-two-way class composi-
tion operator. AspectJ [5] provides a realization of AOP in which
the group and the facet are coalesced into a single object.

6.5 Hyper/J
Hyper/J [9] is a realization of MDSOC [13], an evolution from
SOP. It has both the compose-two-way and the compose-one-way
variants of the class composition operator. In Hyper/J, the group
and all the facets are coalesced into a single object

6.6 Compound References
Ostermann and Mezini [10] identified a number of separate com-
position properties, subsets of which are usually bundled together
to form composition mechanisms like inheritance and delegation.
They showed that use of more powerfully interpreted references,
called compound references, allows flexible combination of these
properties and provides important semantic options not tradition-
ally available. While shifting discussion of dispatch from objects
to generalized references provides an important alternative to
group formation, this paper deals with solutions within the more
traditional view of object identity and reference.

7. REFERENCES
[1] Aksit M., Bergmans L., Vural S. An object-oriented language-

database integration model: the composition-filters approach.
In Proceedings of the European Conference on Object-
Oriented Programming. Springer Verlag, 1992

[2] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Pat-
terns. Addison-Wesley, 1995

[3] Harrison, W., and Ossher, H. Subject-Oriented Programming
- A Critique of Pure Objects. In Proceedings of the 1993
Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications. September 1993

[4] Helm, R., Holland, I., and Gangopadhyay, D., “Contracts:
Specifying Behavioral Compositions in Object-Oriented Sy s-
tems”, Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages, and Applications, (Van-
couver), ACM, October 1990

Gary T. Leavens
15

Copyright © 2002, IBM Corporation. All rights reserved.

[5] Kiczales, G. Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W.G. An overview of AspectJ. In Proceedings
of the European Conference on Object-Oriented Program-
ming. Finland, 1997

[6] Kiczales, G. Lamping, J., Mendhekar, A., Maeda, C., Videira
Lopes, C., Loingtier, J-M. Irwin, J. Aspect-oriented pro-
gramming. In Proceedings of the European Conference on
Object-Oriented Programming. Finland, 1997. Invited pres-
entation.

[7] Lea D., Objects in Groups, December, 1993,
http://gee.cs.oswego.edu/dl/groups/groups.html

[8] Ossher, H. and Harrison, W., “Support for Change in

RPDE3”, Proceedings of the Fourth ACM SIGSOFT Sy m-
posium on Software Development Environments, pp. 218-
228, Irvine CA, December 1990

[9] Ossher, H. and Tarr, P. “Multi-dimensional separation
of concerns and the Hyperspace approach.” In Soft-
ware Architectures and Component Technology (M.
Aksit, ed.), 293–323, Kluwer, 2002.

[10] Ostermann, K., Mezini, M. Object-Oriented Composition
Untangled. In Proceedings of the 2001 Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions. October 2001.

[11] Reiss, S., “Connecting Tools Using Message Passing in the
Field Environment”, IEEE Software, pp. 57-66, July 1990.

[12] Sullivan, K.J. and Notkin, D., ``Reconciling Environment
Integration and Software Evolution,'' ACM Transactions on
Software Engineering and Methodology 1(3), pp. 229-268,
July, 1992.

[13] Tarr, P., Ossher, H., Harrison, W. and Sutton, Jr., S. M., “N
degrees of separation: Multi-dimensional separation of con-
cerns.” In Proceedings of the 21st International Conference on
Software Engineering (ICSE '99), 107–119, IEEE, May 1999.

[14] Web site, “Subject-Oriented Programming and Design Pat-
terns,” http://www.research.ibm.com/sop/sopcpats.htm

Gary T. Leavens
16

Compilation Semantics of
Aspect-Oriented Programs

Hidehiko Masuhara
∗

Graduate School of
Arts and Sciences
University of Tokyo

masuhara@acm.org

Gregor Kiczales
Department of

Computer Science
University of British Columbia

gregor@cs.ubc.ca

Chris Dutchyn
Department of

Computer Science
University of British Columbia

cdutchyn@cs.ubc.ca

ABSTRACT
This paper presents a semantics-based compilation frame-
work for an aspect-oriented programming language based
on its operational semantics model. Using partial evalua-
tion, the framework can explain several issues in compilation
processes, including how to find places in program text to
insert aspect code and how to remove unnecessary run-time
checks. It also illustrates optimization of calling-context sen-
sitive pointcuts (cflow), implemented in real compilers.

Keywords
Aspect SandBox, dynamic join point model, partial evalu-
ation, Futamura projection, compile-time weaving, context-
sensitive pointcut designators (cflow)

1. INTRODUCTION
This work is part of a larger project, the Aspect Sand-
Box (ASB), that aims to provide concise models of aspect-
oriented programming (AOP) for theoretical studies and to
provide a tool for prototyping alternative AOP semantics
and implementation techniques. To avoid difficulties to de-
velop formal semantics directly from artifacts as complex as
AspectJ and Hyper/J, ASB provides a suite of interpreters
of simplified languages. Those languages have sufficient fea-
tures to characterize existing AOP languages. In this paper
we report one result from the ASB project—a semantics-
based explanation of the compilation strategy for advice dis-
patch in AspectJ like languages[6, 7, 11, 12].

The idea is to use partial evaluation to perform as many tests
as possible at compile-time, and to insert applicable advice
bodies directly into the program. Our semantic framework

∗This work is carried out during his visit to University of
British Columbia.

also explains the optimization used by the AspectJ compiler
for context-sensitive pointcuts (cflow and cflowbelow).

Some of the issues our semantic framework clarifies include:

• The mapping between dynamic join points and the
points in the program text, or join point shadows,
where the compiler actually operates.

• What dispatch can be ‘compiled-out’ and what must
be done at runtime.

• The performance impact different kinds of advice and
pointcuts can have on a program.

• How the compiler must handle recursive application of
advice.

1.1 Join Point Models
Aspect-oriented programming (AOP) is a paradigm to mod-
ularize crosscutting concerns[13]. An AOP program is effec-
tively written in multiple modularities—concerns that are
local in one are diffuse in another and vice-versa. Thus far,
several AOP languages are proposed from practical to ex-
perimental levels[3, 11, 12, 16, 17].

The ability of an AOP language to support crosscutting lies
in its join point model (JPM). A JPM consists of three ele-
ments:

• The join points are the points of reference that aspect
programs can use to refer to the computation of the
whole program. Lexical join points are locations in the
program text (e.g., “the body of a method”). Dynamic
join points are run-time entities, such as events that
take place during execution of the program (e.g., “an
invocation of a method”).

• A means of identifying join points. (e.g., “the bodies
of methods in a particular class,” or “all invocations
of a particular method”)

• A means of specifying semantics at join points. (e.g.,
“run this code beforehand”)

As an example, in AspectJ:

Gary T. Leavens
17

• the join points are nodes in the runtime control flow
graph of the program, such as when a method is called
(and returns), and when a field is read (and the value
is returned). (e.g., “a call to method set(int) of class
Point”1)

• the means of identifying join points is the pointcut
mechanism, which can pick out join points based
on things like the name of the method, the pack-
age, the caller, and so forth. (e.g., “call(void
Point.set(int))”)

• the means of specifying semantics is the advice mech-
anism, which makes it possible to specify additional
code that should run at join points.
(e.g., “before : call(void Point.set(int))

{ Log.add("set"); }”)

In this paper, we will be working with a simplified JPM
similar to the one from AspectJ. (See Section 2.1 for details.)

The rest of the paper is organized as follows. Section 2
introduces our AOP language, AJD, and shows its inter-
preter. Section 3 presents a compilation framework for AJD
excluding context-sensitive pointcuts, which are deferred to
Section 4. Section 5 relates our study to other formal stud-
ies in AOP and other compilation frameworks. Section 6
concludes the paper with future directions.

2. AJD: DYNAMIC JOIN POINT MODEL
AOP LANGUAGE

This section introduces our small AOP language, AJD, which
implements core features of AspectJ’s dynamic join point
model. The language consists of a simple object-oriented
language and its AOP extension. Its operational semantics
is given as an interpreter written in Scheme. A formaliza-
tion of a procedural subset of AJD is presented by Wand
and the second and the third authors[20].

2.1 Informal Semantics
We first informally present the semantics of AJD. In short,
AJD is an AOP language based on a simple object-oriented
language with classes, objects, instance variables, and meth-
ods. Its AOP features covers essential part of AspectJ (ver-
sion 1.0).

2.1.1 Object Semantics
Figure 1 is an example program. For readability, we use
a Java-like syntax in the paper2. It defines a Point class
with one integer instance variable x, a unary constructor,
and three methods set, move and main.

When method main of a Point object is executed, line 7 cre-
ates another Point object and runs the constructor defined
at line 3. Line 8 invokes method move on the created object.
Finally, line 9 reads and displays the value of variable x of
the object.

1For simplicity later in the paper, we are using one-
dimensional points as an example.
2Our implementation actually uses an S-expression based
syntax.

1 class Point {
2 int x;
3 Point(int ix) { this.set(ix); }

4 void set(int newx) { this.x = newx; }
5 void move(int dx) { this.set(this.x + dx); }
6 void main() {
7 Point p = new Point(1);
8 p.move(5);
9 write(p.x); newline();

10 }
11 }

Figure 1: An Example Program. (write and newline are
primitive operators.)

p ∈ {pointcuts}, m ∈ {method signatures},
n ∈ {constructor signatures}, v ∈ {identifiers with types}

p ::= call(m) | execution(m) | new(n)
| target(v) | args(v, . . .) | p&&p | p||p | !p
| cflow(p) | cflowbelow(p)

Figure 2: Syntax of Pointcuts.

2.1.2 Aspect Semantics
To explain the semantics of AOP features in AJD, we first
define its JPM.

2.1.2.1 Join Point
The join point is an action during program execution, in-
cluding method calls, method execution, object creation,
and advice execution. (Note that a method invocation is
treated as a call join point at the caller’s side and an execu-
tion join point at the receiver’s side.) The kind of the join
point is the kind of action (e.g., call and execution).

2.1.2.2 Means of Identifying Join Points
The means of identifying join points is the pointcut mecha-
nism. A pointcut is a predicate on join points, which is used
to specify the join points that a piece of advice applies to.
The syntax of pointcuts is shown in Figure 2. Since point-
cuts can have parameters, the evaluation of a pointcut with
respect to a join point results in either bindings that satisfy
the pointcut (meaning true), or false.

The first three pointcuts (call, execution, and new) match
join points that have the same kind and signature as the
pointcut. The next two pointcuts (target and args) match
any join point that has values of specified types. The next
three operators (&&, || and !) logically combine or negate
pointcuts. The last two pointcuts match join points that
have a join point matching their sub-pointcuts in the call-
stack. These are discussed in Section 4 in more detail. In-
terpretation of pointcuts is formally presented in other lit-
erature[20].

2.1.2.3 Means of Specifying Semantics
The means of specifying semantics is the advice mechanism.
A piece of advice contains a pointcut and a body expression.
When a join point is created, and it matches the pointcut of
a piece of advice, the body of the advice is executed. There

Gary T. Leavens
18

1 before : call(void Point.set(int)) && args(int z) {
2 write("set:"); write(z); newline();
3 }

Figure 3: Example Advice.

1 (define eval

2 (lambda (exp env jp)
3 (cond
4 ((const-exp? exp) (const-value exp))
5 ((var-exp? exp) (lookup env (var-name exp)))
6 ((call-exp? exp)
7 (call (call-signature exp)

8 (eval (call-target exp) env jp)
9 (eval-rands (call-rands exp) env jp)
10 jp))
11 ...)))
12

13 (define call

14 (lambda (sig obj args jp)
15 (execute (lookup-method (object-class obj) sig)
16 obj args jp)))
17

18 (define execute
19 (lambda (method this args jp)

20 (let ((class (method-class method))
21 (params (method-params method)))
22 (eval (method-body method)
23 (new-env (list* ’this ’%host params)
24 (list* this class args))

25 jp))))

Figure 4: Expression Interpreter.

are two types of advice, namely before and after. A before
advice is executed before the original action is taken place.
Similarly, the after is executed after the original action is
completed.

Figure 3 shows an example of advice that lets the example
program to print a message before every call to method set.
The keyword before specifies the type of the advice. point-
cut is written after the colon. The pointcut matches join
points that call method set of class Point, and the args
sub-pointcut binds variable z to the argument to method
set. Line 2 is the body, which prints messages and the
value of the argument.

When the program in Figure 1 is executed together with
the advice in Figure 3, the advice matches to the call to set
twice (in the constructor and in method set), it thus will
print “set:1”, “set:6” and “6”.

2.2 AJD Interpreter
The interpreter of AJD consists of an expression interpreter
and several definitions for AOP features including the data
structure for a join point, wrappers for creating join points,
a weaver, and a pointcut interpreter.

2.2.1 Expression Interpreter
Figure 4 shows the core of the expression interpreter ex-
cluding support for AOP features. The main function eval

field available information
kind call, execution, etc.
name name of method or class
target target of method invocation
args arguments to a method
stack (explained in Section 4)

Table 1: Fields in Join Points

1 (define call

2 (lambda (sig obj args jp)
3 (weave (make-jp ’call sig obj args jp)
4 (lambda (args jp)
5 ;; body of the original call goes here
6)

7 args)))

Figure 5: A Wrapper.

takes an expression, an environment, and a join point as its
parameters. The join point is an execution join point at the
enclosing method or constructor.

An expression is a parsed abstract syntax tree. There are
predicates (e.g., const-exp? and call-exp?) and selectors
(e.g., const-value and call-signature) for the syntax
trees. An environment binds variables to mutable cells; i.e.,
an assignment to a variable is implemented as side-effect in
Scheme. An object is a Scheme data structure that has a
class information and mutable fields for instance variables.
Likewise, an assignment to an instance variable is imple-
mented as side-effect.

Each action that creates join points is defined as a separate
sub-function, so that we can add AOP support later.

For example, the interpreter evaluates a method call ex-
pression in the following manner. First, sub-expressions for
the target object and operand values are recursively evalu-
ated (ll.8–9). Next, in function call, a method is looked-up
in the class of the target object (l.15). Then, in function
execute, an environment that binds the formal parameters
to the operand values is created (ll.23–24)3 . Finally, the
body of the method is evaluated with newly created envi-
ronment (ll.22–25).

2.2.2 Join Point
A join point is a data structure that is created upon an ac-
tion in the expression interpreter. A piece of advice obtains
all information about advised action from join points. In
our implementation, a join point is a record of kind, name,
target, args, and stack. Table 1 summarizes values in
those fields. There are selectors, such as jp-kind, and a
constructor, make-jp, for accessing and creating join points.

2.2.3 Wrapper
In order to advice actions performed in the expression in-
terpreter, we wrap the interpreter functions so that they
(conceptually) create dynamic join points. Figure 5 shows
how call—one of such a function—is wrapped. When a
method is to be called, the function first creates a join point

3The pseudo-variable %host is used for looking-up methods
for super classes.

Gary T. Leavens
19

1 (define weave
2 (lambda (jp action args)
3 (call-befores/afters *befores* args jp)

4 (let ((result (action args jp)))
5 (call-befores/afters *afters* args jp)
6 result)))
7

8 (define call-befores/afters
9 (lambda (advs args jp)

10 (for-each (call-before/after args jp) advs)))
11

12 (define call-before/after
13 (lambda (args jp)
14 (lambda (adv)
15 (let ((env (pointcut-match? (advice-pointcut adv)

16 jp)))
17 (if env
18 (execute-before/after adv env jp))))))
19

20 (define execute-before/after
21 (lambda (adv env jp)

22 (weave (make-jp ’aexecution adv #f #f ’() jp)
23 (lambda (args jp)
24 (eval (advice-body adv) env jp))
25 ’())))

Figure 6: Weaver.

that represents the call action (l.3) and applies it to weave,
which executes advice applicable to the join point (explained
below). The lambda-closure passed to weave (ll.4–6) defines
the action of call, which is executed during the weaving
process.

Likewise, the other functions including method execution,
object creation, and advice execution (defined later) are
wrapped.

2.2.4 Weaver
Figure 6 shows the definition of the weaver. Function weave
takes a join point (jp), a lambda-closure for continuing the
original action (action), and a list of arguments to action
(args). It also uses advice definitions in global variables
(*befores* and *afters*). It defines the order of advice
execution; it executes befores first, then the original action,
followed by afters last.

Function call-befores/afters processes a list of advice. It
matches the pointcut of each piece of advice against the cur-
rent join point (ll.15–16), and executes the body of the ad-
vice if they match (ll.17–18). In order to (potentially) advise
execution of advice, the function execute-before/after is
also wrapped. Line 24 actually executes the advice body in
an environment that provides the bindings expressed by the
pointcut.

Calling around advice has basically the same structure for
the before and after. It is, however, more complicated due
to its interleaved execution for the proceed mechanism.

2.2.5 Pointcut interpreter

1 (define pointcut-match?
2 (lambda (pc jp)
3 (cond

4 ((and (call-pointcut? pc) (call-jp? jp)
5 (sig-match? (pointcut-sig pc) (jp-name jp)))
6 (make-env ’() ’()))
7 ((and (args-pointcut? pc)
8 (types-match? (jp-args jp)
9 (pointcut-arg-types pc)))

10 (make-env (pointcut-arg-names pc) (jp-args jp)))
11 ...
12 (else #f))))

Figure 7: Pointcut Interpreter.

The pointcut interpreter pointcut-match?, shown in Fig-
ure 7, matches a pointcut to a join point. Due to space lim-
itations, we only show rules for two types of pointcuts. The
first rule (ll.4–6) defines that a call(m) pointcut matches
to a call join point that whose name field matches to m.
It returns an empty environment that represent ‘true’ (l.6).
An args(t x, . . .) pointcut (where t and x are a type and a
variable, respectively) matches to any join point whose ar-
guments have the same type to t, . . . (ll.7–10). It returns
an environment that binds variable x, . . . in the pointcut to
the value of the argument in the join point (l.10). False is
returned when matching fails (l.12).

3. COMPILING AJD PROGRAMS BY
PARTIAL EVALUATION

3.1 Outline
Our compilation framework is based on partial evaluation of
an interpreter, which is known as the first Futamura projec-
tion[9]. Given an interpreter of a language and a program to
be interpreted, partially evaluating the interpreter with re-
spect to the subject program generates a compiled program
(called a residual program). Following this scheme, we can
expect that partial evaluation of an AOP interpreter with
respect to a subject program and advice definitions would
generate a compiled, or statically woven program.

While the AJD interpreter is written as to ‘test-and-execute’
all pieces of advice at each dynamic join point, our compila-
tion framework successfully inserts only applicable advice to
each shadow of join points. This is achieved in the following
way:

1. Our compilation framework runs a partial evaluator
with AJD interpreter and each method definition.

2. The partial evaluator processes the expression inter-
preter, which virtually walks over the expressions in
the method. All shadows of join points are thus in-
stantiated.

