
Com S 541 — Programming Languages 1 November 5, 2007

Homework 6: Declarative Concurrency
Due: Tuesday, November 14, 2006.
In this homework you will learn basic techniques of declarative concurrent programming, including

stream programming and lazy functional programming. Many of the problems below exhibit polymorphism.
The problems as a whole illustrate how functional languages work without hidden side-effects. Don’t use
side effects (assignment and cells) in your solutions.

For all programing tasks, you must run your code using the Mozart/Oz system. For these you must also
provide evidence that your program is correct (for example, test cases). For testing, you may want to use
tests based on my code in the course library file Test.oz, as shown in homework 4.

Hand in a printout of your code and the output of your testing, for all questions that require code.
Be sure to clearly label what problem each area of code solves with a comment.
Don’t hesitate to contact the staff if you are stuck at some point.
Read Chapter 4 of the textbook [RH04]. You may also want to read a tutorial on the concepts of functional

programming languages, such as Hudak’s computing survey article mentioned in the “Introduction to the
Literature” handout.

Streams and Lazy Functional Programming
The following problems, many of which are due to John Hughes, relate to modularization of numeric code
using streams and lazy execution. In particular, we will explore the Newton-Raphson algorithm. This al-
gorithm computes better and better approximations to the square root of a floating point number N from a
previous approximation X by using the following curried function.

declare
% Next: <fun {$ <Float>}: <fun {$ <Float>}: Float>>
fun {Next N}

fun {$ X}
(X + N / X) / 2.0

end
end

In the following we will use the type <Stream T> as a synonym for the type <List T>, in which the
list is presumed to be infinite. Note that nil never occurs in a <Stream T>.

As an aid to writing code for this section, and for testing that code, we provide library modules for
approximate comparisons of floating point numbers and for testing with approximate comparisons. The
floating point approximate comparison code is shown in Figure 1 on the following page. The testing code for
floating point numbers is shown in Figure 2 on page 3 and Figure 3 on page 4.

1. (10 points) Write a lazy function

StreamIterate: <fun lazy {$ <fun {$ T}: T> T}: <Stream T>>

such that {StreamIterate F X} takes a function F and a value X and returns the stream

X | {FX} | {F{FX}} | {F{F{FX}}} | . . . ,

that is, the stream whose ith item, counting from 1, is F i−1 applied to X .

The examples in Figure 4 on page 4 are written using the WithinTest procedure from Figure 3 on
page 4.

2. (5 points) Why does StreamIterate (see Exercise 1) have to be lazy? Give a brief answer.

3. (10 points) Write a function
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% $Id: FloatComparisons.oz,v 1.4 2006/10/27 08:57:49 leavens Exp $
% Approximate floating point numeric comparison procedures for Oz.
% AUTHOR: Gary T. Leavens

functor $
export

within: Within
withinMaker: WithinMaker
relative: Relative
relativeMaker: RelativeMaker
compareLists: CompareLists
withinLists: WithinLists
relativeLists: RelativeLists

define
%% Return true iff the difference between X and Y
%% is no larger than Epsilon
fun {Within Epsilon X Y} {Abs X-Y} =< Epsilon end

%% Partly curried version of Within
fun {WithinMaker Epsilon} fun {$ X Y} {Within Epsilon X Y} end end

%% Return true iff the corresponding lists are
%% equal relative to the given predicate
fun {CompareLists Pred Xs Ys}

case Xs#Ys of
nil#nil then true

[] (X|Xr)#(Y|Yr) then {Pred X Y} andthen {CompareLists Pred Xr Yr}
else false
end

end

%% Return true iff the lists are equal
%% in the sense that the corresponging elements
%% are equal to within Epsilon
fun {WithinLists Epsilon Xs Ys}

{CompareLists {WithinMaker Epsilon} Xs Ys}
end

%% Return true iff the ratio of X-Y to Y is within Epsilon
fun {Relative Epsilon X Y} {Abs X-Y} =< Epsilon*{Abs Y} end

%% Partly curried version of Relative
fun {RelativeMaker Epsilon} fun {$ X Y} {Relative Epsilon X Y} end end

%% Return true iff the lists are equal
%% in the sense that the corresponging elements
%% are relatively equal to within Epsilon
fun {RelativeLists Epsilon Xs Ys}

