
Com S 541 — Programming Languages 1 October 2, 2006

Homework 3: Operational Semantics for the
Declarative Computation Model

Due: Tuesday, September 26, 2006.
In this homework you will learn about operational semantics for the declarative computation model.
Don’t hesitate to contact the staff if you are stuck at some point.
Read Chapter 2, and start reading Chapter 3, of the textbook [RH04]. See the course lecture notes for the

terminal transition system details, at the following URL.

http://www.cs.iastate.edu/~cs541/lectures/declarative/kernel.txt

You may also want to refer Matthew Hennessy’s book [Hen90], or other texts, for more background on
operational semantics.

Operational Semantics Exercises
I suggest doing the following exercises on a computer, so that you can copy configurations from one step
to the next. However, you don’t have to typeset your answers, a simple encoding such as that shown in the
lecture note files is fine.

(If you want to do fancy typesetting, it may take quite a bit longer. However, if you want to do that with
LATEX, then you may want to use my calculation macros, which are at the following URL.

http://www.cs.iastate.edu/~leavens/include/calculation.tex

There is documentation in the file, with examples.)
To get you started, the following describes an example similar to one we did in class. Consider the

program in Figure 1. This is translated into kernel syntax in Figure 2. A calculation of how it executes using
the terminal transition system given in class for the declarative kernel is shown in Figure 3.

1. (40 points) Consider the program given in Figure 5. Show all the steps in the execution of this program,
using a format similar to that in Figure 3.

2. (40 points) Consider the program given in Figure 7. Show all the steps in the execution of this program,
using a format similar to that in Figure 3.

3. (40 points; extra credit) Write a small example that uses exception handling (try, raise, and catch, and
finally), and show how it executes in the terminal transition system, using a format similar to Figure 3.

4. (50 points; extra credit) The terminal transition we gave in the lecture notes uses an environment. As
you can see now, this isn’t so handy for hand calculation. Write up another small step operational
semantics for the kernel of the declarative model that uses substitutions instead of an environment.
You’ll have to allow variables in places where the syntax only allows variable identifiers now. Show
how your system works by redoing exercise 1 in your semantics. See section 3.3.1 of [RH04].

5. (50 points; extra credit) Suppose we also restrict the language to the strict functional model, as de-
scribed in section 2.8.1 of [RH04]. In this model there are no unbound values that can appear in data
structures. Give a small step operational semantics for this model, replacing the old syntax and rules
for local with the two new syntactic forms shown in section 2.8.1, and giving new rules in the opera-
tional semantics for this syntax. Show how your system works by redoing exercise 1 in this semantics.

Other Problems
6. (50 points total; extra credit) Do the paper review problem at the end of homework 2.

1

http://www.cs.iastate.edu/~cs541/lectures/declarative/kernel.txt
http://www.cs.iastate.edu/~leavens/include/calculation.tex

References
[Ast91] Edigio Astesiano. Inductive and operational semantics. In E. J. Neuhold and M. Paul, editors, For-

mal Description of Programming Concepts, IFIP State-of-the-Art Reports, pages 51–136. Springer-
Verlag, New York, NY, 1991.

[Hen90] Matthew Hennessy. The Semantics of Programming Languages: an Elementary Introduction using
Structural Operational Semantics. John Wiley and Sons, New York, NY, 1990.

[Lan66] P. J. Landin. The next 700 programming languages. Communications of the ACM, 9(3):157–166,
March 1966.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science, 5:223–
255, 1977.

[Plo81] Gordon Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Aarhus University, September 1981.

[RH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The
MIT Press, Cambridge, Mass., 2004.

2

local Answer K in
fun {K X} fun {$ Y} X end end
Answer = {{K 3} 4}

end

Figure 1: A small Oz program using various sugars.

local Answer in
local K in

K = proc {$ X R}
R = proc {$ Y R2} R2=X end

end
local Four in

local Three in
Three = 3
Four = 4
local Z in

{K Three Z}
{Z Four Answer}

end
end

end
end

end

Figure 2: Kernel translation of the program in Figure 1.

3

Let E0 = {} be the empty environment, let σ0 = {} be the empty store, and let S0 be the program of Figure 2.
The following calculation starts with the state resulting from the input of S0. Note that this follows the book
[RH04] in making closures be pairs of the form (P,E), where P is a procedure text and E an environment.