3. At each shadow of join points, the partial evaluator
further processes the weaver. Using statically given
advice definitions, it (conceptually) inserts test-and-
execute sequence of all advice.

4. For each piece of advice, the partial evaluator reduces
the test-and-execute code into a conditional branch

Gary T. Leavens
20

that has either constant or dynamic value as its condi-
tion, and the advice body as its then-clause. Depend-
ing on the condition, the entire code or the test code
may be removed.

5. The partial evaluator processes the code that executes
the advice body. It thus instantiates shadows of join
points in the advice body. The steps from 3 recursively
compiles ‘advised advice execution.’

As is mentioned in the above step 1, we run the partial
evaluator with respect to each method definition. This is
because the applicable method for a method call can not
be determined at compile-time in object-oriented languages.
Therefore, we start the partially evaluator with the execute
function and its method parameter. The rest of the param-
eters (env and jp) are set to unknown at partial evaluation
time. The residual program serves as a compiled (or stat-
ically woven) code of the method written in Scheme. The
function is stored in a dispatch table so that it will be di-
rectly called at run-time.

For partial evaluation, we used PGG, an offline partial eval-
uator for Scheme[19].

3.2 How AJD is Partially Evaluated
An offline partial evaluator processes a program in the fol-
lowing way. It first annotates expressions in the program as
either static or dynamic, based on their dependency on the
statically known parameters. Those annotations are often
called binding-times. It then processes the program from
the beginning by actually evaluating static expressions and
by returning symbolic expressions for dynamic expressions.
The resulted program, which is called residual program, con-
sists of dynamic expressions in which statically computed
values are embedded.

This subsection explains how the AJD interpreter is par-
tially evaluated with respect to a subject program, by em-
phasizing what operations can be performed at partial evalu-
ation time. Although the partial evaluation is an automatic
process, we believe understanding this process is crucially
important for identifying compile-time information and also
for developing better insights into design of hand-written
compilers.

3.2.1 Compilation of Expressions
The essence of the Futamura projection is to perform com-
putation involving exp at partial evaluation time. Special-
ization of execute with each static method makes eval of
exp static, and subsequent execution keeps this static prop-
erty of exp. In contrast, call applies the method parameter
as a dynamic value to execute due to the nature of dynamic
dispatching in object-oriented languages. We therefore con-
figure4 the partial evaluator not to process execute from
call so that it will not ‘downgrade’ the binding-time of exp
to dynamic.

The environment (env) is treated as dynamic. With more
careful interpreter design, we could make it partially-static
4To do so, we rewrite call to call execute* instead
of execute, and manually give dynamic binding-time to
execute*.

data, in which variable names are static and values are dy-
namic. However, this is not the focus of this paper.

3.2.2 Compilation of Advice
As is mentioned in Section 3.1, our compilation framework
inserts advice bodies into their applicable shadows of join
points with appropriate guards. Below, we explain how this
is done by the partial evaluator.

1. A wrapper (e.g., Figure 5) creates a join point upon
calling weave. The first two fields of the join point,
namely kind and name, are static because they merely
depend on the program text. The rest fields have val-
ues computed at run-time. Those static fields could
be passed to the weaver either by using partially-static
data structure[4] or by rewriting the program to keep
those three values in a split data structure. We took
the latter approach for the ease of debugging and also
for other technical reasons.

2. Function weave (Figure 6) is executed with a partially
static join point, an action, and dynamic arguments.
Since the advice definitions are statically available, the
partial evaluator unrolls loops that test each advice
definition (i.e., for-each in eval-befores/afters).

3. As explained in Section 3.2.3, matching a static point-
cut to a partially static join point may result in either
a static or dynamic value. Therefore, the test-and-
execute sequence (in eval-before/after) becomes one
of the following three:

Statically false: No action is taken; i.e., no code is
inserted into compiled code.

Statically true: The body of the advice is partially
evaluated; i.e., the body is inserted in compiled
code without guards.

Dynamic: In this case, partial evaluation of
pointcut-match? generates an if expression
whose then-clause is the above ‘statically true’
case and the else-clause is ‘statically false’ case.
Essentially, the advice body is inserted with a
guard.

4. In the statically true or dynamic cases at the above
step, the partial evaluator processes the evaluation of
the advice body. Since the wrapper of the advice-
execution calls weave, application of advice to the ad-
vice body is also compiled.

5. When the original action is evaluated (l.4 in Figure 6),
the residual code of the original action is inserted. This
residual code from weave will thus have the original
computation surrounded by applicable advice bodies.

3.2.3 Compilation of Pointcut
In step 3 above, pointcut interpreter (Figure 7) is partially
evaluated with a static pointcut and static fields in a join
point. The partial evaluation process depends on the type of
the pointcut. For pointcuts that depend on only static fields
of a join point (namely call, execution and new), the con-
dition is statically computed to either an environment (as
true) or false. For pointcuts that test values in the join point

Gary T. Leavens
21

1 (define point-move
2 (lambda (this1 args2 jp3)
3 (let* ((jp4 (make-jp ’execution ’move

4 this1 args2 jp3))
5 (args5 (list (+ (get-field this1 ’x)
6 (car args2))))
7 (jp6 (make-jp ’call ’set
8 this1 args5 jp4)))
9 (if (type-match? args5 ’(int))

10 (begin (write "set:")
11 (write (car args5)) (newline)))
12 (execute* (lookup-method (object-class this1)
13 ’set)
14 this1 args5 jp6))))

Figure 8: Compiled code of move method of Point class.

(namely target and args), the partial evaluator returns
residual code that dynamically tests the types of the val-
ues in the join point. For example, when pointcut-match?
is partially evaluated with respect to args(int x), the fol-
lowing expression is returned as residual code.

1 (if (types-match? (jp-args jp) ’(int))
2 (make-env ’(x) (jp-args jp))
3 #f)

Logical operators (namely &&, || and !) are partially eval-
uated into an expression that combines the residual expres-
sions of its sub-pointcuts. The remaining two pointcuts
(cflow and cflowbelow) are discussed in the next section.

The actual pointcut-match? is written in a continuation-
passing style so that partially evaluator can reduce a con-
ditional branch in the weaver (ll.17–18 in Figure 6) for the
static cases. This is a standard technique in partial evalua-
tion.

3.3 Compiled Code
Figure 8 shows the compiled code for the move method de-
fined in Figure 1 combined with the advice given in Fig-
ure 3. For readability, we post-processed the residual code
by eliminating dead code, propagating constants, renam-
ing variable names, resolving environment accesses, and so
forth. The join points combine both static and dynamic
fields for readability, while they are manually split in the
actual implementation.

It first creates a join point for the method execution (ll.3–
4), a parameter list (ll.5–6) and a join point (ll.7–8) for the
method call. Lines 9 to 11 are advice body with a guard.
The guard checks the residual condition for args pointcut.
(Note that no run-time checks are performed for call point-
cut.) If matched, the body of the advice is executed(ll.10–
11). Finally, the original action (i.e., method call) is per-
formed (ll.12–14).

As we see, advice execution is successfully compiled. Even
though there is a shadow of execution join points at the
beginning of the method, no advice bodies are inserted in
the compiled function as it does not match any advice.

1 after : call(void Point.set(int))
2 && cflow(call(void Point.move(int))
3 && args(int w)) {

4 write("under move:"); write(w); newline();
5 }

Figure 9: Advice with cflow Pointcut.

4. COMPILING CALLING-CONTEXT SEN-
SITIVE POINTCUTS

As briefly mentioned before, cflow and cflowbelow point-
cuts can investigate join points in the call-stack; i.e., their
truth value is sensitive to calling context. Here, we first
show a straightforward implementation that is based on a
stack of join points. It is inefficient, however, and can not
be compiled properly.

We then show a more optimized implementation that can
be found in AspectJ compiler. The implementation exploits
incremental natures of those pointcuts, and shown as a mod-
ified version of AJD. We can also see those pointcuts can be
properly compiled by using our compilation framework.

To keep discussion simple, we only explain cflow in this sec-
tion. Extending our idea to cflowbelow is easy and actually
done in our experimental system.

4.1 Calling-Context Sensitive Pointcut: cflow
A pointcut cflow(p) matches to any join points if there is
a join point that matches to p in its call-stack. Figure 9
is an example. The cflow pointcut in lines 2–3 specifies
join points that are created during the method call to move.
When this pointcut matches a join point, the args(int w)
sub-pointcut gets the parameter to move from the stack.

As a result, execution of the program in Figure 1 with pieces
of advice in Figures 3 and 9 prints “set:1” first, “set:6”
next, and then “under move:5” followed by “6” last. The
call to set from the constructor is not advised by the advice
using cflow.

4.2 Stack-Based Implementation
A straightforward implementation is to keep a stack of join
points and to examine each join point in the stack from the
top when cflow is evaluated.

We use the stack field in a join point to maintain the stack.
Whenever a new join point is created, we record previous
join point in the stack field (as is done as the last argument
to make-jp in Figure 5). Since join points are passed along
method calls, the join points chained by the stack field from
the current one form a stack of join points. Restoring old
join points is implicitly achieved by merely using the original
join point in the caller’s continuation.

The algorithm to evaluate cflow(p) simply runs down the
stack until it finds a join point that matches to p, as shown
in Figure 10. If it reaches the bottom of the stack, the result
is false.

The problem with this implementation is run-time overhead.

Gary T. Leavens
22

1 (define pointcut-match?
2 (lambda (pc jp)
3 (cond ...

4 ((and (cflow-pointcut? pc)
5 (not (bottom? jp)))
6 (or (pointcut-match? (pointcut-body pc) jp)
7 (pointcut-match? pc (jp-stack jp))))
8 ...)))

Figure 10: Naive Algorithm for Evaluating cflow.

In order to manage the stack, we have to push5 a join point
each time a new join point is created. Evaluation of cflow
takes linear time in the stack depth at worse. When cflow
pointcuts in a program match only specific join points, keep-
ing the other join points in the stack and testing them is
waste of time and space.

Our compilation does not help those problems. Rather, it
highlights the problems. Since relationship between caller
and receiver is unknown to the partial evaluator, the stack
field of a join point becomes dynamic. Consequently, a stack
of join points becomes partially-static in which only some
fields of the topmost element are static, while the other el-
ements are totally dynamic. When partial evaluator pro-
cesses pointcut-match? with a static cflow pointcut and
a partially static join point, the second recursive call (l.7
in Figure 10) supplies a dynamic (not partially static) join
point. This makes the residual code a loop that dynamically
tests each join point in the stack except for the top element6;
i.e., all the tests involving with cflow are performed at run-
time.

4.3 State-Based Implementation
A more optimized implementation of cflow in AspectJ com-
piler is to exploit its incremental nature. This idea can be ex-
plained by an example. Assume (as in Figure 9) that there is
pointcut “cflow(call(void Point.move(int)))” in a pro-
gram. The pointcut becomes true once move is called. Then,
until the control returns from move (or another call to move
is taken place), the truth value of the pointcut is unchanged.
This means that the system needs only manage the state of
each cflow(p) and update that state at the beginning and
the end of join points that make p true. Note that the state
should be managed by a stack because it may be rewound
to its previous state upon returning from actions.

This state-based optimization can be explained in the fol-
lowing regards:

• The state-based implementation avoids repeatedly
matching cflow bodies to the same join point in the
stack, which can happen in the stack-based implemen-
tation. This is achieved by evaluating bodies of cflow
at each join point in advance, and records the result
as its state for later use.

5By having a pointer to ‘current’ join point in parameters to
each function, pop can be automatically done by returning
from the function.
6If the partial evaluator supported polyvariant specializa-
tion[5]. Otherwise, the test for the topmost element is also
coerced to dynamic.

1 (define weave
2 (lambda (jp action args)
3 (let ((new-jp (update-states *cflow-pointcuts*

4 jp)))
5 ...the body of original weave...
6)))
7

8 ;;; fold: (α× β → α)× α× β list→ α
9 (define update-states

10 (lambda (pcs jp)
11 (fold (lambda (pc njp)
12 (let ((env (pointcut-match?
13 (pointcut-body pc jp))))
14 (if env
15 (update-state

16 njp (pointcut-id pc) env)
17 njp)))
18 jp pcs)))
19

20 (define pointcut-match?
21 (lambda (pc jp)

22 (cond ...
23 ((cflow-pointcut? pc)
24 (lookup-state jp (pointcut-id pc)))
25 ...)))

Figure 11: State-based Implementation of cflow.
(update-state jp id new-state) returns a copy of jp in
which id ’s state is changed to new-state . (lookup-state
jp id) returns the state of id in jp .

• The state-based implementation makes static evalua-
tion (i.e., compilation) of cflow bodies possible, which
can not in the stack-based implementation. This is
because bodies are evaluated at each shadow of join
points.

• The state-based implementation usually performs a
smaller number of stack operations because the state
of a cflow pointcut needs not be updated at the join
points not matching to its body. On the other hand,
the stack-based implementation has to push all join
points on the stack.

• The state-based implementation evaluate cflow point-
cut in constant time in by having a stack of states for
each cflow pointcut.

It is not difficult to implement this idea in AJD. Fig-
ure 11 outlines the algorithm. Before running a subject
program, the system collects all cflow pointcuts in the pro-
gram, including those appear inside of other cflow point-
cuts. The collected pointcuts are stored in a global variable
cflow-pointcuts. The system also gives unique identi-
fiers to them, which are accessible via pointcut-id. We
rename the last field of a join point from stack to state, so
that it stores the current states of all cflow pointcuts.

When the interpreter creates a join point, it also updates the
states of all cflow pointcuts by wrapping weave. The wrap-
per creates a copy of the new join point with updated cflow
states (ll.3–4), and performs the original action. Function
update-states evaluates the sub-pointcut of each cflow

Gary T. Leavens
23

1 (let* ((val7 ...create a point object ...)
2 (args9 ’(5))
3 (jp8 (make-jp this1 args9 (jp-state jp3))))

4 (if (types-match? args9 ’(int))
5 (begin
6 (execute* (lookup-method (object-class val7)
7 ’move)
8 val7 args9
9 (state-update jp8 ’_g1

10 (new-env ’(w) args9)))
11 ... write and newline ...)
12 ... omitted ...))

Figure 12: Compiled code of “p.move(5)” with cflow ad-
vice. (Definitions of variables env6, this1 and jp are omit-
ted.)

1 (define point-move
2 (lambda (this1 args2 jp3)
3 (let* ((args5 (list (+ (get-field this1 ’x)

4 (car args2))))
5 (jp6 (make-jp this1 args5 (jp-state jp3))))
6 (if (types-match? args5 ’(int))
7 (begin
8 (write "set:") (write (car args5)) (newline)
9 (let* ((val7

10 (execute* (lookup-method
11 (object-class this1) ’set)
12 this1 args5 jp6))
13 (env8 (state-lookup jp6 ’_g1)))
14 (if env8
15 (begin (write "under move:")

16 (write (lookup env8 ’w)) (newline)))
17 val7))
18 ...omitted...))))

Figure 13: Compiled code of method move with cflow ad-
vice.

pointcut (ll.12–13), and updates the state if the result is
true (ll.15–16).

Interpretation of cflow pointcut is merely looks up the state
in the current join point (l.24).

Implementation of cflowbelow pointcuts is straightforward
if we notice that a current value of cflowbelow(p) is the
value of cflow(p) for the previous join point. The implemen-
tation has a pair of states for each cflowbelow(p) pointcut:
the one is the state of cflow(p) regarding to the current
join point and the other is the state of cflow(p) regard-
ing to the previous join point, which is the truth value of
cflowbelow(p) for the current join point.

4.4 Compilation Result
Figures 12 and 13 show excerpts of compiled code for the
program in Figure 1 with the two pieces of advice in Figures
3 and 9. The compiler gave _g1 to the cflow pointcut as its
identifier.

Figure 12 corresponds to “p.move(5);” (l.8 in Figure 1).
Since the method call to move makes the cflow to true, the

compiled code updates the state of _g1 to an environment
created by args pointcut in the join point (ll.9–10), and
passes the updated join point to the method.

Figure 13 shows the compiled move method. We can see the
additional code for the advice using cflow at lines 13–16. It
dynamically evaluates the cflow pointcut by merely looking
its state up, and runs the body of advice if the pointcut
is true. The value of variable w, which is bound by args
pointcut in cflow, is taken from the recorded state of cflow
pointcut. Since the state is updated when move is to be
called, it gives the argument value to move method.

To summarize, our framework compiles a program with cflow
pointcuts into one with state update operations at each join
point that matches the sub-pointcut of each cflow pointcut,
and state look-ups in the guard of advice bodies. In terms of
run-time checks for pointcuts, the code is basically identical
to the one generated by AspectJ compiler.

5. RELATED WORK
In reflective languages, some crosscutting concerns can be
controlled through meta-programming[10, 18]. Several re-
searchers including the first author have successfully com-
piled reflective programs by using partial evaluation[2, 14,
15]. It is more difficult, however in reflective languages, to
ensure successful compilation because the programmer can
easily write a meta-program that confuses the partial eval-
uator.

Wand and the second and the third authors presented a for-
mal model of the procedural version of AJD[20]. Our model
is based on this, and used it for compilation and optimizing
cflow pointcuts.

Douence et al. showed an operational semantics of an AOP
system[8]. Their system is based on a ‘monitor’ that ob-
serves the behavior of subject program, and the weaving
is triggered by means of pattern matching to a stream of
events. They also gave a program transformation system
that inserts code to trigger the monitor into subject pro-
gram. Our framework automatically performs this insertion
by using partial evaluation.

Andrews proposed process algebras as a formal basis of AOP
languages[1]. In his system, advice execution is represented
by synchronized processes, and compilation (static weaving)
is transformation of processes that removes synchronization.
Our experience suggests that powerful transformation tech-
niques like partial evaluator would be needed to effectively
remove run-time checks in dynamic join point models.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a compilation framework to an
aspect-oriented programming (AOP) language, AJD, based
on operational semantics and partial evaluation techniques.
The framework explains issues in AOP compilers including
identifying shadows of join points, compiling-out pointcuts
and recursively applying advice. The optimized cflow im-
plementation in AspectJ compiler can also be explained in
this framework.

The use of partial evaluation allows us to keep simple oper-

Gary T. Leavens
24

ational semantics in which everything is processed at run-
time, and to relate the semantics to compilation. Partial
evaluation also allows us to understand the data dependency
in our interpreter by means of its binding-time analysis. We
believe this approach would be also useful to prototyping
new AOP features with effective compilation in mind.

Although our language supports only core features of prac-
tical AOP languages, we believe that this work could bridge
between formal studies and practical design and implemen-
tation of AOP languages.