{CompareLists {RelativeMaker Epsilon} Xs Ys}
end

end

Figure 1: Comparisons for floating point numbers. This functor is available in the course lib directory.
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% $Id: FloatTesting.oz,v 1.4 2006/10/27 08:57:49 leavens Exp $
% Testing for floating point numbers.
% AUTHOR: Gary T. Leavens

functor $
import

System(showInfo)
FloatComparisons

export
testMaker: TestMaker
standardTolerance: StandardTolerance
withinTest: WithinTest
relativeTest: RelativeTest

define
%% TestMaker returns a procedure P such that {P Actual ’=’ Expected}
%% is true if {FloatCompare Epsilon Actual Expected} (for Floats)
%% or if {FloatListCompare Epsilon Actual Expected} (for lists of Floats)
%% If so, print a message, otherwise throw an exception.
fun {TestMaker FloatCompare FloatListCompare Epsilon}

fun {Compare Actual Expected}
if {IsFloat Actual} andthen {IsFloat Expected}
then {FloatCompare Epsilon Actual Expected}
elseif {IsList Actual} andthen {IsList Expected}
then {FloatListCompare Epsilon Actual Expected}
else false
end

end
in

proc {$ Actual Connective Expected}
if {Compare Actual Expected}
then {System.showInfo

{Value.toVirtualString Actual 5 10}
# ’ ’ # Connective # ’ ’
# {Value.toVirtualString Expected 5 10}}

else {Exception.raiseError
testFailed(actual:Actual

connective:Connective
expected:Expected
debug:unit)

}
end

end
end

StandardTolerance = 1.0e~3
WithinTest = {TestMaker FloatComparisons.within

FloatComparisons.withinLists StandardTolerance}
RelativeTest = {TestMaker FloatComparisons.relative

FloatComparisons.relativeLists StandardTolerance}
end

Figure 2: Testing code for floating point. This puts output on standard output (the *Oz Emulator* win-
dow). The module FloatComparisons is shown in Figure 1 on the preceding page. This functor is
available in the course lib directory.
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% $Id: FloatTest.oz,v 1.2 2006/10/26 07:19:52 leavens Exp $
% AUTHOR: Gary T. Leavens

declare
local

[Testing FloatTesting FloatComparisons]
= {Module.link [’Testing.ozf’ ’FloatTesting.ozf’ ’FloatComparisons.ozf’]}

in
StartTesting = Testing.start
Test = Testing.test
Assert = Testing.assert
Assume = Testing.assert
FloatTestMaker = FloatTesting.testMaker
StandardTolerance = FloatTesting.standardTolerance
WithinTest = FloatTesting.withinTest
RelativeTest = FloatTesting.relativeTest
Within = FloatComparisons.within
WithinMaker = FloatComparisons.withinMaker
Relative = FloatComparisons.relative
RelativeMaker = FloatComparisons.relativeMaker
CompareLists = FloatComparisons.compareLists
WithinLists = FloatComparisons.withinLists
RelativeLists = FloatComparisons.relativeLists

end

Figure 3: Testing code for floating point. This works in the Mozart system’s Oz Programming Interface.
The module linked is shown in Figure 2 on the preceding page. This file is available in the course lib
directory To use it, copy the files from the course directory to your own directory and then put \insert
’FloatTest.oz’ in your file.

\insert ’StreamIterate.oz’
\insert ’Next.oz’
\insert ’FloatTest.oz’
{StartTesting ’StreamIterate...’}
{WithinTest {List.take {StreamIterate {Next 1.0} 1.0} 7}
’~=~’ [1.0 1.0 1.0 1.0 1.0 1.0 1.0]}

{WithinTest {List.take {StreamIterate {Next 9.0} 1.0} 7}
’~=~’ [1.0 5.0 3.4 3.0235 3.0001 3.0 3.0]}

{WithinTest {List.take {StreamIterate {Next 200.0} 1.0} 7}
’~=~’ [1.0 100.5 51.245 27.574 17.414 14.449 14.145]}

{RelativeTest {List.take {StreamIterate {Next 0.144} 7.0} 9}
’~=~’ [7.0 3.5103 1.7757 0.92838 0.54174 0.40378 0.3802 0.37947 0.37947]}

{RelativeTest {List.take {StreamIterate fun {$ X} X*X end 2.0} 9}
’~=~’ [2.0 4.0 16.0 256.0 65536.0 4.295e009 1.8447e019 3.4028e038

1.1579e077]}
{RelativeTest {List.take {StreamIterate fun {$ X} X/3.0 end 10.0} 8}
’~=~’ [10.0 3.3333 1.1111 0.37037 0.12346 0.041152 0.013717 0.0045725]}

Figure 4: Tests for Exercise 1 on page 1.
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Approximations: <fun {$ Float Float}: <Stream Float>>

such that {Approximations N A0} returns the infinite list of approximations to the square root
of N, starting with A0, according to the Newton-Raphson method, that is by iterating {Next N}.