((S0, E0) | nil, σ0)

→
〈

by [local], with E1 = E0 + {Answer → x1} = {Answer → x1}, x1 = next(σ0), and
σ1 = alloc(σ0) = {x1}

〉
((local K in ... end, E1) | nil, σ1)

→
〈

by [local], with E2 = E1 + {K → x2} = {Answer → x1,K → x2}, x2 = next(σ1), and
σ2 = alloc(σ1) = {x1, x2}

〉
((K = proc ... end local Four in ... end, E2) | nil, σ2)

→ 〈by [sequence]〉
((K = proc ... end, E2) | (local Four in ... end, E2) | nil, σ2)

→

〈by [value creation to unbound], with E∅ = E2|{} = {},
kv = (proc {$ X R} R = proc {$ Y R2} R2=X end end, E∅)
σ3 = bind(σ2)({x2}, kv) = {x1, x2 = kv}

〉
((local Four in ... end, E2) | nil, σ3)

→
〈

by [local], with E3 = E2 + {Four → x4} = {Answer → x1,K → x2,Four → x3},
x3 = next(σ3), and σ4 = alloc(σ3) = {x1, x3, x2 = kv}

〉
((local Three in ... end, E3) | nil, σ4)

→

〈by [local], with
E4 = E3 + {Three → x4} = {Answer → x1,K → x2,Four → x3,Three → x4},
x4 = next(σ4), and σ5 = alloc(σ4) = {x1, x3, x4, x2 = kv}

〉
((Three = 3 Four = 4 local Z in ... end, E4) | nil, σ5)

→ 〈by [sequence]〉
((Three = 3, E4) | Four = 4 local Z in ... end, E4) | nil, σ5)

→ 〈by [value creation to unbound], with σ6 = bind(σ5)({x4}, 3) = {x1, x3, x2 = kv, x4 = 3} 〉
(Four = 4 local Z in ... end, E4) | nil, σ6)

→ 〈by [sequence]〉
((Four = 4, E4) | (local Z in ... end, E4) | nil, σ6)

→ 〈by [value creation to unbound], with σ7 = bind(σ6)({x3}, 4) = {x1, x2 = kv, x3 = 4, x4 = 3} 〉
((local Z in ... end, E4) | nil, σ7)

→

〈by [local], with
E5 = E4 + {Z → x5} = {Answer → x1,K → x2,Four → x3,Three → x4,Z → x5},
x5 = next(σ7), and σ8 = alloc(σ7) = {x1, x5, x2 = kv, x3 = 4, x4 = 3}

〉
(({K Three Z} {Z Four Answer}, E5) | nil, σ8)

→ 〈by [sequence]〉
(({K Three Z}, E5) | ({Z Four Answer}, E5) | nil, σ8)

→
〈

by [application], since E5(K) = x2 and σ8(x2) = kv with
E6 = E∅ + {X → E5(Three)} + {R → E5(Z)} = {X → x4,R → x5}

〉
((R = proc {$ Y R2} R2=X end, E6) | ({Z Four Answer}, E5) | nil, σ8)

→

〈by [value creation to unbound], with E′
6 = E6|{X} = {X → x4}

kyv = (proc {$ Y R2} R2=X end, E′
6),

σ9 = bind(σ8)({x5}, kyv) = {x1, x2 = kv, x3 = 4, x4 = 3, x5 = kyv}

〉
(({Z Four Answer}, E5) | nil, σ9)

→
〈

by [application], since E5(Z) = x5 and σ9(x5) = kyv with
E7 = E′

6 + {Y → E5(Four)} + {R2 → E5(Answer)} = {X → x4,Y → x3,R2 → x1}

〉
((R2=X, E7) | nil, σ9)

→
〈

by [var-var binding], with σ10 = unify(σ9)(x1, x4) and so
σ10 = {x1 = 3, x2 = kv, x3 = 4, x4 = 3, x5 = kyv}

〉
(nil, σ10)

Figure 3: A calculation of the TTS steps taken when executing the program of Figure 2.

4

local Answer Zero One in
fun {Zero F} fun {$ X} X end end
fun {One F} fun {$ X} {F X} end end
Answer = {{{{One One} {One Zero}} true} false}

end

Figure 4: Program for Exercise 1 with sugars.

local Answer in
local Zero in

local One in
Zero = proc {$ F R}

R = proc {$ X R2} R2=X end
end

One = proc {$ F R}
R = proc {$ X R2} {F X R2} end

end
local True in

local False in
True = true
False = false
local Z in

local Z2 in
local Z3 in

local Z4 in
{One One Z}
{One Zero Z2}
{Z Z2 Z3}
{Z3 True Z4}
{Z4 False Answer}

end
end

end
end

end
end

end
end

end

Figure 5: Kernel translation of the program in Figure 4.

5

local Answer Plus in
fun {Plus X Y}

case X of succ(Xm1)
then succ({Plus Xm1 Y})
else Y
end

end
Answer = {Plus succ(zero) succ(succ(zero))}

end

Figure 6: Program for Exercise 2 with sugars.

local Answer in
local Plus in

Plus = proc {$ X Y R}
case X of succ(Xm1)
then local Temp in

R = succ(Temp)
{Plus Xm1 Y Temp}

end
else R = Y
end

end
local Zero in

local One in
local Two in

Zero = zero
One = succ(Zero)
Two = succ(One) % (optimized :-)
{Plus One Two Answer}

end
end

end
end

end

Figure 7: Kernel translation of the program in Figure 6.

6