Future directions of this study could include the following
topics. Optimization algorithms could be studied for AOP
programs based on our model, for example, elimination of
more run-time checks with the aid of static analysis. Our
model could be refined into more formal systems so that we
could relate between semantics and compilation with cor-
rectness proofs. Our system could also be applied to design
and test new AOP features.

7. REFERENCES
[1] James H. Andrews. Process-algebraic foundations of

aspect-oriented programming. In Yonezawa and
Matsuoka [21], pages 187–209.

[2] Kenichi Asai, Satoshi Matsuoka, and Akinori
Yonezawa. Duplication and partial evaluation —for a
better understanding of reflective languages—. Lisp
and Symbolic Computation, 9:203–241, 1996.

[3] Lodewijk Bergmans and Mehmet Aksits. Composing
crosscutting concerns using composition filters.
Communications of the ACM, 44(10):51–57, October
2001.

[4] Anders Bondorf. Improving binding times without
explicit CPS-conversion. In ACM Conferenceon Lisp
and Functional Programming, pages 1–10, 1992.

[5] M. A. Bulyonkov. Polyvariant mixed computation for
analyzer programs. Acta Informatica, 21:473–484,
1984.

[6] Yvonne Coady, Gregor Kiczales, Mike Feeley, Norm
Hutchinson, and Joon Suan Ong. Structuring
operating system aspects: using AOP to improve OS
structure modularity. Communications of the ACM,
44(10):79–82, October 2001.

[7] Yvonne Coady, Gregor Kiczales, Mike Feeley, and
Greg Smolyn. Using AspectC to improve the
modularity of path-specific customization in operating
system code. In Proceedings of the 8th European
software engineering conference held jointly with 9th
ACM SIGSOFT symposium on Foundations of
software engineering, pages 88–98, Vienna, Austria,
2001.

[8] Rémi Douence, Olivier Motelet, and Mario Südholt. A
formal definition of crosscuts. In Yonezawa and
Matsuoka [21], pages 170–186.

[9] Yoshihiko Futamura. Partial evaluation of
computation process—an approach to a
compiler-compiler. Higher-Order and Symbolic

Computation, 12(4):381–391, 1999. Reprinted from
Systems, Computers, Controls, 2(5):45–50, 1971.

[10] Gregor Kiczales, Jim des Rivières, and Daniel G.
Bobrow. The Art of the Metaobject Protocol. MIT
Press, Cambridge, MA, 1991.

[11] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William Griswold. Getting
started with AspectJ. Communications of the ACM,
44(10):59–65, October 2001.

[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. In ECOOP 2001, pages 327–353,
2001.

[13] Gregor Kiczales, John Lamping, Anurag Menhdhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors,
ECOOP ’97 — Object-Oriented Programming 11th
European Conference, number 1241 in Lecture Notes
in Computer Science, pages 220–242, Jyväskylä,
Finland, 1997. Springer-Verlag.

[14] Hidehiko Masuhara, Satoshi Matsuoka, Kenichi Asai,
and Akinori Yonezawa. Compiling away the meta-level
in object-oriented concurrent reflective languages
using partial evaluation. In Mary E. S. Loomis, editor,
Proceedings of Object-Oriented Programming Systems,
Languages and Applications, volume 30(10) of ACM
SIGPLAN Notices, pages 300–315, Austin, TX,
October 1995. ACM.

[15] Hidehiko Masuhara and Akinori Yonezawa. Design
and partial evaluation of meta-objects for a
concurrent reflective language. In Eric Jul, editor,
European Conference on Object-Oriented
Programming (ECOOP’98), volume 1445 of Lecture
Notes in Computer Science, pages 418–439, Brussels,
Belgium, July 1998. Springer-Verlag.

[16] Doug Orleans and Karl Lieberherr. DJ: Dynamic
adaptive programming in Java. In Yonezawa and
Matsuoka [21], pages 73–80.

[17] Harold Ossher and Peri Tarr. Multi-dimensional
separation of concerns using hyperspaces. Technical
report, IBM, 1999.

[18] Brian Cantwell Smith. Reflection and semantics in
Lisp. In Conference record of Symposium on Principles
of Programming Languages, pages 23–35, 1984.

[19] Peter J. Thiemann. Cogen in six lines. In
International Conference on Functional Programming
(ICFP’96), 1996.

[20] Mitchell Wand, Gregor Kiczales, and Christopher
Dutchyn. A semantics for advice and dynamic joint
points in aspect-oriented programming. In Proceedings
of The Ninth International Workshop on Foundations
of Object-Oriented Languages (FOOL9), January 2002.

[21] Akinori Yonezawa and Satoshi Matsuoka, editors.
Third International Conference Reflection 2001,
volume 2192 of Lecture Notes in Computer Science,
Koyoto, Japan, September 2001. Springer-Verlag.

Gary T. Leavens
25

Gary T. Leavens
26

A Formal Basis for Aspect-Oriented Specification
with Superposition

Pertti Kellomäki, pk@cs.tut.fi
Institute of Software Systems

Tampere University of Technology
Finland

ABSTRACT
We present a formalization of how specifications are con-
structed using superposition and composition in the Ocsid
specification language. The formalization covers stepwise
refinement using superposition and composition of indepen-
dent refinements. Independent views of a refinement hierar-
chy (subclassing and operation refinement) are reconciled in
composition in a formally well founded way. The formaliza-
tion also defines how classes and operations are constructed
from fragments given in separate syntactical units.

The work has been done in the context of formal specifi-
cation of distributed systems, but we believe the ideas to be
useful in a more general setting as well.

1. INTRODUCTION
A prerequisite for effective separation of concerns is the

ability to provide multiple views of a system being designed
and to compose the views to form a coherent whole. We
treat composition as two related but distinct activities: rec-
onciling refinement hierarchies of the views, and determin-
ing the structure of entities populating the hierarchies. The
first is concerned with relationships between entities, e.g.
superclass–subclass, while the second is concerned with how
entities are composed of fragments given in separate syntac-
tic units.

Our work arises from formal specification of distributed
systems using superposition, but we believe the ideas to be
applicable in a more general setting as well. We wish to be
able to formally verify temporal properties of specifications,
so it is necessary to formally define how specifications are
constructed and what the semantics of the resulting syntac-
tic structures is. In this paper we formally define the seman-
tics of superposition and composition in the Ocsid [12] spec-
ification language. The formalization defines the semantics
in a very direct sense, as the definitions below are translit-
terations of the core of an Ocsid compiler written in the
functional programming language Haskell.

Ocsid specifications are developed using stepwise refine-
ment. Independent aspects of the system can be given in
separate branches of specification, which may introduce sub-
classes and refinements of operations, and the branches may
be merged in composition. Both stepwise refinement and
composition preserve temporal safety properties.

The rest of the paper is structured as follows. In Sec-
tion 2 we review superposition and the joint action approach
to specification. Section 3 defines the notations used in the
paper and Section 4 discusses derivation and extension. Sec-
tion 5 contains the formalization of superposition and com-

position, Section 6 briefly discusses verification issues, and
Section 7 gives a condensed example. Related work is re-
viewed and conclusions are drawn in Section 8.

2. SUPERPOSITION AND JOINT ACTIONS
Superposition is a well known technique for specifying

distributed systems [8, 7, 5, 11, 6]. The specification lan-
guage Ocsid described here is an experimental variant of the
DisCo [9, 14, 2] specification language, both based on the
use of superposition.

2.1 Superposition
Superposition in Ocsid relates to aspects as follows. Each

superposition step describes a projection of the world rela-
tive to some set of state variables. The projection encapsu-
lates a particular concern, which may crosscut several im-
plementation components.

The result of superimposing a step on a base specifica-
tion contains all the structure of the base specification, aug-
mented with the additional structure given by the step. Suc-
cessive applications of superposition result in a layered struc-
ture, so in accordance with the DisCo parlance we call su-
perposition steps layers. The variant of superposition used
in DisCo and Ocsid preserves temporal safety properties by
construction by forbidding assignment to variables in the
base specification.

A superposition step may include assumptions about the
base specification, which facilitate verification of temporal
properties of specifications resulting from applying the step.
It is then sufficient to establish that the assumptions hold
for a particular base specification to reuse the verification of
the step.

2.2 Joint Actions
We give specifications using the joint action [3, 4] style. A

joint action specification consists of a set of classes, a set of
joint actions, and an initial condition. The state of the sys-
tem is determined by state variables that reside in objects.
An action has a set of roles in which objects may partici-
pate, and the action can be executed for any combination of
objects for which the guard of the action evaluates to true.
When an action is executed, the state of the participants is
changed, while the rest of the system remains unchanged.

The formal semantics of joint action specifications has
been given elsewhere [10], so we only outline it here. The
semantics is given in terms of linear time temporal logic.

Each joint action gives rise to an existentially quantified
formula that quantifies over the roles of the action. The

Gary T. Leavens
27

formula is formed of expressions in the guard of the action,
expressions corresponding to assignments in the body, and
conjuncts specifying that the rest of the world remains un-
changed. Assignments map to logic as equalities that give
the values of primed variables (next state) in terms of un-
primed variables (current state).

The meaning of a syntactic specification is a temporal
formula consisting of a conjunct corresponding to the initial
condition, and a temporally quantified (“always”) disjunc-
tion of the actions of the specification and the stuttering
action. The stuttering action leaves all the variables of the
specification unchanged.

3. NOTATION
The formalization makes heavy use of relations. We treat

relations interchangeably as binary predicates and sets of
pairs. The reflexive transitive closure of a relation R is
denoted by R∗.

We define a composition operation ⊕ for relations, which
is monotonic in the sense that the composed relation may
yield true for a pair for which neither component yields true,
but it cannot yield false for a pair for which either one yields
true. The composed relation E1 ⊕ E2 yields true if either of
the component relations yields true, or if they transitively
yield true. The composition is defined as

E1 ⊕ E2
∆
= (E1 ∪ E2)

∗. (1)

Rather than using the concrete syntax of the Ocsid lan-
guage, we use the abstract syntax summarized in Table 1.
We leave the more detailed syntactical elements underspec-
ified, as they are not relevant to the present discussion. We
use a sans serif font to indicate syntactic constructs in the
definitions, and use terms syntactic class and syntactic ac-
tion when emphasizing that we are referring to syntactic
constructs.

class(names, variables)
action(names, roles, guard conjuncts, assignments)
specification(class hierarchy, action hierarchy,

initial conditions,
class extensions,action extensions)

layer(classes,actions, initial conditions,
class derivations, class extensions,
action derivations action extensions)

composition(class mergings,action mergings)

Table 1: Abstract syntax

4. DERIVATION AND EXTENSION
Our formalization is based on the notions of derivation

and extension. The following discussion is applicable to
both classes and actions, which we collectively call entities.
Derivations tell what entities a specification contains and
extensions determine the syntactic structure of the entities.

4.1 Derivation Hierarchies
A derivation hierarchy is a tuple

H = (N, E ,R) (2)

where N is a set of names and E and R are relations over
the names.

Relation E is an equivalence relation that partitions the
set of names into equivalence classes. Each equivalence class
represents an entity in the specification.

RelationR records the derivation history in terms of names.
The is-a relation D is defined as

D ∆
= E ⊕R. (3)

The notion of disjointness is useful for closed world model-
ing. The disjointness relation S describes which entities are
disjoint from each other. Formally the disjointness relation
is defined using D as

S(a, b)
∆
= ¬∃c : D(c, a) ∧ D(c, b). (4)

4.2 Extension
An extension is a fragment of an entity. An entity in

a specification is composed of the extensions that are ap-
plicable to the particular entity. A class extension contains
state variables, and an action extension contains roles, guard
conjuncts and assignments. Accessor functions vars, roles,
conjuncts and assignments have their obvious definitions
in the following. Function name(e) returns the name of the
entity to which extension e adds structure, and names(n, H)
returns the set (equivalence class) of names in NH that are
equivalent to n according to EH .

The syntactic structure of an entity is determined by
a derivation hierarchy and a set of extensions. Function
structureC returns the structure of the class denoted by
name n relative to a hierarchy H and a set of class exten-
sions X:

structureC(n, H, X)
∆
=

class (names(n, H),
⋃

x∈applicable(n,H,X) vars(x)).
(5)

Similarly, function structureA for actions is defined as

structureA(n, H, X)
∆
=

action (names(n, H),⋃
x∈applicable(n,H,X) roles(x),⋃
x∈applicable(n,H,X) conjuncts(x),⋃
x∈applicable(n,H,X) assignments(x)).

(6)

Set applicable(n, H, X) is the set of extensions in X that
are applicable when constructing the entity named n:

applicable(n, H, X)
∆
= {x ∈ X | DH(n, name(x))}. (7)

The set consists of all the extensions that name an entity
from which the entity named by n has been derived.

5. SPECIFICATIONS, SUPERPOSITION
AND COMPOSITION

A specification is a tuple

S = specification(Hc, Ha, I, Xc, Xa), (8)

where Hc is a derivation hierarchy of class names, Ha is
a derivation hierarchy of action names, I is a set of initial
conditions, and Xc and Xa are sets of class and action ex-
tensions respectively. The structure of a class (resp. action)
relative to the specification is determined by the hierarchy
and extensions of the specification as explained above. Func-
tions class and action return the syntactic structure corre-

Gary T. Leavens
28

sponding to a name n in specification S:

class(n, S)
∆
= structureC(n, Hc

S , Xc
S) (9)

action(n, S)
∆
= structureA(n, Ha

S , Xa
S). (10)

A superposition step is a tuple

L = layer(C, A, I, Dc, Xc, Da, Xa), (11)

where C is a set of syntactic classes, A is a set of syntactic
actions, I is a set of initial conditions, Dc is a set of class
derivation pairs, Xc is a set of class extensions, Da is a set of
action derivation pairs, and Xa is a set of action extensions.
A derivation pair is a tuple (derived, base) denoting that
derived has been derived from base.

A superposition step is well formed if the following condi-
tions hold. The conditions are mostly trivial but tedious to
formalize, so we list them here informally.

• Derivation pairs of the step only derive entities in C
and A respectively or entities introduced by the step.

• Extensions of the step only extend entities in C and
A, or entities introduced by the step.

• Expressions in an action extension only refer to roles
present in A or roles introduced by the extension, and
only to variables present in C or introduced in the step.

• Assignments in the action extensions only assign to
variables introduced in the step.

A composition is a tuple

C = composition(Mc, Ma), (12)

where Mc and Ma are sets of sets of names denoting entities
(classes and actions respectively) to be merged in the com-
position. A composition is well formed if the sets in both
Mc and Ma are disjoint from each other.

Well-formedness is transitive: superimposing a well formed
step on a well formed specification or composing a set of well
formed specifications results in a well formed specification,
provided that the side conditions are satisfied.

5.1 Superposition
Superimposing a set D of derivation pairs on a hierarchy

H = (N, E ,R) is defined as

superimpose(D, H)
∆
= (N ′, E ,R′) (13)

where

N ′ = NH ∪ {d | (d, b) ∈ D}
R′ = RH ∪D.

Superimposing a step L on a specification S is defined as

superimpose(S, L)
∆
=

specification(
superimpose(Dc

L, Hc
S),

superimpose(Da
L, Ha

S),
IS ∪ IL, Xc

S ∪Xc
L, Xa

S ∪Xa
L).

(14)

The result is a well formed Ocsid specification if the fol-
lowing side conditions hold.

• S and L are well formed.

• S contains a set C′ of classes and a set of actions A′

such that each element of CL (resp. AL) has a syn-
tactically refined counterpart in C′ (resp. A′). For a
definition of syntactical refinement see below.

• Derivations and extensions do not introduce name con-
flicts.

A class Ĉ syntactically refines a class C with name n, if

n belongs to the names of Ĉ, and Ĉ contains all the state

variables of C. An action Â syntactically refines an action A

with name n, if n belongs to the names of Â, and Â contains
all the roles of A.

Syntactic refinement ensures that there are no “dangling”
references in the resulting specification. Stronger condi-
tions are needed for independent verification of superposi-
tion steps, as explained in Section 6.

5.2 Composition
Composing a set H of hierarchies using a merging M is

defined as

compose(H, M)
∆
= (N ′, E ′,R′) (15)

where

N ′ =

(⋃
m∈M

m

)
∪

(⋃
h∈H

Nh

)

E ′ = buildMergeR(M)⊕

(⊕
h∈H

Eh

)
R′ =

⋃
h∈H

Rh.

Function buildMergeR takes a set of sets of names, and
returns an equivalence relation. Each set of names indicates
the names of entities to be merged in the composition. The
function is defined as

buildMergeR(M)
∆
=

(⋃
m∈M

m×m

)∗

(16)

where m×m is the Cartesian product of m with itself.
The result of composition is well formed if the following

side conditions hold (D′ denotes the is-a relation of the re-
sult):

∀h ∈ H : ¬∃n1, n2 ∈ N ′ : Sh(n1, n2) ∧ D′(n1, n2) (17)

∀h ∈ H :
¬∃n1, n2 ∈ N ′ :
Dh(n1, n2) ∧ ¬Eh(n1, n2) ∧ E ′(n1, n2).

(18)

The first side condition ensures that names that denote
separate entities in any of the components cannot denote the
same entity in the composed specification. The second side
condition ensures that names that have an is-a relationship
but do not denote the same entity in some component cannot
denote the same entity in the result.

Composing a set S of specifications using a composition
C = composition(Mc, Ma) is defined as

compose(S, C)
∆
=

specification(Hc′, Ha′, I ′, Xc′, Xa′)
(19)

where

Gary T. Leavens
29

Hc′ = compose({Hc
s |s ∈ S}, Mc)

Ha′ = compose({Ha
s |s ∈ S}, Ma)

I ′ =
⋃
s∈S

Is

Xc′ =
⋃
s∈S

Xc
s

Xa′ =
⋃
s∈S

Xa
s

The result of composition is well formed if the following
side conditions hold.

• Compositions of the hierarchies are well formed.

• Extensions do not create name conflicts.

6. VERIFICATION AND ABSTRACT STEPS
One of our main goals is to be able to construct formally

verified specifications of distributed systems. Verification of
individual specifications is fairly easy but not very attractive
in practice, because it is difficult to reuse verification across
different systems.

As noted earlier, a superposition step can be verified inde-
pendently of its deployment if assumptions are made about
the base specifications on which the step is to be superim-
posed. We use the following assumptions when verifying a
superposition step L = layer(C, A, I, Dc, Xc, Da, Xa).

• For each action AB in the base specification corre-
sponding to an action AL in A, AB =⇒ AL for all
possible combinations of participants. An action is a
predicate logic formula consisting of constants and ref-
erences to unprimed and primed variables. Implication
between actions is implication between the formulas.