4. (5 points) Does your solution to Exercise 3 on page 1 have to be lazy? Briefly explain.

5. (10 points) Write a function

ConvergesTo: <fun {$ <Stream T> <fun {$ T T}: Bool>}: T>

such that {ConvergesTo Xs Pred} looks down the stream Xs to find the first two consecutive
elements of Xs that satisfy Pred, and it returns the second of these consecutive elements. (It will
never return if there is no such pair of consecutive elements.) Figure 6 on the next page gives some
examples.

6. (10 points) Using FloatComparisons.withinMaker from Figure 1 on page 2 and the other
pieces given above, write a function

SquareRoot: <fun {$ Float Float Float}: Float>

such that {SquareRoot A0 Epsilon N} returns an approximation to the square root of N that
is within Epsilon. The parameter A0 is used as an initial guess in the Newton-Raphson method.
Examples are given in Figure 7 on the following page.

7. (10 points) Using FloatComparisons.relativeMaker from Figure 1 on page 2 and the other
pieces given above, write a function

RelativeSquareRoot: <fun {$ Float Float Float}: Float>

such that {RelativeSquareRoot A0 Epsilon N} returns an approximation to the square root
of N that only has a relative error of Epsilon. The parameter A0 is used as an initial guess in the
Newton-Raphson method. When iterating, keep going until the ratio of the difference between the
last and the previous approximation to the last approximation approaches 0, instead of waiting for the
differences between the approximations themselves to approach zero. (This is equivalent to iterating
until the ratio of the last two approximations approaches 1.) This is test for convergence is better for
square roots of very large numbers, and for square roots of very small numbers. Examples are given in
Figure 8 on page 7.

8. (15 points) You may recall that the derivative of a function F at a point X can be approximated by the
following function.

declare
fun {EasyDiff F X Delta} ({F (X+Delta)} - {F X}) / Delta end

Good approximations are given by small values of Delta, but if Delta is too small, then rounding
errors may swamp the result. One way to choose Delta is to compute a sequence of approxima-
tions, starting with a reasonably large one. If {WithinMaker Epsilon} is used to select the first
approximation that is accurate enough, this can reduce the risk of a rounding error affecting the result.

Your task is to write a function

DiffApproxims: <fun {$ Float <fun {$ Float}: Float> Float}:
<Stream Float>>

such that {DiffApproxims Delta0 F X} returns an infinite list of approximations to the deriva-
tive of F at X, where at each step, the current Delta is halved. Examples are given in Figure 9 on
page 7.

Hint: do you need to make something lazy to make this work?

9. (15 points) Write a function
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\insert ’Approximations.oz’
\insert ’FloatTest.oz’
{StartTesting ’Approximations...’}
{WithinTest {List.take {Approximations 1.0 1.0} 7}
’~=~’ [1.0 1.0 1.0 1.0 1.0 1.0 1.0]}

{RelativeTest {List.take {Approximations 2.0 1.0} 5}
’~=~’ [1.0 1.5 1.41667 1.41422 1.41421]}

{RelativeTest {List.take {Approximations 64.0 1.0} 5}
’~=~’ [1.0 32.5 17.2346 10.474 8.29219]}

Figure 5: Tests for Exercise 3 on page 1.

\insert ’ConvergesTo.oz’
\insert ’FloatTest.oz’

fun lazy {Repeat X} X|{Repeat X} end

{StartTesting ’ConvergesTo...’}
{WithinTest {ConvergesTo

{Append [1.0 3.5 4.5] {Repeat 7.0}}
{WithinMaker 1.01}
}

’~=~’ 4.5}
{WithinTest {ConvergesTo

{Append [1.0 32.5 17.2346 10.474 8.29219 8.00515] {Repeat 8.0}}
{WithinMaker 0.5}
}

’~=~’ 8.00515}

Figure 6: Tests for Exercise 5 on the preceding page.