• All actions in the base specification with no counter-
part in A are stuttering with respect to state variables
in C, i.e. they do not change the variables.

These assumptions are sufficient for verifying temporal
safety properties of specifications resulting from superim-
posing L on a base specification. When the step is applied,
it is sufficient to establish that the assumptions hold for the
base specification.

A superposition step can be further abstracted by observ-
ing that proofs of temporal properties are insensitive to sys-
tematic renaming of classes, variables and actions. A rela-
tively simple renaming mechanism can be used for adjusting
a superposition step to a base specification in such a way
that verification of temporal properties remains valid [12].
This facilitates the use of superposition steps as reusable
templates.

7. EXAMPLE
This section presents a brief example using the concrete

syntax of Ocsid. Figure 1 gives an Ocsid specification and
two superposition steps (layers). The specification describes
a system where nodes are arranged in a list using state vari-
ables NEXT. Action delete removes a node from a list by
synchronously modifying two nodes.

Layer request reply specifies how an atomic action of two
participants modifying state variable V is implemented us-
ing a request message and a reply message. The requester
of the operation sends a message and marks that its copy
of the value (held in implementation-level variable v) may
temporarily be invalid. The layer ensures that the value of
state variable V can always be computed from other state
variables, and consequently the synchronization implied by
action A is not needed, in other words the synchronization
is implemented by the message exhange.

Layer token passing describes how an activity leading to
execution of action A is coordinated using a token. The
safety property ensured by the layer is that the execution of
actions reserve token and A a strictly alternates.

A specification of distributed removal coordinated with
a token can be derived as follows. Simple substitution of
delete for A, node for C etc. makes the layers compatible
with specification distlist, and two separate specifications are
created by using the layers so obtained. A third specification
is then created as a composition of the two specifications.
Classes request and reserved token are merged to a single
class, so a single object plays two specification level roles in
the composed specification. Actions to send a request and
to send a reserved token are composed (synchronized) to a
single action in the composed specification.

According to the definitions of superposition and compo-
sition given earlier, the class known by names request and re-
served token is constructed using extension for both classes.
The action to send a combined request and token is con-
structed similarly.

8. CONCLUSIONS
We have presented a formalization of how refinement hi-

erarchies are composed in the Ocsid specification language,
and how the syntactic structure of classes and actions is
determined. Composition of refinement hierarchies is equiv-
alent to reconciliation of different views on a system, while
determining the syntactic structure of entities is concerned
with how entities are composed of fragments given in sepa-
rate syntactic units.

There are obvious parallels between our work and that of
Tarr et al. [16] on composing separate views. Our compo-
sition is much more restricted than theirs, because we wish
to preserve temporal safety properties in composition. The
overall effect of composition in Ocsid is the same as that of
weaving e.g. as in AspectJ [13, 1]. One can think of class
and action names as explicit join points, but the analogy is
somewhat stretched as in Ocsid there is no base structure
into which to weave aspects.

Superposition is a well established methodology for the
specification of distributed systems. Our work is closest to
work on the DisCo specification language [9, 14, 2], but it
is also very similar to the use of superposition in Unity [6].
Independent verification of superposition steps follows the
ideas of Katz in [11].

Our formalization is not just an idle exercise in formal
mathematics, but an integral part of a compiler for the Ocsid
language. The compiler is written in the functional language
Haskell, and the definitions in the compiler mirror those
given in this paper.

We plan to use the formalization for a deep embedding of
the Ocsid language into the logic of the PVS [15] theorem
prover. A deep embedding would enable us to verify prop-

Gary T. Leavens
30

specification distlist is
class node is NEXT : ref node; end;
action delete by n1, n2 : node
when n1.NEXT = ref(n2)
do n1.NEXT := n2.NEXT; n2.NEXT := null; end;

end;
layer request reply requires

type T; class C is V : T; end;
action A by p1, p2 : C when true
do p1.V := ; p2.V := ; end;

provides
class request; class reply;
class extension request is from : ref C; v : T; end;
class extension reply is to : ref C; v : T; end;
class extension C is v : T; valid : boolean; end;
actions to send and receive messages omitted
action extension A by . . . req : request; rep : reply
when . . . req.from = ref(p1) and rep.to = null

and p2.valid
do . . . rep.to := req.from; rep.v := ‘p1.V;

req.from := null; p2.v := ‘p2.V;
end;

end;
layer token passing requires

class C;
action A by p : C is when true do end;

provides
class free token; class reserved token;
class extension free token is at : ref C; end;
class extension reserved token is at : ref C; end;
action reserve token;
actions to pass tokens around omitted
action extension reserve token
by . . . p : C; rt : reserved token; ft : free token
when . . . ft.at = ref(p)
do . . . ft.at := null; rt.at := ref(p); end;
action extension A
by . . . rt : reserved token; ft : free token
when . . . rt.at = ref(p)
do . . . rt.at := null; ft.at := ref(p); end;

end;

Figure 1: An example in Ocsid concrete syntax.

erties of specifications written in the Ocsid language as well
as properties of the language itself.

Acknowledgments
This research was partly supported by Academy of Finland,
project ABESIS grant number 5100005. Discussions of an
early draft of this paper with professor Markku Sakkinen
were extremely helpful in simplifying the formalization.

9. REFERENCES
[1] The AspectJ home page. At URL

http://www.aspectj.org/, 2002.

[2] The DisCo project WWW page. At
http://disco.cs.tut.fi on the World Wide Web,
2001.

[3] R. J. R. Back and R. Kurki-Suonio. Distributed
cooperation with action systems. ACM Transactions

on Programming Languages and Systems,
10(4):513–554, October 1988.

[4] R. J. R. Back and R. Kurki-Suonio. Decentralization
of process nets with a centralized control. Distributed
Computing, (3):73–87, 1989.

[5] K. M. Chandy and L. Lamport. Distributed
snapshots: determining the global state of distributed
systems. ACM Transactions on Computer Systems,
3(1):63–75, 1985.

[6] K. M. Chandy and J. Misra. Parallel Program Design:
A Foundation. Addison-Wesley, 1988.

[7] K. Mani Chandy, Jayadev Misra, and Laura M. Haas.
Distributed deadlock detection. ACM Transactions on
Computer Systems, 1(2):144–156, May 1983.

[8] Edsger W. Dijkstra and C. S. Scholten. Termination
detection for diffusing computations. Information
Processing Letters, 11(1):1–4, August 1980.

[9] H.-M. Järvinen, R. Kurki-Suonio, M. Sakkinen, and
K. Systä. Object-oriented specification of reactive
systems. In Proceedings of the 12th International
Conference on Software Engineering, pages 63–71.
IEEE Computer Society Press, 1990.

[10] Hannu-Matti Järvinen. The design of a specification
language for reactive systems. PhD thesis, Tampere
University of Technology, 1992.

[11] Shmuel Katz. A superimposition control construct for
distributed systems. ACM Transactions on
Programming Languages and Systems, 15(2):337–356,
April 1993.

[12] Pertti Kellomäki. A structural embedding of Ocsid in
PVS. In Richard J. Boulton and Paul B. Jackson,
editors, Theorem Proving in Higher Order Logics,
TPHOLS2001, number 2152 in Lecture Notes in
Computer Science, pages 281–296. Springer Verlag,
2001.

[13] Gregor Kiczales, Jim Hugunin, Mik Kersten, John
Lamping, Cristina Lopes, and William G. Griswold.
Semantics-Based Crosscutting in AspectJ. In
Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering (ICSE 2000), 2000.

[14] Reino Kurki-Suonio. Fundamentals of object-oriented
specification and modeling of collective behaviors. In
H. Kilov and W. Harvey, editors, Object-Oriented
Behavioral Specifications, pages 101–120. Kluwer
Academic Publishers, 1996.

[15] S. Owre, J. M. Rushby, and N. Shankar. PVS: A
prototype verification system. In Deepak Kapur,
editor, 11th International Conference on Automated
Deduction, volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752. Springer Verlag, 1992.

[16] Peri Tarr, Harold Ossher, William Harrison, and
Stanley M. Sutton, Jr. N degrees of separation:
Multi-dimensional separation of concerns. In
Proceedings of the 1999 International Conference on
Software Engineering, pages 107–119. IEEE Computer
Society Press / ACM Press, 1999.

Gary T. Leavens
31

Gary T. Leavens
32

Observers and Assistants:
A Proposal for Modular Aspect-Oriented Reasoning

Curtis Clifton and Gary T. Leavens
Department of Computer Science

Iowa State University
226 Atanasoff Hall

Ames, IA 50011-1040 USA
+1 515 294 1580

{cclifton,leavens}@cs.iastate.edu
ABSTRACT
In general, aspect-oriented programs require a whole-program anal-
ysis to understand the semantics of a single method invocation.
This property can make reasoning difficult, impeding maintenance
efforts, contrary to a stated goal of aspect-oriented programming.
We propose some simple modifications to AspectJ that permit mod-
ular reasoning. This eliminates the need for whole-program analy-
sis and makes code easier to understand and maintain.

1. INTRODUCTION
Much of the work on aspect-oriented programming languages
makes reference to the work of Parnas [23]. That work argues that
the modules into which a system is decomposed should be chosen
to provide benefits in three areas. Parnas writes (p. 1054):

�The benefits expected of modular programming are: (1)
managerial�development time should be shortened because
separate groups would work on each module with little need for
communication; (2) product flexibility�it should be possible to make
drastic changes to one module without a need to change others; (3)
comprehensibility�it should be possible to study the system one
module at a time. The whole system can therefore be better
designed because it is better understood.�

While much has been written about aspect-oriented programming
as it relates to Parnas�s second point, his third point is the primary
concern of this paper. We contend that current aspect-oriented pro-
gramming languages do not provide this third benefit in general,
because they require systems to be studied in their entirety.

After describing and motivating the problem in this introduction, in
Section 2 we propose a simple set of restrictions that, we believe,
would bring these languages much closer to Parnas�s ideal without
any practical loss of expressiveness. This proposal is preliminary
work and is presented in the hopes of generating discussion and
feedback.

We begin by defining a notion of modular reasoning corresponding
to Parnas�s third benefit. Subsequent subsections in this introduc-
tion show how such modular reasoning is possible in the Java Pro-
gramming Language� [1, 9] but problematic in the current version
of AspectJ� [11].

For concreteness, our examples are shown in AspectJ. To support
abstract reasoning we specify the examples using new aspect-ori-
ented extensions to the Java Modeling Language (JML) [13, 14].
We believe our ideas are independent of Java and JML. We also
believe that they are independent of the details of AspectJ and are
generally applicable to the class of aspect-oriented languages.

1.1 Modular Reasoning
Before delving into the details, it is useful to define our terms. Mod-

ular reasoning is the process of understanding a system one module
at a time. A language supports modular reasoning if the actions of a
module M written in that language can be understood based solely
on the code contained in M along with the specifications of any
modules referred to by M. For example, in Java a single compila-
tion unit, typically a file declaring a single top-level type (class or
interface), is a module. The specification of that module is the
behavior of objects of that type. Code is one form of specification.
In a more expressive language, such as Eiffel [19] or Java annotated
with JML, a specification can be given explicitly using pre- and
postconditions, frame axioms, and invariants; such specifications
serve as contracts that allow one to separately reason about the
behavior and correctness of an implementation.

Our interest in modular reasoning in aspect-oriented programming
languages is motivated in part by our earlier work on MultiJava [5,
6]. In that work we were concerned with modular static typecheck-
ing and compilation. This is closely related to the issue of modular
reasoning, because the source code of a method body is a very pre-
cise behavioral specification of that method. A language that sup-
ports modular reasoning can therefore also permit separate
compilation, as well as modular implementations of other tools
(e.g., optimizers, verifiers, and model checkers). Thus, mechanisms
that permit modular reasoning would have many benefits.

1.2 Modular Reasoning in Java
Java without aspect-oriented extensions supports modular reason-
ing. We illustrate this after giving some background on JML.

1.2.1. JML Background
Consider the examples in Figure 1 and Figure 2, modified slightly
from Kiczales, et al. [11] and annotated with JML specifications.
Specification annotations are enclosed in special comments; at-
signs (@) at the beginning of lines in annotations are ignored.

In JML, model fields, like xCtr and yCtr in Figure 1, specify the
abstract state of an object. They are specification-only constructs,
but are treated formally as locations. The keyword instance says
that they are considered to be model fields in all classes that imple-
ment the interface. A represents-clause (with keyword repre-
sents, as in Figure 2) says how the values of model fields are
related to the actual, concrete fields of an object; and a depends-
clause (also in Figure 2) allows such concrete fields to be assigned
to when the model fields that depend on them are assignable [15].

In our JML examples, each method�s specification is written pre-
ceding its signature. We use a desugared form of JML method spec-
ifications in this paper, in which a visibility level, which describes
who can see the specification, is followed by the keyword behav-
ior, which introduces a specification case. A specification case
consists of several clauses. The forall-clause introduces logical

Gary T. Leavens
33

variables that are universally quantified over the specification case.
The requires-clause gives the case�s precondition, the assignable-
clause its frame, the ensures-clause its normal postcondition, and
the signals-clause its exceptional postcondition. Postconditions
may use the keyword \result to refer to the value a method
returns. Consider a call to the method being specified; for all
assignments to the universally quantified variables that make the
precondition true, the call may only mutate locations described by
the frame, and if the call returns normally the method must satisfy
the normal postcondition; if the call throws an exception it must sat-
isfy the exceptional postcondition. For brevity we will omit empty
forall-clauses, requires-clauses with the default predicate true, and
assignable-clauses for which the frame has the default value of
\nothing.

The form of method specifications we use in this paper is not the
one users normally write in JML. But it is useful for our semantic
study because it corresponds directly to the semantics. For example,
JML borrows from Eiffel the ability to refer to the pre-state value of
an expression E in a postcondition by writing \old(E). The desug-
aring we assume here is to bind the pre-state values of each variable
referred to in a \old expression to a fresh logical variable intro-
duced in a forall-clause. JML also permits the use of calls to �pure�
(side-effect free) methods in specifications, but in this paper we do
not consider such calls. Instead we assume that calls to such meth-
ods are interpreted using the logical formulas in their normal post-
condit ions. For example, one would normally wri te the
specification of moveNE in Figure 1 as follows.

/*@ public behavior
@ requires dx >= 0 && dy >= 0;
@ assignable xCtr, yCtr;
@ ensures getX() == \old(getX() + dx)
@ && getY() == \old(getY() + dy)
@ && \result == this;
@ signals (Exception z) false;*/

FigureElement moveNE(int dx, int dy);

1.2.2. Java Examples
Suppose one wanted to write code that manipulates objects of type
FigureElement. One could reason about such objects based solely
on the information contained in Figure 1. That is, one would know
the objects support a method named moveNE that takes two argu-
ments of type int and that both arguments must be non-negative.
Also if this precondition is satisfied, then the method will leave the
object in a state where the values returned by getX and getY were
increased by dx and dy, respectively.

Similarly, suppose one wanted to write code that manipulated
instances of Point. One could reason about these instances based
on Figure 2, along with the modules referred to in that code. To rea-
son about Point�s moveNE method we would need to consider the
specification of the FigureElement module since (in JML) meth-
ods inherit the specifications of the methods that they override and
the method signatures that they implement. But this consideration
of FigureElement is still modular because FigureElement is
explicitly referred to by the clause
implements FigureElement

in the declaration of Point.1 The additional specification for
moveNE in the Point module is combined with the inherited speci-
fication from FigureElement to form the effective specification
(i.e., the complete specification that must be satisfied at run-time)

package foal02;

interface FigureElement {

/*@ model instance int xCtr, yCtr; @*/

/*@ public behavior
@ forall int oldx, oldy;
@ requires oldx == xCtr && oldy == yCtr
@ && dx >= 0 && dy >= 0;
@ assignable xCtr, yCtr;
@ ensures xCtr == oldx + dx
@ && yCtr == oldy + dy
@ && \result == this;
@ signals (Exception z) false; @*/

FigureElement moveNE(int dx, int dy);

/*@ public behavior
@ ensures \result == xCtr;
@ signals (Exception z) false; @*/

/*@ pure @*/ int getX();

/*@ public behavior
@ ensures \result == yCtr;
@ signals (Exception z) false; @*/

/*@ pure @*/ int getY();

}

Figure 1: A Java module declaring an interface, with (unsugared)
JML specifications

package foal02;

class Point implements FigureElement {

private int _x = 0, _y = 0;

/*@ private depends xCtr <- _x;
@ private represents xCtr <- _x; @*/

/*@ private depends yCtr <- _y;
@ private represents yCtr <- _y; @*/

/*@ public behavior
@ assignable xCtr, yCtr;
@ ensures xCtr == x && yCtr == y;
@ signals (Exception z) false; @*/

public Point(int x, int y) {
_x = x; _y = y;

}

public /*@ pure @*/ int getX() { return _x; }

public /*@ pure @*/ int getY() { return _y; }

/*@ public behavior
@ assignable xCtr;
@ ensures xCtr == x;
@ signals (Exception z) false; @*/

public FigureElement setX(int x) {
_x = x;

}

/*@ public behavior
@ assignable yCtr;
@ ensures yCtr == y;
@ signals (Exception z) false; @*/

public FigureElement setY(int y) {
_y = y;

}

/*@ also
@ public behavior
@ requires dx < 0 || dy < 0;
@ ensures false;
@ signals (Exception z)
@ z instanceof IllegalArgException;
@*/

public FigureElement moveNE(int dx, int dy) {
if (dx < 0 || dy < 0) {

throw new IllegalArgException();
}
setX(getX() + dx);
setY(getY() + dy);

}
}

Figure 2: A Java module declaring a class

1. In Java every class is implicitly a subclass of java.lang.Ob-
ject. Thus reasoning in Java also requires that one consider Ob-
ject�s specification. However, because it is common to all
classes we do not consider this implicit reference to be non-mod-
ular.

Gary T. Leavens
34

of Point�s moveNE method. Rules for combining inherited specifi-
cations in JML give the following effective specification for
Point�s moveNE method [24]:

public behavior
forall int oldx, oldy;
requires oldx == xCtr && oldy == yCtr

&& dx >= 0 && dy >= 0;
assignable xCtr, yCtr;
ensures xCtr == oldx + dx

&& yCtr == oldy + dy
&& \result == this;

signals (Exception z) false;
also
public behavior

requires dx < 0 || dy < 0;
ensures false;
signals (Exception z)

z instanceof IllegalArgException;

JML�s also keyword combines specification cases; it says that
when the precondition of one of the combined cases holds, then the
rest of that specification case must be satisfied. So, in addition to
the specification inherited from FigureElement, this effective
specification says that when a client fails to satisfy the original pre-
condition the implementation must throw an IllegalArgExcep-
tion. (This inheritance enforces behavioral subtyping [7, 18].)

1.3 Non-modular Reasoning in AspectJ
Next we show that modular reasoning is not a general property of
AspectJ by considering an aspect-oriented extension to our previ-
ous example. Figure 3 gives an aspect, PointMoveChecking, that
modifies the behavior of Point�s moveNE method. Point-
MoveChecking declares a piece of before-advice, or code to be
executed before traversing a join point into a method body. A join
point is an arc in the dynamic call graph of a program.2 The before-
advice in PointMoveChecking is applicable to each join point
where a target object of type Point receives a call to the method
with signature FigureElement moveNE(int,int). The target
and args keywords are used to give names to the target object and
arguments of the method call. (AspectJ also has after-advice, exe-
cuted after traversing a join point out of a method body, and
around-advice, which applies to the join points into and out of a
method body.)

The before-advice in PointMoveChecking throws an exception if
the absolute value of both arguments in a call to Point�s moveNE
method is less than 0. In AspectJ this advice is applied by the com-
piler without explicit reference to the aspect from either the Point
module or a client module; so by definition, modular reasoning
about the Point module or a client module does not consider the
PointMoveChecking aspect. Thus, modular reasoning has no way

to detect that the effective specification of the moveNE method
should be changed when the Point module and Point-
MoveChecking are compiled together. However, when they are
compiled together, then intuitively the behavior of Point�s moveNE
method satisfies the following specification3.

public behavior
forall int oldx, oldy;
requires oldx == xCtr && oldy == yCtr

&& dx >= 0 && dy >= 0;
assignable xCtr, yCtr;
ensures xCtr == oldx + dx

&& yCtr == oldy + dy
&& \result == this;

signals (Exception z) false;
also
public behavior

requires dx < 0 || dy < 0;
ensures false;
signals (Exception z)

z instanceof IllegalArgException;
also
public behavior

requires dx < 0 && dy < 0;
ensures false;
signals (Exception z)

z instanceof IllegalArgException
&& z.getMessage().equals(MOVE_SW);

Unfortunately, this behavior is only available to the programmer via
non-modular reasoning. That is, in AspectJ the programmer must
potentially consider every aspect that refers to the Point class in
order to reason about the Point module. So, in general, a program-
mer cannot �study the system one module at a time� [23].

1.4 Problem Summary
In a paper from ECOOP 2001, arguing for aspect-oriented program-
ming, Kiczales, et al. state [12] (p. 327):

�We would like the modularity of a system to reflect the way �we want
to think about it� rather than the way the language or other tools force
us to think about it.�

However, we have seen that the lack of support for modular reason-
ing can sometimes prevent us from thinking about a system �the
way we want to think about it�. In AspectJ, tool support is provided
to compensate for this lack of modularity. Such tools perform the
necessary whole program analysis to direct the programmer to the
applicable aspects that affect pieces of a module�s source code.
Other tools for processing AspectJ source code (e.g., typecheckers,
compilers, and optimizers) also require a whole program analysis.

We seek a small set of modifications to AspectJ that obviate the
need for this whole program analysis either by the programmer or
by supporting tools.

The remainder of this paper is organized as follows. Section 2 gives
our proposal for modular reasoning. Section 3 evaluates our pro-
posal. Section 4 discusses some limitations of our proposal and
considers separate compilation. Section 5 concludes.

2. A PROPOSAL
We have shown that AspectJ in general does not support modular
reasoning; in general the effective specification of a module can
only be determined by a whole-program analysis. In this section we
propose modifying AspectJ by categorizing aspects into two sorts:
assistants and observers. �Observers� are limited in that they may
not change the effective specifications of the modules they apply to,
�assistants� are not limited in this way. Since observers do not
change effective specifications, they preserve modular reasoning
even when applied without explicit reference by the modules they

2. Join points in AspectJ are actually more general than what we de-
scribe. For example, join points can refer to field references and
exception handlers [2]. We leave generalization for future work.

package foal02;

aspect PointMoveChecking {

private final String MOVE_SW =
�did you mean to call moveSW()?�;

before(Point p, int dx, int dy):
target(p) && args(dx, dy)

&& call(FigureElement moveNE(int,int))
{

if (dx < 0 && dy < 0)
throw new

IllegalArgException(MOVE_SW);
}

}

Figure 3: An AspectJ module providing advice for Point

3. We will formalize this intuition in Section 2.

Gary T. Leavens
35

observe. Hence observers preserve most of the flexibility of the cur-
rent version of AspectJ. Because assistants can change the effective
specification of the modules to which they apply, to maintain mod-
ular reasoning they can only be applied in modules that explicitly
reference them. Assistants also require subtle reasoning techniques.

2.1 Assistants
We call aspects that can change the effective specification of a mod-
ule assistants. The PointMoveChecking aspect of Figure 3 is an
assistant. The term �assistant� is intended to connote a participatory
role for these aspects.

What information is needed to modularly reason about behavior
when assistants are present? Quite simply, a module must explicitly
name those assistants that may change its effective specification or
the effective specifications of modules that it uses. We say that a
module accepts assistance when it names the assistants that are
allowed to change its effective specification or the effective specifi-
cations of modules that it uses. Assistance may be accepted by:

� the module to which the assistance applies, or
� a client of that module.
AspectJ does not currently include syntax for explicitly accepting
assistance. We propose a simple syntax extension for this purpose:

accept TypeName;
where TypeName must be a canonical name of an assistant, i.e., a
fully qualified name of the package containing the assistant, fol-
lowed by a �dot� (.), followed by the assistant�s identifier. Multiple
accept-clauses may appear in a single module, following any
import-clauses. For example, the Point module could accept the
PointMoveChecking assistance by declaring:
accept foal02.PointMoveChecking;

Since Point (the module implementing the moveNE method)
accepts PointMoveChecking�s assistance, this assistance is
applied to every call to Point�s moveNE method, regardless of the
client making the call.

On the other hand, if PointMoveChecking�s assistance was
accepted by a client module, then that assistance would only be
applied to calls from that client to Point�s moveNE method. Other
clients that did not accept the assistance would not have it applied
to their calls.

Figure 4 depicts the control flow of an invocation of moveNE with
PointMoveChecking�s assistance. This depiction shows that there
are multiple paths by which control may return to the client code,
depending on the values of the parameters. The two arrows from
the implementation of moveNE back to the client code correspond to
the two postconditions (normal and exceptional) in the method�s
specification. Dashed lines indicate exceptional control flow.

2.1.1. Composing Advice Specifications
When a client invokes a method for which either the client or

implementation module has accepted assistance, the behavior of
that invocation is based on the sequential composition of the code
along a particular control flow path. We can reason abstractly about
the possible behavior of the invocation by considering specifica-
tions for the method and the assistants. In this subsection we extend
JML to specify advice in AspectJ and we show how to modularly
reason about the effective specification of a method in the presence
of accepted assistance.

A specification language for an aspect-oriented programming lan-
guage must take possible control flow paths into account. Figure 5
gives another version of the PointMoveChecking assistant that
adds a specification for the before-advice. In before-advice an
ensures-clause gives a normal postcondition, which must hold
before control passes to the advised method (or any other applicable
advice). We use the ensures-clause in this way since passing control
to the advised method is the �normal� behavior for before-advice.
So the specification of the before-advice in Figure 5 says that if the
advice is entered with dx > 0 or dy > 0, then control flow must
pass to the advised method. The implicit frame axiom for this case
says that no relevant locations may be assigned when this precondi-
tion holds.

The second specification case in Figure 5 says that if the advice is
entered with dx < 0 and dy < 0 then control flow must return to
the caller by throwing an IllegalArgException whose message
is �did you mean to call moveSW()?�.

When reasoning about a call to Point�s moveNE method from the
client�s perspective we would like to use an effective specification
that abstracts away the details of the control flow and intermediate

// client code
accept
PointMoveChecking;

Point p;
int dx, dy;
...
p.moveNE(dx, dy);
...

PointMoveChecking�s

Points�s moveNE
implementation

before-advice

if dx < 0 && dy < 0

if dx <= 100 && dy <= 100

Figure 4: A depiction of the possible control flows of invocations of moveNE given that the client module
accepts PointMoveChecking�s assistance (dashed lines represent exceptional control flow)

if dx >= 0 && dy >= 0
if dx < 0 || dy < 0

package foal02;

aspect PointMoveChecking {

private final String MOVE_SW =
�did you mean to call moveSW()?�;

/*@ public behavior
@ requires dx > 0 || dy > 100;
@ ensures true;
@ signals (Exception z) false;
@ also
@ public behavior
@ requires dx < 0 && dy < 0;
@ ensures false;
@ signals (Exception z)
@ z instanceof IllegalArgException
@ && z.getMessage().equals(MOVE_SW); @*/

before(Point p, int dx, int dy):
target(p) && args(dx, dy)

&& call(FigureElement moveNE(int,int))
{

if (dx < 0 && dy < 0)
throw new

IllegalArgException(MOVE_SW);
}

}

Figure 5: Assistant from Figure 3 with specification added

Gary T. Leavens
36

state transformations. That is, the effective specification from the
client�s perspective should just concern the preconditions as control
flow leaves the client and the postconditions as control flow returns
to the client, along with the relevant frame axioms.

Just as the effective behavior along any control flow path is the
sequential composition of the code along that path, the effective
specification along any control flow path is formed by a kind of
sequential composition of the specifications along that path. When
a set of paths are in parallel, as in our example, then the effective
specification of the set is a kind of parallel composition of the paral-
lel paths� specifications. To formalize these notions we will begin
by just considering before-advice and after-returning advice.4 Then
we will use the model to determine the effective specification of
moveNE in our running example. Later we will sketch extensions to
our formal model to accommodate around-advice.

We present our model in two stages. We first describe how to con-
struct a specification composition graph, from the specifications of
the implementation module and those of any assistants accepted by
that module or the client module. We then describe how the graph is
used to determine the effective specification of the invocation.

Constructing a Specification Composition Graph
A specification composition graph is a graph whose vertices repre-
sent a single method specification, the specifications of all advice
applicable to the method (and accepted by the method�s implemen-
tation module or the client module), and the prestate and poststate
from the client�s view. The specification composition graph is anal-
ogous to the control flow graph for the corresponding code. The
specification composition graph is used to determine the possible
paths through the advice and method specifications (and hence the
code if the implementation is correct). These paths are used to cal-
culate the effective specification.

In general a module may accept assistance from multiple assistants
and both a client and an implementation module may accept assis-
tance. The specification composition graph is formed respecting the
following order:

1. Apply any before-advice accepted by the client module in the
order that it is accepted.

2. Apply any before-advice accepted by the implementation mod-
ule in the order that it is accepted.

3. Execute the method body.
4. Apply any after-advice accepted by the implementation in the

reverse order from which it is accepted.
5. Apply any after-advice accepted by the client module in the

reverse order from which it is accepted.
This ordering ensures, for example, that the first assistance
accepted by the client is �nearest� to the client and that the last
assistance accepted by the implementation is nearest to the imple-
mentation on any path.

We will denote this ordering of before-advice, the method, and
after-advice by the sequence where through

 represent the before-advice, represents the method, and
 through represents the after-advice.

(For simplicity and modularity we have decided for the present to
confine acceptance of assistance to the module in which it is explic-
itly accepted. For example, if ColorPoint is a subclass of Point,
assistance accepted by Point is not automatically applied to invo-
cations of methods declared in ColorPoint. On the other hand, if
for a particular method ColorPoint does not override Point�s
implementation, then the inherited method carries with it the assis-
tance accepted in the Point module. This approach also provides
flexibility since the programmer can always add an accept-clause to
the subclass module or override a superclass method (gaining assis-
tance in the first case and �shadowing� assistance acceptance in the
second). Similar considerations apply for assistance accepted by a
superclass module of a client class. Also for simplicity we do not
allow interfaces to accept assistance. Future work may reevaluate
these decisions.)

Figure 6 gives the specification composition graph for Point�s
moveNE method with assistance from PointMoveChecking. It is
helpful to refer to this figure while considering the graph construc-
tion algorithm.

Formally, a specification composition graph is a directed acyclic
graph, , where is
the set of vertices and E is the set of edges.

As Figure 6 shows, each vertex in V, except start and end, is anno-
tated with the signature of the corresponding method or advice.
This information is used reason about the passing of parameters.

To define the edges of the specification composition graph, we first
d e f in e a fu n c t i o n n e x t t ha t o r de r s t he ve r t i c es . Le t

, fo r a l l , , and
.

We also need some notation that will be used to label edges in the
graph with information from the advice and method specifications.
We will use to represent the set of all possible program states,
i.e., the set of all legal assignments of values to locations. For each

 in V, let its specification, , be represented by a set of tuples,
, where

is the number of cases in the specification and for all k:, ,
 represents the kth specification case, in which:

� represents its set of quantified variables (from forall),
along with the implicitly bound \result variable for methods
and after-advice and any variables bound in signals-clauses.

� : represents its precondition (requires),
� is a set of variables that represents its frame (assignable),
� : represents its normal postcondition (ensures),

and
� : represents its exceptional postcondition (sig-

nals).5

Each edge in E is represented by a tuple, , with

� indicating normal () or exceptional () control
flow,

� x and y being the beginning and ending vertices of the edge,
� being the kth specification case (as above), and
� being the state of the program when control flow

traverses that edge.
4. AspectJ supports three kinds of after-advice. After-returning ad-

vice is only applicable when the advised method exits normally.
After-throwing advice is only applicable when the advised meth-
od exits by throwing an exception. Regular after-advice, without
a returning- or throwing-clause, is applicable in either case. To
avoid complications in this preliminary proposal we are only con-
sidering after-returning advice. It is a simple matter to modify the
edge construction algorithm, presented below, to accommodate
the other kinds of after-advice.

a1 a2 … an, , ,〈 〉 a1
am 1� am
am 1+ an

5. To avoid unnecessary additional complexity we assume each
specification in this representation already includes the specifica-
tions inherited from its supertypes. Also, typically postconditions
are modeled as relations on two states, but we are assuming a
form for postconditions that cannot refer to pre-state values.

G V E,〈 〉= V start end,{ } ai 1 i n≤ ≤{ }∪=

next start() a1= 1 i≤ n-1≤ next ai() ai 1+=
next an() end=

Σ

ai S ai()
S ai() Sk ai() Sk ai() Qk r, k fk ek sk, , ,〈 〉= 1 k pi≤ ≤,{ }= pi

1 k≤ pi≤
Sk ai()

Qk

rk Σ Bool→
fk
ek Σ Bool→

sk Σ Bool→

ρ x y Sk x() σ, , , ,〈 〉

ρ ν ε,{ }∈ ν ε

Sk x()
σ Σ∈

Gary T. Leavens
37

To model all the possible normal and exceptional control paths,
construct E as follows:

1. Let J be an index set of distinct indexes. These will be used to
label the state information in the edge tuples.

2. Add a directed edge to E, where
 is an unused index. The empty specification ��� is not

used when computing the effective specification.
3. Let x:= .
4. Repeat until :

4.1. For each specification case in , if ek is not
false, add a normal edge to E
and if sk is not false, add an exceptional edge

 to E, where are unused indi-
ces.

4.2. Let x:= .
Figure 6 shows the specification composition graph generated by
this algorithm when Point accepts assistance from Point-
MoveChecking;

Composing Specifications Along A Path
The specification composition graph, G, contains all the informa-
tion needed to calculate the effective specification of a method
invocation. We first describe how to compose specifications along
any single path in G.

Consider a unique path from start to end in the graph. Because of
exceptional return edges this path may not visit every node in the
graph. For simplicity of notation we will sequentially renumber the
states and for each we will write for the specification case
from used on this path. Thus, the path is:

〈
〉,

where there are q+1 edges on the path. (For a path without excep-
tional edges , otherwise throws the exception.)

To prevent capture of the locally bound variables when composing
the specifications, we α-convert the specification cases and related
method and advice signatures so that all bound variable names are

unique. We reserve the method�s formal parameter names for
prestate values, so we must α-convert the signature and out-edges
of the method vertex. We also reserve the \result keyword for the
poststate of the effective specification and so all instances of \result
in the graph must be α-converted. We will use a fresh variable in
signals-clauses of the effective specification. Figure 7 shows the
normal control flow path through the specification control graph of
Figure 6, after α-conversion.

If a given path is traversed in a program execution, then it must be
the case that all the specifications along the path hold. We use this
to reason inductively about the path�s effective specification.

If control flow enters vertex then holds and the formals
in the vertex�s signature must be bound to the actual arguments. We
use the predicate to model the binding of actual argu-
ments, results, or exceptions from vertex x to parameters in the sig-
nature of vertex y. This binding is according to the parameter
passing semantics of AspectJ and Java, a full definition of which is
beyond the scope of this paper. As examples, here are the values of
bind for the path in Figure 7, respecting the α-conversion shown
there:

� = (p1==this && dx1==dx && dy1==dy)
� = (this==p1 && dx2==dx1 && dy2==dy1)
� = (this==this && dx==dx2 && dy==dy2 &&

\result==\result2)

If control flow leaves vertex on edge then the
implementation code corresponding to that vertex must ensure that
the set of possibly mutated locations is and that if then

 holds else if then holds.

I f co n t ro l f l o w ex i t s v e r t e x on a n o rm a l e dg e
, , then the set of possibly mutated

locations is and the following predicate holds:

 ∧

If control flow exits vertex on an exceptional edge, then ,
and the following predicate holds:

Figure 6: The specification composition graph for Point�s moveNE method with assistance accepted from PointMoveChecking
Vertex a1 corresponds to PointMoveChecking�s advice specification, vertex a2 to Point�s moveNE specification; edges are labeled

with the specification case of the start vertex and the name of the state; exceptional edges are shown with dashed lines.

start

end

�,σ0 〈Q=∅,r=dx>0 || dy>0,f=∅,e=true,s=false〉, σ1

〈Q={z},r=dx<0 && dy<0,f=∅,e=false,
s=z instanceof IllegalArgException && z.getMessage().equals(MOVE_SW)〉, σ3

〈Q={z},r=dx<0 || dy<0,f=∅,e=false,
s=z instanceof IllegalArgException〉, σ4

a1
before(Point p, int dx, int dy):
target(p) && args(dx, dy)
&& call(FigureElement moveNE(int,int))

a2
public FigureElement

Point.moveNE(int dx, int dy)

〈Q={oldX,oldY,\result},r=oldX==xCtr && oldY==yCtr && dx>=0 && dy>=0,
f={xCtr,yCtr},e=xCtr==oldX+dx && yCtr==oldY+dy && \result==this,s=false〉, σ2

ν start next start() � σj, , , ,〈 〉
j J∈

next start()
x end=

Sk x() S x()
ν x next x() Sk x() σi, , , ,〈 〉

ε x end Sk x() σj, , , ,〈 〉 i j, J∈

next x()

ai Si
S ai()

ν s, tart a1 � σ0, , ,〈 〉 ρ a1 a2 S1 σ1, , , ,〈 〉 …, ,
… ρ aq end Sq σq, , , ,〈 〉,

q n= aq

a1 r1 σ0()

bind x y,()

bind start a1,()
bind a1 a2,()
bind a2 end,()

a1 ρ a, 1 y S1 σ1, , ,〈 〉

f1 ρ ν=
e1 σ1() ρ ε= s1 σ1()

ai
ν a, i ai 1+ Si σi, , ,〈 〉 1 i q≤ ≤

f1 …∪ fi∪

bind start a1,() … bind ai 1� ai,()∧∧
r1 σ0() … ri σi-1()∧ ∧ e1 σ1() … ei σi()∧ ∧∧

ai i q=

Gary T. Leavens
38

 ∧

This predicate involves most of the normal postconditions; these
just record what happens along the path before the last edge, which
is the only one that throws an exception.