\insert ’SquareRoot.oz’
\insert ’FloatTest.oz’
{StartTesting ’SquareRoot...’}
Millionth = 0.0000001
WithinMillionth = {FloatTestMaker

Within
WithinLists
Millionth}

{WithinMillionth {SquareRoot 1.0 Millionth 2.0} ’~=~’ 1.41421356}
{WithinMillionth {SquareRoot 1.0 Millionth 4.0} ’~=~’ 2.0}
{WithinMillionth {SquareRoot 1.0 Millionth 64.0} ’~=~’ 8.0}
{WithinMillionth {SquareRoot 1.0 Millionth 3.14159} ’~=~’ 1.7724531}

Figure 7: Tests for Exercise 6 on the previous page.
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\insert ’RelativeSquareRoot.oz’
\insert ’FloatTest.oz’
{StartTesting ’RelativeSquareRoot...’}
TenThousandth = 0.000001
RelativeTenThousandth = {FloatTestMaker

Relative
RelativeLists
TenThousandth}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 2.0}
’~=~’ 1.41421356}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 4.0}
’~=~’ 2.0}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 64.0}
’~=~’ 8.0}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 3.14159}
’~=~’ 1.7724531}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 9.0e24}
’~=~’ 3.0e12}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 9.0e~40}
’~=~’ 3.0e~20}

Figure 8: Tests for Exercise 7 on page 5.

\insert ’DiffApproxims.oz’
\insert ’FloatTest.oz’
{StartTesting ’DiffApproxims...’}
{WithinTest {List.take {DiffApproxims 500.0 fun {$ X} X*X end 20.0} 9}
’~=~’ [540.0 290.0 165.0 102.5 71.25 55.625 47.8125 43.9062 41.9531]}

{WithinTest {List.take {DiffApproxims 100.0 fun {$ X} X*X*X end 10.0} 8}
’~=~’ [13300.0 4300.0 1675.0 831.25 526.562 403.516 349.316 324.048]}

Figure 9: Tests for Exercise 8 on page 5.
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Differentiate: <fun {$ Float Float <fun {$ Float}: Float> Float}:
Float>

such that {Differentiate Epsilon Delta0 F N} returns an approximation that is accurate
to within Epsilon to the derivative of F at N. Use the previous problem (Exercise 8 on page 5) with
Delta0 as the initial value for Delta. Examples are given in Figure 10 on the following page.

Textbook Problems
10. (20 points) [Thread Semantics] Do problem 1 in section 4.11 of the textbook [RH04]. Note that part

(b) should read (according to the errata) “All of these executions . . .”.

11. Do one of the following problems.

(a) (10 points) [Threads and garbage collection] Do problem 2 in section 4.11 of the textbook [RH04].

(b) (10 points) [Order-determining concurrency] Do problem 4 in section 4.11 of the textbook [RH04].

(c) (10 points) [The Wait operation] Do problem 5 in section 4.11 of the textbook [RH04].

12. (20 points) [Dataflow behavior in a concurrent setting] Do problem 8 in section 4.11 of the textbook
[RH04].

13. (0 points) [Digital logic simulation] This problem was withdrawn, as the solution already appears in
the text.

14. Do one of the following.

(a) (10 points) [Laziness and incrementality] Do problem 12 in section 4.11 of the textbook [RH04].

(b) (10 points) [Laziness and monolithic functions] Do problem 13 in section 4.11 of the textbook
[RH04].

15. (20 points) [By-need execution] Do problem 16 in section 4.11 of the textbook [RH04].

16. Do one of the following.

(a) (15 points) [Concurrency and Exceptions] Do problem 18 in section 4.11 of the textbook [RH04].

(b) (15 points) [Limitations of Declarative Concurrency] Do problem 19 in section 4.11 of the text-
book [RH04].

Extra Credit Problems
17. Do any of the textbook problems you didn’t choose to do above. Clearly label that these problems are

being done for extra credit.

References
[RH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The

MIT Press, Cambridge, Mass., 2004.
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\insert ’Differentiate.oz’
\insert ’FloatTest.oz’
{StartTesting ’Differentiate...’}
Millionth = 0.0000001
WithinMillionth = {FloatTestMaker

Within
WithinLists
Millionth}

{WithinMillionth {Differentiate Millionth 500.0 fun {$ X} X*X end 20.0}
’~=~’ 40.0}

{WithinMillionth {Differentiate Millionth 100.0 fun {$ X} X*X*X end 10.0}
’~=~’ 300.0}

Figure 10: Tests for Exercise 9 on page 5.
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