To reason about the effective specification from the client�s per-
spective, we must eliminate the intermediate states from these pred-
icates. One way to do this would be to quantify over the states, like:

(∧
)

However, in JML entire states are not directly expressible, so this
idea has to be used indirectly by quantifying over intermediate val-
ues of each of the variables used in the predicates. Figure 8 gives
the general form of the effective specification along any path. The
first line of this general form is calculated by this indirect quantifi-
cation over intermediate values. Let stand for all the free vari-
ables6 (i.e., field names) in specification cases on a path, and let
be their corresponding types. We subscript the names in to repre-
sent the value of each named variable in the corresponding state.
For example, yCtr2 is a variable whose value is that of the field
yCtr in state . Similarly, we write to represent the vector of
all i-subscripted variables, i.e., the vector of values in state of all
variables named in .

The second line of Figure 8 gives the explicitly quantified variables
of the original specification cases, along with the α-converted
parameters from the advice and method signatures.

The requires-, ensures-, and signals-clauses are based on the predi-
cates derived above, with appropriate substitution for the intermedi-
ate values of the variables. That is, we write for the
precondition ri where for each variable , each free occurrence
of y is changed to yi-1. We use the same kind of abbreviation for

.

The general form of the effective specification also must equate the
prestate to and the poststate to and include the information
provided by the frame axioms. We write for the predi-
cate that asserts the equality of the variables in and , using ==
or .equals as appropriate for their types, and for
the predicate that says that variables not listed in the frame f are

unchanged; this is defined conceptually as follows (although this
quantification is not expressible directly in JML, we can write the
equivalent set of conjunctions in any particular case).

Taken together, we arrive at a single specification case for a single
path through the specification composition graph, as Figure 8
shows. Since each possible parallel path is represented by such a
specification case, we simply conjoin (using JML�s also operator)
the effective specifications for each path to form the effective spec-
ification of the entire invocation (the �parallel composition� alluded
to earlier).

Finding the Effective Specification
We can use this formal model to find the effective specification of
Point�s moveNE method with the PointMoveChecking assistant.

Consider the path shown in Figure 7. On this path, the free variables
are xCtr and yCtr. Counting the initial state, we need to quantify
over 3 states. The effective specification is as shown in Figure 9.
Lines from Figure 8 to Figure 9 relate the terms in the general form
to the terms in the example. This example specification can be sim-
plified to the following by using transitivity of equality (within
clauses), the rule that false is the zero of conjunction, and drop-
ping vacuous quantifiers:

forall int oldx, oldy;
requires dx >= 0 && dy <= 100

&& oldx == xCtr && oldy == yCtr;
assignable xCtr, yCtr;
ensures xCtr == oldx + dx

&& yCtr == oldy + dy
&& \result == this;

signals (Exception z) false;

This is exactly the body of the first specification case arrived at
intuitively in Section 1.3. We can analyze the other paths in the
graph to calculate the other specification cases. Combining them
with also yields the full effective specification.

2.1.2. Composition with Around-Advice
Figure 10 gives another assistant, called PointMoveFixing. It uses
around-advice to change moveNE to accommodate negative argu-
ments. Around-advice in AspectJ can execute both before and after
the execution of the advised method�s body. Unlike before-advice,
around-advice can also skip the execution of the advised method�s
body without throwing an exception. The code (as opposed to the
specification) in the body of the advice in Figure 10 illustrates these
ideas. If dx and dy are both non-negative then the statement6. Though not shown in this paper, JML provides constructs for lo-

cally binding names in expressions, such as quantifiers.

Figure 7: The normal control flow path through the specification composition graph of Figure 6, after α-conversion

start

end

�,σ0 〈Q=∅,r=dx1>0 || dy1>0,f=∅,e=true,s=false〉, σ1

a1
before(Point p1, int dx1, int dy1):
target(p1) && args(dx1, dy1)
&& call(FigureElement moveNE(int,int))

a2
public FigureElement

Point.moveNE(int dx2, int dy2)

〈Q={oldX,oldY,\result2},r=oldX==xCtr && oldY==yCtr && dx2>=0 && dy2>=0,
f={xCtr,yCtr},e=xCtr==oldX+dx2 && yCtr==oldY+dy2 && \result2==this,s=false〉, σ2

bind start a1,() … bind aq 1� aq,()∧∧
r1 σ0() … rq σq-1()∧ ∧ e1 σ1() … eq-1 σq-1() sq σq()∧ ∧ ∧∧

σ1 … σi 1�, ,∀ bind start a1,() … bind aq 1� aq,()∧∧•
r1 σ0() … rq σq-1()∧ ∧ e1 σ1() … eq-1 σq-1() sq σq()∧ ∧ ∧∧

y
T

y

σ2 yi
σi

y

ri y:=yi-1[]
y y∈

ei y:=yi[]

σ0 σq
equal yi yj,()

yi yj
notmod f y, i j,,()

notmod f y, i j,,() y y∈ y f∉ equal⇒• yi yj,()∀()=

Gary T. Leavens
39

proceed(p,dx,dy);

causes control flow to pass to the original moveNE method body
with the same arguments as the original invocation. Otherwise, in
the else-clause the advice calls the setX and setY methods on
Point directly, avoiding the IllegalArgException that would be
thrown if execution continued into moveNE. After the if-statement
an acknowledgment message is printed to System.err.

Figure 10 also includes a JML specification of the around-advice.
As with methods, before-advice, and after-advice, the specification
of around advice consists of one or more specification cases joined
with the keyword also. To specify the additional control flow pos-
sible via proceed in around-advice, we propose adding the AspectJ
proceed-clause to JML as a mechanism for forming compound
specification cases. In a specification the proceed-clause joins a
specification case called the before-part, and a specification case
called the after-part. The before-part specifies the code executed
before proceeding to the original method (and any additional advice
if present). The after-part specifies the code executed after returning
from the original method (and advice).

The first specification case in Figure 10 (from the beginning up to
the also) is such a compound specification consisting of before-
and after-parts. The case is applicable when dx and dy are both
non-negative, as specified by the requires-clause. In general an
ensures-clause in the before-part says that if control flow proceeds

to the original method body then the assistant must ensure that the
clause�s predicate holds. In the example, ensures true indicates
that control flow can always proceed in this manner. The proceed-
clause itself specifies (possibly abstractly) the arguments that will
be passed to the original method. A requires-clause in the after-part
gives a predicate that can be assumed by the implementation of the
after-part. The remainder of the after-part has the usual semantics.

The second specification case, following the also keyword in Fig-
ure 10, is applicable when at least one of the arguments is negative.
The absence of a proceed-clause in this specification case says that
control never proceeds to the original method body when this case�s
precondition is met. The assignable- and ensures-clauses say that
control returns to the original client with possible mutation to p�s
xCtr and yCtr model fields and the system error stream, and with
the given postcondition predicate satisfied.

To reason about effective specifications in the presence of around-
advice we would need to extend our formal model. The extension
would handle the additional control flow information provided by
the proceed-clause. We envision encoding the specification of
around-advice with multiple vertices in the specification composi-
tion graph. For each piece of around-advice one common vertex
would represent the before-parts of all the cases. Separate vertices,
one for each case, would represent the after-parts. The edge cre-
ation algorithm would require extensions to connect the vertices

forall ; ...; forall ;
forall ;...; forall ;

requires /* σ0 equals prestate */
/* and parameter passing completed*/
&& bind(start,a0) &&...&& bind(aq-2,aq-1)
/* and preceding postconditions and frames satisfied */
&& &&

&&...&& &&

/* and all preconditions satisfied */
&& && ... && ;

assignable ;

ensures /* parameter passing completed*/
bind(start,a0) &&...&& bind(aq-1,aq)
/* all postconditions and frames satisfied */
&& &&

&&...&& &&

&& &&

/* and poststate equals σq */

&& ;

signals /* z is fresh */ (Exception z)
/* parameter passing completed*/
bind(start,a0) &&...&& bind(aq-1,aq)
/* all preceding postconditions and frames satisfied */

 &&

&&...&& &&

/* and signals predicate and frame satisfied */
&& &&

/* and poststate equals σq */

&& ;

Figure 8: General form of the composed specification for a path

forall int xCtr0, yCtr0; forall int xCtr1, yCtr1;
forall int xCtr2, yCtr2;

forall int oldx, oldy, \result2;

requires (xCtr == xCtr0 && yCtr == yCtr0)

&& (p1==this && dx1==dx && dy1==dy)
&& (this==p1 && dx2==dx1 && dy2==dy1)
&& (true && xCtr0 == xCtr1 && yCtr0 == yCtr1)

&& (dx1>0 || dy1>0)
&& (oldx == xCtr1 && oldy == yCtr1 &&

dx2 >= 0 && dy2 >= 0);

assignable xCtr, yCtr;

ensures (p1==this && dx1==dx && dy1==dy)
&& (this==p1 && dx2==dx1 && dy2==dy1)
&& (this==this && dx==dx2 && dy==dy2 &&

\result==\result2)
&& (true && xCtr0 == xCtr1 && yCtr0 == yCtr1)
&& (xCtr2==oldX+dx2 && yCtr2==oldY+dy2 &&

\result2 == this)

&& (xCtr2 == xCtr && yCtr2 == yCtr);

signals (Exception z)
(p1==this && dx1==dx && dy1==dy)
&& (this==p1 && dx2==dx1 && dy2==dy1)
&& (this==this && dx==dx2 && dy==dy2 &&

\result==\result2)

&& (true && xCtr0 == xCtr1 && yCtr0 == yCtr1)

&& (false)

&& (xCtr2 == xCtr && yCtr2 == yCtr);

Figure 9: Composed specification for the path in Figure 7
Lines between this and Figure 8 show the correspondence of terms.

T y0 T yq 1�
Q1 Qq

equal y y0,()

e1 y:=y1[] notmod f1 y, 0 1,,()

eq 1� y:=yq 1�[] notmod fq 1� y, q 2� q 1�,,()

r1 y:=y0[] rq y:=yq 1�[]

f1 …∪ fi∪

e1 y:=y1[] notmod f1 y, 0 1,,()

eq 1� y:=yq 1�[] notmod fq 1� y, q 2� q 1�,,()

eq y:=yq[] notmod fq y, q 1� q,,()

equal yq y,()

e1 y:=y2[] notmod f1 y, 0 1,,()

eq 1� y:=yq 1�[] notmod fq 1� y, q 2� q 1�,,()

sq y:=yq[] notmod fq y, q 1� q,,()

equal yq y,()

Gary T. Leavens
40

appropriately. The calculation of the composed specification for a
given path in the graph would have to account for the expressions in
proceed-clauses of the specification.

2.1.3. Summary
We have argued that modular reasoning in aspect-oriented program-
ming languages can be achieved for assistants if we require mod-
ules to explicitly accept assistance. We have given a formal model
for advice composition that allows us to determine the effective
specification of a method. This model also illustrates the reasoning
a programmer must undertake even in the absence of formal speci-
fications.

But what impact does our requirement that assistants be explicitly
accepted have on the expressiveness of the language? On the one
hand, assistants are very expressive in that they are given free rein
to change the effective specifications of modules that they assist.
On the other hand, requiring assistance to be explicitly accepted
dramatically curtails the applicability of assistants. To wit, a com-
mon example of the use of aspects is to add tracing capability to an
existing program. In a language that just supported explicitly
accepted assistance, a programmer would need to make an invasive
change to the source code of every module containing a method to
be traced (or alternatively, every module calling a method to be
traced). We would have gained support for modular reasoning at the
expense of modular editing.

2.2 Observers
To resolve this situation we propose that an aspect-oriented pro-
gramming language should also support a category of aspects that
we call observers. An observer is an aspect that does not change the
effective specification of any other module. Equivalently, an
observer may only mutate the state that it owns (in the sense of alias
control systems like [20, 21]). It also seems reasonable to allow
observers to change accessible global state as well, since a Java
module cannot rely on that state not changing during an invocation

(modulo synchronization mechanisms). The term �observer� is
intended to connote the hands-off role of these aspects. We use the
term observation to discuss the �advice� in an observer.

For example, Figure 11 gives an observer called PointMoveTrac-
ing. The observer modifier declares that this aspect must not
change the effective specification of any other module. This
observer mutates its own state by appending to myBuffer and
mutates the global state by printing to System.err. However, it
does not change the effective pre- or postconditions of Point�s
moveNE method. PointMoveTracing merely observes the argu-
ments to the moveNE method and reports them. The arguments are
passed on to the method unchanged and the method�s results are
unchanged.

In addition to cross-cutting concerns like tracing, it seems that
observers should be useful for logging and as the observer in the
observer design pattern [8] (pp. 293�303).

Because observers do not change the effective specifications of the
methods they observe, code outside an existing program can apply
an observer to any join point in the original program without loss of
modular reasoning. In reasoning about the client and implementa-
tion code for a method a maintainer of the original program does
not need any information from the observer.

2.2.1. Verifying Observerness
The primary challenge of implementing this part of our proposal
lies in determining whether a given aspect is really an observer. We
envision a static analysis that conservatively verifies this. This anal-
ysis is closely related to the problem of verifying frame axioms. In
fact we can think of observers as having an implicit frame axiom
that prevents modification of locations that are relevant to the
receiver and arguments of the observed method.

The main difficulty with statically verifying this lack of relevant
side effects is how to deal with aliasing. For example, suppose we
have a logging observer that uses an array to track the elements
added to some Set object. Suppose Set uses an array for its repre-
sentation. If the observer�s array and the Set�s array are aliased, we
might end up with an element being added to the array twice�pos-
sibly violating Set�s invariant and changing its effective specifica-
tion. There is a substantial body of work on alias control that may
be useful in attacking this [20, 21].

3. EVALUATION
This section briefly evaluates the practical consequences of our pro-
posal. Because we have not yet had the opportunity to develop
applications using our proposed restrictions, our evaluation is lim-
ited to a review of existing programs. We first consider the aspect-
oriented programming guidelines suggested in the ATLAS case
study [10]. Then we survey the example aspects from the AspectJ
Programmers Guide [2].

package foal02;

aspect PointMoveFixing {

/*@ public behavior
@ requires dx >= 0 && dy >= 0;
@ ensures true;
@ proceed(p,dx,dy);
@ requires true;
@ assignable System.err.value;
@ ensures true;
@ signals (Exception z) false;
@ also
@ public behavior
@ forall int oldx, oldy;
@ requires (dx < 0 || dy < 0)
@ && oldx == xCtr && oldy == yCtr;
@ assignable p.xCtr, p.yCtr,
@ System.err.value;
@ ensures p.xCtr == oldx + dx
@ && p.yCtr == oldy+ dy;
@ signals (Exception z) false;
@*/

FigureElement around(Point p, int dx, int dy):
target(p) && args(dx, dy)
&& call(FigureElement moveNE(int,int))

{
if (dx >= 0 && dy >= 0) {

proceed(p,dx,dy);
} else {

p.setX(p.getX() + dx);
p.setY(p.getY() + dy);

}
System.err.println(�OK�);

}
}

Figure 10: An AspectJ module giving around-advice to Point

package foal02;

observer aspect PointMoveTracing {
private StringBuffer myBuffer =

new StringBuffer();

before(Point p, int dx, int dy):
target(p) && args(dx, dy)

&& call(FigureElement moveNE(int,int))
{

String message = "Entering Point.moveNE" +
"(" + dx + "," + dy + ")" + "for " + p;

myBuffer.append(message);
System.err.println(message);

}
}

Figure 11: An AspectJ module for tracing method calls.

Gary T. Leavens
41

3.1 ATLAS Case Study
In the ATLAS case study [10], the authors proposed several guide-
lines to make working with aspects easier. These were proposed
since they had discovered that (p. 346):

�[t]he extra flexibility provided by aspects is not always an advantage.
If too much functionality is introduced from an aspect it may be
difficult for the next developer�or the same developer a few months
later�to read through and understand the code base.�

One of Kersten and Murphy�s suggestions is to limit coupling
between aspects and classes to promote reuse. Specifically, they
suggest that one should avoid the case where an aspect explicitly
references a class and that class explicitly references the aspect,
since then the class and aspect are mutually dependent. Such
mutual dependencies prevent independent reuse. Is this suggestion
problematic for our requirement that modules explicitly accept
assistance? No, because the suggestion is concerned with mutual
dependence between aspects and classes. Suppose an implementa-
tion module, M, accepts assistance from an assistant, A, and A
changes M�s effective specification. This says nothing about
whether M and A are mutually dependent. If A explicitly references
M the modules are mutually dependent. However, if A only applies
to M because of wildcard-based pattern matching and does not
explicitly reference M, then the modules are not mutually depen-
dent. Next, suppose a client module, C, accepts assistance from an
assistant, , and only changes the effective specification of
modules referenced by C, but does not change C�s effective specifi-
cation. In this case and C are not mutually dependent. In sum,
programmers can reduce mutual dependency by having clients
accept assistance or by limiting explicit references to classes from
assistants.

Kersten and Murphy also suggest using aspects as factories by hav-
ing them provide only after-returning advice on constructors. This
after-returning advice mutates the state of every object instantiated
to change its default behavior. Limiting the aspects in this way
restricts the scope of object�aspect interaction. In our proposal a
simple assistant can fill the role of a factory aspect.

For aspects that do not act as factories Kersten and Murphy propose
three style rules that restrict the use of aspects (pp. 349�350):

�Rule #1: Exceptions introduced by a weave must be handled in the
code comprising the weave. ... Rule #2: Advise weaves must
maintain the pre- and post-conditions of a method. ... Rule #3:
Before advise weaves must not include a return statement.�

These rules are essentially equivalent to our definition of observers
in that they prevent aspects from changing the effective specifica-
tion of the advised method. Though we propose elevating these
style rules to the level of statically checked restrictions.

3.2 Dynamic Aspects
The ATLAS case study uses dynamic aspects, or the substitution of
different aspect code at runtime to modify the behavior of a pro-
gram. One way to support this technique within the framework of
our proposal would be to have modules accept assistance from
abstract assistants. Specifications would be associated with these
abstract assistants. The various desired behaviors would be imple-
mented as separate assistants, each extending the abstract assistant
and implementing its specification. This approach permits modular
reasoning. The language would also need a mechanism to support
the runtime selection of a particular concrete assistant.

Related to this idea of dynamic aspects is that of a mechanism for
combining observers and other modules. In the current version of
AspectJ aspects and classes are combined by naming their modules
on the command line in a single invocation of ajc, Xerox�s AspectJ

compiler. Thus combination takes place �outside the language�. To
support observation of separately compiled programs, we would
like to have a mechanism in the language for instantiating observ-
ers. It seems that the same language mechanism might support
instantiating observers and selecting concrete assistants.

3.3 Impact of Restrictions
We would like to better understand how our restrictions might limit
the practical expressiveness of AspectJ. For a preliminary evalua-
tion we use the examples in the AspectJ Programming Guide to see
if our restrictions prohibit any recommended idioms. The program-
ming guide�s examples can serve this purpose since they �not only
show the features [of AspectJ] being used, but also try to illustrate
recommended practice� [2] (from Preface). We separate the exam-
ple aspects into categories based on how we would implement them
with our restrictions. An appendix lists the examples by category;
we describe the categories here.

Observers. Many of the example aspects clearly meet our defini-
tion of observer. To satisfy our restrictions these would only require
the new observer annotation.

Assistants. Aspects in the examples that could be implemented as
assistants can be divided into two kinds. Client utilities are used by
client modules to change the effective behavior of objects from
other modules. The changes in effective behavior do not affect the
representation of those objects. To satisfy our restrictions their
assistance would have to be explicitly accepted by the clients. In
fact, some of the client utility assistants are declared as nested
aspects, i.e., aspects declared inside class declarations. These are
similar in spirit to explicitly excepted assistance.

There is one example that could be implemented as an assistant but
that is not a client utility. This example uses an aspect to separate a
simple concern that cross-cuts a single implementation module.
The pointcut, or named join point, for this aspect is declared in the
implementation class and the aspect explicitly references the imple-
mentation class and the pointcut. To satisfy our restrictions the
implementation module would have to explicitly accept the assis-
tance, which would create a mutual dependency. However, this
example can be considered a bad design since the concern only
cross-cuts the one implementation module. This design flaw can be
fixed by nesting the assistant in the implementation module, which
would also avoid the mutual dependency.

Dynamic Aspects. To satisfy our restrictions some example aspects
would require the dynamic aspect mechanisms alluded to in Section
3.2. One such example is a debugging aspect. This aspect would be
an observer, except that it provides after-advice to a GUI frame�s
constructor to add debugging options to the frame�s menu bar. To
support this pattern with our restrictions requires the mechanisms
for dynamic aspects. The GUI frame would have to accept assis-
tance from an abstract assistant, say AdditionalMenuConcern,
that allowed a concrete assistant, instantiated at runtime, to add to
its menu bar. The debugging aspect would become a concrete assis-
tant extending AdditionalMenuConcern. The GUI frame could
then be instantiated with the debugging assistant or with an assis-
tant that did nothing.

4. DISCUSSION
As presented, our formal model for reasoning about explicitly
accepted assistance does not accommodate advice that applies to
join points other than those for method invocations. It seems a sim-
ple matter to extend the model to accommodate some other kinds of
join points, such as those for field access or exception handling.
However, it is not clear whether our model can accommodate
dynamic context join points [2], like cflow(pointcut), which rely
on runtime information for applicability tests. It seems that advice

A′ A′

A′

Gary T. Leavens
42

on dynamic context join points can only be modularly reasoned
about if this advice is confined to observations. There is one aspect
in the AspectJ examples we studied, the Registry.Registra-
tionProtection aspect of the spacewar example, that uses a
dynamic context join point with advice that changes the effective
specification of the advised method. This example is not supported
by the current work.

Because of the generality of aspects without our restrictions and
limitations of the target Java Virtual Machine (or JVM) [17],
AspectJ currently requires whole-program compilation [12]. In our
proposal, because assistance is explicitly accepted, it is a simple
matter to support separate compilation for modules that accept
assistance; the compiler just weaves it into the accepting modules.

On the other hand, observers present interesting challenges for sep-
arate compilation. On the surface, since observers do not change the
effective specifications of other modules, it should be possible to
separately compile them. And indeed this is true�except for the
issue of dispatching to observers. The generality of observers
means that they can potentially be dispatched to from any join
point.

Thus, the only obstacle to separate compilation of AspectJ pro-
grams given our restrictions is that of dispatch to observers. Others
have suggested that separate compilation for AspectJ is possible
using techniques such as specialized class loaders or modified vir-
tual machines [12] (p. 343). With our proposed restrictions the
scope of the problem is reduced, likely making it easier to imple-
ment these solutions.

5. CONCLUSIONS
To summarize, we have shown that with a few simple modifications
AspectJ can support modular reasoning. Our proposal separates
aspects into two categories, assistants and observers, which provide
complementary features. Assistants are extremely powerful, but
require subtle reasoning techniques and are limited in their applica-
bility to maintain modular reasoning. Observers are less powerful
but are easy to reason about and are broadly applicable. This broad
applicability is achieved by placing heavier burdens on the type
system.

A preliminary evaluation showed that for many cases our modifica-
tions to the language provide sufficient flexibility. However, we
also noted that there is a need for some mechanism to support
dynamic aspects.

The other major open problem for our proposal is statically check-
ing that aspects declared as observers meet our definition, as dis-
cussed in Section 2.2.1. To attack this problem we propose:

� developing an aspect-oriented calculus for investigating these
ideas in a formal setting, and

� developing and proving sound a type-system for the calculus that
statically enforces our proposed restrictions on observers.

Other future work on the problem of modular reasoning for aspect-
oriented programming languages includes:

� refining our proposed specification constructs for AspectJ and
formalizing their semantics, perhaps using something like the
refinement calculus [3], and

� investigating behavioral subtyping and formal techniques for
verification of aspect-oriented programs.

We are also interested in demonstrating the utility and effectiveness
of our ideas by:

� programming non-trivial systems using our restrictions,
� integrating the proposed restrictions into AspectJ, and

� understanding the potential benefits of our restrictions for sepa-
rate compilation, static analysis, and optimization.

In this paper we have focused on adding support for modular rea-
soning to the AspectJ language. Future work will also investigate
the relevance of our proposal to other aspect-orientation program-
ming languages and techniques, such as composition filters [4],
adaptive methods [16], and multidimensional separation of con-
cerns as embodied by Hyper-J [22, 25].

ACKNOWLEDGMENTS
We would like to thank Yoonsik Cheon, Todd Millstein, Markus
Lumpe, and Robyn Lutz, for their helpful comments on a draft of
this paper. The work of Leavens was supported in part by the US
National Science Foundation grants CCR-0097907 and CCR-
0113181. The work of both authors was supported in part by a grant
from Electronics and Telecommunications Research Institute
(ETRI) of South Korea.

APPENDIX
Table 1 below lists the aspects from the examples directory of the
Version 1.0.1 release of AspectJ7. The second column of the table
gives the categorization of each example based on the categories of
Section 3.3.

7. Available from http://www.aspectj.org.

Table 1: Example Aspects and their Categories

Example Category

telecom/TimerLog observer

tjp/GetInfo observer

tracing/lib/AbstractTrace observer

tracing/lib/TraceMyClasses observer

tracing/version1/TraceMyClasses observer

tracing/version2/Trace observer

tracing/version2/TraceMyClasses observer

tracing/version3/Trace observer

tracing/version3/TraceMyClasses observer

bean/BoundPoint client utility

introduction/CloneablePoint client utility

introduction/ComparablePoint client utility

introduction/HashablePoint client utility

observer/SubjectObserverProtocol client utility

observer/SubjectObserverProtocolImpl client utility

spacewar/Display.DisplayAspect client utility

spacewar/Display1.SpaceObjectPainting client utility

spacewar/Display2.SpaceObjectPainting client utility

telecom/Billing client utility

telecom/Timing client utility

spacewar/EnsureShipIsAlive assistanta

coordination/Coordinator dynamic

spacewar/Debug dynamic

spacewar/GameSynchronization dynamic

Gary T. Leavens
43

REFERENCES
[1] K. Arnold, J. Gosling, and D. Holmes. The Java Programming

Language Third Edition. Addison-Wesley, Reading, MA, third
edition, 2000.

[2] AspectJ Team, the. The AspectJ programming guide. Available
from http://aspectj.org/doc/dist/progguide/index.html, Feb.
2002.

[3] R.-J. Back and J. von Wright. Refinement Calculus: A
Systematic Introduction. Springer-Verlag, 1998.

[4] L. Bergmans and M. Aksits. Composing crosscutting concerns
using composition filters. Commun. ACM, 44(10):51�57, Oct.
2001.

[5] C. Clifton. MultiJava: Design, implementation, and evaluation
of a Java-compatible language supporting modular open
classes and symmetric multiple dispatch. Technical Report 01-
10, Department of Computer Science, Iowa State University,
Ames, Iowa, 50011, Nov. 2001. Available from
www.multijava.org.

[6] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Modular open classes and symmetric multiple
dispatch for Java. In OOPSLA 2000 Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, Minneapolis, Minnesota, volume 35(10) of ACM
SIGPLAN Notices, pages 130�145, Oct. 2000.

[7] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping
through specification inheritance. In Proceedings of the 18th
International Conference on Software Engineering, Berlin,
Germany, pages 258�267. IEEE Computer Society Press, Mar.
1996. A corrected version is Iowa State University, Dept. of
Computer Science TR #95-20c.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1995.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification Second Edition. The Java Series.
Addison-Wesley, Boston, Mass., 2000.

[10] M. A. Kersten and G. C. Murphy. Atlas: A case-study in
building a web-based learning environment using aspect-
oriented programming. In Proceedings of the 1999 ACM
Conference on Object-Oriented Programming Languages,
Systems, and Applications (OOPSLA �99), volume 34(10) of
ACM SIGPLAN Notices, pages 340�352, Denver, CO,
November 1999. ACM.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. Getting started with AspectJ. Commun. ACM,

44(10):59�65, Oct. 2001.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In J. L. Knudsen,
editor, ECOOP 2001 � Object-Oriented Programming 15th
European Conference, Budapest Hungary, volume 2072 of
Lecture Notes in Computer Science, pages 327�353. Springer-
Verlag, Berlin Heidelberg, June 2001.

[13] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for
detailed design. In H. Kilov, B. Rumpe, and I. Simmonds,
editors, Behavioral Specifications of Businesses and Systems,
pages 175�188. Kluwer Academic Publishers, Boston, 1999.

[14] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of
JML: A behavioral interface specification language for Java.
Technical Report 98-06p, Iowa State University, Department
of Computer Science, Aug. 2001. See
verb|www.cs.iastate.edu/ leavens/JML.html|.

[15] K. R. M. Leino. Toward Reliable Modular Programs. PhD
thesis, California Institute of Technology, 1995. Available as
Technical Report Caltech-CS-TR-95-03.

[16] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented
programming with adaptive methods. Commun. ACM,
44(10):39�41, Oct. 2001.

[17] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley Publishing Co., Reading, MA,
second edition, 2000.

[18] B. Liskov and J. Wing. A behavioral notion of subtyping.
ACM Trans. Prog. Lang. Syst., 16(6):1811�1841, Nov. 1994.

[19] B. Meyer. Eiffel: The Language. Object-Oriented Series.
Prentice Hall, New York, NY, 1992.

[20] P. Müller. Modular Specification and Verification of Object-
Oriented programs, volume 2262 of Lecture Notes in
Computer Science. Springer-Verlag, 2002. The author�s PhD
Thesis. Available from http://www.informatik.fernuni-
hagen.de/import/pi5/publications.html.

[21] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
E. Jul, editor, ECOOP �98 � Object-Oriented Programming,
12th European Conference, Brussels, Belgium, volume 1445 of
Lecture Notes in Computer Science, pages 158�185. Springer-
Verlag, July 1998.

[22] H. Ossher and P. Tarr. Using multidimensional separation of
concerns to (re)shape evolving software. Commun. ACM,
44(10):43�50, Oct. 2001.

[23] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Commun. ACM, 15(12):1053�1058,
Dec. 1972.

[24] A. D. Raghavan and G. T. Leavens. Desugaring JML method
specifications. Technical Report 00-03c, Iowa State University,
Department of Computer Science, Aug. 2001.

[25] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr. N
degrees of separation: Multi-dimensional separation of
concerns. In International Conference on Software
Engineering, pages 107�119, 1999.

spacewar/RegistrySynchronization dynamic

spacewar/Registry.RegistrationProtection unsupportedb

a.The EnsureShipIsAlive aspect considered to be a poor design
in the discussion of Section 3.3.
b.The aspect, Registry.RegistrationProtection, uses dynamic
context join points, which aren�t supported by the current work.

Table 1: Example Aspects and their Categories

Example Category

Gary T. Leavens
44

Source-Code Instrumentation and Quantification of Events
Robert E. Filman

RIACS
NASA Ames Research Center, MS 269/2

Moffett Field, CA 94035 U.S.A.
+1 650–604–1250

rfilman@mail.arc.nasa.gov

Klaus Havelund
Kestrel Technology

NASA Ames Research Center, MS 269/2
Moffett Field, CA 94035 U.S.A

+1 650–604–3366

havelund@email.arc.nasa.gov

ABSTRACT
Aspect-Oriented Programming is making quantified programmatic
assertions over programs that otherwise are not annotated to re-
ceive these assertions. Varieties of AOP systems are characterized
by which quantified assertions they allow, what they permit in the
actions of the assertions (including how the actions interact with
the base code), and what mechanisms they use to achieve the
overall effect. Here, we argue that all quantification is over dy-
namic events, and describe our preliminary work in developing a
system that maps dynamic events to transformations over source
code. We discuss possible applications of this system, particularly
with respect to debugging concurrent systems.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures – aspects. D.3.2 [Programming Languages] Language Clas-
sifications – aspect-oriented programming. D.2.3 [Software Engi-
neering] Coding Tools and Techniques. D.2.5 [Testing and De-
bugging] Debugging aids.

General Terms
Languages.

Keywords
Quantification, events, dynamic events, debugging, program
transformation, model checking.

1. INTRODUCTION
Elsewhere, we have argued that the programmatic essence of As-
pect-Oriented Programming is making quantified programmatic
assertions over programs that otherwise are not annotated to re-
ceive these assertions [10,12]. That is, in an AOP system, one
wants to be able to say things of the form, “In this program, when
the following happens, execute the following behavior,” without
having to go around marking the places where the desired behav-
ior is to happen. Varieties of AOP systems are characterized by
which quantified assertions they allow, what they permit in the
actions of the assertions (including how the actions interact with
the base code), and what mechanisms they use to achieve the
overall effect. In this paper, we describe our preliminary work in
developing a system that takes the notion of AOP as quantifica-
tion to its logical extreme. Our goal is to develop a system where
behavior can be attached to any event during program execution.
We describe the planned implementation of this system and dis-

cuss possible applications of this technology, particularly with
respect to debugging and validating concurrent systems.

2. EVENTS
Quantification implies matching a predicate about a program.
Such a predicate must be over some domain. In the quantifica-
tion/implicit invocation papers, we distinguished between static
and dynamic quantification.

Static quantification worked over the structure of the program.
That is, with static quantification, one could reference the pro-
gramming language structures in a system. Examples of such
structures include reference to program variables, calls to subpro-
grams, loops, and conditional tests.

Many common AOP implementation techniques can be under-
stood in terms of quantified program manipulation on the static
structure of a program. For example, wrapping (e.g., as seen in
Composition Filters [1], OIF [11], or AspectJ [19,20]) is effec-
tively embedding particular function bodies in more complex
behavior. AspectJ and OIF also provide a call-side wrapping,
which can be understood as surrounding the calling site with the
additional behavior. An operation such as asserting that class A’s
use of x is the same as class B’s use of y in Hyper/J [22] can be
realized by substituting a reference to a common generated vari-
able for x in the text of A, and y in B.

Dynamic quantification, as described in those papers, speaks to
matching against events that happen in the course of program
execution. An example of dynamic quantification is the jumping-
aspect problem [2], where a method behaves differently depend-
ing upon whether or not it has been called from within (in the
calling-stack sense) a specified routine. Other examples of inter-
esting dynamic events include the stack exceeding a particular
size, the fifth unsuccessful call to the login routine with a different
password, a change in the number of references to an object, a
confluence of variable values (e.g., when x + y > z), the blocking
of a thread on a synchronization lock, or even a change in the
executing thread. The cflow operator in AspectJ is a dynamic
quantification predicate.

We are coming to the belief that all events are dynamic. Static
quantification should be understood as just the subspecies of
events that can be simply inferred, on a one-to-one basis, from the
structures of a program. Static quantification is attractive for its
straightforward AOP implementation, lower complexity, and in-
dependence of programming environment implementation, but
unless one starts processing the program comments, there’s little

Gary T. Leavens
45

in the static structure of a program that isn’t marked by its dy-
namic execution.

If the abstract syntax tree is the domain of static quantification,
what is the domain of dynamic quantification? Considering the
examples in this section, it really has to be events that change the
state (both data state and “program counter”) of the base lan-
guage’s abstract interpreter. However, defining anything in terms
of the abstract interpreter is problematic. First, as was illustrated
in Smith’s work on 3-Lisp [5], programming languages are not
defined in terms of their abstract interpreters. The same language
can be implemented with many different interpreters. The set of
events generated by one implementation of a language may not
correspond to the events generated by another. For example, a
run-time environment that manages its own threads is not at all
the same as one that relies on the underlying operating system for
thread management. Neither is the same as one that takes advan-
tage of the multiple processors of a real multi-processor machine.
Second, compilers have traditionally been allowed to optimize—
rearrange programs while preserving their input-output semantics.
An optimizing compiler may rearrange or elide an “obvious” se-
quence of expected events. And finally, the data state of the ab-
stract interpreter (including, as it does, all of memory) can be a
grand and awkward thing to manipulate.

3. A LANGUAGE OF EVENTS
We view these limitations as bumps in the road, rather than barri-
ers. While we may not be able to capture everything that goes on
in a particular interpretive environment, we can get close enough
for most practical purposes. The strategy we adopt is to argue that
most dynamic events, while not necessarily local to a particular
spot in the source code, are nevertheless tied to places in the
source code. Table 1 illustrates some primitive events and their
associated code loci.

Users are likely to want to express more than just primitive
events. The language of events will also want to describe relation-
ships among events, such as that one event occurred before an-
other, that a set of events match some particular predicate, that an
event occurred within a particular timeframe, or that no event
matching a particular predicate occurred. This suggests that the
event language will need (1) abstract temporal relationships, such
as “before” and “after,” (2) abstract temporal quantifiers, such as
“always” and “never”, (3) concrete temporal relationships refer-
ring to clock time, (4) cardinality relationships on the number
times some event has occurred, and (5) aggregation relationships
for describing sets of events.

4. SYSTEM ARCHITECTURE
We envision a mechanism where a description of a set of event-
action pairs, along with a program, would be presented to a com-
piler. Each event action pair would include a sentence describing
the interesting event in the event language and an action to be
executed when that event is realized. Said actions would be pro-
grams, and would be parameterized with respect to the elements
of the matching events. Examples of such assertions are:

! On every call to method foo in a class that implements the
interface B, replace the second parameter of the call to foo
with the result of applying method f to that parameter.

! Whenever the value of x+y in any object of class A ever ex-
ceeds 5, print a message to the log and reset x to 0.

! If a call to method foo occurs within (some level down on
the stack) method baz but without an intervening call to
method mumble, omit the call to method gorp in the body of
foo.

Table 1: Events and event loci

Event Syntactic locus

Accessing the value of a variable or field References to that variable

Modifying the value of a variable or field Assignments to that variable

Invoking a subprogram Subprogram calls

Cycling through a loop Loop statements

Branching on a conditional The conditional statement

Initializing an instance The constructors for that object

Throwing an exception Throw statements

Catching an exception Catch statements

Waiting on a lock Wait and synchronize statements

Resuming after a lock wait Other's notify and end of synchronizations

Testing a predicate on several fields Every modification of any of those fields

Changing a value on the path to another Control and data flow analysis over statements (slices)

Swapping the running thread Not reliably accessible, but atomization may be possible

Being below on the stack Subprogram calls

Freeing storage Not reliably accessible, but can try using built-in primitives

Throwing an error Not reliably accessible; could happen anywhere

Gary T. Leavens
46

These examples are in natural language. Of course, any actual
system will employ something formal.

Clearly, a sufficiently “meta” interpretation mechanism would
give us access to many interesting events in the interpreter, ena-
bling a more direct implementation of these ideas. It has often
been observed that meta-interpretative and reflective systems can
be used to build AOP systems [29]. However, meta-interpreters
have traditionally exhibited poor performance. We are looking for
implementation strategies where the cost of event recognition is
only paid when event recognition is used. This suggests a com-
piler that would transform programs on the basis of event-action
assertions. Such a compiler would work with an extended abstract
syntax tree representation of a program. It would map each predi-
cate of the event language into the program locations that could
affect the semantics of that event. Such a mapping requires not
only abstract syntax tree generation (parsing) and symbol resolu-
tion, but also developing primitives with respect to the control and
data flow of the program, determining the visibility and lifetimes
of symbols, and analyzing the atomicity of actions with respect to
multiple threads.

Java compiles into an intermediate form (Java byte codes). In
dealing with Java, there is also the choice as to whether to process
with respect to the source code or the byte code. Each has its ad-
vantages and disadvantages. Byte codes are more real: many of
the issues of interest (actual access to variables, even the power
consumption of instructions) are revealed precisely at the byte
code level. Working with byte codes allows one to modify classes
for which one hasn’t the source code, including the Java language
packages themselves. (JOIE [3] and Jmangler [21] are examples
of an AOP systems that perform transformations at the byte code
level.) On the other hand, source code is more naturally under-
standable, allows writing transformations at the human level, and
eliminates the need for understanding the JVM and the actions of
the compiler. (De Volder’s Prolog-based meta-programming sys-
tem is an example of source-level transformation for AOP [6,7].)
We find the complexity arguments appealing. Thus, our imple-
mentation plan is to work at the source code level.

5. EXAMPLES
Event quantification is a general framework for supporting aspect
oriented programming. It can be used for functionality enhance-
ment, where a program is extended with aspects that add new
functionality. For example, a program could be made more reli-
able by transforming its database update events to also send mes-
sages to a backup log. Although functionality extension is a gen-
eral goal for AOP, we instead discuss some examples within the
area of program verification. (In some cases, we expect to be able

to extend program behavior for functionality insurance: recover-
ing from some classes of program failure.)

In previous work, we studied various program verification tech-
niques for analyzing the correctness of programs. Our work can be
classified into two categories: program monitoring [17] and pro-
gram scheduling [16,27]. The latter is often called model check-
ing.

5.1 Monitoring
Specification-based monitoring consists of monitoring the exe-
cution of a program, represented by a sequence of events, by vali-
dating the events against a requirements specification. The speci-
fication is written in some formal language, typically a temporal
logic [24]. For example, a typical requirement is, “Whenever
TEMP becomes 100 then within 3 seconds ALARM becomes
true.” A typical requirement specification has many such asser-
tions. We want to be able to run the program and monitor that
specification assertions hold throughout the event trace. The Java
PathExplorer system [17] implements this kind of capability. It
uses the byte-code engineering tool Jtrek [18] to instrument Java
byte code to emit events to an observer, which contains a data
structure representing the formulae to be checked. Every event
emitted from the running program causes a modification of the
data structure. A warning is raised when a specification is vio-
lated. We plan to experiment using event quantification at the
source code level instead of at the byte code level. The events to
be caught are obviously those implicitly referred to in the for-
mula—in the above example, updates to the variables TEMP and
ALARM. That is, whenever one of these variables is updated, an
event consisting of the variable name, the value, and a timestamp
can be emitted to the observer. (The evaluation of the temporal
formula can even be performed as part of the quantification action
instead of in a separate observer, if real-time performance is not
an issue.) Operating on the source code level simplifies creating
the instrumentation, as one can work in a high-level language, not
byte code. The commercial-available Temporal Rover system
performs specification-based monitoring, but does not do auto-
mated code instrumentation [8].

Algorithm-based monitoring, like specification-based moni-
toring, watches the execution of a program emitting events. Rather
than matching against user-defined specifications, algorithm-
based monitoring uses certain general algorithms for detecting
particular kinds of error conditions. Examples are algorithms for
detection of deadlock and data race potentials in concurrent pro-
grams. These algorithms are interesting since the actual deadlocks
or data races do not have to occur in an execution trace in order to
be identified as a potential problem. An arbitrary execution trace
will normally suffice to identify problems. For example, a cyclic
relationship between the locks in a program (thread T1 takes lock
A and then B, while thread T2 takes B and then A) is a potential
deadlock. A similar algorithm exists for data races [25]. These
algorithms have been implemented in PathExplorer using byte
code engineering, and we anticipate trying them out using event
quantification.

5.2 Scheduling
Thread scheduling consists of influencing a program’s schedul-
ing in order to explore more thread interleavings than would oth-
erwise be achieved with normal testing techniques. As an exam-
ple, the above mentioned deadlock situation can be explicitly

Source Java
code

Event-action
descriptions

Event-
Edit

compilation

Transform

AST

Target Java
code

Parse PrettyPrint
Source Java

code

Event-action
descriptions

Event-
Edit

compilation

Transform

AST

Transform

ASTAST

Target Java
code

Parse PrettyPrint

Figure 1: System Architecture

Gary T. Leavens
47

demonstrated by scheduling the threads such that T1 takes A, and
then T2 immediately takes B. Such a schedule might never be
seen during normal test of the program. Thread scheduling can be
achieved by introducing a centralized scheduler and forcing all
threads to communicate with that scheduler when shared data
structures (such as locks) are accessed. The scheduler then decides
which thread to run, while at the same time keeping track of its
scheduling choices. This information can then be used to direct
the program to explore new interleavings. We have earlier devel-
oped the Java PathFinder system [16, 27] for performing such
scheduling analysis using model checking. In order to avoid ex-
ploring the reachable subtree below a given program state several
times, states are stored in cache, and search is aborted when a
state has been visited before. Using quantification, we plan to
experiment with state-less model checking [15, 24] where a pro-
gram’s different interleavings are explored, but without storing
states. An example of program modification to detect
synchronization faults is ConTest [8].

6. RELATED WORK
De Volder and his co-workers [6,7] have argued for doing AOP
by program transformation, using a Prolog-based system working
on the text of Java programs. We want to extend those ideas to
program semantics, combining both the textual locus of dynamic
events and transformations requiring complex analysis of the
source code.

At the 1998 ECOOP AOP workshop, Fradet and Südholt [13]
argued that certain classes of aspects could be expressed as static
program transformations. They expanded this argument at the
1999 ECOOP AOP workshop to one of checking for robustness—
non-localized, dynamic properties of a system’s state [14]. Col-
combet and Fradet realized an implementation of these ideas in
[4], applying both syntactic and semantic transformations to en-
force desired properties on programs. In that system, the user can
specify a desired property of a program as a regular expression on
syntactically identified points in the program, and the program is
transformed into one that raises an exception when the property is
violated. Other transformational systems include, Ku a notational
attempt at formalizing transformation [27], and Schonger et al’s
proposal to express abstract syntax trees in XML and use XML
transformation tools for tree manipulation [26].

Nelson et al. identify three concern-level foundational composi-
tion operators: correspondence, behavioral semantics and bind-
ing [22]. Correspondence involves identifying names in different
entities that are “the same”—for data items, things that should
share storage; for functions, functional fragments that need to be
assembled into a whole. Behavioral semantics describe how the
functional fragments are assembled. Binding is the usual issue of
the statics and dynamics of system construction and change. They
discuss alternative formal techniques for establishing properties of
composed systems within this basis.

Walker and Murphy argue for events as appropriate “join points”
for AOP, and that the events exposed by AspectJ are inade-
quate [32].

7. CONCLUDING REMARKS
In this paper, we’ve examined the idea of implementing AOP
systems as programs transformed by quantified responses to dy-
namic events. Two comments about the place of such a system in
the order of things are worth making:

! We’ve been talking about implementation environments,
not software engineering. An underlying implementation
does not imply anything about the “right” organization of
“separate concerns” to present to a user. In particular, we
have been completely agnostic about the appropriate struc-
ture for the actions of action-event pairs. It may be the case
that unqualified use of an event language with raw action
code snippets is a software engineering wonder, but we
doubt it.

! An environment that can map from quantified dynamic
events to modified code would be an excellent environment
for experimenting with and building systems for AOP. In
some sense, these ideas can be viewed as a domain-specific
language for developing aspect-oriented languages.

8. ACKNOWLEDGMENTS
Our thanks to Tarang Patel and Tom Pressburger for their com-
ments on the draft of this paper.

9. REFERENCES
[1] Bergmans, L., and Aksit, M. Composing crosscutting con-

cerns using composition filters. Comm. ACM Vol. 44, No.
10, 2001, pp. 51–57.

[2] Brichau, J., De Meuter, W., and De Volder, K. Jumping as-
pects. Workshop on Aspects and Dimensions of Concerns,
ECOOP 2000, Cannes, France, Jun. 2000. http://trese.
cs.utwente.nl/Workshops/adc2000/papers/Brichau.pdf

[3] Cohen, G. Recombining concerns: Experience with trans-
formation. First Workshop on Multi-Dimensional Separation
of Concerns in Object-oriented Systems (OOPSLA '99), Oct.
1999, www.cs.ubc.ca/~murphy/multid-workshop-oopsla99/
position-papers/ws23-cohen.pdf

[4] Colcombet, T. and Fradet, P. Enforcing trace properties by
program transformation. Proc. 27th ACM Symp. Principles
of Programming Languages, Boston, Jan. 2000, pp. 54–66.

[5] des Rivieres, J. and Smith, B. C. The implementation of pro-
cedurally reflective languages. Conf. Record of the 1984
ACM Symposium on LISP and Functional Programming,
Austin, Texas, Aug. 1984, pp. 331–347.

[6] De Volder, K., Brichau, J., Mens, K., and D'Hondt, T. Logic
meta-programming, a framework for domain-specific aspect
programming languages. http://www.cs.ubc.ca/~kdvolder/
binaries/cacm-aop-paper.pdf

[7] De Volder, K., and D'Hondt, T. Aspect-oriented logic meta
programming. Proceedings of Meta-Level Architectures and
Reflection, Second International Conference, Reflection'99.
LNCS 1616, Springer-Verlag, 1999, pp. 250–272.

[8] Drusinsky, D. The Temporal Rover and the ATG Rover.
SPIN Model Checking and Software Verification, LNCS
1885, K. Havelund, J. Penix, and W. Visser (Eds.) Springer,
2000, pp. 323–330.

[9] Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S. Multi-
threaded Java program test generation. IBM Systems Journal,
Vol. 41, No. 1, 2002, pp. 111–125.

Gary T. Leavens
48

[10] Filman, R.E. What is aspect-oriented programming, revis-
ited. Workshop on Advanced Separation of Concerns, 15th
European Conference on Object-Oriented Programming, Bu-
dapest, Jun. 2001. http://trese.cs.utwente.nl/Workshops/
ecoop01asoc/papers/Filman.pdf

[11] Filman, R. E., Barrett, S., Lee, D. D., and Linden, T. Insert-
ing ilities by controlling communications. Comm. ACM,
Vol. 45, No. 1, Jan. 2002, pp. 116–122.

[12] Filman, R. E. and Friedman, D. P. Aspect-oriented pro-
gramming is quantification and obliviousness. Workshop on
Advanced Separation of Concerns, OOPSLA 2000, Minnea-
polis, Oct. 2000. http://trese.cs.utwente.nl/Workshops/
OOPSLA2000/papers/filman.pdf

[13] Fradet, P. and Südholt, M. Towards a generic framework for
aspect-oriented programming, Third AOP Workshop,
ECOOP'98 Workshop Reader, LNCS, 1543, pp. 394–397,
Jul. 1998. trese.cs.utwente.nl/aop-ecoop98/papers/ Fradet.pdf

[14] Fradet, P and Südholt, M. An aspect language for robust
programming. Int. Workshop on Aspect-Oriented Program-
ming, ECOOP, Jun. 1999. http://trese.cs.utwente.nl/aop-
ecoop99/papers/fradet.pdf

[15] Godefroid P. Model checking for programming languages
using VeriSoft. Proc. of 24th ACM Symp. on Principles of
Programming Languages, Paris, Jan. 1997, pp. 174–186.

[16] Havelund K. and Pressburger T. Model checking Java pro-
grams using Java PathFinder. International Journal on Soft-
ware Tools for Technology Transfer, Vol. 2, No. 4, Apr.
2000, pp. 366–381.

[17] Havelund K. and Rosu, G. Monitoring Java programs with
Java PathExplorer. In Proceedings of the First International
Workshop on Runtime Verification (RV’01), Electronic Notes
in Theoretical Computer Science, Vol. 55, No. 2, Elsevier
Science, Paris, Jul. 2001.

[18] Jtrek. Compaq. http://www.compaq.com/java/download/jtrek

[19] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W. G. An overview of AspectJ, Proceedings
ECOOP 2001, J. L. Knudsen (Ed.) Berlin: Springer-Verlag
LNCS 2072, pp. 327–353.

[20] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W. G. Getting started with AspectJ. Comm.
ACM Vol. 44, No. 10, 2001, pp. 59–65.

[21] Kniesel, G., Costanza, P., and Austermann, M. JMangler–A
Framework for Load-Time Transformation of Java Class
Files. Proc. First IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM 2001), Florence,
Nov. 2001, http://www.informatik.uni-bonn.de/~costanza/
SCAM_jmangler.pdf

[22] Nelson, T., Cowan, D. and Alencar, P. Supporting formal
verification of crosscutting concerns. Metalevel Architectures
and Separation of Crosscutting Concerns: Third Interna-
tional Conference, Reflection 2001, A. Yonezawa and S.
Matsuoka (Eds.) Sep. 2001, Kyoto, Berlin: Springer-Verlag,
LNCS 2192, pp. 153-169.

[23] Ossher, H. and Tarr, P. The shape of things to come: Using
multi-dimensional separation of concerns with Hyper/J to
(re)shape evolving software. Comm. ACM Vol. 44, No. 10,
2001, pp. 43–50.

[24] Pnueli A. The temporal logic of programs. Proc. 18th IEEE
Symp. Foundations of Computer Science, 1977, pp. 46–57.

[25] Savage S., Burrows M., Nelson G., Sobalvarro P., and
Anderson T. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Sys-
tems, Vol. 15, No. 4, Nov. 1997.

[26] Schonger, S., Pulvermueller, E., and Sarstedt, S. Aspect ori-
ented programming and component weaving: using XML
representations of abstract syntax trees. Workshop Aspekto-
rientierte Softwareentwicklung, Institut für Informatik III,
Universität Bonn, Feb. 2002, i44w3.info.uni-karlsruhe.de
/~pulvermu/workshops/aosd2002/submissions/schonger.pdf.

[27] Skipper, M. A Model of composition oriented programming,
Proc. Workshop on Multi-Dimensional Separation of Con-
cerns in Software Engineering, Int’l Conf/ on Software Engi-
neering, Limerick, Ireland, June 2000, www.research.ibm.
com/hyperspace/workshops/icse2000/Papers/skipper.pdf

[28] Stoller S. D. Model-checking multi-threaded distributed Java
programs. International Journal on Software Tools for
Technology Transfer, in press.

[29] Sullivan, G. T. Aspect-oriented programming using reflec-
tion and meta-object protocols. Comm. ACM Vol. 44, No. 10,
2001, pp. 95–97.

[30] Teitelman, W. and Masinter, L. The Interlisp programming
environment. Computer Vol. 14, No. 4, 1981, pp. 25–34.

[31] Visser W., Havelund K., Brat G., and Park S. Model check-
ing programs. Proc. ASE’2000: The 15th IEEE Intl. Conf.
Automated Software Engineering, Sep. 2000, pp. 3–12.

[32] Walker, R. J. and Murphy, G. C. Joinpoints as ordered
events: towards applying implicit context to aspect-
orientation. Workshop on Advanced Separation of Concerns
in Software Engineering at ICSE, Toronto, May, 2001,
www.research.ibm.com/hyperspace/workshops/icse2001/
Papers/walker.pdf.

Gary T. Leavens
49

	Cover Page
	Table of Contents
	Preface
	A Semantics for Advice and Dynamic Join Points in Aspect-Oriented Programming
	Member-Group Relationships Among Objects
	Compilation Semantics of Aspect-Oriented Programs
	A Formal Basis for AspectOriented Specification with Superposition
	Observers and Assistants: A Proposal for Modular Aspect-Oriented Reasoning
	ABSTRACT
	1. Introduction
	2. A Proposal
	3. Evaluation
	4. Discussion
	5. Conclusions
	Acknowledgments
	Appendix
	Observers and Assistants: A Proposal for Modular Aspect-Oriented Reasoning

	Source-Code Instrumentation and Quantification of Events

